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Abstract�

Numerical analysts� physicists� and signal processing engineers have proposed algo�

rithms that might be called conjugate gradient for problems associated with the com�

putation of eigenvalues� There are many variations� mostly one eigenvalue at a time

though sometimes block algorithms are proposed� Is there a correct �conjugate gradi�

ent� algorithm for the eigenvalue problem� How are the algorithms related amongst

themselves and with other related algorithms such as Lanczos� the Newton method�

and the Rayleigh quotient�

� Introduction

If we minimize yTAy on the unit sphere� perhaps with conjugate gradient op�
timization� we compute the smallest eigenvalue of A �assumed to be symmetric��
Our objective function is quadratic� so we obtain the exact eigenvalue after n
steps of conjugate gradient� The computation is mathematically equivalent to
the Lanczos procedure� At the kth step� we obtain the optimal answer in a k
dimensional Krylov space�
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The above paragraph may sound correct� but it is wrong� The objective func�
tion is quadratic� but only because of the constraint� The Rayleigh quotient
r�y� 	 yTAy�yTy can be minimized without constraint� but it is not quadratic�
The conjugate gradient link with the Lanczos process here is also dubious� How
tempting it is to hear 
eigenvalue� juxtaposed with 
conjugate gradient� and
instantly� almost by re�ex� yell 
Lanczos�� To add to the confusion� conjugate
gradient optimization of the Rayleigh quotient does compute an answer in a
Krylov space� but not the optimal answer�
Our purpose in this paper is to � dispel a common myth� �� create an intel�

lectual framework tying together the plethora of conjugate gradient algorithms�
�� provide a scholarly review of the literature� and �� show how the di�eren�
tial geometry point of view introduces new algorithms in a context that allows
intellectual ties to older algorithms� We believe each of these purposes is justi�
�ed� but the most important goal is to show that the di�erential geometry point
of view gives idealized algorithms that unify the subject� Therefore in Section
 we present the myth� In Sections � and � we dispel the myth and identify
the common features and design choices for a large class of algorithms� Section
� reviews the literature in the context of this framework� Section � discusses
the di�erential geometry methods in this framework� Finally Section � presents
an entirely new perspective on Newton�s method and discusses connections to
previous work by Chatelin� Demmel� and others�

� Conjugate Gradient� linear� nonlinear� and idealized

Our �rst task is to eliminate any confusion among the various conjugate gra�
dient algorithms with the Lanczos algorithm� This confusion has appeared in
the literature� We hope the naming convention of Table  will help distinguish
the algorithms in the future�
The three conjugate gradient algorithms are equivalent for the special case

of quadratic objective functions with positive de�nite Hessians� To say this
in a slightly di�erent way� the LCG algorithm� already a special case of the
more general NCG algorithm� may be derived with the 
one line minimization
per iteration� point of view� and nevertheless� the algorithm has the 
global
k�dimensional� property of an ICG anyway�
To contrast� if the function is not quadratic with positive de�nite Hessian�

there is no expectation that the kth step of NCG will have the ICG property of
being the global minimum in a k�dimensional space� The best that we hope for
is that the ICG property holds approximately as we approach the minimum�
Similar to ICG is s�step steepest descent� This algorithm minimizes an objec�

tive function in the s�dimensional space spanned by the most recent s gradients�
If the gradients fall in a certain natural Krylov space� then there is no distinction
between ICG and s�step steepest descent�
The word conjugacy merits discussion� For LCG� all search directions are

all conjugate with respect to the Hessian matrix A� i�e�� pTiApj 	 �� i �	 j�
For NCG� consecutive directions are conjugate with respect to the function�s
Hessian matrix� Fletcher�Reeves and Polak�Ribi�ere approximate this conjugacy�
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Table �

Conjugate Gradient Algorithms

LCG Linear Conjugate Gradient�

Standard method for solving Ax 	 b� where A is a sym�
metric positive de�nite matrix� Found in all numerical
linear algebra references� May be viewed as minimizing
the objective function f�x� 	 �

�x
TAx� xTb�

NCG Nonlinear Conjugate Gradient�

A well�known algorithm often used for unconstrained
minimization� Found in all numerical optimization texts�
May be used to minimize very general objective functions�
Each step in the algorithm requires the solution to a one
dimensional line minimization problem�

ICG Idealized Conjugate Gradient�

A �ctional algorithm introduced here for purposes of ex�
position� We de�ne ICG as an algorithm whose kth iter�
ate xk satis�es f�xk� 	 minx�Kk f�x�� where Kk denotes
a k dimensional Krylov space� The Krylov spaces are
nested�

Generally� ICG search directions are not conjugate� perhaps a di�erent name is
appropriate� However� ICG can be viewed as an extension of LCG�
Block versions of NCG and ICG may be de�ned� A block NCG replaces a �

dimensional line search with a p�dimensional line search� A block ICGmaximizes
over block Krylov spaces of size p� �p� �p� etc�
Consider the case when the objective function is the Rayleigh quotient� f�y� 	

�yTAy���yTy��

� An NCG algorithm for Rayleigh quotient optimization computes an an�
swer in a Krylov space� This answer is not the optimal choice from that
subspace� Therefore the NCG algorithm is not an ICG algorithm� The
exact eigenvalue will not be obtained in n steps� Such an algorithm is not
equivalent to Lanczos�

� The Lanczos algorithm �including the computation of the tridiagonal�s
smallest eigenvalue� is an ICG algorithm for the Rayleigh quotient� Lanc�
zos does compute the exact eigenvalue in n steps� This algorithm is not an
NCG algorithm because it is not equivalent to an algorithm that performs
line searches�
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� There is also the LCG link with Lanczos through tridiagonalization� The
residual vectors computed by conjugate gradient are �up to normalization�
Lanczos vectors that tridiagonalize the matrix� The link is through the
tridiagonalization and not the eigenvalue computation� There is no link to
the NCG algorithm for eigenvalue computation�

Also we note that

� any algorithm that requires that the symmetric matrix A be positive def�
inite is not a correct NCG algorithm for the Rayleigh quotient� Since all
derivatives of the objective function are invariant under shifts� so should
be the algorithm�

Understanding this last point clearly is the key sign that the reader understands
the distinction between NCG for the Rayleigh quotient and LCG which is an
optimization on quadratic functions� LCG requires positive de�nite quadratic
optimization functions so that a minimum exists� The Rayleigh quotient always
has a minimum for symmetric A� no positive de�nite condition is needed�

The �rst choice in our design space for algorithms is to consider whether to
include the constraints or work with the Rayleigh quotient� The second choice
is whether to have a one eigenvalue algorithm or a block algorithm� We indicate
these choices below�

Rayleigh Quotients

Unconstrained one eigenvalue Rayleigh quotient

r�y� 	 �yTAy���yT y�

Constrained Rayleigh quotient r�y� 	 yTAy �yT y 	 �

Unconstrained block Rayleigh quotient

R�Y � 	 tr�Y TAY ��Y TY ���

Constrained block Rayleigh quotient

R�Y � 	 trY TAY �Y TY 	 Ip�

In the above box Y denotes an n�p matrix� Of the four choices� only the con�
strained r�y� 	 yTAy is �generically� non�degenerate in that the global minima
are points in n dimensions� as opposed to lines or subspaces�

The third choice in our design space for an NCG eigenvalue algorithm is how
to pick the new search direction� The various options are
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NCG search direction choices
FR The Fletcher�Reeves approach

PR The Polak�Ribi�ere approach

CA Conjugacy through the matrix A

CSH Conjugacy through the singular free space Hessian H

CCH Conjugacy through a non�singular constrained Hessian H

All of these choices� except for CA� are reasonable� There is no sound mathe�
matical justi�cation for CA� though it has been proposed in the literature�

� Comparison between NCG and Lanczos

Since Lanczos is an ICG algorithm for the Rayleigh quotient� why would any�
one consider the construction of an NCG algorithm which is guaranteed to give
a worse answer for the same number of matrix vector multiplies� Ignoring the
extra storage that may be needed in the Lanczos algorithm� the more practical
point is that in many algorithms it is not the eigenvalues of a matrix that are
desired at all�

In the applications of interest� a matrix may be changing in 
space� or time�
What we want from an algorithm is to be able to track the changes� In many
such applications� the problem sizes are huge so computational e�ciency is of
utmost importance� We have two particular examples in mind� In the Local
Density Approximation �LDA� to Schr�odinger�s equation� the function to be
minimized is not the Rayleigh quotient at all� but rather the LDA energy� In
many applications� the energy function has the same degeneracy as the Rayleigh
quotient in that it depends only on the span of the columns of Y rather than all
elements of Y � Lanczos would not directly apply unless one wants to pretend that
the function really is the Rayleigh quotient for a few iterations� Such pretense
has lead to instabilities in the past�

Another class of problems arise in signal processing where the matrix is chang�
ing in time� Once again� Lanczos does not directly apply� unless one wants to
pretend that the matrix is constant for a few intervals�

� A History of CG for eigen	like problems

The purpose of this section is to demonstrate the need for a unifying theory
of conjugate gradient algorithms for the eigenproblem by giving an annotated
chronology of the references� We note that algorithms have been proposed by
researchers in a number of disciplines� so it seems likely that researchers in one
�eld may well be unaware of those from another�

In order to keep the chronology focused� we only included papers that linked
conjugate gradient to eigenvalue or eigenvalue�like problems� We found it con�
venient to divide the papers into �ve broad categories�
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� Single Eigenvalue 
NCG� AlgorithmsThis refers to the one eigenvalue
at a time algorithm that was originally proposed by Bradbury and Fletcher
���� This algorithm minimizes r�y�� Other eigenvalues may be obtained
by de�ation� The historical development covers a number of points in the
design space�

� Block 
NCG� Algorithms These are attempts at computing multiple
eigenvalues simultaneously using a conjugate gradient style algorithm� The
objective function is R�Y �� It is our point of view that none of these al�
gorithms are a true conjugate gradient algorithm� though many important
features of a true algorithm may be recognized in either explicit or rudi�
mentary form in the proposed algorithms� The block case exhibits di��
culties not found in the single eigenvalue case� because not only is there
the orthogonality constraint Y TY 	 I� but also there is the 
Grassmann
equivalence� R�Y � 	 R�Y Q� for orthogonal matrices Q� This degener�
acy may well be overcome without di�erential geometry� but one e�ective
and beautiful theoretical approach towards working with these equivalence
classes is the total space�base space viewpoint from di�erential geometry�

� ICG� The Lanczos Link Here our goal was not to mention papers that
were connected to the Lanczos algorithm� but papers that looked at the
Lanczos algorithm as an optimization algorithm with something of a con�
jugate gradient �avor� As mentioned earlier� the famous link between
Lanczos and LCG is of no relevance here and is not included�

� Di�erential Geometry ViewpointThese papers make the link between
numerical linear algebra� optimization� and di�erential geometry� They
give a new theoretical viewpoint on the algorithms discussed in the other
areas� This viewpoints shows that constrained algorithms may be imple�
mented without explicit constraints� Ultimately� they answer the question
of what it means to do conjugate gradient minimization for the eigenvalue
problem�

� Application I� LDA Schrodinger�s EquationRightly or wrongly� con�
jugate gradient has become an extremely popular new method for scientists
working with the local density approximation to Schr�odinger�s Equation�
Here the problem is akin to minimizing the block Rayleigh quotient� but
it is in fact more complicated� Many researchers are currently trying vari�
ations on the same theme� We only need to list the few that we were most
aware of� One point of view is that they are computing eigenvalues of a
matrix that is in some sense varying with space�

� Application II� Adaptive Signal Processing Here the algorithm is
an eigenvalue algorithm� but the matrix may be thought of as changing
with time� The goal is to do subspace tracking� All the papers in this
category have already been listed in a previous category� but we thought
it worthwhile to collect these papers under one heading as well�
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Chronology of Algorithms
Key to search direction choices� FR	Fletcher�Reeves� PR	Polak�Ribi�ere�
CA	Conjugacy through A� CSH	Conjugacy through singular Hessian H�

CCH	 Conjugacy through constrained Hessian H�

� Single Eigenvalue Algorithms

 �� Bradbury and Fletcher
���

Notes degeneracy of Rayleigh quo�
tient� Proposes projection to ��
and 
�norm unit spheres� FR�

 � Fox and Kapoor ��� Application in Structural Dynam�
ics� Downplays importance of the
constraint� FR�

 � Fried ��� Application in Structural Dynam�
ics� FR�

 � Andersson ��� Compares two norms mentioned
above ����

 � Geradin ���� Unconstrained CSH�

 �� Fried ��� Unconstrained FR�

 �� Ruhe ���� Systematically compares above
CG algorithms with other non�CG
algorithms� For CG� prefers un�
constrained approach in ���� and
�
��� Observes spectral in�uence
on convergence�

 !� Fuhrmann and Liu � � Precursor to intrinsic geometry�
Searches along geodesics� FR�

 !� Perdon and Gambolati
�� �

CA with a proposed precondi�
tioner�

 !� Chen� Sarkar� et al� ��� Rederives known algorithms� CA�

 !� Haimi�Cohen and Cohen
����

Rederives results such as those in
����

 ! Yang� Sarkar� and Arvas
�� �

Considers eect of normalization�
Concludes that their ���� pro�
posal is not competitive with CSH
or other choices� FR or PR style�
�	���
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� Block Algorithms�

 � Als"en �� Assumes A positive de�nite� Ex�
act line maximization �not mini�
mization� replaced by one step of
orthogonal iteration� Correspond�
ing minimization algorithm would
require orthogonal inverse itera�
tion� FR�

 !� Sameh and Wisniewski
���

Not exactly a CG method but
very similar� Constrained objec�
tive function with unconstrained
block line searches� Section 
�	
suggests block line minimization
on unconstrained function as a
least squares problem to be solved
with LCG� Makes the Lanczos
style link through simultaneous
iteration�

  � Fu and Dowling �!� Optimization of unconstrained
R�Y �� Block search directions
arranged column by column�
Projects back to constraint sur�
face with Gram Schmidt� CA�

� ICG� The Lanczos Link�

 � Karush ���� An ICG algorithm �with restarts�
for the Rayleigh quotient� Not ex�
plicitly identi�ed with Lanczos or
CG�

 �� Cullum and Donath � �
��

Identi�es block Lanczos as a block
ICG�

 �! Cullum �!� Shows that block NCG on the
Rayleigh quotient computes a
�generally non�optimal� answer in
the block Krylov space over which
the ICG would �nds the mini�
mum�

 !� Cullum and Willoughby
��

Chapter � summarizes optimiza�
tion interpretation� CG used at
times to mean NCG and other
times ICG�
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� Di�erential Geometry Approach�

  � Smith ���� ��� Introduces Dierential Geometry
viewpoint� Hessian is replaced
with second covariant deriva�
tive� Line searches replaced with
geodesic searches�

  � Edelman� Arias� Smith
���

Works out details of the Grass�
mann manifold and Stiefel mani�
fold approaches� including the to�
tal space�base space formulation�
parallel transport� diering met�
rics� and the linear algebra links�

� LDA Schrodinger�s Equation

 ! Gillan ��� Projects onto constraint space�
search in tangent space� suggests
NCG preconditioning� FR�

 ! #Stich� Car� et al� ���� Minimizes Rayleigh quotient only
�not LDA energy� for simplicity�

 ! Teter� Payne� and Allan
����

  � Arias ��� Forms unconstrained analogue of
Rayleigh quotient for LDA�

  � Payne� Teter� Allan
et al� ��!�

Survey of minimization in LDA�

  � Kresse and Hafner ���� Molecular dynamics of liquid met�
als�

  � Sung� Kawai� and Weare
����

Computes structure of Lithium�

� Adaptive Signal Processing

 !� Chen� Sarkar� et al� ��� See above�

 ! Yang� Sarkar� and Arvas
�� �

See above�

  � Fu and Dowling �!� See above�
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There are many closely related ideas such as steepest descents or coordinate
relaxation that are not discussed here� It is instructive to consider the subtle
variations between similar algorithms� as well as the key di�erences between
algorithms that sound the same� but are quite di�erent�
Almost all the algorithmic ideas carry over to the generalized eigenvalue prob�

lem� as was recognized by most of the authors� For purposes of exposition� we
will only discuss the ordinary eigenvalue problem in this paper� We have chosen
to con�ne our discussion to conjugate gradient methods for the general eigen�
problem� The larger history of conjugate gradient methods may be found in the
survey by Golub and O�Leary ����� The search direction choice�s� appear in the
annotations�

� The Di�erential Geometry Viewpoint for NCG

In a recent paper ���� we proposed an algorithm to perform minimization on
the block Rayleigh quotient that has appealing theoretical properties� Our algo�
rithm takes into account both the constraints Y TY 	 Ip and the degeneracy of
the function �R�Y � 	 R�Y Q� for orthogonal p�pmatrices Q� in a clean manner�
Following the lead proposed by Smith ���� ���� we derived an algorithm based
on intrinsic geometry that is practical when expressed in extrinsic coordinates�
Like French�English false cognates �faux amis�� there are a few terms used both

in optimization and di�erential geometry with somewhat di�erent meanings�
This may cause confusion to readers of our paper ��� who are specialists in
optimization�

Optimization vs� Di�erential Geometry

Metric

Optimization� Sometimes the inner product de�ned by the Hes�
sian or its inverse�

Di�� Geom�� Any positive de�nite inner product de�ned on a
tangent space from which all geometrical informa�
tion about a space may be derived�

Curvature

Optimization� Hessian� Usage refers to non�linearity of the graph
of a function with nonzero Hessian�

Di�� Geom�� A rank four tensor that refers roughly to the non�
�atness of a space�

The Grassmann algorithm ��� does not su�er from any of the de�ciencies of
the other block algorithms for the eigenvalue problem� There is no requirement
that the matrix be positive de�nite� there is no theoretical di�culty related to
the singular Hessian� and the algorithm converges quadratically�
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The key components of the Grassmann algorithm are the total space�base
space point of view� the following of geodesics� and the parallel transportation
of tangent vectors� Below we plot a schematic �gure that describes conjugate
gradient on a Riemannian manifold�
In Figure �� we show convergence curves in exact arithmetic for three block al�

gorithms� The A�conjugacy algorithm is clearly inferior and not worth consider�
ing� The Riemannian algorithm and our own unconstrained version of the block
Polak�Ribi�ere algorithm� which approximates the Riemannian CG algorithm up
to second order and is less computationally intensive than the full�blown Rie�
mannian algorithm� are quadratically convergent�

� Beyond Conjugate Gradient

Potential users of a conjugate gradient algorithm may well consider the view�
point expressed by Jorge Nocedal �����

The recent development of limited memory and discrete Newton
methods have narrowed the class of problems for which conjugate
gradient methods are recommended� Nevertheless� in my view� con�
jugate gradient methods are still the best choice for solving very large
problems with relatively inexpensive objective functions� They can
also be more suitable than limited memory methods on several types
of multiprocessor computers�

Though we believe that we have derived the correct NCG algorithm for func�
tions such as the block Rayleigh quotient� it is very possible that the best algo�
rithms for applications in the LDA community and the signal processing commu�
nity may well be a Newton iteration rather than an algorithm in the conjugate
gradient family� Rightly or wrongly� the CG algorithms may yet remain popular
for the largest problems because of the simplicity of programming and limited
memory requirements�
It is important to understand the relationship between preconditioned conju�

gate gradient and Newton�s method� We sometimes consider the ideal precon�
ditioner to be one that is easily computed� and yet closely resembles the inverse
of the Hessian� Multiplying the gradient by the exact inverse of the Hessian is
exactly the Newton method� Therefore the Newton method is equivalent to pre�
conditioned conjugate gradient without any use of a previous search direction�
One expects that taking advantage of Hessian information� if convenient� would
lead to superior convergence�
We now explore Newton�s method for invariant subspace computation more

closely� Suppose �for simplicity only� that A is symmetric� We would then wish
to �nd matrices Y and B such that

AY � Y B 	 ������

The above system is degenerate because there are more unknown variables than
equations� constraints of some form or another need to be imposed� One ap�
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proach is the general
a�ne constraint ZTY 	 I�����

introduced by Chatelin ��� �� in which case B 	 ZTAY � We observe that
the algorithms proposed by Dongarra� Moler� and Wilkinson ��� and Stew�
art ����� represent two special choices for the a�ne constraint matrix Z� In
the Dongarra et al� case� Z may be obtained by inverting and transposing an
arbitrary p � p minor of the n � p matrix Y � In Moler�s Matlab notation�
Z�zeros�n�p�� Z�r����inv�Y�r������ where r denotes a p�vector of row in�
dices� For Stewart� Z 	 Y �Y TY ���� Demmel ��� Section�� originally observed
that the three algorithms were related� Being linear� the a�ne constraint allows
a direct application of Newton�s method without any di�culty�
An alternative choice for the constraint is the

orthogonality constraint Y TY 	 I������

Newton�s method with this constraint is slightly more complicated because of
the nonlinearity� The value of B is now Y TAY � However the equation AY �
Y �Y TAY � 	 �� even with the orthogonality constraints� is degenerate� This
makes this problem even more di�cult to handle�
The geometric approach to the Grassmann manifold gives an approach to

resolving this problem� We do not derive the details here� but the Grassmann
point of view on the Newton method starts with the second covariant derivative
of the block Rayleigh quotient �see �����

Hess�$��$�� 	 tr
�
$T

�A$� � �$T
�$��Y

TAY
�
������

From there to pick the Newton search direction� we must solve for $ such that
Y T$ 	 � in the Sylvester equation

%�A$�$�Y TAY �� 	 �G������

where % 	 �I � Y Y T � denotes the projection onto the tangent space of the
Grassmann manifold� and G 	 %AY is the gradient� We then may use this
search direction to follow a geodesic�
Equation ����� is really a column by column Rayleigh quotient iteration in

disguise� To see this� write Y TAY 	� Q&QT � & diagonal� and project Equation
����� onto Image�%�� The projected equation is

'A '$� '$& 	 � 'G������

where the barred quantities are 'A 	 %A%� '$ 	 %$Q is a column matrix of
Ritz vectors ����� and 'G 	 GQ� If '$ is any solution to the above equation� then
$ 	 '$QT is a solution to Equation ������ One way to interpret Equation �����
is that we turned the orthogonality constraint Y TY 	 I into an a�ne constraint
$TY 	 � by di�erentiating�
Solving for $ and exponentiating amounts to performing the Rayleigh quotient

iteration on each of the Ritz vectors associated with the subspace Y � Therefore�
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Newton�s method applied to the function trY TAY on the Grassmann manifold
converges cubically� This is a generalization of the identi�cation between RQI
and Newton�s method applied to Rayleigh�s quotient on the sphere ���� ����
This method also has very much in common with Chatelin�s method� yet it is
the natural algorithm from the di�erential geometry point of view given the
orthogonality constraints Y TY 	 I�
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