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ABSTRACT

The detection and estimation of signals in noisy, limited
data is a problem of interest to many scientific and engi-
neering communities. We present a computationally sim-
ple, sample eigenvalue based procedure for estimating
the number of high-dimensional signals in white noise
when there are relatively few samples. We highlight a
fundamental asymptotic limit of sample eigenvalue based
detection of weak high-dimensional signals from a lim-
ited sample size and discuss its implication for the detec-
tion of two closely spaced signals.

This motivates our heuristic definition of theeffec-
tive number of identifiable signals. Numerical simula-
tions are used to demonstrate the consistency of the algo-
rithm with respect to the effective number of signals and
the superior performance of the algorithm with respect
to Wax and Kailath’s “asymptotically consistent” MDL
based estimator.

Index Terms— Signal detection, eigen-inference, ran-
dom matrices

1. INTRODUCTION

The observation vector, in many signal processing appli-
cations, can be modelled as a superposition of a finite
number of signals embedded in additive noise. Detect-
ing the number of signals present becomes a key issue
and is often the starting point for the signal parameter es-
timation problem. When the signals and the noise are
assumed to be samples of a stationary, ergodic Gaus-
sian vector process, the sample covariance matrix formed
from m observations has the Wishart distribution.

The proposed algorithm uses an information theo-
retic criterion, motivated by the approach taken by Wax
and Kailath (henceforth WK) in [1], for determining the
number of signals in white noise by performing inference
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on the eigenvalues of the resulting sample covariance ma-
trix. The form of the estimator is motivated by the dis-
tributional properties of moments of the eigenvalues of
large dimensional Wishart matrices [2].

The proposed estimator was derived by explicitly ac-
counting for the blurring and fluctuations of the eigenval-
ues due to sample size constraints. Consequently, there is
a greater theoretical justification for employing the pro-
posed estimator in sample starved settings unlike the WK
estimators which were derived assuming that the sam-
ple size greatly exceeds the number of sensors. This
is reflected in the improved performance relative to the
“asymptotically consistent” WK MDL based estimator.

Another important contribution of this paper is the
description of a fundamental limit of eigen-inference,i.e.,
inference using the sample eigenvalues alone. The con-
cept ofeffective number of identifiable signals, introduced
herein, explains why, asymptotically, if the signal level
is below a threshold that depends on the noise variance,
sample size and the dimensionality of the system, then
reliable detection is not possible.

This paper is organized as follows. The problem is
formulated in Section 2. An estimator for the number of
signals present that exploits results from random matrix
theory is derived in Section 3. The fundamental limits
of sample eigenvalue based detection and the concept of
effective number of signalsare discussed in Section 4.
Simulation results are presented in Section 5 while some
concluding remarks and directions for future research are
presented in Section 6.

2. PROBLEM FORMULATION

We observem samples (“snapshots”) of possibly sig-
nal bearingn-dimensional snapshot vectorsx1, . . . ,xm

where for eachi, xi ∼ Nn(0,R) andxi are mutually
independent. The snapshot vectors are modelled as

xi = Asi + zi for i = 1, . . . , m, (1)
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wherezi ∼ Nn(0, σ2I), denotes ann-dimensional (real
or complex) Gaussian noise vector whereσ2 is generi-
cally unknown,si ∼ Nk(0,Rs) denotes ak-dimensional
(real or complex) Gaussian signal vector with covariance
Rs, andA is an × k unknown non-random matrix.

Since the signal and noise vectors are independent
of each other, the covariance matrix ofxi can hence be
decomposed as

R = Ψ + σ2I (2)

where
Ψ = ARsA

′, (3)

with ′ denoting the conjugate transpose. Assuming that
the matrixA is of full column rank,i.e., the columns of
A are linearly independent, and that the covariance ma-
trix of the signalsRs is nonsingular, it follows that the
rank ofΨ is k. Equivalently, then − k smallest eigen-
values ofΨ are equal to zero.

If we denote the eigenvalues ofR by λ1 ≥ λ2 ≥
. . . ≥ λn then it follows that the smallestn− k eigenval-
ues ofR are all equal toσ2 so that

λk+1 = λk+2 = . . . = λn = λ = σ2. (4)

Thus, if the true covariance matrixR were known apri-
ori, the dimension of the signal vectork can be deter-
mined from the multiplicity of the smallest eigenvalue
of R. The problem in practice is that the covariance
matrix R is unknown so that such a straight-forward al-
gorithm cannot be used. The signal detection and es-
timation problem is hence posed in terms of an infer-
ence problem onm samples ofn-dimensional multivari-
ate real or complex Gaussian snapshot vectors.

A classical approach to this problem, developed by
Bartlett [3] and Lawley [4], uses a sequence of hypothe-
sis tests. Though this approach is sophisticated, the main
problem is the subjective judgement needed by the prac-
titioner in selecting the threshold levels for the differ-
ent tests. This was overcome by Wax and Kailath in
[1] wherein they propose an estimator for the number
of signals (assumingm > n) based on the eigenvalues
l1 ≥ l2 ≥ . . . ≥ ln of the sample covariance matrix
(SCM) defined by

R̂ =
1

m

m∑

i=1

xix
′
i =

1

m
XX′ (5)

whereX = [x1| . . . |xm] is the matrix of observations
(samples). The Akaike Information Criteria (AIC) form
of the estimator is given by

k̂AIC = arg min
k∈N:0≤k<n

−2(n− k)m log
g(k)

a(k)
+ 2k(2n− k)

(6)

while the Minimum Descriptive Length (MDL) criterion
is given by

k̂MDL = argmin
k∈N:0≤k<n

−(n − k)m log
g(k)

a(k)

+
1

2
k(2n − k) log m (7)

whereg(k) =
∏n

j=k+1 l
1/(n−k)
j is the geometric mean

of the n − k smallest sample eigenvalues anda(k) =
1

n−k

∑n
j=k+1 lj is their arithmetic mean.

It is known [1] that the AIC form inconsistently es-
timates the number of signals, while the MDL form es-
timates the number of signals consistently. The simplic-
ity of the estimator, and the large sample consistency are
among the primary reasons why the Kailath-Wax MDL
estimator continues to be employed in practice [5]. In the
two decades since the publication of the WK paper, re-
searchers have come up with many innovative solutions
([6, 7, 8] to list a few) for making the estimators more
robust by exploiting some type of prior knowledge.

The most important deficiency of the WK and re-
lated estimators that remains unresolved occurs when the
sample size is smaller than the number of sensors,i.e.,
when m < n. In this situation, the SCM is singular
and the estimators become degenerate. Practitioners of-
ten overcome this in an ad-hoc fashion by, for exam-
ple, restrictingk in (7) to integer values in the range
0 ≤ k < min(n, m). Since large sample,i.e., m ≫ n,
asymptotics were used to derive the estimators in [1],
there is no rigorous theoretical justification for such a re-
formulation even if the simulation results suggest that the
WK estimators are working “well enough.”

Other sample eigenvalue based solutions found in the
literature that exploit the sample eigenvalue order statis-
tics [6], or employ a Bayesian framework by imposing
priors on the number of signals [9] are computationally
more intensive and do not address the sample size starved
setting in their analysis or their simulations. Particle fil-
ter based techniques [8], while useful, require the prac-
titioner to the model the eigenvectors of the underlying
population covariance matrix as well; this makes them
especially sensitive to model mismatch errors that are
endemic to high-dimensional settings. This motivates
our development of an sample eigenvalue based estima-
tor with a computational complexity comparable to that
of the WK estimators.



3. ESTIMATING THE NUMBER OF SIGNALS

Given an observationy = [y(1), . . . , y(N)] and a fam-
ily of models, or equivalently a parameterized family of
probability densitiesf(y|θ) indexed by the parameter
vectorθ, we select the model which gives the minimum
Akaike Information Criterion (AIC) [10] defined by

AICk = −2 log f(y|θ̂) + 2k (8)

whereθ̂ is the maximum likelihood estimate ofθ, andk
is the number of free parameters inθ. We derive an AIC
based estimator for the number of signals by exploiting
the following distributional properties of the moments of
eigenvalues of the (signal-free) SCM.

Theorem 1 (Dumitriu-Edelman [2]) AssumêR is formed
fromm snapshots modelled as (1) withk = 0, λ = 1 then
asm, n → ∞ andcm = n/m → c ∈ (0,∞), then





∑n
i=1 li − n

∑n
i=1 l2i − n (1 + c) − ( 2

β − 1)c



 D→ N (0,Q)

whereD denotes convergence in distribution,β = 1 (or
2) whenxi is real (or complex) valued, respectively, and

Q =
2

β

[
c 2c (c + 1)

2c (c + 1) 2c (2c2 + 5c + 2)

]
.

Proposition 2 AssumêR satisfies the hypotheses of The-
orem 1 for someλ then asm, n → ∞ andcm = n/m →
c ∈ (0,∞), then

n [tn − (1 + c)]
D→ N

((
2

β
− 1

)
c,

4

β
c2

)
(9)

and the test statistictn is given by

tn =
1
n

∑
i l2i(

1
n

∑
i li

)2 =
Second moment of eigs

Mean sq. of eigs

PROOF. This follows from applying the delta method
[11] to the results in Theorem 1.

Whenk > 0 signals are present and assumingk ≪
n, then the distributional properties of then − k “noise”
eigenvalues are closely approximated by the distributional
properties of the eigenvalues given by Theorem 1 of the
signal-free SCM,i.e., k = 0. Hence, by evaluating the
statistic in Proposition 2 over a sliding window, and using
the normal approximation for the statistic from Proposi-
tion 2 with c ≈ n/m andk + 1 free parameters in the
AIC formulation in (8) results in the estimator:

k̂NEW = argmin
k∈N:0≤k<min(n,m)

{
β

4

[m

n

]2

q2
k

}
+2(k + 1),

(10a)

where

qk = n





1
n−k

∑n
i=k+1 l2i

( 1
n−k

∑n
i=k+1 li)2

︸ ︷︷ ︸
tn,k

−
(
1 +

n

m

)




−

(
2

β
− 1

)
n

m
. (10b)

Hereβ = 1 if xi ∈ Rn, andβ = 2 if xi ∈ Cn.
When the measurement vectors represent quaternion val-
ued narrowband signals, then we setβ = 4. Quaternion
valued vectors arise when the data collected from vector
sensors is represented using quaternions as in [12].

4. FUNDAMENTAL LIMIT OF DETECTION

The following result exposes when the “signal” eigenval-
ues are asymptotically distinguishable from the “noise”
eigenvalues.

Proposition 3 AssumêR satisfies the hypotheses of The-
orem 1. Denote the eigenvalues ofR by λ1 ≥ λ2 >
. . . ≥ λk > λk+1 = . . . λn = λ = σ2. Let lj denote the
j-th largest eigenvalue of̂R. Then asn, m → ∞ with
cm = n/m → c ∈ (0,∞), andj = 1, . . . , k + 1,

lj →






λj

(
1 +

σ2 c

λj − σ2

)
if λj > σ2 (1 +

√
c)

σ2 (1 +
√

c)2 if λj ≤ σ2(1 +
√

c)

(11)
where the convergence is almost surely.

PROOF. This result appears in [13] for very general set-
tings. A matrix theoretic proof for whenc < 1 for the
real case may be found in [14] and an interacting particle
system interpretation appears in [15].

Motivated by Proposition 3, we define the effective
number of signals as

keff(R) = # eigs. ofR > σ2

(
1 +

√
n

m

)
. (12)



4.1. Identifiability of closely spaced signals

Suppose there are two uncorrelated (hence, independent)
signals so thatRs = diag(σ2

S1, σ
2
S2). In (1), let A =

[v1v2]. In a sensor array processing application, we think
of v1 ≡ v(θ1) andv2 ≡ v2(θ2) as encoding the array
manifold vectors for a source and an interferer with pow-
ersσ2

S1 andσ2
S2, located atθ1 andθ2, respectively. The

covariance matrix given by

R = σ2
S1v1v

′
1 + σ2

S2v2v
′
2 + σ2I (13)

has then − 2 smallest eigenvaluesλ3 = . . . = λn = σ2

and the two largest eigenvalues

λ1 = σ2 +
(σ2

S1
‖v1‖

2+σ2

S2
‖v2‖

2)
2

+

q

(σ2

S1
‖v1‖2−σ2

S2
‖v2‖2)

2
+4σ2

S1
σ2

S2
|〈v1,v2〉|2

2 (14a)

λ2 = σ2 +
(σ2

S1
‖v1‖

2+σ2

S2
‖v2‖

2)
2

−
q

(σ2

S1
‖v1‖2−σ2

S2
‖v2‖2)

2
+4σ2

S1
σ2

S2
|〈v1,v2〉|2

2 (14b)

respectively. Applying the result in Proposition 3 allows
us to express the effective number of signals as

keff =






2 if σ2

(
1 +

√
n

m

)
< λ2

1 if λ2 ≤ σ2

(
1 +

√
n

m

)
< λ1

0 if λ1 ≤ σ2

(
1 +

√
n

m

)

(15)
In the special situation when‖ v1 ‖=‖ v2 ‖=‖ v ‖ and
σ2

S1 = σ2
S2 = σ2

S, we can (in an asymptotic sense) reli-
ably detect the presence ofboth signalsfrom the sample
eigenvalues alone whenever

σ2
S ‖v‖2

(
1 − |〈v1,v2〉|

‖v ‖

)
> σ2

√
n

m
(16)

Equation (16) captures the tradeoff between the identifi-
ability of two closely spaced signals, the dimensionality
of the system, the number of available snapshots and the
cosine of the angle between the vectorsv1 andv2. It may
prove to be a useful heuristic for experimental design.
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Fig. 1. Comparison of the estimators over 20,000 trials.

5. SIMULATIONS

Assume the covariance matrixR hasn−2 “noise” eigen-
values withσ2 = 1, and two “signal” eigenvalues with
λ1 = 10 andλ2 = 3. Whenm = 4n samples are avail-
able, Figure 1(a) shows that the proposed estimator con-
sistently detects two signals while the WK MDL estima-
tor does not. However, whenm = n/4, Figure 1(a) sug-
gests that neither estimator is able to detect both the sig-
nals present. A closer examination of the empirical data
presents a different picture. For the covariance matrix
considered, whenm = n/4, then from (12),keff = 1.
Figure 1(b) shows that for largen andm = n/4, the new
estimator consistently estimates one signal, as expected.
The WK MDL estimator detects no signals. We conjec-
ture that the new estimator consistently estimateskeff in
then, m → ∞, n/m → c sense.



6. CONCLUSIONS

An estimator for the number of signals in white noise was
presented that exhibits robustness to high-dimensionality,
and sample size constraints. The concept ofeffective
number of signalsdescribed provides insight into the (asymp-
totic) regime in which reliable detection with sample eigen-
value based methods, including the proposed method, is
possible. This helps identify scenarios where algorithms
that exploit any structure in the eigenvectors of the sig-
nals, such as the MUSIC and the Capon-MVDR [5] algo-
rithms in sensor array processing, might be better able to
tease out lower level signals from the background noise.
It is worth noting that the proposed approach remains rel-
evant in situations where the eigenvector structure has
been identified. This is because eigen-inference method-
ologies are inherently robust to eigenvector modelling er-
rors that are endemic to high-dimensional settings. Thus
the practitioner may use the proposed estimator to com-
plement and “robustify” the inference provided by algo-
rithms that exploit the eigenvector structure.
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