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The Probability that a Random Real Gaussian Matrix has
k Real Eigenvalues, Related Distributions,

and the Circular Law

Alan Edelman*

Massachusetts Institute of Technology

Let A be an n by n matrix whose elements are independent random variables
with standard normal distributions. Girko's (more general) circular law states that
the distribution of appropriately normalized eigenvalues is asymptotically uniform
in the unit disk in the complex plane. We derive the exact expected empirical
spectral distribution of the complex eigenvalues for finite n, from which convergence
in the expected distribution to the circular law for normally distributed matrices
may be derived. Similar methodology allows us to derive a joint distribution
formula for the real Schur decomposition of A. Integration of this distribution
yields the probability that A has exactly k real eigenvalues. For example, we
show that the probability that A has all real eigenvalues is exactly 2&n(n&1)�4.
� 1997 Academic Press

1. INTRODUCTION

This paper investigates the eigenvalues of a real random n by n matrix
of standard normals. Our primary question is, ``What is the probability pn, k

that exactly k eigenvalues are real?'' A simpler question that has been
studied in much stronger form in the literature is, ``Why do the complex
eigenvalues when properly normalized roughly fall uniformly in the unit
disk as in Fig. 1?''

Both questions can be answered by first factoring the matrix into some
form of the real Schur decomposition, then interpreting this decomposition
as a change of variables, and finally performing a wedge product derivation
of the Jacobian of this change of variables. We demonstrate the power of
these techniques by obtaining exact answers to these questions.
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Fig. 1. 2500 dots representing normalized eigenvalues of fifty random matrices of size
n=50. Clearly visible are the points on the real axis.

This paper may be thought of as a sequel to [9], where we answered the
questions.

v What is the expected number En=�k kpn, k of real eigenvalues?

v Why do the real eigenvalues when properly normalized roughly fall
uniformly in the interval [&1, 1]?

In fact, our investigation into pn, k preceded that of [9], but when we saw
that � kpn, k always had a particulary simple form, we diverted our atten-
tion to understanding En and related issues. We felt that the derivation
En=� kpn, k must somehow be simpler than the derivation of the individual
pn, k .

Random eigenvalue experiments are irresistible given by the availability
of modern interactive computing packages. Numerical experiments beckon
us to theoretical explanations as surely as any experiment in mechanics did
centuries ago. If understanding is not a sufficient motivation, random
matrix eigenvalues arise in models of nuclear physics [20], in multivariate
statistics [22], and in other areas of pure and applied mathematics including
numerical analysis [5�8, 11, 15].1

204 ALAN EDELMAN

1 Most modern papers on numerical linear algorithms, rightly or wrongly, contain numeri-
cal experiments on random matrices.
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Perhaps we are still at the tip of the iceberg in our understanding of
eigenvalues of random matrices. Few papers contain exact distributional
results for non-symmetric random matrices. Given an exact distribution
formula for a normally distributed matrix, one expects such a formula to
be asymptotically valid for matrices of elements of mean 0 and variance 1.
This is a central limit effect. At the present time, however, there is no
satisfying theory that seems to allow us to make the leap from normally
distributed matrices to a wider class.

The contrast between the real and complex eigenvalues of a normally
distributed matrix is illustrated in Fig. 1. This figure plots the 2500 values
of *�- n where * is an eigenvalue of the random matrix of dimension
n=50. Note that the complex normalized eigenvalues may appear to be
roughly uniformly distributed in the unit disk. This is a version of Girko's
circular law [14], which states that if the elements of a random matrix are
independent with mean 0 and variance 1, then the distribution of the
normalized eigenvalues is asymptotically uniformly distributed over the
disk. A rigorous proof of the circular law has recently been provided by
Bai [3].

The strong form of the circular law states that if A is an infinite matrix
with i.i.d. elements Aij , i, j=1, ..., �, with mean 0 and variance 1, and if An

denotes the initial n by n section (normalized by 1�- n) with eigenvalues
*1 , ..., *n , then under mild hypotheses, the empirical distribution

+n(x, y)=
1
n

*[i�n : Re(*k)�x and Im(*k)�y]

converges with probability 1 to the uniform distribution over the unit disk
in the complex lane. Previously Bai and Yin [4] and Geman [12] showed
that the eigenvalues were inside the unit disk with probability 1.

Intuitively, the strong formulation states that if you plot the eigen-
values of one very large random matrix, then it is very likely the eigen-
values will look uniform. In this paper we rigorously prove a result that
is weaker than Girko's law, but we derive an exact distribution for finite
n. We derive the exact average distribution of the complex eigenvalues of
a real normally distributed matrix. This is weaker than Girko's law in the
sense that our results concern convergence in distribution of the eigen-
values when the matrix elements are independent standard normals. We
plot a random eigenvalue from many random matrices and note that the
distribution is uniform on the disk. The normal distribution models all
distributions with elements of mean 0 and variance 1, by central limit
effects, but this sort of reasoning alone is not rigorous mathematics. Our
result is stronger than Girko's law in that it gives exact distributions for
finite n.

205RANDOM REAL GAUSSIAN MATRIX
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A much simpler case occurs when the random matrix comes from a com-
plex normal distribution, i.e., the real and imaginary parts of each element
are independent standard normals. In this case the exact distribution for
the eigenvalue, distribution, and radius can be found in Ginibre [13] and
is reported by Mehta [20, p. 300] and Hwang [18], which also includes
an unpublished result of Silverstein [25] on convergence to the circular
law.

Two books [20, 15] report on previous investigations concerning the
eigenvalues of a random Gaussian matrix with no symmetry conditions
imposed. Our approach improves on the work of Dyson [20, Appendix 35],
Ginibre [13], and Girko [15, Theorem 3.5.1]. Ginibre and Girko compute
expressions for the joint distribution by diagonalizing A=X4X&1. Girko's
form is in terms of the real eigenvalues and the real and imaginary parts
of the complex eigenvalues. Dyson computed an expression for the special
case when A has all real eigenvalues using the real Schur decomposition
[23] A=QRQT, where R is upper triangular. Girko further expresses
the probability ck that A has k real eigenvalues as the solution to an n
by n linear system of equations, where the coefficients are multivariate
integrals. Girko's approach is rather cumbersome and has been simplified
by Bai [3].

After preparation of this manuscript, we learned that Theorem 6.1 was
independently discovered by Lehmann and Sommers [19] who consider
the range of problems from the completely symmetric case to the completely
antisymmetric case. (Also see [26]). Our derivation follows a different
viewpoint.

Our approach is simplified by directly considering the real Schur decom-
position [23] even when the matrix does not have all real eigenvalues. It is
well known to researchers in matrix computations that orthogonal decom-
positions are of great value [16]. It is perhaps not surprising that such
decompositions are also appropriate for random matrix theory.

We recognize that numerical analysts engineers may wish to know the
results of the theorems while mathematicians would find it absurd to state
a theorem without proof. As a compromise in Section 2 we state the results
of the theorems that will prove later. Sections 3, 4 and 5 contain lemmas
that will later be used in Section 6 to derive the main results. In Section 3
we investigate the expectation of a random determinant and indicate how
a number of ideas link. In Section 4 we investigate orthogonal matrix fac-
torizations that may perhaps be more familiar in numerical analysis then
in other branches of mathematics, yet these factorizations are precisely
what are needed here. In Section 5 we use the notation of exterior products
to compute the Jacobians of transformations that we use. Section 6 proves
the main theorems. Section 7 makes nonsymmetric to symmetric link. We
conclude with some open problems in Section 8.

206 ALAN EDELMAN
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2. MAIN RESULTS

For the benefit of those readers who may be interested in applying the
results, but are not concerned with the proof techniques, we collect our
results into one easy to read section with pointers to the theorems that
follow.

Probability of Exactly k Real Eigenvalues. The probability pn, k

that a random A has k eigenvalues has the form r+s - 2, where r and s are
rational. In particular, the probability that a random matrix has all real
eigenvalues is

Pn, n=1�2n(n&1)�4. (Corollaries 7.1 and 7.2)

In Table I, we list the probabilities for n=1, ..., 9 both exactly and to five
decimal places.

Joint Eigenvalue Density Given k Real Eigenvalues. The joint
density of the ordered real eigenvalues *j and ordered (by real part) complex
eigenvalue pairs xj\iyj , yj>0 given that A has k real eigenvalues is

2l&n(n+1)�4

>n
i=1 1(i�2)

2 exp \: ( y2
i &x2

i )&: *2
i �2+ ` erfc( yi - 2),

where 2 is the magnitude of the product of the differences of the eigen-
values of A and erfc is the complementary error function erfc(z)=
2�- ? ��

z exp(&t2) dt. Integrating this formula over the *j , xj , and yj>0
gives pn, k . Theorem 6.1

Density of Non-real Eigenvalues. The density of a random complex
eigenvalue of a normally distributed matrix is

\n(x, y)=- 2�? ye y2&x2
erfc( y- 2) en&2(x2+ y2),

where en(z)=�n
k=0 zk�k !. Integrating this formula over the upper half plane

gives half the expected number of non-real eigenvalues. Theorem 6.2

Notice the factor y in the density indicating a low density near the real
axis. Readers may detect the white space immediately above and below the
real axis in Fig. 1. We think of the real axis as attracting these nearly real
eigenvalues.

The following theorem is stated informally here. The formal statement
may be found in Section 6.2. We remark again that this is a weak form of

207RANDOM REAL GAUSSIAN MATRIX
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TABLE I

n k pn, k n k pn, k

1 1 1 1

2 2
1
2

- 2 0.70711

0 1&
1
2

- 2 0.29289

3 3
1
4

- 2 0.35355

1 1&
1
4

- 2 0.64645

4 4
1
8

0.125

2 &
1
4

+
11
16

- 2 0.72227

0
9
8

&
11
16

- 2 0.15273

5 5
1

32
0.03125

3 &
1
16

+
13
32

- 2 0.51202

1
33
32

&
13
32

- 2 0.45673

6 6
1

256
0.00552

4
271

1024
&

3
256

- 2 0.24808

2 &
271
512

+
107
128

- 2 0.65290

0
1295
1024

&
53
64

- 2 0.09350

7 7
1

2048
- 2 0.00069

5
355

4096
&

3
2048

- 2 0.08460

3 &
355

2048
+

1087
2048

- 2 0.57727

1
4451
4096

&
1085
2048

- 2 0.33744

8 8
1

16384
0.00006

6 &
1

4096
+

3851
262144

- 2 0.02053

4
53519

131072
&

11553
262144

- 2 0.34599

2 &
53487
65536

+
257185
262144

- 2 0.57131

0
184551
131072

&
249483
262144

- 2 0.06210

9 9
1

262144
0.00000

7 &
1

65536
+

5297
2097152

- 2 0.00256

5
82347

524288
&

15891
20-97152

- 2 0.14635

3 &
82339

262144
+

1345555
2097152

- 2 0.59328

1
606625
524288

&
1334961
2097152

- 2 0.25681
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the circular law because it only involves expectations, i.e., we sample many
random matrices and gather up the random non-real eigenvalues from
each.

A Circular Law (Convergence in Distribution). Let z denote a
random eigenvalue of A chosen with probability 1�n and normalized by
dividing by - n. As n � �, z converges in distribution to the uniform
distribution on the disk |z|<1. Furthermore, as n � �, each eigenvalue is
almost surely non-real. Theorem 6.3

It is tempting to believe that the eigenvalues are almost surely not real
for finite n, because the real line is a set of Lebesgue measure zero in the
plane. However this reasoning is not correct. Indeed it is not true for finite
n. When n=2, we see that the probability of real eigenvalues is greater
than non-real eigenvalues. The error arises because of the false intuition
that the density of the eigenvalues is absolutely continuous with respect to
Lebesgue measure.

3. RANDOM DETERMINANTS, PERMANENTS,
DERANGEMENTS, AND HYPERGEOMETRIC

FUNCTIONS OF MATRIX ARGUMENT

This section relates random determinants with the theory of permanents
and hypergeometric functions of matrix argument. We have not seen this
connection in the literature. The formulas are needed for the densities
derived in Section 6.

We remind the reader that the permanent function of a matrix is similar
to the usual definition of the determinant except that the sign of the
permutation is replaced with a plus sign:

per(A)=:
?

a1?(1) a2?(2) } } } an?(n) .

Generally the permanent is considerably more difficult to compute than the
determinant.

Hypergeometric functions of a matrix argument are less familiar then
permanents. They arise in multivariate statistics and more recently in
specialized fields of harmonic analysis. Unlike the matrix exponential, for
example, these functions take matrix arguments but yield scalar output.
They are much more complicated than merely evaluating a scalar hyper-
geometric function at the eigenvalues of the matrix. Readers unfamiliar
with the theory may safely browse or skip over allusions to this theory.
Those wanting to know more should consult [22, Chapter 7].

209RANDOM REAL GAUSSIAN MATRIX
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Theorem 3.1. If A is a random matrix with independent elements of
mean 0 and variance 1, and if z is any scalar (even complex!) then

E det(A2+z2I )=E det(A+zI )2=per(J+z2I )=n! en(z2)

=n! 1F1(&1;1
2 n ; 1

2 z2I),

where E denotes the expectation operator, J is the matrix of all ones,

en(x)= :
n

k=0

xk

k !

is the truncated Taylor series for exp(x), ``per'' refers to the permanent
function of a matrix, and the hypergeometric function has a scalar multiple
of the identity as argument.

The alert reader might already detect our motivation for Theorem 3.1.
It is the source of the term en&2(x2+ y2) in the density of the non-real
eigenvalues that will appear again in Theorem 6.2. The formula will be
used later in the derivation of Equation (22).

Before we prove this theorem from a set of lemmas to follow, we remark
on two special elementary cases. Taking z=0 is particulary simple. When
z=0, the theorem states that the expected value of the determinant of A2

is n!, and of course the permanent matrix of all ones is n!. Expanding and
squaring the determinant of A2, we see cross terms have expected value 0
and other n! squares have expected value 1.

Now consider z2=&1. The theorem states that E(det(A2&I ))=
n! �n

k=0 (&1)k�k !, an expression which we recognize as Dn , the number of
derangements on n objects, i.e. the number of permutations on n objects
that leave no object fixed in place. Many combinatorics books point out
that per(J)=n! and per(J&I )=Dn ([24, p. 28], [2, p. 161], and [21,
p. 44]), but we have not seen a general formula for per(*I&J), the per-
manental characteristic polynomial of J, in such books.

Theorem 3.1 is a synthesis of the following lemmas:

Lemma 3.1. Let A, B, and C be matrices whose elements are the indeter-
minants aij , bij and cij , respectively. Any term in the polynomial expansion of
det(A2+B+C) that contains a bij does not contain an aij .

Proof. Let Xij denote the matrix obtained from A2+B+C by removing
the i th row and the jth column. Then

det(A2+B+C)=\bij det(Xij)+terms independent of bij .

Since aij only appears in the i th row or j th column of A2, the lemma is
proved. K

210 ALAN EDELMAN
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Corollary 3.1. Let A be a matrix of independent random elements of
mean 0, and let x and y be indeterminants. Then

E det((A+xI )2+ y2I ))=E det(A2+(x2+ y2) I )

=E det(A+- x2+ y2 I )2.

Proof. We use Lemma 3.1 by letting B=2xA and C=(x2+ y2) I.
Since,

E det((A+xI )2+ y2I )=E det(A2+2xA+(x2+ y2) I ),

it follows that any term multiplying bij=2xaij in the expansion of the deter-
minant is independent of aij and so has expected value 0. Therefore the
term 2xA makes no contribution to the expected determinant, and may be
deleted. The second inequality may be verified similarly. K

Lemma 3.2. If A is a random matrix of independent random elements of
mean 0 and variance 1, then

E det(A+zI )2=per(J+z2I ).

Proof. Expand the determinant of A+zI into its n! terms and square.
The expected value of any cross terms must be 0. The expected value of
the square of any term is (1+z2)s(?), where ? is the permutation associated
with the term and s(?) is the number of elements unmoved by ?. The sum
over all permutations is clearly equal to per(J+z2I ) because s(?) counts
the number of elements from the diagonal in the expansion of the per-
manent. K

Lemma 3.3. If A is a random matrix with independent normally distributed
elements then

E det(A+zI )2=n! 1 F1(&1; 1
2n ; & 1

2z2I).

Proof. Let M=A+zI and z a real scalar. Since the quantity of interest
is clearly a polynomial in z the assumption that z is real can be later relaxed.
The random matrix W=MMT has a non-central Wishart distribution [22,
p. 441] with n degrees of freedom, covariance matrix I, and noncentrality
parameters 0=z2I. The moments of noncentral Wishart distribution were
computed in 1955 and 1963 by Herz and Constantine in terms of hyper-
geometric functions of matrix argument. (See [22, Theorem 10.3.7, p. 447].)
In general,

E det W r=(det 7)r 2mr 1m( 1
2n+r)

1m( 1
2n) 1F1 \&r ;

1
2

n ; &
1
2

0+ ,
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where 1m denotes the multivariate gamma function. In our case, we are
interested in E det W which simplifies to

E det W=n! 1F1 (&1; 1
2n ; & 1

2 z2I). K

We remark that the identity

1F1 (&1; 1
2 n ; & 1

2 z2I)=en(z2)

can be obtained directly from a zonal polynomial expansion of the hyper-
geometric function of matrix argument using the homogeneity of zonal
polynomials and the value of certain zonal polynomials at the identity
matrix. (The key expressions are Formula (18) on p. 237 and Formulas (1)
and (2) on p. 258 of [22].) The only partitions that play any role in the
sum are those of the form (1, 1, ..., 1, 0, ..., 0) with at most n ones.

We further remark that in light of Lemma 3.2, the assumption of
normality may be relaxed to any distribution with mean 0 and variance 1.
Thus we see our first example where the assumption of normality allows us
to derive a formula which is correct in more general circumstances.

4. ORTHOGONAL MATRIX DECOMPOSITIONS

This section reviews the real Schur decomposition in various forms that
we will need to perform our calculations. We begin by pointing out that
standard numerical linear algebra calculations may be best looked at
geometrically with a change of basis.

4.1. Elementary Numerical Linear Algebra

We wish to study orthogonal (unit determinant) similarity transforma-
tions of 2 by 2 matrices:

M$=\c
s

&s
c + M \ c

&s
s
c+ , (1),

where c=cos % and s=sin %.
Researchers familiar with numerical linear algebra know that 2 by 2

matrices are the foundation of many numerical calculations.2 However, we
are not aware that the elementary geometry hidden in (1) is ever pointed
out.

212 ALAN EDELMAN
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the software for 2 by 2 and other small matrix calculations.
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Consider the following orthogonal basis for 2 by 2 matrices:

I=\1
0

0
1+ J=\ 0

&1
1
0+ K=\1

0
0

&1+ L=\0
1

1
0+ .

Any 2 by 2 matrix M can be written as M=:I+;J+#K+$L. This basis
is a variation of the usual quaterion basis. (The usual quaternion basis is
I, J, iK, and iL, where i=- &1. It is well known that real linear combina-
tions of these latter four matrices form a noncommunicative division
algebra.)

In the I, J, K, L basis, it is readily calculated that the similarity in (1)
may be expressed

\
:$
;$
#$
$$+=\

1
1

C
S

&S
C +\

:
;
#
$+ , (2)

where C=cos 2% and S=sin 2%. In the language of numerical linear
algebra,

a 2 by 2 orthogonal similarity transformation is equivalent to a
Givens rotation of twice the angle applied to a vector in R4.

The set of matrices for which ;=0 is exactly the three dimensional space
of real 2 by 2 symmetric matrices. Choosing an angle 2% in the Givens rota-
tion to zero out $$ corresponds to a step of Jacobi's symmetric eigenvalue
algorithm. This is one easy way to see the familiar fact that only one angle
% # [0, ?�2) will diagonalize a symmetric 2 by 2 matrix, so long as the
matrix is not a constant multiple of the identity.

Choose an angle 2% in the Givens rotation that sets #$=0. Doing so we
conclude:

Lemma 4.1. Any 2 by 2 matrix M is orthogonally similar to a matrix
with equal diagonals. If the matrix is not equal to :I+;J, then there is only
one angle % # [0, ?�2) that transforms M into this form.

Since the components in the I and J directions are invariant under the
Givens rotation (2) we read right off that the trace of the matrix and the
difference of the off-diagonal terms of the matrix is invariant under
orthogonal similarities. We readily conclude

213RANDOM REAL GAUSSIAN MATRIX
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Lemma 4.2. Let M be a 2 by 2 matrix with the non-real eigenvalues
x\yi. There is a unique matrix orthogonally similar to M of the form

Z=\ x
&c

b
x+ , bc>0, b�c.

Given the matrix M and its eigenvalues x\yi, b and c may be computed
from the equations bc= y2 and b+c=M12&M21 . If M is not of the form
:I+;J, then the orthogonal matrix with determinant 1 is unique up to
sign. Notice that adding ? to % just changes the sign of the orthogonal
matrix. Adding ?�2 to % has the effect of interchanging the b and the c.

4.2. Real Schur Decomposition

The real Schur decomposition expresses A as orthogonally similar to an
upper quasi-triangular matrix R [16, p. 362]. To be precise A=QRQT

where

R=\
*1 } } } R1k R1, k+1 } } } R1m

+ . (3)

. . . b } } } } } } b

*k Rk, k+1 } } } Rkm

Zk+1 } } } Rk+1, m
. . . b

Zm

R is an n_n matrix (m=(n+k)�2) with blocks

Rij of size {
1 by 1
1 by 2
2 by 1
2 by 2

if i�k, j�k
if i�k, j>k
if i>k, j�k
if i>k, j>k

Here Rij is the real eigenvalue *j of A when j�k and Rij is as 2 by 2 block

Zj=\ xj

&cj

bj

xj+ , bc>0, b�c,

so that the complex eigenvalues of A are xj\yj i, where yj=- bjcj , for
j>k. Finally, as indicated in (3), Rij is a zero block if i> j.

The block structure indicated in (3) is quite powerful in that it allows us
to simultaneously handle all the possibilities rather cleanly. All that one
must remember is that an index i refers to a block size of one or two
depending on whether i�k or i>k respectively.

214 ALAN EDELMAN
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Since matrices with multiple eigenvalues form a set of Lebesgue measure
0, so long as our probability distribution is absolutely continuous with
respect to Lebesgue measure (such as the normal distribution) we may
disregard the possibility that A may have multiple eigenvalues. We can
then take the Schur form to be unique if we make some further (arbitrary)
requirements on R such as *1> } } } >*k , xk+1> } } } >xm . Similarly the
orthogonal matrix Q is generically unique if, for example, we assume the
first row of Q is positive. For j�k, it is easy to see by induction that the
jth column of Q can be chosen to be of arbitrary sign. From Lemma 4.2,
the next two columns of Q are unique up to sign, if the full matrix Q is to
have determinant 1. Allowing Q to have determinant \1 allows us to
simply specify that the first row of Q be generically positive.

4.3. Incomplete Schur Decomposition

Let a matrix A have a non-real eigenvalue pair x\yi. A numerical algo-
rithm to compute the eigenvalues of A would deflate out these eigenvalues
with an appropriate orthogonal transformation. We wish to do the same by
performing an incomplete Schur decomposition.

Definition 4.1. We say that A=QMQT is an incomplete Schur decom-
position for the matrix A with non-real eigenvalue pair x\yi if

A=Q \
x

&c
b
x

0 } W

A1+ QT, b�c, y=- bc,

where A1 is an n&2 by n&2 matrix, and Q is an orthogonal matrix that
is the product of two Householder reflections as specified below.

The form of Q is important. We know that generically there is a unique
n by 2 matrix H with positive first row for which

HTAH=\ x
&c

b
x+ b�c.

Numerical linear algebra textbooks [16] describe how to construct
Householder reflections Q1 and Q2 such that Q2Q1H is the first two
columns of the identity matrix. We take our Q in the definition above to
be the matrix Q2Q1 . Notice that H is the first two columns of QT.

This decomposition will be used in the derivation of the circular law and
complex eigenvalue density of normally distributed matrices.
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5. JACOBIAN COMPUTATION

The symmetries built into the orthogonal decompositions allow us to
compute the Jacobians of the various factorizations that are of interest to us.

We begin with a lemma that is familiar to numerical analysts who discuss
the discrete Laplacian operator in more than one dimension:

Lemma 5.1. Let X be an m by n matrix. Define the linear operator

0(X )=XA&BX,

where A and B are fixed square matrices of dimension m and n respectively.
If *A is an eigenvalue of A and *B is an eigenvalue of B, then *A&*B is an
eigenvalue of the operator 0.

Proof. We remark that the operator 0 can be represented in terms of
the Kronecker product as

0=AT�I&I�B.

If vA is a left eigenvector of A, and vB is a right eigenvector of B, then vBvT
A

is an eigenvector of 0. So long as A and B have a full set of eigenvectors,
we have accounted for all of the eigenvalues of 0. This restriction is not
needed by continuity. K

We proceed to compute the Jacobians. Matrices and vectors of differen-
tial quantities are in bold face Roman letters so as to distinguish them from
the notation for Lebesgue measure. Exterior products of differential quan-
tities are expressed either in math italics or in wedge product notation.
Math italics denote the wedge product over the independent elements of
dX without regard to sign. Therefore if X is arbitrary, dX denotes the
matrix with elements dxij and dX denotes the natural element of integration
in Rn2

which could also be expressed as �ij dxij or � dX. (A wedge without
range also means the exterior product over the independent entries.) If X
is diagonal, then dX=dx11 } } } dxnn while if X is symmetric or upper
triangular (antisymmetric), dX is a wedge product over the n(n+1)�
2(n(n&1)�2) independent elements.

If Q is orthogonal, then the matrix dH=QTdQ is antisymmetric, so

dH= �
i> j

qT
i dqj

is the natural element of integration (for Haar measure) over the space of
orthogonal matrices.
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5.1. Real Schur Decomposition
The Schur decomposition given in (3), indeed any matrix factorization,

may be thought of as a change of variables. Let l=(n&k)�2 denote the
number of complex conjugate eigenvalue pairs, and RU denotes the strictly
upper triangular part of R. (By this we mean R with the *i and Zi replaced
with zeros.) The n2 independent parameters of A are expressed in terms of
Q, 4=(*i)

k
i=1 , Z=(Zi)

m
i=k+1 and RU. For a matrix with k real eigenvalues

and l=(n&k)�2 complex conjugate pairs, the n2 independent parameters
are found in the new variables as follows:

Parameters

Q n(n&1)�2
4 k
Z 3l

RU n(n&1)�2&l

A n2

To obtain the Jacobian of this change of parameters, we express dA in
terms of dH dRU d4 dZ:

Theorem 5.1. Let A be an n_n matrix written in real Schur form
A=QRQT. The Jacobian of the change of variables is

dA=2l 20 `
i>k

(bi&ci)(dH dRU d4 dZ),

where

20= `
i> j

|*(Rii)&*(Rjj)|.

Here 20 denotes the absolute product of all the differences of an eigenvalue
of Rii and an eigenvalue of Rjj , where i> j. Every distinct pair of eigenvalues
of A appears as a term in 20 except for complex conjugate pairs. For
reference,

dRU= �
j>i

dRij

and exterior product over n(n&1)�2&2l differentials of the strictly upper
triangular part of R;

d4=d*1 } } } d*k ;
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and

dZ= �
m

j=k+1

dZj ,

a product over 3l differentials.

Proof. Since A=QRQT, we know that

dA=Q dR QT+dQ RQT+QR dQT

=Q(dR+QT dQ R+R dQT Q) QT.

Let

dH=QT dQ

which is antisymmetric and let

dM=dR+dH R&R dH=QT dA Q.

It is evident that dA=dM since the orthogonal matrices make no contribu-
tion to the Jacobian. Our goal is to compute

dM= �
i> j

dMij �
i= j

dMij �
i< j

dMij .

We use the same block decomposition for H and M as we did for R. We
begin with the most complicated case. If i> j, we have that

dMij=dHij Rjj&Rii dHij

+ :
k< j

dHij Rkj& :
k>i

Rik dHkj . (4)

The quantities in Equation (4) in bold face are matrices of differential
quantities with either one or two rows and one or two columns. Following
our notation convention, dMij denotes the exterior product of the one, two,
or four independent differential quantities in dMij . Notice that the dHik and
dHkj inside the summations have first index greater than i or second index
smaller than j. Therefore, if we order the blocks by decreasing i and then
increasing j, we see that

�
i> j

dMij= �
i> j

7 (dHij Rjj&Rii dHij); (5)

the differentials in the summation play no role.
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Lemma 5.1 states that

� (dHij Rjj&Rii dH ij)=` |*(Rii)&*(Rjj)| dHij .

There are either one, two, or four multiplicands in the product. Since Rii

and Rjj are either 1 by 1 or 2 by 2 matrices, we can explicitly write the
product as

` |*(Rii)&*(Rjj)|={
|*j&*i |
(*j&xi)

2+ y2
i

((xj&xi)
2+( yj& yi)

2)
_((xj&xi)

2+( yj+ yi)
2)

if 1� j<i�k
if 1� j�k<i
if k� j<i

(6)

Putting this all together we have that

�
i> j

dMij=20 �
i> j

dHij .

We now consider i= j. In the following, we let an ellipsis ( } } } ) denote
terms in dHij in which i{j. Such terms play no further role in the Jacobian.
If i�k, then

dMii=d*i+ } } } .

If i>k then dMii is a bit more complicated. It is easy to see that in this
case

dMii= 7 (dZi+dHii Zi&Zi dHii)+ } } } .

Notice that since dH is antisymmetric, then if i>k, dHii has the form

\ 0
&dhi

dhi

0 + .

It follows that

(dZi+dHii Zi&Zi dHii)=\dxi+(bi&ci) dhi

&dci

dbi

dxi+(ci&bi) dhi+ . (7)

With dZi=dbi dci dxi , we have the exterior product of the elements in
(7) is 2(bi&ci) dZi dhi . We therefore learn that

�
i= j

dMij= `
i>k

2l (bi&ci) d4 dZ �
m

i=k+1

dhi+ } } } .

219RANDOM REAL GAUSSIAN MATRIX



File: 683J 165318 . By:CV . Date:06:02:97 . Time:07:59 LOP8M. V8.0. Page 01:01
Codes: 1739 Signs: 606 . Length: 45 pic 0 pts, 190 mm

Finally, it is easy to verify that if i< j, dMij=dRij+ } } } . Therefore

�
i< j

dMij=dRU+ } } }

completing the proof. K

Given the 2 by 2 matrix

\ x
&c

b
x+ , bc>0, b�c,

let $ denote b&c. Then

Lemma 5.2. The Jacobian of the change of variables from b and c to $
and y is

db dc=
2y

- $2+4y2
dy d$.

Proof. Since

bc= y2 and b&c=$�0,

it follows that

b dc+c db=2y dy and db&dc=d$.

Therefore (b+c) db dc=2y d$ dy. The conclusion is derived from the equation
(b+c)2=$2+4y2. K

5.2. Incomplete Schur Decomposition

The incomplete Schur decomposition is also a change of parameters with
counts indicated in the table below.

Parameters

Q 2n&3
x, b, c 3

W 2n&4
A1 (n&2)2

A n2
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Let H denote the first two columns of QT as in Section 4.3. The set of
all possible H is one quarter of the 2n&3 dimensional Stiefel submanifold
of R2n [22]. The one quarter arises from that fact that we are assuming
that the first row of H contains positive elements. The matrix of differen-
tials dH is antisymmetric in its first two rows. Thus there is one differential
element in the first two rows and 2n&4 below the first two rows.

The natural element of integration on this submanifold is dS=� (QT dH).
We use the notation dS to remind us that dS is a (higher dimensional)
surface element of the Stiefel manifold.

Theorem 5.2. Let A be an n_n matrix written in incomplete Schur form
A=QMQT. The Jacobian of the change of variables is

dA=2(b&c) det((A1&xI )2+ y2I )(db dc dx dA1 dW dS).

The proof of this theorem is very similar to that of Theorem 5.1, though
simpler. The determinant comes from Lemma 5.1 with matrices of dimen-
sion 2 and n&2.

6. APPLICATIONS TO THE NORMAL DISTRIBUTION

The Jacobians computed in the previous section may be integrated to
compute densities and probabilities. In the case of the real Schur decom-
position we obtain the joint density of the eigenvalues conditioned on k
eigenvalues being real. We further obtain the probability that k eigenvalues
are real. The incomplete Schur decomposition gives us the density of a
complex eigenvalue. Its integral is the expected number of complex eigenvalues.

6.1. Applications of the Real Schur Decomposition

In this section, we calculate the joint density of the eigenvalues of A and
the probability that A has exactly k real eigenvalues. If the elements aij of
A are independent standard normals.

Theorem 6.1. Let 3k denote the set of matrices A with exactly k real
eigenvalues. Let pn, k denote the probability that A # 3k . The ordered real
eigenvalues of A are denoted *i , i=1, ..., k, while the l=(n&k)�2 ordered
complex eigenvalue pairs are denoted xi\yi - &1, i=k+1, ..., m (Ordering
by real parts works on all but a set of measure 0). Let

cn, k=
22l&n(n+1)�4

>n
i=11(i�2)

.
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The joint distribution of the real and complex eigenvalues given that A has
k real eigenvalues is

p&1
n, kcn, k 20 exp \: ( y2

i &x2
i )&: *2

i �2+ ` [ yi erfc( yi - 2)], (8)

where 20 is as in Theorem 5.1. The probability that A # 3k is

pn, k=
cn, k

k! l! |
*i # R

xi # R
yi # R+

20 exp \: *2
i �2+: ( y2

i &x2
i )+

_` [ yi erfc( yi - 2)] d*1 } } } d*k dx1 } } } dxl dy1 } } } dyl . (9)

Proof. If the elements of A are independent standard normals then the
joint probability density for A is

(2?)&n2�2 etr(&1
2AAT) dA,

where

etr(X )=exp(trace(X )).

Theorem 5.1 states that

(2?)&n2�2 etr(&1
2 AAT) dA

=(2?)&n2�2 2 l 20 `
i>k

(bi&ci)(dH)(e&� (r2
ij �2) dRU)(e&� (*i

2 �2) d4)

_(e&� (xi
2+(bi

2 �2)+(ci
2 �2) dZ). (10)

The integral of (10) over Q, RU, 4 and Z (with the restrictions on these
variables specified in Section 4.2 to make the Schur factorization unique),
counts every matrix in 3k one generically. This integral is

pn, k=(2?)&n2�2 |
A # 3k

etr (&1
2AAT) dA,

To obtain the joint density of the eigenvalues, we must integrate out all
the variables other than the *i , the xi and the yi . To obtain the probability
pn, k , we must integrate over all the variables.
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(i) The integral over the orthogonal matrices with positive elements
in the first row is

| dH=Vol(O(n))�2n. (11)

The derivation of the volume of the orthogonal group may be found in
[22] to be

Vol(O(n))=
2n?n(n+1)�4

>n
i=1 1(i�2)

. (12)

The 2n in (11) represents the volume of that part of the orthogonal group
which has positive first row.

(ii) The integral over RU is (2?)n(n&1)�4&l�2. (13)

(iii) We make the change of variables from bi and ci to $i and yi

described in Lemma 5.2, and then we integrate out $i . Since b2
i +c2

i =$2+
2y2, we see that integrating out d$i amounts to computing

2ye&yi
2

|
�

$i=0

$ie&$i
2 �2

($2
i +4y2)1�2 d$i .

This integral can be obtained from [17, 3.362.2, p. 315] with a change of
variables. It equals

2 - 2? yi ey i
2
erfc( yi2

1�2). (14)

We use horizontal braces to indicate the source of each term in the com-
bined expression for the joint density of the real and complex eigenvalues:

p&1
n, k(2?)&n2�2 2l 20 exp \&: x2

i &: *2
i �2+ ?n(n+1)�4

>n
i=1 1(i�2)

(10) (11) and (12)

_(2?)n(n&1)�4&l�2 2l (2?) l�2 ` [ yi e yi
2

erfc( yi - 2)] (15)

(13) (14)
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The p&1
n, k is the normalization constant so that the joint density integrates

to 1. Therefore (15) is a probability density which simplifies to (8).
Equation (9) is an exact expression for pn, k . Notice that we removed the

ordering of the variables, and compensated for this by dividing by k! and
l!. The integral in (9) would separate into univariate integrals if it were not
for the connecting term 20 .3

If we wish to compute pn, k explicitly we must integrate out the xi , the
yi and the *i in (9). We now describe the approach we took to integrate
out the xi and yi . We postpone discussion of the integration of the *i to
Section 7.

From (6) we see that 20 is a polynomial in the variables xi and yi . We
can use the integration formula [17, 3.461.2]

|
�

&�
xne&x2 dx=

(n&1)!!
2n�2 - ?, n even (16)

and also

Lemma 6.1.

|
�

0
y2n+1 erfc( y21�2) e y2 dy

=
1(n+ 3

2)

- ?(2n+2) 2n+1 2F1 \n+1, n+
3
2

; n+2;
1
2+ (17)

=
n!(&1)n

2 \- 2 :
n

k=0

(&1)k (1�2)k

k!
&1+, (18)

where the Pochhammer symbol (x)k denotes the product (x)k=
x(x+1) } } } (x+k&1), and the hypergeometric function 2F1(a, b ; c ; z)=
��

k=0 zk�k! ((a)k (b)k)�(c)k .

Proof. The expression in (17) for the integral as a hypergeometric function
may be found in [17, 6.286.1]. We did not find this form particulary
enlightening so we attempted to find another expression.

We outline our approach for obtaining the expression (18) leaving
the details to the reader. Replacing the erfc in the integrand with
2�- ? ��

x= y - 2 e&x2 dx allows us to interchange the order of integration.
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A change of variables and a careful application of [17, 2.321.2] and
standard Gamma integrals completes the task.

It is also possible, though tedious, to ignore the integral and directly
show equality of the hypergeometric function expression and (18). The
function 2F1(n, n+ 1

2; n+1; x) is obtained from 2F1(1, 3
2 ; 2 ; x) by taking

n&1 derivatives [1, 15.2.2]. We may also show that

2F1(1, 3�2; 2; x)=
2
x

((1&x)&1�2&1)

from [1, 15.2.21 and 15.1.8]. K

6.2. Applications of the Incomplete Schur Factorization

We consider the distribution of the complex eigenvalues x+ yi, y>0 of
the real matrix A. Let \n(x, y) dx dy denote the expected number of
complex eigenvalues of a random matrix A in an infinitesimal area dx dy
of the upper half plane. More rigorously \n(x, y) is the Radon�Nickodym
derivative of the measure

+n(0)=|
0

\n(x, y) dx dy=EA *[eigenvalues of A contained in 0]

=EA : I0(*i).

defined on measurable subsets 0 of the upper half plane. Here I is the
indicator function. From the above we see that +n(0)=EAnI0(*), where *
is a randomly chosen eigenvalue from the n eigenvalue of A.

Theorem 6.2. The complex eigenvalue density is

\n(x, y)=�2
?

ye y2&x2
erfc( y - 2) en&2(x2+ y2),

where en(z)=�n
k=0 zK�k!.

Proof. The techniques used in this proof are very similar to those used
in Theorem 6.1. We write out the joint densities, and obtain the marginal
density by integration. If a matrix has k complex conjugate eigenvalue
pairs, then after integration it is counted k times which is exactly correct.
(It is worth mentioning that if we generate a random matrix A, count the
number of conjugate pairs k, and pick one random x+ yi with probability
1�k, we would not get the same distribution.)
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Theorem 5.2 states that

(2?)&n2�2 etr(&1
2AAT) dA

=(2?)&n2�2 2(b&c) det((A1&x)2+ y2I ) e&(x2+b2�2+c2�2) db dc dx

_etr(&1
2A1 AT

1 ) dA1 etr(&1
2 WWT) dW dS. (19)

(i) The volume of the Stiefel manifold may be found in [22]. One
quarter of the volume of the Stiefel manifold (because of the sign choice on
the first row of H) is

(2?)n&1

21(n&1)
. (20)

(ii) The integral over W is (2?)n&2. (21)

(iii) Exactly as before, b and c components transform into (14).

(iv) We recognize the integral of det((A1&x)2+ y2I ) etr(&1
2 A1

AT
1 ) dA1 . It is

(2?)(n&2)2�2 EA1
det((A1&x)2+ y2I ).

This explains why we needed the results in Section 3. From Theorem 3.1,
we learn that the value of the integral of the terms containing A1 is

(2?)(n&2)2�2 1(n&1) en&2(x2+ y2). (22)

Combining terms we have that

\n(x, y)=(2?)&n2�2 2e&x2 (2?)n&1

21(n&1)
(2?)n&2 2 - 2? ye y2

erfc( y - 2)

(19) (20) (21) (14)

_(2?)(n&2)2�2 1(n&1) en&2(x2+ y2). (23)

(22)

This completes the proof. K
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Corollary 6.1. The expected number of non real eigenvalues of a
random matrix A is

cn=:
k

(n&k) pn, k=2 |
y # R+
x # R

\n(x, y) dx dy.

The factor of 2 counts the complex conjugate pairs. We could proceed by
integrating \n(x, y), to compute cn , but this is not necessary because in [9]
we computed

cn=n&
1
2

&- 2 2 F1(1, &1�2; n ; 1�2)
B(n, 1�2)

,

expressing cn in terms of a hypergeometric function and an Euler Beta
function. Other equivalent expressions for n&cn may be found in [9].

We now turn to understanding this density in the context of Girko's
circular law (or Figure 1) as n � �. It is interesting to normalize the
eigenvalues by dividing by - n. Thus we introduce

x̂=x�- n, ŷ= y�- n,

\̂n(x̂, ŷ)=n �2n
?

ŷen( ŷ 2&x̂2) erfc( ŷ - 2n) en&2(n(x̂2+ ŷ2)).

In light of the comments at the beginning of this section, \̂(x̂, ŷ)�n is the
density of a randomly chosen normalized eigenvalue in the upper half
plane. We may get the lower half plane by symmetry, and the following
theorem makes clear that the real line plays no role in the limit of large n.

Theorem 6.3. The density function \̂ converges pointwise to a very
simple form as n � �:

lim
n � �

n&1\̂n(x̂, ŷ)={?&1

0
x̂2+ ŷ2<1
x̂2+ ŷ2>1

(24)

Furthermore, a randomly chosen normalized eigenvalue of A converges in
distribution to the uniform distribution in the unit disk.

Proof. The formulas [1, 6.5.34] and [1, 7.1.13] may be used to verify
(24). The former states that

lim
n � �

en(n(x̂2+ ŷ2))

en(x̂2+ ŷ2)
={1 for x̂2+ ŷ2<1

0 for x̂2+ ŷ2>1
,
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while the latter states that

lim
n � �

- n ŷe2nŷ2
erfc(\ŷ - 2n)=(2?)&1�2.

Though \̂n is defined only in the upper half plane, the lower half plane
is the same by symmetry. Since \̂n is 0 on the real axis, there is no difficulty.
Note that the integral over the whole plane of \̂n is strictly less than 1 for
finite n, but converges to 1 as n � �.

It is routine though tedious to show that the convergence is dominated
by an integrable function on the plane. We need the inequality

en(nz)�exp(nz)=
1
n! |

�

nz
e&ttn dt�

nn

n!
zne&nz z

z&1

and Stirling's inequality [1, 6.1.38]

n!�- 2?n nne&n.

We leave the details to the reader. By the Lebesgue dominated convergence
theorem, we achieve convergence in distribution. K

7. RELATIONSHIP WITH SYMMETRIC RANDOM MATRICES

We now turn to the task of integrating the *i variables in (9). The
relevant part of the integrand containing *i has the form

` q(*i) ` |*i&*j | e&� *i
2 �2, (25)

where q(*i) is some polynomial function of *i originating in 20 .
This form is closely related to the joint density of the k real eigenvalues

of a random k by k symmetric matrix S=(A+AT)�2, where the elements
of A are normally distributed. In the physics literature the probability
distribution for S is known as the Gaussian orthogonal ensemble. The joint
probability density for the eigenvalues *1� } } } �*k of S is well known
[20, 6, 22]:

2&k�2

>k
i=1 1(i�2)

` |*i&*j | e&� *i
2 �2,

Therefore the integral of (25) is essentially an expectation for the
determinant of a polynomial in S. To be more precise:
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Lemma 7.1.

1
k! |

*i # R

` q(*i) ` |*i&*j | e&� *i
2 �2={2k�2 `

k

i=1

1(i�2)= ES det(q(S)),

where E denotes expectation with respect to the symmetric random matrices
defined above.

Dividing by k! allows us to symmetrize the integrand so that we need
not assume the *i are ordered.

If q is a polynomial with rational coefficients, then E det(q(S)) must be
rational since all the moments of a standard normal are rational. We
suspect that a better understanding of E det(q(S)) is possible, but we are
not even aware of an exact formula for E det S2. Such an understanding
would help us to simplify our formula for pn, k . For now we are content
with this application of Lemma 7.1.

Theorem 7.1.

pn, k=d &1
n, k |

yi # R+
xi # R

ES {`
k

i=1

det((S&xI )2+ y2I )= 2xye� yi
2&xi

2)

_` [ yi erfc( yi - 2)] dx1 } } } dxl dy1 } } } dyl ,

where

dn, k=2(n(n&3))�4+k�2 l! `
n

i=k+1

1(i�2)

and 2xy denotes the multiplicands in 20 that do not include a * term.

Corollary 7.1. The probability of all real eigenvalues is pn, n=
2&n(n&1)�4.

Proof. When k=n and l=0, dn, n=2n(n&1)�4 and the integrand is
simply 1. K

Corollary 7.2. The probability pn, k has the form r+s - 2 where r and
s are rational. Furthermore r and s may be expressed as an integer fractions
with denominator equal to a power of 2.
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Proof. The ES term in the integrand is a polynomial in x and y with
integer coefficients. Before taking expectations, the determinant is a poly-
nomial in x, y, and the Sij with integer coefficients. We recall that the n th
moment of the normal distribution is (n&1)!! if n is even and 0 if n is odd.
Integrating out the xi using Equation (16) gives a factor of ?l�2 which is
cancelled by the ?l�2 in >n

k+1 1(i�2). The integration of the yi using (18)
leads only to rational numbers of the proper form. K

Theorem 7.1 is the basis of our earliest Mathematica program (available
from the author) for computing pn, k . We first evaluate ES >k

i=1 det
((S&xI )2+ y2I ) by explicitly computing the determinant symbolically in
terms of the elements of S and the xj and yj . Then we replace the various
powers of the elements of S with their expectation. We then integrate out
the xi and yi by replacing powers using formulas (16) and (18).

We then modified the program to save some arithmetic. It is readily
shown that a certain tridiagonal matrix with / distributions on the three
diagonals has the same eigenvalue distribution as that of S. Therefore, we
may use T in place of S to compute the expectations of the determinants
of polynomials in S. This is our current program in Appendix A. The
program may be summarized by saying that a polynomial is computed in
expanded form, then powers of various variables are symbolically replaced
with the appropriate moments.

8. OPEN PROBLEMS

This section contains a number of conjectures that we strongly suspect
to be true.

Conjecture 8.1. Let [Mn] be a sequence of real n by n random
matrices with i.i.d. standard normal entries. Let tn denote the number of
real eigenvalues of Mn . Then limn � � tn�- n=- 2�? almost surely.

Edelman and Kostlan [10] proved that the expected value converges
to - 2�?.

Conjecture 8.2. An explicit formula for pn, k that is easier to compute
from than 7.1 may be obtained.

Our formula allowed us to compute pn, k explicitly when either k=n or
n<10, but we have not yet succeeded in computing other probabilities. We
suspect the program we wrote can be rewritten so as to compute values for
say n=10 or n=11, but ultimately a better formulation will be needed.
Note however that there are no integrals nor hypergeometric functions
called in the code.
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Conjecture 8.3. Girko's circular law for arbitrary random matrices of
i.i.d. elements of mean 0 and variance 1 (not only normally distributed
elements) may be derived as a corollary of Theorem 6.3 using some kind
of central limit theorem.
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