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Abstract
This paper tells the story of a matrix and a problem both of which are associated
with the name Mark Kac, though most likely he never made the connection. This
matrix appears as the Clement matrix in Higham’s toolbox, and in the Ehrenfest urn
model of diffusion. Our immediate interest in this matrix arises in the study of roots
of random polynomials.

1 A<—>B

This report may be thought of as a path with two endpoints, both of which may be
associated with the name Mark Kac. No on second thought, the focus is not so much
on the path, but rather the two endpoints themselves as there are many paths between the
two points, some more scenic than others. We have no reason to suspect that Kac ever
took the path from A to B as his itinerary took him to many other destinations.

Endpoint “A” is the so-called Kac matrix, a simple matrix with many hidden treasures.
Endpoint “B” is a Kac problem on the average number of real roots of a random algebraic
equation. The matrix (“A”) appeared in 1946 in a lecture on Brownian motion [12]. The
random polynomial question (“B”) first appeared in a 1943 paper [11].

2 The Kac Matrix
The n+ 1 by » + 1 Kac matrix is defined as the tridiagonal matrix

0 n
1 0 n—-1
2

0 n—2
Kac,, =

n—1 0 1
n 0

This matrix was dubbed “A Matrix of Mark Kac” by Taussky and Todd [18] who point
out that this matrix was studied by Sylvester, Schrodinger, and many others. It also has
the name “Clement matrix” in Higham’s Test Matriz Toolbox for Matlab [10] because of
Clement’s [2] proposed use of this matrix as a test matrix. It is the matrix that describes
a random walk on a hypercube as well as the Ehrenfest urn model of diffusion [3, 4].
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The first surprise that this matrix has in store for us is that the eigenvalues are the
integers —n,—n + 2,—n + 4,...,n — 2,n. Several proofs of this fact may be found in
[18] along with interesting historical remarks such as that Schrédinger could not find a
proof that these eigenvalues are correct. Numerically the eigenvalues can be difficult in a
manner that reminds us of the Wilkinson matrix. Though the eigenvalues are integers in
exact arithmetic, Matlab computes some non-real eigenvalues when eig(clement(120)) is
executed.

One of the proofs in [18] is denoted “mild trickery by Kac” in that Kac makes clever use
of generating functions to obtain the eigenvalues of eigenvectors. We like to think that if
Kac’s proof was mild trickery, the following new proof might be considered major trickery
in that the reader would be unable to guess how we conjured up this proof.

THEOREM 2.1. The eigenvalues of Kac,, are the integers 2k —n for k =0,1,...,n.

Proof. Define

fr(x) = sinh®(2) cosh"* (), k=0,...,n,

gr(2) = (sinh(z) 4 cosh(z))*(sinh(z) — cosh(2))" ™%, k=0,...,n

If V is the vector space of functions with basis {fix(z)}, then the gi(z) are clearly in
this vector space. Also, & fi(2) = kfi_1(2) + (n — k) feg1(z), so that the Kac matrix
is the representation of the operator d/dz in V. We actually wrote gx(z) in a more
complicated way than we needed to so that we could emphasize that gi(z) € V. Actually,
gp(z) = exp((2k — n)z) is an eigenfunction of d/dz with eigenvalue 2k —n for k= 0,...,n.
The eigenvector is obtained by expanding out the gi(z) in terms of the fi(z). 0

3 The Kac-Matrix as Polynomial “Rotators”

Perhaps a good magician never reveals his secrets, but we are mathematicians, and we can
not resist. Our secret is a certain understanding of nth degree polynomials in one variable.
As usual, we will identify the set of polynomials of the form p(t) = ap + a1t + - - - + a, 1",
with the vector space R"t!. Actually, it will be more convenient to “homogenize” the
polynomial so as to consider polynomials of the form p(z,y) = aga™ + a1z Ly +-- -+ a,y"
which we will not distinguish from the vector (ag,ay, ..., a,)".

For each 6 € [0,27), we define the “rotated” polynomial

p(z,y;0) = p(xcosf + ysinb, —z sin 6 + ycos ).

With all the sines and cosines around, it would be easy to lose sight of the fact that for
the coefficients of the polynomial p(z, y; 8) are linear functions of the coefficients a; of p(z, y)
even if they are complicated trigonometric functions in #. Since we are not distinguishing
a polynomial from the vector of its coeflicients, we may say that thereisan n4+ 1 xn + 1
matrix Lg for which

p(z,y;0) = Lop(x,y).

We will demonstrate that the matrices Ly are matrix exponentials of scalar multiples

of the Kac-like matrix

AntiKac,, =



THE RoaD FroM KaAc’s MATRIX TO Kac’s POLYNOMIALS 3

Indeed by differentiating such terms as ag(x cosf + ysin 6)"*(—zsinf + ycosf)* with
respect to #, we see that

d .
@L@ = AntiKac, Lg,

which has the solution Ly = exp(#AntiKac,,).

If we let D, = diag(1,¢,4?,...,:"), then D;'Kac, D, = tAntiKac,. So the eigenvalues
of AntiKac,, are the integers —n, —n+2,...,n — 2, n multiplied by ¢. The reader may wish
to return to the definition of the rotated polynomials to see why the eigenvalues “had to”
be integers times 1.

Of course the matrices Kac, and AntiKac, are really the same. The difference is just
the difference between sinh and sin, it all depends on which way you are facing in the
complex plane.

4 The symmetrized Kac matrix and Random Polynomials

The matrix Kac, (or AntiKac,) may be symmetrized (anti-symmetrized) by a diagonal
matrix containing square-roots of the binomial coefficients: B, = diag({(Z)l/Q}Zzo) The
symmetrized or version of the matrix contains the numbers \/k(n + 1 — k) on the super
and sub-diagonals; the anti-symmetrized is the same except that the subdiagonal entries
have minus signs.

Let us to go back to our definition in Section 3 and say that we will now identify
> ag (Z)l/zx”_kyk with the vector (ag,ay,...,a,)". This is a scaling of the coordinate axes
of our n+ 1 dimensional space. If we were to follow our definitions, the matrices Ly are now
exponentials of anti-symmetric matrices, i.e. they are orthogonal. In other words, we may
compute the coefficients of p(x,y;8) by applying an orthogonal matrix to the coefficients
of p(x,y). In this coordinate system, rotating the homogeneous arguments of p induces a
rotation of the coefficient vector of p! As 6 sweeps through [0,27), the coefficient vector
of the polynomial sweeps out a path in R"*! that is confined to a sphere centered around
the origin. In general, this path will be non-planar. One interesting degenerate case is the
polynomial (22 + y2)”/2 defined for even n. Rotating this polynomial does not move it; this
polynomial is the eigenvector corresponding to the eigenvalue 0. Other degenerate cases
that do lead to planar paths (circles centered about the origin), may be obtained from the
eigenvectors corresponding to +ke.

What if p(z,y) = 3 apz" *y* is a random polynomial with coefficients ay taken from
independent and identically distributed standard normal distributions? It is well known
that the distribution of a vector of independent standard normals is spherically symmetric.
Since Ly is orthogonal, we see that the distribution of the vector of coefficients of p(z, y; 6)
is the same as that of p(x,y). The probability distribution of the coefficients of our rotated
polynomials is the same as that of our original polynomials!

Therefore, the probability distribution of the roots of the polynomials is invariant under
rotation. Remembering that if (x,y) is a root of the homogenized polynomial, then t = y/x
is a root of the unhomogenized polynomial, we see that arctan(?) is uniformly distributed
on [—7/2,7/2).

We therefore conclude THEOREM 4.1. If p(t) = Y ay (Z)I/th is a random polynomial
with normally distributed coefficients, then the distribution of the real roots of p(t) = 0 has
the Cauchy distribution, i.e. arctan(t) is uniformly distributed on [—7/2,7/2).
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5 A Curve Length Counts How Many Random Roots are Real
Let fi(t),k=0,1,...,n be a collection of rectifiable functions

fl)

and let v(¢) = v(t)/||v(¢)|| so v(t) is on the unit sphere. We showed in [8] that the expected
number of real roots ¢ in the interval [a,b] to the random equation Y y_qax fe(t) = 0, ai
independent standard normals, is 1/7 times the length of the curve y(¢) that is swept out
on the sphere as ¢ runs through [a,b]. A proof of this statement using mostly precalculus
level mathematics may be found in the reference.

Kac [11, 12] considered the first question that might come to a reader’s mind: f5(¢) = t*.
As n — oo the expected number of real roots is asymptotic to %log n+ 0.6257350972 ...+
2+ 0(1/n*) as n — oo. (Kac knew the leading behavior 2logn; his derivation was
algebraic, not geometric.)

Here, we wish to focus on a random polynomial question introduced by Kostlan [14]

that is more closely connected to the Kac matrix: fi(¢) = (Z)l/ztk. We may build the
vector v(t), and then normalize to the unit sphere. Letting ¢ = tan # simplifies the answer
which is

(8)1/2 cos™ ¢

(?)1/2 cos" 1 fsin @

y(tan(6)) = (3)1/2 cos" "2 @sin? 0
(2)1/2 sin” 6
ie. y(0) = (2)1/2 cos"F @sin* @, where the dimension index k runs from 0 to n. The

binomial expansion of (sin @ + cos? §)" = 1 checks that our curve lives on the unit sphere.

If we differentiate, y(tan(#)) with respect to 6 the anti-symmetrized AntiKac, matrix
appears. The curve on the sphere traced out by v(#) is the same curve traced out by
p(z,y;0), when p(z,y) = 2. Though 0 varies, the velocity vector always has the same
length as the first column of the anti-symmetrized AntiKac, matrix, which is y/n. We may
conclude. THEOREM 5.1. If p(t) = >"F_¢ ax (Z)I/th is a random polynomial with normally
distributed coefficients, then the expected number of real roots to the equation p(t) = 0 is
exactly \/n.
Proof. As 6 runs through [—7/2,7/2), we trace out the curve y(tan(#)) of length m/n
because the speed of the curve at every point is y/n. Dividing the result by 7 yields the
result. 0

In conclusion, we changed Kac’s question a little by asking for the roots of the random
equation 0 = 3"k = 0"ay, (Z)l/ztk, and we found that a small variation on Kac’s matrix may
be found everywhere in the analysis.
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that the matrix we were studying in the context of Kac’s problem also was named for Kac.
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