
Julia: A Fast Dynamic Language for Technical Computing

Jeff Bezanson∗

MIT
Stefan Karpinski†

MIT
Viral B. Shah‡ Alan Edelman§

MIT

September 25, 2012

Abstract

Dynamic languages have become popular for scientific computing. They are generally
considered highly productive, but lacking in performance. This paper presents Julia, a new
dynamic language for technical computing, designed for performance from the beginning
by adapting and extending modern programming language techniques. A design based on
generic functions and a rich type system simultaneously enables an expressive programming
model and successful type inference, leading to good performance for a wide range of
programs. This makes it possible for much of Julia’s library to be written in Julia itself,
while also incorporating best-of-breed C and Fortran libraries.

1 Introduction

Convenience is winning. Despite advances in compiler technology and execution for high-
performance computing, programmers continue to prefer high-level dynamic languages for
algorithm development and data analysis in applied math, engineering, and the sciences.
High-level environments such as MATLABR©, Octave [26], R [18], SciPy [29], and SciLab [17]
provide greatly increased convenience and productivity. However, C and Fortran remain the
gold standard languages for computationally-intensive problems because high-level dynamic
languages still lack sufficient performance. As a result, the most challenging areas of technical
computing have benefited the least from the increased abstraction and productivity offered by
higher level languages.

Two-tiered architectures have emerged as the standard compromise between convenience
and performance: programmers express high-level logic in a dynamic language while the
heavy lifting is done in C and Fortran. The aforementioned dynamic technical computing
environments are all themselves instances of this design. While this approach is effective for
some applications, there are drawbacks. It would be preferable to write compute-intensive
code in a more productive language as well. This is particularly true when developing parallel
algorithms, where code complexity can increase dramatically. Instead, there is pressure to
write “vectorized” code, which is unnatural for many problems and might generate large
temporary objects which could be avoided with explicit loops. Programming in two languages
is more complex than using either language by itself due to the need for mediation between

∗Email: bezanson@mit.edu
†Email: stefan@karpinski.org
‡Email: viral@mayin.org
§email: edelman@math.mit.edu

1

ar
X

iv
:1

20
9.

51
45

v1
 [

cs
.P

L
]

 2
4

Se
p

20
12

different type domains and memory management schemes. Interfacing between layers may
add significant overhead and makes whole-program optimization difficult. Two-tiered systems
also present a social barrier, preventing most users from understanding or contributing to
their internals.

An alternative to the two-tier compromise is to enhance the performance of existing
dynamic languages. There has been significant progress along these lines. Projects like the
Python compiler framework PyPy [6] have been fairly successful. Similar efforts exist for
languages from LISP onward. The common feature of all such projects is that they seek to add
performance to an existing language. This is obviously useful, since existing code can benefit.
While promising, these efforts have yet to eliminate the need for the two-tier approach in
practice. Design decisions made under the assumption that a language would be implemented
as an interpreter tend to sabotage the ability to generate efficient code. As Henry Baker
observed of Common LISP, “...the polymorphic type complexity of the Common LISP library
functions is mostly gratuitous, and both the efficiency of compiled code and the efficiency of
the programmer could be increased by rationalizing this complexity.” [3] Others have echoed
these sentiments [7] [25].

Julia is designed from the ground up to take advantage of modern techniques for executing
dynamic languages efficiently. As a result, Julia has the performance of a statically compiled
language while providing interactive dynamic behavior and productivity like Python, LISP or
Ruby. The key ingredients of performance are:

• Rich type information, provided naturally by multiple dispatch;

• Aggressive code specialization against run-time types;

• JIT compilation using the LLVM compiler framework [21].

Although a sophisticated type system is made available to the programmer, it remains
unobtrusive in the sense that one is never required to specify types. Type information flows
naturally from having actual values (and hence types) at the time of code generation, and
from the language’s core paradigm: by expressing the behavior of functions using multiple
dispatch, the programmer unwittingly provides the compiler with extensive type information.

We validate our design by implementing Julia’s standard library, which encompasses most
of the core functionality of standard technical computing environments, in Julia itself. As a
result, our library code is more generic and compact, and it is possible to inline library code
into user code and vice versa. Julia was announced as an open source project in February
2012. New users have been easily able to read the standard library code, modify it, imitate it,
and extend it for their own purposes. Our goals and work so far seem to have struck a chord

— a significant community has grown around Julia in the short time since the initial public
announcement.

2 Language Design

Julia’s primary means of abstraction is dynamic multiple dispatch. Much of a language consists
of mechanisms for selecting code to run in different situations — from method selection to
instruction selection. We use only dynamic multiple dispatch for this purpose, which is possible
through sufficiently expressive dispatch rules.

2

To obtain the desired expressiveness and compile-time type information, we must employ
fairly sophisticated types. To balance this requirement with usability, we have attempted to
design the “easy version” of key features, namely parametric types and methods. We provide
these features without a concept of static application (e.g. template instantiation), without
distinct type and expression contexts, and leaving parameters optional whenever possible.
Dynamic languages need parametric types so a compiler can keep track of the types of values
even when they are stored in shared mutable data structures (optimizing compilers would
need this feature even if the types are not exposed in the language as they are in Julia).

Types may be used to make declarations, but we do not require declarations for performance.
To achieve this, Julia’s compiler automatically specializes methods for types encountered at
run time (or at compile time, to the extent types are known then). Effectively, every method is
a template (in the C++ sense) by default, with parameterization and instantiation directed by
the compiler. We introduce some type-based heuristics for controlling method specialization.

2.1 Rationale

In past work on optimizing dynamic languages, researchers have observed that programs are
not as dynamic as their authors might think: “We found that dynamic features are pervasive
throughout the benchmarks and the libraries they include, but that most uses of these features
are highly constrained...” [16]. In this sense, the designs of existing dynamic languages do
not present a good trade-off. Much code is statically-typeable and could be executed more
efficiently, but the language designs and implementations do not anticipate this fact.

We hypothesize that the following forms of “dynamism” are the most useful:

• The ability to run code at load time and compile time, eliminating some of the distractions
of build systems and configuration files.

• A universal Any type as the only true static type, allowing the issue of static types to be
ignored when desired.

• Never rejecting code that is syntactically well-formed.

• Behavior that depends only on run-time types (i.e. no static overloading).

Julia avoids some of the “overly permissive” features of systems like CLOS [4] that get in
the way of compiler optimizations, using the following restrictions:

• Types themselves are immutable.

• The type of a value cannot change over its lifetime.

• Local variable environments are not reified.

• Program code is immutable (but new code may be generated and executed at any time).

• Not all bindings are mutable (const identifiers are allowed).

These restrictions allow the compiler to see all uses of local variables, and perform dataflow
analysis on local variables using only local information. This is important, since it allows user
code to call statically-unknown functions without interfering with optimizations done around
such call sites. Statically-unknown function calls arise in many contexts, such as calling a
function taken from an untyped data structure, or dynamically dispatching a method call due
to unknown argument types.

3

2.2 Core Language Overview

The core Julia language contains the following components:

1. A syntax layer, to translate surface syntax to a suitable intermediate representation
(IR).

2. A symbolic language and corresponding data structures for representing certain kinds of
types, and implementations of lattice operators (meet, join, and ≤) for those types.

3. An implementation of generic functions and dynamic multiple dispatch based on those
types.

4. Compiler intrinsic functions for accessing the object model (type definition, method
definition, object allocation, element access, testing object identity, and accessing type
tags).

5. Compiler intrinsic functions for native arithmetic, bit string operations, and calling
native (C or Fortran) functions.

6. A mechanism for binding top-level names.

The IR describes a function body as a sequence of assignment operations, function calls,
labels, and conditional branches. Julia’s semantics are those of a standard imperative language:
statements are executed in order, with function arguments evaluated eagerly. All values are
conceptually references, and are passed by reference as in LISP.

2.3 Types

Julia treats types as symbolic descriptions of sets of values. Every value has a unique,
immutable, run-time implementation type. Objects carry type tags, and types themselves are
Julia objects that can be created and inspected at run time. Julia has five kinds of types:

1. Abstract types, which may have declared subtypes and supertypes (a subtype relation is
declared using the notation Sub <: Super)

2. Composite types (similar to C structs1), which have named fields and declared supertypes

3. Bits types, whose values are represented as bit strings, and which have declared supertypes

4. Tuples, immutable ordered collections of values

5. Union types, abstract types constructed from other types via set union

Bits types allow users to add new fixed-width number-like types and obtain the same
performance that primitive numeric types enjoy in other systems. Julia’s “built in” numeric
types are defined as bits types. Julia method dispatch is based on types rather than field
lookup, so whether a value is of a bits type or composite type is a representation detail that is
generally invisible.

1Currently, composite types are mutable, but we plan to make mutability optional.

4

Tuples are used to represent the types of method arguments and multiple return values.
The type of a tuple is defined recursively as a tuple of the types of its elements. Tuple types are
covariant; a tuple type is a subtype of another if its elements are subtypes of the corresponding
elements of the other. Tuple types may end in a special ... type that indicates any number
of elements may be added. This is used to express the types of variadic methods. For example
the type (String, Int...) indicates a tuple where the first element is a String and any
number of trailing integers may be present.

Union types are used primarily to construct tight least upper bounds when the inference
algorithm needs to join unrelated types. For example, a method might return an Int

or a String in separate arms of a conditional. In this case its type can be inferred as
Union(Int,String). Union types are also useful for defining ad-hoc type hierarchies different
from those imagined when the types involved were first defined. Lastly, union types can be
used to declare methods applicable to multiple types.

2.4 Type Parameters

Abstract types, composite types, and bits types may have parameters, which makes it possible
to express variants of a given type (for example, array types with different element types).
These types are all invariant with respect to their parameters (i.e. two versions of the same
type with different parameters are simply different, and have no subtype relationship). Type
constructors are applied using curly braces, as in Array{Float64,1} (the Array type is
parameterized by element type and rank). Semantically, a type constructor application is a
function call expression evaluated at run time.

Type parameters may have bounds [8], also declared using the <: operator, as in
Rational{T<:Integer}.

To help meet our goal of convenience, we allow writing parametric types without parameters,
or omitting trailing parameters. Array refers to any kind of dense array, and Array{Float64}
refers to a Float64 Array of any rank. The result of one of these expressions is effectively
an ad-hoc abstract supertype of all instantiations one could obtain by filling in the missing
parameters.

This design also makes it easy to add parameters to types later; existing code does not
need to be modified.

2.5 Generic Functions

The vast majority of Julia functions (in both the library and user programs) are generic
functions, meaning they contain multiple definitions or methods for various combinations of
argument types. When a generic function is applied, the most specific definition that matches
the run-time argument types is invoked. Generic functions have appeared in several object
systems in the past, notably CLOS [15] and Dylan [28]. Julia is distinguished from these in
that it uses generic functions as its primary abstraction mechanism, putting it in the company
of research languages like Diesel [10] and Cecil [9]. Aside from being practical for mathematical
styles of programming, this design is satisfying also because it permits expression of most of
the popular patterns of object-oriented programming, while leaving the core language with
fewer distinct features.

5

2.6 Method Definition

Method definitions have a long (multi-line) form and a short form.

function iszero(x::Number)

return x==0

end

iszero(x) = (x==0)

A type declaration with :: on an argument is a dispatch specification. When types are
omitted, the default is Any. A :: expression may be added to any program expression, in
which case it acts as a run-time type assertion. As a special case, when :: is applied to a
variable name in statement position (a construct which otherwise has no effect) it means the
variable always has the specified type, and values will be converted to that type (by calling
convert) on assignment to the variable.

Note that there is no distinct type context; types are computed by ordinary expres-
sions evaluated at run time. For example, f(x)::Int is lowered to the function call
typeassert(f(x),Int).

Anonymous functions are written using the syntax x->x+1.
Local variables are introduced implicitly by assignment. Modifying a global variable

requires a global declaration.
Operators are simply functions with special calling syntax. Their definitions look the same

as those of ordinary functions, for example +(x,y) = ..., or function +(x,y).
When the last argument in a method signature is followed by ... the method accepts any

number of arguments, and the last argument name is bound to a tuple containing the tail of
the argument list. The syntax f(t...) “splices” the contents of an iterable object t as the
arguments to f.

Generic functions are a natural fit for mathematical programming. For example, consider
implementing exponentiation (the ^ operator in Julia). This function lends itself to multiple
definitions, specializing on both arguments separately: there might be one definition for two
floating-point numbers that calls a standard math library routine, one definition for the case
where the second argument is an integer, and separate definitions for the case where the first
argument is a matrix. In Julia these signatures would be written as follows:

function ^(x::Float64, p::Float64)

function ^(x, p::Int)

function ^(x::Matrix, p)

2.7 Parametric Methods

It is often useful to refer to parameters of argument types inside methods, and to specify
constraints on those parameters for dispatch purposes. Method parameters address these needs.
These parameters behave a bit like arguments, but they are always derived automatically from
method argument types and not specified explicitly by the caller. The following signature
presents a typical example:

function assign{T<:Integer}(a::Array{T,1}, i, n::T)

6

This signature is applicable to 1-dimensional arrays whose element type is some kind of
integer, any type of second argument, and a third argument that is the same type as the
array’s element type. Inside the method, T will be bound to the array element type.

The primary use of this construct is to write methods applicable to a family of parametric
types (e.g. all integer arrays, or all numeric arrays) despite invariance. The other use is
writing “diagonal” constraints as in the example above. Such diagonal constraints significantly
complicate the type lattice operators.

2.8 Constructors

Composite types are applied as functions to construct instances. The default constructor
accepts values for each field as arguments. Users may override the default constructor by
writing method definitions with the same name as the type inside the type definition block.
Inside the type block the identifier new is bound to a pseudofunction that actually constructs
instances from field values. The constructor for the Rational type is a good example:

type Rational{T<:Integer} <: Real

num::T

den::T

function Rational(num::T, den::T)

if num == 0 && den == 0

error("invalid rational: 0//0")

end

g = gcd(den, num)

new(div(num, g), div(den, g))

end

end

This allows Rational to enforce representation as a fraction in lowest terms.

2.9 Singleton Kinds

A generic function’s method table is effectively a dictionary where the keys are types. This
suggests that it should be just as easy to define or look up methods with types themselves as
with the types of values. Defining methods on types directly is analogous to defining class
methods in class-based object systems. With multi-methods, definitions can be associated
with combinations of types, making it easy to represent properties not naturally owned by one
type.

To accomplish this, we introduce a special singleton kind Type{T}, which contains the
type T as its only value. The result is a feature similar to eql specializers in CLOS, except
only for types. An example use is defining type traits:

typemax(::Type{Int64}) = 9223372036854775807

This definition will be invoked by the call typemax(Int64). Note that the name of a
method argument can be omitted if it is not referenced.

7

Types are useful as method arguments in several other cases. One example is file I/O,
where a type can be used to specify what to read. The call read(file,Int32) reads a 4-byte
integer and returns it as an Int32 (a fact that the type inference process is able to discover).
We find this more elegant and convenient than systems where enums or special constants must
be used for this purpose, or where the type information is implicit (e.g. through return-type
overloading).

This feature allows sharper types to be inferred when the user programs with types, for
example by calling the typeof function or applying type constructors. As a result, we gain
the performance and flexibility advantages of static parameters (such as template arguments)
without special syntax.

2.10 Method Sorting and Ambiguity

Methods are stored sorted by specificity, so the first matching method (as determined by the
subtype predicate) is always the correct one to invoke. This means much of the dispatch logic
is contained in the sorting process. Comparing method signatures for specificity is not trivial.
As one might expect, the “more specific”2 predicate is quite similar to the subtype predicate,
since a type that is a subtype of another is indeed more specific than it. However, a few
additional rules are necessary to capture the intuitive concept of “more specific”. Our formal
definition is summarized as the disjunction of the following rules (A is more specific than B
if):

1. A is a subtype of B

2. A is of the form T{P} and B is of the form S{Q}, and T is a subtype of S for some
parameter values

3. The intersection of A and B is nonempty, more specific than B, and not equal to B, and
B is not more specific than A

4. A and B are tuple types, A ends in a vararg (...) type, and A would be more specific
than B if its vararg type were expanded to give it the same number of elements as B

5. A and B have parameters and compatible structures, and A provides a consistent
assignment for B’s parameters, but not the other way around

Rule 2 means that declared subtypes are always more specific than their declared su-
pertypes regardless of type parameters. Rule 3 is mostly useful for union types: if A is
Union(Int32,String) and B is Number, A should be more specific than B because their
intersection (Int32) is clearly more specific than B. Rule 4 means that argument types are
more important for specificity than argument count; if A is (Int32...) and B is (Number,

Number) then A is more specific.
Rule 5 makes diagonal constraints more specific; ∀T (T, T) is more specific than ∀X,Y (X,Y).

The specificity of a type variable is determined extensionally, i.e. according to the set of values
it would ultimately encompass. For example, T <: Number has the same specificity as Number.
This approach has been found useful in past work combining parametric types and multiple
dispatch [1].

2Actually, “not less specific”, since specificity is a partial order.

8

Julia uses symmetric multiple dispatch, which means all arguments are equally important.
Therefore, ambiguous signatures are possible. For example, given foo(x::Number, y::Int)

and foo(x::Int, y::Number) it is not clear which method to call when both arguments are
integers. We detect ambiguities when a method is added, by looking for a pair of signatures
with a non-empty intersection where neither one is more specific than the other. A warning
message is displayed for each ambiguity, showing the user the computed type intersection so it
is clear what definition is missing. For example:

Warning: New definition foo(Int,Number) is

ambiguous with foo(Number,Int). Make sure

foo(Int,Int) is defined first.

2.11 Iteration

A for loop is translated to a while loop with method calls according to an iteration interface
(start, done, and next).

for i in range

body

end

Becomes:

state = start(range)

while !done(range, state)

(i, state) = next(range, state)

body

end

This design for iteration was chosen because it is not tied to mutable heap-allocated state,
such as an iterator object that updates itself.

2.12 Special Operators

Special syntax is provided for certain functions.
surface syntax lowered form

a[i, j] ref(a, i, j)

a[i, j] = x assign(a, x, i, j)

[a; b] vcat(a, b)

[a, b] vcat(a, b)

[a b] hcat(a, b)

[a b; c d] hvcat((2,2), a, b, c, d)

2.13 Calling C and Fortran

We provide the keyword ccall for calling native code in-line. Its syntax looks like a function
call, where the programmer specifies an address, result and argument types, and argument
values:

9

ccall(dlsym(libm, :sin), Float64, (Float64,), x)

The first three arguments to ccall are actually pseudo-arguments, evaluated at compile
time. The compiler front-end inserts calls to the convert function for each argument, ensuring
that the actual arguments will match the provided signature.

In Fortran, all arguments are passed by reference. To handle this, argument types must
be written as pointer types such as Ptr{Float64}. An ambiguity then arises in argument
conversion: an integer argument could be interpreted as a pointer, or as a number to convert
to Float64 and pass by reference. To resolve this ambiguity, the programmer can request the
second interpretation by prefixing an argument with an ampersand (a pun on C syntax for
taking the address of a value), as in &x.

2.14 Parallelism

Parallel execution is provided by a message-based multi-processing system implemented in
Julia in the standard library. The language design supports the implementation of such
libraries by providing symmetric coroutines, which can also be thought of as cooperatively
scheduled threads. This feature allows asynchronous communication to be hidden inside
libraries, rather than requiring the user to set up callbacks. Julia does not currently support
native threads, which is a limitation, but has the advantage of avoiding the complexities of
synchronized use of shared memory.

2.15 Design Limitations

In our design, type information always flows along with values, in the forward control flow
direction. This prevents us from doing certain tricks that static type systems are capable
of, such as return-type overloading. Return-type overloading requires a robust notion of the
type of a value context—the type expected or required of some term—in order to select code
on that basis. There are other cases where “backwards” type flow might be desirable, such
as determining the type of a container based on the type of a value stored into it at a later
program point. It may be possible to get around this limitation in the future using inversion
of control—passing a function argument whose result type has already been inferred, and
using that type to construct a container before elements are computed.

Modularity is a perennial difficulty with multiple dispatch, as any function might apply to
any type, and there is no point where functions or types are closed to future definitions. Thus
at the moment Julia is essentially a whole-program compiler. We plan to implement a module
system that will at least allow code to control which name bindings and definitions it sees.
Such modules could be separately compiled to the extent that programmers are willing to ask
for their definitions to be “closed”.

Lastly, at this time Julia uses a bit more memory than we would prefer. Our compiler
data structures, type information, and generated native code take up more space than the
compact bytecode representations used by many dynamic languages.

3 Implementation

Much of the implementation is organized around method dispatch. The dispatch logic is both
a large portion of the behavior of Julia functions, and the entry point of the compiler’s type
inference and specialization logic.

10

3.1 Method Caching and Specialization

The first step of method dispatch is to look for the argument types in a per-function cache.
The cache has an entry for (almost) every set of concrete types to which the function has
been applied. Concrete types are hash-consed, so they can be compared by simple pointer
comparison. This makes cache lookup faster than the subtype predicate. As part of hash-
consing, concrete types are assigned small integer IDs. The ID of the first argument is used
as a primary key into a method cache, so when signatures differ only in the type of the first
argument a simple indexed lookup suffices.

On a cache miss, a slower search for the matching definition is performed using subtype.
Then, type inference is invoked on the matching method using the types of the actual arguments.
The resulting type-annotated and optimized method is stored in the cache. In this way, method
dispatch is the primary source of type information for the compiler.

3.2 Method Specialization Heuristics

Our aggressive use of code specialization has the obvious pitfall that it might lead to excessive
code generation, consuming memory and compile time. We found that a few mild heuristics
suffice to give a usable system with reasonable resource requirements.

The first order of business is to ensure that the dispatch and specialization process
converges. The reason it might not is that our type inference algorithm is implemented in
Julia itself. Calling a method on a certain type A can cause the type inference code to call
the same method on type B, where types A and B follow an infinite ascending chain in
either of two partial orders (the typeof order or the subtype order). Singleton kinds are the
most prominent example, as type inference might attempt to successively consider Int32,
Type{Int32}, Type{Type{Int32}}, and so on. We stop this process by replacing any nestings
of Type with the unspecialized version of Type during method specialization (unless the original
method declaration actually specified a type like Type{Type{Int32}}).

The next heuristic avoids specializing methods for tuple types of every length. Tuple types
are cached as the intersection of the declared type of the method slot with the generic tuple
type (Any...). This makes the resulting cache entry valid for any tuple argument, again
unless the method declaration contained a more specific tuple type. Note that all of these
heuristics require corresponding changes in the method cache lookup procedure, since they
yield cache entries that do not have to exactly match candidate arguments.

A similar heuristic is applied to variadic methods, where we wish to avoid caching argument
lists of every length. This is done by capping argument lists at the length of the longest
signature of any method in the same generic function. The “capping” involves replacing
the last argument with a ... type. Ideally, we want to form the biggest type that’s not a
supertype of any other method signatures. However, this is not always possible and the capped
type might conflict with another signature. To deal with this case, we find all non-empty
intersections of the capped type with other signatures, and add dummy cache entries for them.
Hitting one of these entries alerts the system that the arguments under consideration are not
really in the cache. Without the dummy entries, some arguments might incorrectly match the
capped type, causing the wrong method to be invoked.

The next heuristic concerns singleton kinds again. Because of the singleton kind feature,
every distinct type object (Any, Number, Int, etc.) passed to a method might trigger a new
specialization. However, most methods are not “class methods” and are not concerned with

11

type objects. Therefore, if no method definition in a certain function involves Type for a
certain argument slot, then that slot is not specialized for different type objects.

Finally, we introduce a special type ANY that can be used in a method signature to hint
that a slot should not be specialized. This is used in the standard library in a small handful
of places, and in practice is less important than the heuristics described above.

3.3 Type Inference

Types of program expressions and variables are inferred by forward dataflow analysis3. The
original algorithm for such dynamic type inference was given by Kaplan and Ullman [20].
This is different from type inference in the ML family of languages [27], where the compiler
must be able to determine types, using an algorithm based on unification. Dynamic type
inference has been applied to LISP [23] [5] [3], and object-oriented languages such as Self [11]
and JavaScript [2].

We determine a maximum fixed-point (MFP) solution using Algorithm 1, based on
Mohnen’s graph-free dataflow analysis framework [24]. The basic idea is to keep track of the
state (the types of all variables) at each program point, determine the effect of each statement
on the state, and ensure that type information from each statement eventually propagates to
all other statements reachable by control flow. We augment the basic algorithm with support
for mutually-recursive functions (functions are treated as program points that might need to
be revisited).

The origin of the type information used by the MFP algorithm is evaluation of known
functions over the type domain [12]. This is done by the eval subroutine. The interpret
subroutine calls eval, and also handles assignment statements by returning the new types of
affected variables. Each known function call is either to one of the small number of built-in
functions, in which case the result type is computed by a (usually trivial) hand-written type
transfer function, or to a generic function, in which case the result type is computed by
recursively invoking type inference. In the generic function case, the inferred argument types
are met (u) with the signatures of each method definition. Matching methods are those
where the meet (greatest lower bound) is not equal to the bottom type (None in Julia). Type
inference is invoked on each matching method, and the results are joined (t) together. The
following equation summarizes this process:

T (f, targ) =
⊔

(s,g)∈f

T (g, targ u s)

T is the type inference function. targ is the inferred argument tuple type. The tuples (s, g)
represent the signatures s and their associated definitions g within generic function f .

Two optimizations are helpful here. First, it is rarely necessary to consider all method
definitions. Since methods are stored in sorted order, as soon as the union of the signatures
considered so far is a supertype of targ, no more definitions need to be considered. Second,
the join operator employs widening [13]: if a type becomes too large it may simply return Any.
In this case the recursive inference process may stop immediately.

3Adding a reverse dataflow pass could potentially improve type information, but we have not yet done this.

12

Algorithm 1 Infer function return type

Require: function F , argument type tuple A, abstract execution stack S
Ensure: result type S.R
V ← set of all locally-bound names
Va ← argument names
n← length(F)
W ← {1} {set of program counters}
Pr ← ∅ {statements that recur}
∀v ∈ V,Γ[1][v]← Undef
∀i,Γ[1][Va[i]]← A[i] {type environment for statement 1}
while W 6= ∅ do

p← choose(W)
repeat
W ←W − p
new ← interpret(F [p],Γ[p], S)
if S.rec then
Pr ← Pr ∪ {p}
S.rec← false

end if
p′ ← p + 1
if F [p] =(goto l) then

p′ ← l
else if F [p] =(gotoif cond l) then

if not new ≤ Γ[l] then
W ←W ∪ {l}
Γ[l]← Γ[l] t new

end if
else if F [p] =(return e) then
p′ ← n + 1
r ← eval(e,Γ[p], S)
if not r ≤ S.R then

S.R← S.R t r
W ←W ∪ Pr

end if
end if
if p′ ≤ n and not new ≤ Γ[p′] then

Γ[p′]← Γ[p′] t new
p← p′

end if
until p′ = n + 1

end while
S.rec← Pr 6= ∅

13

3.3.1 Interprocedural Type Inference

Type inference is invoked through “driver” Algorithm 2 which manages mutual recursion and
memoization of inference results. A stack of abstract activation records is maintained and
used to detect recursion. Each function has a property incomplete(F,A) indicating that it
needs to be revisited when new information is discovered about the result types of functions it
calls. The incomplete flags collectively represent a set analogous to W in Algorithm 1.

The outer loop in Algorithm 2 looks for an existing activation record for its input function
and argument types. If one is found, it marks all records from that point to the top of the stack,
identifying all functions involved in the call cycle. These marks are discovered in Algorithm 1
when interpret returns, and all affected functions are considered incomplete. Algorithm 2
continues to re-run inference on incomplete functions, updating the inferred result type, until
no recursion occurs or the result type converges.

Algorithm 2 Interprocedural type inference

Require: function F , argument type tuple A, abstract execution stack S
Ensure: returned result type
R← ⊥
if recall(F,A) exists then

R← recall(F,A)
if not incomplete(F,A) then

return R
end if

end if
f ← S
while not empty(f) do
if f.F is F and f.A = A then
r ← S
while not r = tail(f) do

r.rec← true
r ← tail(r)

end while
return f.R

end if
f ← tail(f)

end while
S′ ← extend(S, Frame(F,A,R, rec = false))
invoke Algorithm 1 on F,A, S′

recall(F,A)← S′.R
incomplete(F,A)← (S′.rec ∧ ¬(R = S′.R))
return S′.R

3.4 Lattice Operators

Our type lattice is complicated by the presence of type parameters, unions, and diagonal
type constraints in method signatures. Fortunately, for our purposes only the ≤ (subtype)
relation needs to be computed accurately, as it bears final responsibility for whether a method

14

is applicable to given arguments. Type union and intersection, used to estimate least upper
bounds and greatest lower bounds, respectively, may both be conservatively approximated. If
their results are too coarse, the worst that can happen is performing method dispatch or type
checks at run time, since the inference process will simply conclude that it does not know
precise types.

A complication arises from the fact that our abstract domain is available in a first-class
fashion to user programs. When a program contains a type-valued expression, we want to know
which type it will evaluate to, but this is not possible in general. Therefore in addition to the
usual type imprecision (not knowing the type of a value), we must also model type uncertainty,
where a type itself is known imprecisely. A common example is application of the typeof

primitive to a value of imprecise type. What is the abstract result of typeof(x::Number)?
We handle this using bounded type variables, effectively representing a range rather than a
point within the type lattice. In this example, the transfer function for typeof is allowed to
return Type{T<:Number}, where T is a new type variable.

3.4.1 Subtype Predicate

See Algorithm 3. Note that extensional type equality can be computed as (A ≤ B ∧ B ≤ A),
and this is used for types in invariant context (i.e. type parameters). The algorithm uses
subroutines p(A) which gives the parameters of type A, and super(A) which gives the declared
supertype of A.

3.4.2 Type Union

Since our type system directly supports unions, the union of T and S can be computed simply
by constructing the type Union(T,S). An obvious simplification is performed: if one of T or S
is a subtype of the other, it can be removed from the union. Nested union types are flattened,
followed by pairwise simplification.

3.4.3 Type Intersection

This is the difficult one: given types T and S, we must try to compute the smallest type R
such that ∀s, s ∈ T ∧ s ∈ S ⇒ s ∈ R. The conservative solution is to give up on finding the
smallest such type, and return some type with this property. Simply returning T or S suffices
for correctness, but in practice this algorithm makes the type inference process nearly useless.
A slightly better algorithm is to check whether one argument is a subtype of the other, and
return the smaller type. It is also possible to determine quickly, in many cases, that two types
are disjoint, and return ⊥. With these two enhancements we start to obtain some useful type
information. However, we need to do better to take full advantage of the framework set up so
far.

Our algorithm has two phases. First, the structures of the two input types are analyzed
in a manner similar to subtype, except a constraint environment is built, with entries T ≤ S
for type variables T in covariant contexts (tuples) and entries T = S for type variables T in
invariant contexts (type parameters). In the second phase the constraints are solved with an
algorithm similar to that used by traditional polymorphic type systems [27].

The code for handling tuples and union types is similar to that in Algorithm 3, so we
focus instead on intersecting types in the nominal hierarchy (Algorithm 4). The base case
occurs when the input types are from the same family, i.e. have the same typename. All we

15

Algorithm 3 Subtype

Require: types A and B
Ensure: A ≤ B

if A is a tuple type then
if B is not a tuple type then
return false

end if
for i = 1 to length(A) do

if A[i] is T... then
if last(B) exists and is not S... then

return false
end if
return subtype(T,B[j])), i ≤ j ≤ length(B)

else if i > length(B) or not subtype(A[i], B[i]) then
return false

else if B[i] is T... then
return subtype(A[j], T)), i < j ≤ length(A)

end if
end for

else if A is a union type then
return ∀t ∈ A, subtype(t, B)

else if B is a union type then
return ∃t ∈ B, subtype(A, t)

end if
while A 6= Any do

if typename(A) = typename(B) then
return subtype(p(A), p(B)) ∧ subtype(p(B), p(A))

end if
A← super(A)

end while
if A is of the form Type{T} then

return subtype(typeof(p(A)[1]), B)
else if B is of the form Type{T} then

B ← p(B)[1]
return subtype(A,B) ∧ subtype(B,A)

end if
return B = Any

16

need to do is visit each parameter to collect any needed constraints, and otherwise check that
the parameters are equal. When a parameter is a type variable, it is effectively covariant,
and must be intersected with the corresponding parameter of the other type to form the final
result.

Algorithm 4 Intersection of nominal types

Require: types A and B, current constraint environment
Ensure: return T such that A uB ≤ T , updated environment

if typename(A) = typename(B) then
pa← copy(p(A))
for i = 1 to length(p(A)) do

if p(A)[i] is a typevar then
add (p(A)[i] = p(B)[i]) to constraints

else if p(B)[i] is a typevar then
add (p(B)[i] = p(A)[i]) to constraints

end if
pa[i]← intersect(p(A)[i], p(B)[i])

end for
return typename(A){pa...}

else
sup← intersect(super(A), B)
if sup = ⊥ then

sup← intersect(A, super(B))
if sup = ⊥ then

return ⊥
else

sub← B
end if

else
sub← A

end if
E ← conform(sup, super decl(sub))
if E contains parameters not in formals(sub) then

return ⊥
end if
return intersect(sub, typename(sub){E...})

end if

When the argument types are not from the same family, we recur up the type hierarchy to
see if any supertype of one of the arguments matches the other. If so, the recursion gives us
the intersected supertype sup, and we face the problem of mapping it to the family of the
original argument type. To do this, we first call subroutine conform, which takes two types
with the same structure and returns an environment E mapping any type variables in one to
their corresponding components in the other. super decl(t) returns the type template used
by t to instantiate its supertype. If all goes well, this tells us what parameters sub would
have to be instantiated with to have supertype sup. If, however, E contains type variables
not controlled by sub, then there is no way a type like sub could have the required supertype,

17

and the overall answer is ⊥. Finally, we apply the base case to intersect sub with the type
obtained by instantiating its family with parameter values in E.

We use a simple algorithm to solve the type parameter constraints. Constraints T ≤ S
where S is a concrete type are converted to T = S to help sharpen the result type. If there
are any conflicting constraints (T = S and T = U where S 6= U), the type intersection is
empty. If each type variable has exactly one constraint T = U , we can substitute find(X,U)
for each occurrence of T in the computed type intersection, and we have a final answer. find
works in the union-find sense, following chains of equalities until we hit a non-variable or an
unconstrained variable. Unconstrained type variables may be left in place.

The remaining case is type variables with multiple constraints. Finding a satisfying
assignment requires intersecting all the upper bounds for a variable. It is here that we choose
to throw in the towel and switch to a coarser notion of intersection, denoted by u∗. Intersection
is effectively the inner loop of type inference, so in the interest of getting a reasonable answer
quickly we might pick X u∗ Y = X. A few simple heuristics might as well be added; for
example cases like two non-parameterized types where one is an immediate subtype of the
other can be supported easily.

In our implementation, type intersection handles most of the complexity surrounding type
variables and parametric methods. It is used to test applicability of parametric methods;
since all run-time argument lists are of concrete type, intersecting their types with method
signatures behaves like subtype, except static parameters are also properly matched. If
intersection returns ⊥ or does not find values for all static parameters for a method, the
method is not applicable. Therefore in practice we do not really have the freedom to implement
u and u∗ any way that obeys our correctness property. They must be at least as accurate as
subtype in the case where one argument is concrete.

3.4.4 Widening Operators

Lattices used in practical program analyses often fail to obey the finite chain condition
necessary for the MFP algorithm to converge (i.e. they are not of finite height) and ours is no
exception.

Widening is applied in two places: by the join operator, and on every recursive invocation of
type inference. When a union type becomes too large (as determined by a cutoff), it is replaced
with Any. Tuple types lend themselves to two infinite chains: one in depth ((Any,), ((Any,),),
(((Any,),),), etc.) and one in length ((Any...,), (Any,Any...,), (Any,Any,Any...,),
etc.). These chains are capped at arbitrary cutoffs each time the inference process needs to
construct a tuple type.

3.5 Code Generation and Optimization

After type inference is complete, we annotate each expression with its inferred type. We then
run two key optimization passes. If the inferred argument types in a method call indicate that
a single method matches, we are free to inline that method. For methods that return multiple
values, inlining often yields expressions that construct tuples and immediately take them apart.
The next optimization pass identifies these cases and removes the tuple allocations.

The next set of optimizations is applied during code generation. Our code generator
targets the LLVM compiler framework [21]. First, we examine uses of variables and assign
local variables specific scalar types where possible (LLVM uses a typed code representation).

18

The box operations used to tag bit strings with types are done lazily; they add a compile-time
tag that causes generation of the appropriate allocation code only when the value in question
hits a context that requires it (for example, assignment to an untyped data structure, or being
passed to an unknown function).

The code generator recognizes calls to key built-in and intrinsic functions, and replaces
them with efficient in-line code where possible. For example, the is function on mutable
arguments yields a pointer comparison, and typeof might yield a constant pointer value if
the type of its argument is known. Calls known to match single methods generate code to call
the correct method directly, skipping the dispatch process.

Finally, we run several of LLVM’s optimization passes. This provides standard scalar
optimizations, such as strength reduction, dead code elimination, jump threading, and constant
folding.

4 Example Use Cases

4.1 Numeric Type Promotion

Numeric types and arithmetic are fundamental to all programming, but deserve extra attention
in the case of scientific computing. In traditional compiled languages such as C, the arithmetic
operators are the most polymorphic “functions”, and hence cannot be written in the language
itself. Arithmetic must be defined in the compiler, including contentious decisions such as
how to handle operations with mixed argument types.

In Julia, multiple dispatch is used to define arithmetic and type promotion behaviors at
the library level rather than in the compiler. As a result, the system smoothly incorporates
new operators and numeric types with minimal work.

Four key utility functions comprise the type promotion system. For simplicity, we consider
only two-argument forms of promotion although multi-argument promotion is also defined
and used.

1. convert(T, value) converts its second argument to type T

2. promote rule(T1,T2) defines which of two types is greater in the promotion partial
order

3. promote type(T1,T2) uses promote rule to determine which type should be used for
values of types T1 and T2

4. promote(v1, v2) converts its arguments to an appropriate type and returns the results

promote is implemented as follows:

function promote{T,S}(x::T, y::S)

(convert(promote_type(T,S),x),

convert(promote_type(T,S),y))

end

promote type simply tries promote rule with its arguments in both orders, to avoid the
need for repeated definitions:

19

function promote_type{T,S}(::Type{T}, ::Type{S})

if applicable(promote_rule, T, S)

return promote_rule(T,S)

elseif applicable(promote_rule, S, T)

return promote_rule(S,T)

else

error("no promotion exists")

end

end

convert and promote rule are implemented for each type. Two such definitions for the
Complex128 type are:

promote_rule(::Type{Complex128},

::Type{Float64}) = Complex128

convert(::Type{Complex128}, x::Real) =

complex128(x, 0)

With these definitions in place, a function may gain generic promotion behavior by adding
the following kind of definition:

+(x::Number, y::Number) = +(promote(x,y)...)

This means that, given two numeric arguments where no more specific definition matches,
promote the arguments and retry the operation (the ... “splices” the two values returned by
promote into the argument list). The standard library contains such definitions for all basic
arithmetic operators. For this recursion to terminate, we require only that each Number type
implement + for two arguments of that type, e.g.

+(x::Int64, y::Int64) = ...

+(x::Float64, y::Float64) = ...

+(x::Complex128, y::Complex128) = ...

Therefore, each new type requires only one definition of each operator, and a handful of
convert and promote rule definitions. If n is the number of types and m is the number of
operators, a new type requires O(n + m) rather than O(n ·m) definitions.

The reader will notice that uses of this mechanism involve multiple method calls, as well
as potentially expensive features such as tuple allocation and argument splicing. Without
a sufficient optimizing compiler, this implementation would be completely impractical. For-
tunately, through type analysis, inlining, elision of unnecessary tuples, and lowering of the
apply operation implied by ..., Julia’s compiler is able to eliminate all of the overhead in
most cases, ultimately yielding a sequence of machine instructions comparable to that emitted
by a traditional compiler.

The most troublesome function is promote type. For good performance, we must elide
calls to it, but doing so may be incorrect since the function might throw an error. By fortunate
coincidence though, the logic in promote type exactly mirrors the analysis done by type
inference: it only throws an error if no matching methods exist for its calls to promote rule,
in which case type inference concludes that the function throws an error regardless of which

20

benchmark Julia Python Matlab Octave R JavaScript
fib
parse int
quicksort
mandel
pi sum
rand mat stat
rand mat mul

1.97 31.47 1336.37 2383.80 225.23 1.55
1.44 16.50 815.19 6454.50 337.52 2.17
1.49 55.84 132.71 3127.50 713.77 4.11
5.55 31.15 65.44 824.68 156.68 5.67
0.74 18.03 1.08 328.33 164.69 0.75
3.37 39.34 11.64 54.54 22.07 8.12
1.00 1.18 0.70 1.65 8.64 41.79

1

10

100

1000

10000

Julia Python Matlab Octave R JavaScript

fi
b
p
ar
se
_
in
t

q
u
ic
ks
or
t

m
an
d
el

p
i_
su
m

ra
n
d
_
m
at
_
st
at

ra
n
d
_
m
at
_
m
u
l

Figure 1: Microbenchmark results (times relative to C++, log-scale). These measurements
were carried out on a MacBook Pro with a 2.53GHz Intel Core 2 Duo CPU and 8GB of
1066MHz DDR3 RAM. The following versions were used: Python 2.7.1, MATLABR© R2011a,
Octave 3.4, R 2.14.2, V8 3.6.6.11. The C++ baseline was compiled by GCC 4.2.1, taking
best timing from all optimization levels. Native implementations of array operations, matrix
multiplication, sorting, are used where available.

branch is taken. applicable is a built-in function known to be free of effects. Therefore,
whenever a sharp result type for promote type can be inferred, it is also valid to remove the
unused arms of the conditional.

4.2 Code Generation and Staged Functions

The presence of types and an inference pass creates a new, intermediate translation stage
which may be customized (macros essentially customize syntax processing, and object systems
customize run time behavior). This is the stage at which types are known, and it exists in
Julia via the compiler’s method specialization machinery. Specialization may occur at run
time during dispatch, or at compile time when inference is able to determine argument types
accurately. Running custom code at this stage has two tremendous effects: first, optimized
code can be generated for special cases, and second, the type inference system can effectively
be extended to be able to make new type deductions relevant to the user’s application.

For example, we might want to write functions that apply to two arrays of different
dimensionality, where the result has the higher of the two argument dimensionalities. One
such function is a “broadcasting” binary elementwise operator, that performs computations
such as adding a column vector to every column of a matrix, or adding a plane to every slice
of a 3-dimensional dataset. We can determine the shape of the result array with the following
function:

function promote_shape(s1::Tuple, s2::Tuple)

21

if length(s1) > length(s2)

return s1

else

return s2

end

end

The type system can easily express the types of array shapes, for example (Int,Int)

and (Int,Int,Int). However, inferring a sharp result type for this simple function is still
challenging. The inference algorithm would have to possess a theory of the length and
> functions, which is not easily done given that all Julia functions may be redefined and
overloaded with arbitrary methods.

Instead, this function can be written as a staged function (or more accurately in our case,
a staged method). This is a function that runs at an earlier translation “stage”, i.e. compile
time, and instead of returning a result value returns code that will compute the result value
when executed [19]. Here is the staged version of promote shape4:

@staged function promote_shape(s1::Tuple, s2::Tuple)

if length(s1) > length(s2)

quote return s1 end

else

quote return s2 end

end

end

The signature of this definition behaves exactly like any other method signature: the type
annotations denote run-time types for which the definition is applicable. However, the body of
the method will be invoked on the types of the arguments rather than actual arguments, and
the result of the body will be used to generate a new, more specialized definition. For example,
given arguments of types (Int,Int) and (Int,Int,Int) the generated definition would be:

function promote_shape(s1::(Int,Int),

s2::(Int,Int,Int))

return s2

end

Observe that the type of this function is trivial to infer.
The staged function body runs as normal user code, so whatever definition of > is visible

will be used, and the compiler does not have to know how it behaves. Critically, the staged
version of the function looks similar to the normal version, requiring only the insertion of
quote to mark expressions deferred to the next stage.

In the case where a program is already statically-typeable, staged functions preserve that
property. The types of the arguments to the staged function will be known at compile time,
so the custom code generator can be invoked at compile time. Then the compiler may inline
the result or emit a direct call to the generated code, as usual.

4The @ denotes a macro invocation. At present, staged methods are implemented by a macro, but full
integration into the language is planned.

22

test Julia Python MATLABR© Octave R JavaScript

fib 1.97 31.47 1336.37 2383.80 225.23 1.55

parse int 1.44 16.50 815.19 6454.50 337.52 2.17

quicksort 1.49 55.84 132.71 3127.50 713.77 4.11

mandel 5.55 31.15 65.44 824.68 156.68 5.67

pi sum 0.74 18.03 1.08 328.33 164.69 0.75

rand mat stat 3.37 39.34 11.64 54.54 22.07 8.12

rand mat mul 1.00 1.18 0.70 1.65 8.64 41.79

Table 1: Microbenchmark results (times relative to C++).

Or, if the user does not require static compilation, the custom code generator can be
invoked at run time. Its results are cached for each new combination of argument types, so
compilation pauses are infrequent.

As a result, functions with complex type behavior can be implemented in libraries without
losing performance. Of course, ordinary Julia functions may also have complex type behavior,
and it is up to the library designer to decide which functions should be staged.

5 Evaluation

To evaluate Julia’s performance, we have compared its speed to that of six other languages:
C++, Python, MATLABR©, Octave, R, and JavaScript. Figure 1 shows timings for five
scalar microbenchmarks, and two simple array benchmarks; the same data are presented in
tabular format in Table 1. All numbers are ratios relative to the time taken by C++. The
first five tests do not reflect typical application performance in each environment; their only
purpose is to compare the code generation and execution for basic language constructs, such
as manipulating scalar quantities and referencing individual array elements.

MATLABR©has a JIT compiler that works quite well in some cases, but is inconsistent,
and performs especially poorly on user-level function calls. The V8 JavaScript JIT compiler’s
performance is impressive. Anomalously, both Julia and JavaScript seem to beat C++ on
pi sum, but we have not yet discovered why this might be.

The rand mat stat code manipulates many 5-by-5 matrices. Here the performance gaps
close, but the arrays are not large enough for library time to dominate, so Julia’s ability to
specialize call sites wins the day (despite the fact that most of the array library functions
involved are written in Julia itself).

The rand mat mul code demonstrates a case where time spent in BLAS [22] dominates.
MATLABR©gets its edge from using a multi-threaded BLAS (threading is available in the
BLAS Julia uses, but it was disabled when these numbers were taken). R may not be using a
well-tuned BLAS in this install; more efficient configurations are probably possible. JavaScript
as typically deployed is not able to call the native BLAS code, but the V8 compiler’s work is
respectable here.

Julia is not yet able to cache generated native code, and so incurs a startup time of about
two seconds to compile basic library functions. For some applications this latency is a barrier
to deployment, and we plan to address it in the future.

23

5.1 Effectiveness of Specialization Heuristics

Given our implementation strategy, excessive compilation and corresponding memory use are
potential performance concerns. We measured the number of method compilations performed
both with and without our specialization heuristics, and the heuristics were able to elide about
12% of compilations. This is not a large fraction, but it is satisfying given that the heuristics
can be computed easily, and only by manipulating types. On average, each method is compiled
about 2.5 times.

Memory usage is not unreasonable for modern machines: on a 64-bit platform Julia uses
about 50MB of memory on startup, and after loading several libraries and working for a while
memory use tends to level off around 150-200MB. Pointer-heavy data structures consume a lot
of space on 64-bit platforms. To mitigate this problem, we store ASTs and type information
in a compact serialized format, and deserialize structures when the compiler needs them.

5.2 Effectiveness of Type Inference

It is interesting to count compiled expressions for which a concrete type can be inferred. In
some sense, this tells us “how close” Julia is to being statically typed, though in our case this
is a property of both the language implementation and the standard library. In a run of our
test suite, code was generated for 135375 expressions. Of those, 84127 (62%) had a type more
specific than Any. Of those, 80874 (96%) had a concrete static type.

This suggests that use of dynamic typing is fairly popular, even though we try to avoid
it to some extent in the standard library. Still, more than half of our code is well-typed.
The numbers also suggest that, despite careful use of a rich lattice, typing tends to be an
all-or-nothing affair. But, it is difficult to estimate the effect of the 4% abstractly-typed
expressions on the other 96%, not to mention the potential utility of abstract inferred types in
code that was not actually compiled.

These numbers are somewhat inaccurate, as they include dead code, and it may be the
case that better-typed methods tend to be recompiled with different frequency than others,
biasing the numbers.

5.3 Productivity

Our implementation of Julia consists of 11000 lines of C, 4000 lines of C++, and 3500 lines of
Scheme (here we are not counting code in external libraries such as BLAS and LAPACK).
Thus we have significantly less low-level code to maintain than most scripting languages. Our
standard library is roughly 25000 lines of Julia code. The standard library provides around
300 numerical functions of the sort found in all technical computing environments. We suspect
that our library is one of the most compact implementations of this body of functionality.

At this time, every contributor except the core developers is a “new user” of Julia, having
known of the language for no more than six months. Despite this, our function library has
received several significant community contributions, and numerous smaller ones. We take
this as encouraging evidence that Julia is productive and easy to learn.

6 Community

Julia is an open source project, with all code hosted on github [14]. It has attracted 550
mailing list subscribers, 1500 github followers, 190 forks, and more than 50 total contributors.

24

Text editor support has been implemented for emacs, vim, and textmate. Github recognizes
Julia as the language of source files ending in .jl, and can syntax highlight Julia code listings.

Several community projects are underway: two plotting packages, interfaces to arbitrary-
precision arithmetic library GMP, bit arrays, linear programming, image processing, polyno-
mials, GPU code generation, a statistics library, and a web-based interactive environment. A
package management framework will soon be in place.

We hope Julia is part of a new generation of dynamic languages that not only run faster,
but foster more cooperation between the programmer and compiler, pushing the standard of
productivity ever higher.

7 Acknowledgements

We wish to thank our funding agencies for their support via Department of Energy grant
de-sc0002099 and National Science Foundation grant CCF-0832997. We also gratefully
acknowledge gifts from VMWare and Citigroup.

References

[1] E. Allen, J. Hilburn, S. Kilpatrick, V. Luchangco, S. Ryu, D. Chase, and G. Steele.
Type checking modular multiple dispatch with parametric polymorphism and multiple
inheritance. In Proceedings of the 2011 ACM international conference on Object oriented
programming systems languages and applications, OOPSLA ’11, pages 973–992, New
York, NY, USA, 2011. ACM.

[2] C. Anderson, P. Giannini, and S. Drossopoulou. Towards type inference for javascript. In
A. Black, editor, ECOOP 2005 - Object-Oriented Programming, volume 3586 of Lecture
Notes in Computer Science, pages 733–733. Springer Berlin / Heidelberg, 2005.

[3] H. G. Baker. The nimble type inferencer for common lisp-84. Technical report, Tech.
Rept., Nimble Comp, 1990.

[4] H. G. Baker. Clostrophobia: its etiology and treatment. SIGPLAN OOPS Mess., 2(4):
4–15, Oct. 1991.

[5] R. D. Beer. Preliminary report on a practical type inference system for common lisp.
SIGPLAN Lisp Pointers, 1:5–11, June 1987.

[6] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the meta-level: Pypy’s tracing
jit compiler. In Proceedings of the 4th workshop on the Implementation, Compilation,
Optimization of Object-Oriented Languages and Programming Systems, ICOOOLPS ’09,
pages 18–25, New York, NY, USA, 2009. ACM.

[7] R. A. Brooks and R. P. Gabriel. A critique of common lisp. In Proceedings of the 1984
ACM Symposium on LISP and functional programming, LFP ’84, pages 1–8, New York,
NY, USA, 1984. ACM.

[8] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism.
ACM Comput. Surv., 17(4):471–523, Dec. 1985.

25

http://arxiv.org/abs/de-sc/0002099

[9] C. Chambers. Object-oriented multi-methods in cecil. In Proceedings of the European
Conference on Object-Oriented Programming, pages 33–56, London, UK, 1992. Springer-
Verlag.

[10] C. Chambers. The diesel language specification and rationale: Version 0.1. February
2005.

[11] C. Chambers, D. Ungar, and E. Lee. An efficient implementation of self: a dynamically-
typed object-oriented language based on prototypes. SIGPLAN Not., 24:49–70, September
1989.

[12] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of
the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
POPL ’77, pages 238–252, New York, NY, USA, 1977. ACM.

[13] P. Cousot and R. Cousot. Comparing the galois connection and widening/narrowing
approaches to abstract interpretation. In M. Bruynooghe and M. Wirsing, editors,
Programming Language Implementation and Logic Programming, volume 631 of Lecture
Notes in Computer Science, pages 269–295. Springer Berlin / Heidelberg, 1992.

[14] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding in github: transparency and
collaboration in an open software repository. In Proceedings of the ACM 2012 conference
on Computer Supported Cooperative Work, CSCW ’12, pages 1277–1286, New York, NY,
USA, 2012. ACM.

[15] L. DeMichiel and R. Gabriel. The common lisp object system: An overview. In J. Bzivin,
J.-M. Hullot, P. Cointe, and H. Lieberman, editors, ECOOP 87 European Conference on
Object-Oriented Programming, volume 276 of Lecture Notes in Computer Science, pages
151–170. Springer Berlin / Heidelberg, 1987.

[16] M. Furr, J.-h. D. An, and J. S. Foster. Profile-guided static typing for dynamic scripting
languages. SIGPLAN Not., 44:283–300, Oct. 2009.

[17] C. Gomez, editor. Engineering and Scientific Computing With Scilab. Birkhäuser, 1999.

[18] R. Ihaka and R. Gentleman. R: A language for data analysis and graphics. Journal of
Computational and Graphical Statistics, 5:299–314, 1996.

[19] U. Jørring and W. L. Scherlis. Compilers and staging transformations. In Proceedings of
the 13th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
POPL ’86, pages 86–96, New York, NY, USA, 1986. ACM.

[20] M. A. Kaplan and J. D. Ullman. A scheme for the automatic inference of variable types.
J. ACM, 27:128–145, January 1980.

[21] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Proceedings of the 2004 International Symposium on Code
Generation and Optimization (CGO’04), Palo Alto, California, Mar 2004.

[22] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra
subprograms for fortran usage. ACM Trans. Math. Softw., 5(3):308–323, Sept. 1979.

26

[23] K.-L. Ma and R. R. Kessler. Ticla type inference system for common lisp. Software:
Practice and Experience, 20(6):593–623, 1990.

[24] M. Mohnen. A graphfree approach to dataflow analysis. In R. Horspool, editor, Compiler
Construction, volume 2304 of Lecture Notes in Computer Science, pages 185–213. Springer
Berlin / Heidelberg, 2002.

[25] F. Morandat, B. Hill, L. Osvald, and J. Vitek. Evaluating the design of the R language.
In J. Noble, editor, ECOOP 2012 Object-Oriented Programming, volume 7313 of Lecture
Notes in Computer Science, pages 104–131. Springer Berlin / Heidelberg, 2012.

[26] M. Murphy. Octave: A free, high-level language for mathematics. Linux J., 1997, July
1997.

[27] Robin and Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17(3):348 – 375, 1978.

[28] A. Shalit. The Dylan reference manual: the definitive guide to the new object-oriented
dynamic language. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA, 1996.

[29] S. van der Walt, S. C. Colbert, and G. Varoquaux. The numpy array: a structure for
efficient numerical computation. CoRR, abs/1102.1523, 2011.

27

	1 Introduction
	2 Language Design
	2.1 Rationale
	2.2 Core Language Overview
	2.3 Types
	2.4 Type Parameters
	2.5 Generic Functions
	2.6 Method Definition
	2.7 Parametric Methods
	2.8 Constructors
	2.9 Singleton Kinds
	2.10 Method Sorting and Ambiguity
	2.11 Iteration
	2.12 Special Operators
	2.13 Calling C and Fortran
	2.14 Parallelism
	2.15 Design Limitations

	3 Implementation
	3.1 Method Caching and Specialization
	3.2 Method Specialization Heuristics
	3.3 Type Inference
	3.3.1 Interprocedural Type Inference

	3.4 Lattice Operators
	3.4.1 Subtype Predicate
	3.4.2 Type Union
	3.4.3 Type Intersection
	3.4.4 Widening Operators

	3.5 Code Generation and Optimization

	4 Example Use Cases
	4.1 Numeric Type Promotion
	4.2 Code Generation and Staged Functions

	5 Evaluation
	5.1 Effectiveness of Specialization Heuristics
	5.2 Effectiveness of Type Inference
	5.3 Productivity

	6 Community
	7 Acknowledgements

