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Abstract

We propose to abandon the notion that a random matrix has to be sampled for it to exist. Much of
today's applied �nite random matrix theory concerns real or complex random matrices (β = 1, 2). The
�threefold way� so named by Dyson in 1962 [2] adds quaternions (β = 4). While it is true there are only
three real division algebras (β=�dimension over the reals�), this mathematical fact while critical in some
ways, in other ways is irrelevant and perhaps has been over interpreted over the decades.

We introduce the notion of a �ghost� random matrix quantity that exists for every beta, and a shadow
quantity which may be real or complex which allows for computation. Any number of computations have
successfully given reasonable answers to date though di�culties remain in some cases.

Though it may seem absurd to have a �three and a quarter� dimensional or �pi� dimensional algebra,
that is exactly what we propose and what we compute with. In the end β becomes a noisiness parameter
rather than a dimension.

1 Introduction

This conference article contains an �idea� which has become a �technique.� Perhaps it might be labeled �a
conjecture,� but I think �idea� is the better label right now. The idea was discussed informally to a number
of researchers and students at MIT for a number of years now, probably dating back to 2003 or so. It was
also presented at a number of conferences [3] . As slides do not quite capture a talk, this seemed a good
place to write down the ideas. The theory is not fully worked out yet. No apologies. I seem to know when
the technique is working and whet it is not. Too much is lurking that seems important. The theory will
come. No doubt some missteps will be caught. If this note encourages the evolution of the theory, it will
have ful�lled its role.

Mathematics has many precedents, the number 0 was invented when we let go of the notion that a
count requires objects to exist. Similarly negative numbers are more than the absence of existing objects,
imaginary numbers can be squared to obtain negative numbers, and in�nitesimals act like the �ghosts of
departed quantities." Without belaboring the point, mathematics makes great strides by letting go of what
at �rst seems so dear.

What we will obtain here is a rich algebra that acts in every way that we care about as a beta-dimensional
real algebra for random matrix theory. Decades of random matrix theory have been somewhat misleading.
The theory has focused on reals, complexes, and quaternions or β = 1, 2, 4. Statisticians would say the real
theory is more than enough and those who study wireless antenna networks would say that the complexes
are valuable, while physicists are an applied community that also �nd the quaternions of value.

Though it may seem absurd to have a �three and a quarter� dimensional algebra, as long as α = 2/β is
associated with �randomness� rather than dimension, there is little mathematical di�culty. Thus we throw
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out two notions that are held very dear: 1) a random object has to be capable of being sampled to exist and
2) the three division algebras so important to non-random matrix theory must take such an absolute role in
random matrix theory. One reference that captures some of this philosophy is [9].

The entire �eld of free probability introduced by Dan Voiculescu around 1986 is testament to the power
of the �rst idea, that a random object need not be sampled in order to exist. Some good references are [7] or
[8] . Here the entire theory is based on moments and generating functions rather than focusing on sampling.
To be sure β = 1, 2, 4 will always be special, perhaps in the same way that as the factorial function melts
away into the gamma function: permutations are no longer counted but analysis goes so very far.

We introduce the notion of a �ghost� in a straightforward manner in the next section. We propose that
one can compute with �ghosts� through �shadow� quantities thereby making the notions concrete. Some of
the goals that we wish to see are

1. The de�nition of a continuum of Haar measures on matrices that general the orthogonals, unitaries
and symplectics

2. A mechanism to compute arbitrary moments of the above quantities

3. A mechanism to compute Jacobians of matrix factorizations over beta-dimensional objects

4. Various new de�nitions of the Jack polynomials that generalize the Zonal and Schur Polynomials

5. New proofs and insights on any number of aspects of random matrix theory

In a sense it has become increasingly clear that the large n limit of random matrix theory corresponds to a
stochastic integral operator [4, 11, 10, 14, 15] where β inversely measures the amount of randomness. We
believe that �nite random matrix theory deserves an equal footing.

2 Ghost Random Variables

De�nition 1. (Isotropic Ghost random variables) We de�ne (without any further meaning!) an
isotropic ghost random variable, i.e. a random spherically symmetric β-dimensional random variable, x in
terms of a function fx(r) of r ≥ 0 satisfying

ˆ ∞
r=0

fx(r)rβ−1Sβ−1dr = 1, (1)

where the surface area of the (β dimensional) sphere for any positive real β (integer or not!) is

Sβ =
2πβ/2

Γ(β/2)
.

We say that x is a ghost random variable or a β-ghost. We think of x as a random variable in beta
dimensions, but once again there is no speci�c notion of sampling from this distribution unless β = 1, 2, 4.
We do not allow this to bother us in the slightest. Though we could sample with any integer beta sensibly
at this point.

Example 2. (Ghost Gaussians) A β dimensional standard Gaussian may be de�ned by

β−ghost Gaussian: fx(r) = (2π)−β/2e−r
2/2.
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De�nition 3. (Ghost norm) We de�ne ‖x‖ as the real random variable with probability density given in
the integrand of Equation 1.

We recall that as long as the integrand integrates to 1, this is a perfectly valid probability density over
the reals. As a random variable the ghost norm determines the ghost uniquely.

Example 4. (Ghost Gaussian norm) For a β dimensional Gaussian ‖x‖ has the χβ distribution, or
equivalently ‖x‖2 has the χ2

β distribution.

De�nition 5. (Shadows) A shadow is a real or complex quantity derived from a ghost that we can sample
and compute with.

We therefore have that the norm de�ned in De�nition 3 is a shadow. Another shadow will be de�ned in
De�nition 8.

3 Algebra on Ghosts

We consider operations of addition and multiplication on independent ghosts. Dependence is a far more
complicated issue which we will not treat here.

De�nition 6. (Sum of Independent Ghosts): The sum of two independent ghosts z=x+y is the unique
ghost satisfying

‖z‖2 = ‖x‖2 + ‖y‖2 + 2c‖x‖‖y‖

as random variables where c is an independent random variable with beta distribution on [−1, 1]with pa-
rameters (n− 1)/2 and (n− 1)/2. The probability density of c is

f(t) =
Γ(n− 1)

2n−2 (Γ((n− 1)/2)
2 (1− t2)(n−3)/2.

For integer β, c is a random coordinate of a β dimensional hypersphere. The usual dot product of x+ y
with itself requires the cosine of a random angle on the β dimensional sphere, which by isotropy is the same
as a random coordinate on the sphere in β dimensions.

De�nition 7. (Product of Independent Ghosts): The product of two independent ghosts z = xy is

the unique ghost satisfying

‖z‖ = ‖x‖‖y‖.

De�nition 8. (Real parts of ghosts): The real part of a ghost is the random variable ‖x‖c, where c is
independent of ‖x‖ and is de�ned as in De�nition 6.

We can talk about conjugates x̄ in the sense that x+ x̄ = 2 real(x) and xx̄ = ‖x‖2. A ghost may be said
to be real if x = x̄. A matrix A of ghosts may be said to be symmetric if Aij = Āji. The transposed matrix
AT has i,j element Āji When β = 2, a symmetric matrix is known as Hermitian, and when β = 4, these are
the quaternion self dual matrices.

We remark that we do not insist that ghosts be isotropic, for example we can add a real to a ghost, thus
o�setting the center. What appears to be the key point is that the random objects be ultimately derived
from isotropic quantities that we can keep track of.
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4 Ghost Orthogonals

We reason by analogy with β = 1, 2, 4 and imagine a notion of orthogonals that generalizes the orthogonal,
unitary, and symplectic groups. A matrix Q of ghosts may be said to be orthogonal if QTQ = I. The
elements of course will not be independent.

We sketch an understanding based on the QR decomposition on general matrices of independent ghost
Gaussians. We imagine using Householder transformations as is standard in numerical linear algebra soft-
ware. We obtain immediately

Proposition 9. Let A be an n × n matrix of standard β ghost Gaussians as in De�nition 2. We may

perform the QR decomposition into ghost orthogonal times ghost upper triangular. The resulting R matrix

has independent entries in the upper triangle. They are standard ghost Gaussians above the diagonal, and

the non-negative real quantity Rii = χβ(n+1−i) on the diagonal. The resulting Q matrix may be thought of

as a β analogue of Haar measure. It may be thought of as the product of Householder matrices Hk obtained

by re�ecting on the uniform k − dimensional �β sphere.�

The Householder procedure may be thought of as an analog for the O(n2) algorithm for representing
random real orthogonal matrices as described by Stewart [13].

We illustrate the procedure when n = 3. We use Gβ to denote independent standard ghost Gaussians as
distributions. They are not meant in any way to indicate common values or that even there is a meaning to
having values at all. Gβ Gβ Gβ

Gβ Gβ Gβ
Gβ Gβ Gβ

 = HT
3

 χ3β Gβ Gβ
0 Gβ Gβ
0 Gβ Gβ

 = HT
2 H

T
3

 χ3β Gβ Gβ
0 χ2β Gβ
0 0 Gβ

 = HT
1 H

T
2 H

T
3

 χ3β Gβ Gβ
0 χ2β Gβ
0 0 χβ

 .

The Hi are re�ectors that do nothing on the �rst n− i elements and re�ect uniformly on the remaining i
elements. The absolute values of the elements on the sphere behave like i independent χβrandom variables
divided by their root mean square. The Q is the product of the Householder re�ectors.

We expect that the Jack Polynomial formula gives consistent moments for Q through what might be seen
as a generating function. Let A and B be diagonal matrices of indeterminants. The formula

EQJκ(AQBQT ) = Jκ(A)Jκ(B)/Jκ(I),

provides expressions for moments in Q. Here the Jκ are the Jack Polynomials with parameter α = 2/β
[5, 12]. This formula is an analog of Theorem 7.2.5 of page 243 of [6]. It must be understood though that
the formula is a generating function involving the moments of Q and QT . This is formally true whether or
not one thinks that Q exists, or whether the formula is consistent or complete.

5 Ghost Gaussian Ensembles and Ghost Wishart Matrices

It is very interesting that if we tridiagonalize a complex Hermitian matrix (or a quaternion self-dual matrix),
as is done with software for computing eigenvalues, the result is a real tridiagonal matrix. Equally interesting,
and perhaps even easier to say, is that the bidigonalization procedure used in software for computing singular
values, takes general rectangular complex (or quaternion) matrices into real bidiagonal matrices.

The point of view is that the Hermite and Laguerre models introduced in [1] are not arti�cial construc-
tions, but they are shadows of symmetric or general rectangular ghost matrices respectively. If we perform
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the traditional Householder reductions on the ghosts the answers are the tridiagonal and bidiagonal models.
The tridiagonal reduction of a normalized symmetric Gaussian (�The Gaussian β − orthogonal Ensemble�)
is

Hβ
n ∼

1

2
√
nβ


N χ(n−1)β

χ(n−1)β N χ(n−2)β
. . .

. . .
. . .

χ2β N χβ
χβ N

 ,

where the N on the diagonal are each independent Gaussians with mean 0 and variance 2. The X ′s on the
super and subdiagonal are equal giving a symmetric tridiagonal.

The bidiagonal for a the singular values of a general ghost is similar with chi's running on the diagonal
and o�-diagonal respectively. See [1] for details.

We repeat the key point that these �shadow� matrices are real and can therefore be used to compute the
eigenvalues or the singular values very e�ciently. The notion is that they are not arti�cial constructions,
but what we must get when we apply the ghost Householder transformations.

6 Ghost Jacobian Computations

We propose that a β dimensional volume in what in retrospect must seem a straightforward manner. We
de�ne (dx)∧ as the volume element. It satis�es the key scaling relationship (rdx)∧ = rβ(dx)∧, that at
least makes us want to look a little into �fractal theory,� but at the moment we are suspecting this is not
really the key direction to look. Nonetheless we keep an open mind. The important relationship must be´
a<‖x‖<b(dx)∧ =

´ b
a
Sβ−1r

β−1dr = Sβ−1(bβ − aβ)/β. We use the wedge notation to indicate the wedge

product of the independent quantities in the vector or matrix of di�erentials.
This allows the computations of Jacobians of matrix factorizations for general β. As an example relevant

to the tridiagonalization above, we can compute the usual jacobian for the symmetric eigenvalue problem
obtaining (dA)∧ =

∏
i<j(|λi − λj |β)(QT dQ)∧(dΛ)∧. The derivation feels almost straightforward from the

di�erential of A = QΛQT or QT dAQ = (QT dQ)Λ−Λ(QT dQ) + dΛ. The reason it is straightforward is that
the quantity in the (i,j) position that multiplies (qTi dqj) is exactly λi − λj and in a β dimensional space this
must be scaled with a power of β respecting the dimensionality scaling (rdx)∧ = rβ(dx)∧.
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