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eter representation as having a bordered Toeplitz form. We 
compare and contrast these laws, completing and exploring 
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Toeplitz form, we propose an algorithm for the finite moment 
problem by proposing a solution whose density has a bordered 
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1. Introduction

Consider the “big” laws for asymptotic level densities for various random matrices:

Wigner semicircle law [19]
Marchenko–Pastur law [13]
Kesten–McKay law [10,14]
Wachter law [18]
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Table 1
Random matrix laws in raw form. The Kesten–McKay and Wachter laws are related by the linear transform 
(2xWachter − 1)v = xKesten–McKay and a = b = v/2.

Measure Support Parameters
Wigner semicircle
dμWS =

√
4−x2

2π dx IWS = [±2] N/A

Marchenko–Pastur
dμMP =

√
(λ+−x)(x−λ−)

2πx dx IMP = [λ−, λ+] λ± = (1 ±
√
λ)2, λ ≥ 1

Kesten–McKay
dμKM = v

√
4(v−1)−x2

2π(v2−x2) dx IM = [±2
√
v − 1] v ≥ 2

Wachter
dμW = (a+b)

√
(μ+−x)(x−μ−)

2πx(1−x) dx IW = [μ−, μ+] μ± = (
√

b±
√
a(a+b−1)
a+b )2, a, b ≥ 1

In raw form, these laws (Table 1) appear as somewhat complicated expressions in-
volving square roots. This paper highlights a unifying principle that underlies these four 
laws, namely the laws may be encoded as Jacobi symmetric tridiagonal matrices that 
are Toeplitz with a length 1 boundary.

This suggests that some of the nice properties of the big laws are connected to this 
property, and further suggests the importance of the larger family of laws encoded as 
Toeplitz with length k boundary, known as “nearly Toeplitz” matrices. This motivates 
the two parts of this paper:

(1) We tabulate in one place key properties of the four laws, not all of which can be 
found in the literature. These sections are expository, with the exception of the 
as-of-yet unpublished Wachter moments, and the Kesten–McKay and Wachter law 
Jacobi parameters and free cumulants.

(2) We describe a new algorithm to exploit the Toeplitz-with-length-k boundary struc-
ture. In particular, we show how practical it is to approximate distributions with 
incomplete information using distributions having nearly-Toeplitz encodings.

Studies of nearly Toeplitz matrices in random matrix theory have been pioneered by 
Anshelevich [1,2].

Historically, the Wigner semicircle law is the most famous. The weight function is clas-
sical, and corresponds to Chebychev polynomials of the second kind. It is the equilibrium 
measure [3] for Hermite polynomials and the asymptotic distribution for Gaussian or Her-
mite ensembles (GOE, GUE, GSE, etc.). None of the other weight functions are classical, 
but they are all equilibrium measures for classical polynomials. The second most famous 
law is the Marchenko–Pastur law. It is the equilibrium measure for Laguerre polynomi-
als and is the asymptotic distribution for Wishart matrices or Laguerre ensembles. The 
Kesten–McKay law, described in [9], is the equilibrium measure for Gegenbauer poly-
nomials. It is not commonly included among the Wigner semicircle, Marchenko–Pastur, 
and Wachter laws, but we believe that it merits inclusion on account of its place in the 
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Table 2
Jacobi parameter encodings for the big level density laws. Upper left: symmetric Toeplitz tridiagonal with 
1-boundary. Upper right: laws organized by Toeplitz property. Below: specific parameter values.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0 β0
β0 α1 β1

β1 α1 β1

. . .
. . .

. . .
β1 α1 β1

β1 α1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

α0 = α1 α0 �= α1

β0 = β1 Wigner semicircle Marchenko–Pastur
β0 �= β1 Kesten–McKay Wachter

Measure α0 αn (n ≥ 1) β0 βn (n ≥ 1)
Wigner semicircle 0 0 1 1

Marchenko–Pastur λ λ + 1
√
λ

√
λ

Kesten–McKay 0 0
√
v

√
v − 1

Wachter a
a+b

a2−a+ab+b
(a+b)2

√
ab

(a+b)3/2

√
ab(a+b−1)
(a+b)2

Table 3
Cauchy transforms.

Measure Cauchy transform

Wigner semicircle z−
√

z2−4
2

Marchenko–Pastur 1−λ+z−
√

(1−λ+z)2−4z
2z

Kesten–McKay (v−2)z−v
√

4(1−v)+z2

2(v2−z2)

Wachter 1−a+(a+b−2)z−
√

(a+1−(a+b)z)2−4a(1−z)
2z(1−z)

upper-right box in Table 2. The Wigner and arcsine distributions are special cases of the 
Kesten–McKay distribution. The Wachter law generalizes to Jacobi polynomials. They 
describe sections of random unitary matrices, MANOVA matrices, and general Jacobi 
ensembles.

The laws have been encoded in many formats over the years. Wigner’s earliest work 
encoded the semicircle law through its exponential generating function, the Bessel func-
tion. For many decades the Stieltjes or Cauchy transforms (Table 3) have been valuable. 
Free probability has proposed the R-transform and S-transform as efficient encodings 
for these laws (Table 5). In this note, we list each representation of each distribution, 
but we focus on the Jacobi parameter representation.

Other laws may be characterized as being asymptotically Toeplitz or numerically 
Toeplitz fairly quickly, such as the limiting histogram of the eigenvalues of (X/

√
m +

μI)t(X/
√
m + μI), where X is m × n, n is O(m), and m −→ ∞ (Fig. 3).

This nearly Toeplitz property inspires an underlying approximation concept. Instead 
of simply truncating a Jacobi matrix, we can construct an infinite Toeplitz matrix that 
is Toeplitz on all but an initial finite set of rows and columns. In turn, we apply this 
approximation idea to the moment problem in Section 5: given a finite set of moments, 
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we can use the Lanczos iteration to find corresponding Jacobi parameters, put those 
parameters in a continued fraction, and take its inverse Stieltjes transform to find a 
smooth, compactly-supported distribution with the correct moments. Instead of using the 
moments to find the Jacobi parameters we can also use a discretization of the measure. 
In [16], the Cauchy transform and its relationship to continued fractions of depth 2 are 
discussed, an idea that is generalized here in Table 9.

Mathematical investigations into weight functions with Toeplitz or asymptotically 
Toeplitz Jacobi parameters may be found in the work of two mathematicians with co-
incidentally similar names: Geronimus [7] and Geronimo [5], [6]. It seems known that 
the algorithm may have issues, perhaps reminiscent of the Gibbs phenomenon of Fourier 
analysis, in that atoms may emerge.

In retrospect, a good part of this paper may be found explicitly or implicitly in the 
work of Anshelevich [2]. Nonetheless, as we began to form the various tables and noticed 
the nice Catalan and Narayana properties, and especially the little box in the upper 
right in Table 2, we realized that in addition to the algorithm, there were enough ideas 
that were below the surface that we worked out for ourselves and wished to share.

2. The Jacobi symmetric tridiagonal encoding of probability distributions

All distributions have corresponding tridiagonal matrices of Jacobi parameters. They 
may be computed, for example, by the continuous Lanczos iteration, described in 
[17, p. 286] and reproduced in Table 8.

We computed the Jacobi representations of the four laws providing the results in 
Table 2. The Jacobi parameters (αi and βi for i = 0, 1, 2, . . .) are elements of an infinite 
Toeplitz tridiagonal representations bordered by the first row and column, which may 
have different values from the Toeplitz part of the matrix.

Anshelovich [2] provides a complete table of six distributions that have Toeplitz Jacobi 
structure. The first three of which are semicircle, Marchenko–Pastur, and Wachter. The 
other three distributions occupy the same box as Wachter in Table 2. Anshelovich casts 
the problem as the description of all distributions whose orthogonal polynomials have 
generating functions of the form

∞∑
n=0

Pn(x)zn = 1
1 − xu(z) + tv(z) ,

which he calls Free Meixner distributions.
He includes the one and two atom forms of the Marchenko–Pastur and Wachter laws 

which correspond in random matrix theory to the choices of tall-and-skinny vs. short-
and-fat matrices in the SVD or CS decompositions, respectively.
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Table 4
Moments.

Measure Moment n

Wigner semicircle Cn/2 if n is even, 0 otherwise

Marchenko–Pastur Nn(λ)

Kesten–McKay
∑n/2

j=1
(n−j
n/2

)
( j
n−j )vj(v − 1)n/2−j if n is even, 0 otherwise

Wachter a
a+b − (a + b)

∑n−2
j=0 [(

√
a(a+b−1)

a+b )2j+4Nj+1( b
a(a+b−1) )]

Table 5
R-transforms and S-transforms computed as S(z) = R−1(z)/z.

Measure R-transform S-transform
Wigner semicircle w 1

Marchenko–Pastur λ
1−w

z−λ
z2

Kesten–McKay −v+v
√

1+4w2

2w
v

v2−z2

Wachter −a−b+w+
√

(a+b)2+2(a−b)w+w2

2w
a−az−bz
z2(z−1)

3. Infinite RMT laws

This section compares the properties of all four major infinite random matrix theory 
laws, the Wigner semicircle law, the Marchenko–Pastur law, the Kesten–McKay law, and 
the Wachter law.

We state the four laws of infinite dimensional random matrix theory and their intervals 
of support. μWS on IWS , μMP on IMP , μKM on IKM , and μW on IW correspond to the 
Wigner semicircle, Marchenko–Pastur, Kesten–McKay, and Wachter laws. These laws 
are originally credited to [19,13,14,18]. See Table 1.

We can also write down the moments for each measure in Table 4, for Wigner and 
Marchenko–Pastur see [4], for Kesten–McKay see [14], and for Wachter see Theorem 6.1
in Section 6. Remember the Catalan number Cn = 1

n+1
(2n
n

)
and the Narayana polynomial 

Nn(r) =
∑n

j=1 Nn,jr
j , where Nn,j = 1

n

(
n
j

)(
n

j−1
)
, excepting N0(r) = 1. The coefficients 

of vj(1 − v)n/2−j in the Kesten–McKay moments form the Catalan triangle. We discuss 
the pyramid created by the Wachter moments in Section 4.

Inverting the Cauchy transforms and subtracting 1/w, computes the R-transform, see 
Table 5. If there are multiple roots, we pick one with a series expansion with no pole at 
w = 0.

The free cumulants κn for each measure appear in Table 6 by expanding the 
R-transform above (the generating function for the Narayana polynomials is given 
by [12], the generating function for the Catalan numbers is well known).

It is widely known that the Catalan numbers are the moments of the semicircle law, 
but we have not seen any mention that the same numbers figure prominently as the 
free cumulants of the Kesten–McKay law. The Narayana polynomials are prominent 
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Table 6
Free cumulants.

Measure κn

Wigner semicircle δn,2

Marchenko–Pastur λ

Kesten–McKay (−1)(n−2)/2vC(n−2)/2 if n is even, 0 otherwise

Wachter −Nn(− b
a ) (−a)n+1

(a+b)2n+1

Table 7
Sequences of polynomials orthogonal over of the four major laws.

Measure qn(x), n ≥ 1.
Wigner semicircle Un( x

2 )

Marchenko–Pastur λ(n−1)/2(x − λ)Un−1( x−λ−1
2
√

λ
) − λn/2Un−2( x−λ−1

2
√

λ
)

Kesten–McKay (v − 1)(n−1)/2xUn−1( x
2
√

v−1 ) − v(v − 1)(n−2)/2Un−2( x
2
√

v−1 )

Wachter (x − a
a+b )(

√
ab(a+b−1)
(a+b)2 )n−1Un−1(−b−a(a+b−1)+(a+b)2x

2
√
ab(a+b−1) )

− a+b
a+b−1 (

√
ab(a+b−1)
(a+b)2 )nUn−2(−b−a(a+b−1)+(a+b)2x

2
√

ab(a+b−1) )

as the moments of the Marchenko–Pastur law, but they also figure clearly as the free 
cumulants of the Wachter law. There are well known relationships, involving Catalan 
numbers, between the moments and free cumulants of any law [15], but we do not know 
if the pattern is general enough to take the moments of one law, transform it somewhat, 
and have them show up in the free cumulants in another law.

We compute an S-transform as S(z) = R−1(z)/z. See Table 5.
Each measure has a corresponding three-term recurrence for its orthonormal poly-

nomial basis, with q−1(x) = 0, q0(x) = 1, β−1 = 0, and for n ≥ 0, qn+1(x) =
((x − αn)qn(x) − βn−1qn−1(x))/βn. In the case of the Wigner semicircle, Marchenko–
Pastur, Kesten–McKay, and Wachter laws, the Jacobi parameters αn and βn are constant 
for n ≥ 1 because they are all versions of the Meixner law [2] (a linear transformation may 
be needed). The Wigner semicircle case is given by simplifying the Meixner law in [1], 
and the Marchenko–Pastur, Kesten–McKay, and Wachter cases are given by taking two 
iterations Lanczos algorithm symbolically to get α1 and β1. See Table 2.

Each measure also has an infinite sequence of monic polynomials qn(x) which are 
orthogonal with respect to that measure. They can be written as sums of Chebyshev 
polynomials of the second kind, Un(x), which satisfy U−1 = 0, U0(x) = 1, and Un(x) =
2xUn−1(x) − Un−2(x) for n ≥ 1, [11]. See Table 7. For n = 0, q0(x) = 1, and in general 
for n ≥ 1,

qn(x) = βn−1
1 (x− α0)Un−1

(
(x− α1)/(2β1)

)
− β2

0β
n−2
1 Un−2

(
(x− α1)/(2β1)

)
.

In the Wigner semicircle case the polynomials can be combined using the recursion rule 
for Chebyshev polynomials.
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Table 8
The Lanczos iteration produces the Jacobi parameters in α and β.

Lanczos on Measure μ

β−1 = 0, q−1(x) = 0, q0(x) = 1
for n = 0, 1, 2, . . . do

v(x) = xqn(x)
αn = (qn(x), v(x))
v(x) = v(x) − βn−1qn−1(x) − αnqn(x)
βn = ‖v(x)‖
qn+1(x) = v(x)/βn

end for

Table 9
Algorithm recovering or approximating an analytic measure by Toeplitz matrices with boundary.

Algorithm: Compute Measure from Nearly Toeplitz Jacobi Matrix.

(1) Nearly Jacobi Toeplitz Representation: Run the continuous Lanczos algorithm up to step k, after which 
all αi are equal and all βi are equal, or very nearly so. If they are equal, this algorithm will recover dμ
exactly, otherwise it will find it approximately. The Lanczos algorithm may be run using a discretization 
of the measure μ, or its initial moments.

(α0:∞, β0:∞) = Lanczos
(
dμ(x)

)
.

(2) Cauchy transform: evaluate the finite continued fraction below on the interval of x where it is imaginary.

g(x) =
1

x − α0 − β2
0

x−α1−
β2
1

. . .− β2
k−2

αk−1−
2β2

k−1
x−αk+

√
(αk−x)2−4β2

k

.

(3) Inverse Cauchy transform: divide the imaginary part by −π, to compute the desired measure.

dμ(x) = −
1
π

Im
(
g(x)

)
.

4. The Wachter law moment pyramid

Using Mathematica we can extract an interesting number pyramid from the Wachter 
moments, see Fig. 1. Each triangle in the pyramid is formed by taking the coefficients of a
and b in the i-th Wachter moment, with the row number within the pyramid determined 
by the degree of the corresponding monomial in a and b. All factors of (a +b) are removed 
from the numerator and denominator beforehand and alternating signs are ignored.

Furthermore, there are many patterns within the pyramid. The top row of each trian-
gle is a list of Narayana numbers, which sum to Catalan numbers. The bottom entries of 
each pyramid are triangular numbers. The second-to-bottom entry on the right of every 
pyramid is a sum of consecutive triangular numbers. The second to both the left and 
right on the top row of every triangle are also triangular numbers.
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Fig. 1. A number pyramid from the coefficients of the Wachter law moments.
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5. Moments build nearly-Toeplitz Jacobi matrices

This section is concerned with recovering a probability distribution from its Jacobi 
parameters, αi and βi such that they are “nearly Toeplitz,” i.e. there exists a k such 
that for i ≥ k all αi are equal and all βi are equal. Note that i ranges from k to ∞. The 
Jacobi parameters are found from a distribution by the Lanczos iteration.

We now state the continuous Lanczos iteration, replacing the matrix A by the vari-
able x and using μ = μWS , μMP , μM , μW to compute dot products. A good source is [17]. 
For a given measure μ on an interval I, let

(
p(x), q(x)

)
=

∫
I

p(x)q(x)dμ,

and ‖p(x)‖ =
√

(p(x), p(x)). Then the Lanczos iteration is described by Table 8.
There are two ways to compute the integrals numerically. The first is to sample x and 

qn(x) at many points on the interval of support for q0(x) = 1 and discretize the integrals 
on that grid. The second can be done if you know the moments of μ. If r(x) and s(x)
are polynomials, (r(x), s(x)) can be computed given μ’s moments. Since the qn(x) are 
polynomials, every integral in the Lanczos iteration can be done in this way. In that 
case, the qn(x) are stored by their coefficients of powers of x instead of on a grid. Once 
we have reached k iterations, we have fully constructed the infinite Jacobi matrix using 
the first batch of μ’s moments, or a discretization of μ.

Step 1 can start with a general measure in which case Step 3 finds an approximate 
measure with a nearly Toeplitz representation. Step 1 could also start with a sequence 
of moments. It should be noted that the standard way to go from moments to Lanczos 
coefficients uses a Hankel matrix of moments and its Cholesky factorization [8, (4.3)].

As an example, we apply the algorithm to the histogram of the eigenvalues of (X/
√
m+

μI)t(X/
√
m+μI), where X is m ×n, which has Jacobi parameters αi and βi that converge 

asymptotically and quickly. We smooth the histogram using a Gaussian kernel and then 
compute its Jacobi parameters. The reconstruction of the histogram is in Fig. 3. We 
also use the above algorithm to reconstruct a normal distribution from its first sixty 
moments, see Fig. 4.

The following theorem concerning continued fractions allows one to stably recover a 
distribution from its Lanczos coefficients αi and βi. As we have said, if the first batch of 
μ’s moments are known, we can find all αi and βi from i = 0 to ∞ using the continuous 
Lanczos iteration.

Theorem 5.1. Let μ be a measure on interval I ⊂ R with Lanczos coefficients αi and βi, 
with the property that all αi are equal for i ≥ k and all βi are equal for i ≥ k. We can 
recover I = [αk − 2βk, αk + 2βk], and we can recover dμ(x) using a continued fraction. 
This theorem combines Theorems 1.97 and 1.102 of [9].
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Fig. 2. Recovery from of a distribution from random αi and βi using Theorem 5.1. On top we use k = 5, on 
bottom we use k = 3.

g(x) = 1
x− α0 − β2

0

x−α1−
β2
1

. . .− 2β2
k−1

x−αk+
√

(αk−x)2−4β2
k

dμ(x) = − 1
π

Im
(
g(x)

)
.

Fig. 2 illustrates curves recovered from random terminating continued fractions g(x)
such that the βi are positive and greater in magnitude than the αi. In both cases, the 
above theorem allows correct recovery of the αi and βi (which is not always numerically 
possible). In the first one, k = 5, in the second, k = 3.
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Fig. 3. Eigenvalues taken from (X/
√
m + μI)t(X/

√
m + μI), where X is m × n, m = 104, n = 3m, μ = 5. 

The blue bar histogram is taken using hist.m, a better one was taken by convolving the data with Gaussian 
kernel. That convolution histogram was used to initialize the continuous Lanczos algorithm which produced 
five α’s and β’s. They were put into a continued fraction as described above, assuming αi and βi to be 
constant after i = 5. The continued fraction recreated the histogram, which is the thick red line.

If X is an m × n, m < n matrix of normals for m and n very large, (X/
√
m +

μI)t(X/
√
m + μI) has αi and βi which converge to a constant, making its eigenvalue 

distribution recoverable up to a very small approximation. See Fig. 3.
We also tried to reconstruct the normal distribution, whose Jacobi parameterization is 

not at all Toeplitz, and which is not compactly supported. Fig. 4 plots the approximations 
using 10 and 20 moments.

6. Direct computation of the Wachter law moments

While the moments of the Wachter law may be obtained in a number of ways, including 
expanding the Cauchy transform, or applying the mobius inverse formula to the free 
cumulants, in this section we show that a direct computation of the integral is possible.

Theorem 6.1. We find the moments of the Wachter law, mk.

mk = a

a + b
− (a + b)

k−2∑
j=0

[(√
a(a + b− 1)

a + b

)2j+4

Nj+1

(
b

a(a + b− 1)

)]
.

Proof. We start by integrating the following expression by comparing it to the 
Marchenko–Pastur law.
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Fig. 4. The normal distribution’s Jacobi matrix is not well approximated by Toeplitz plus boundary, but 
with sufficiently many moments good approximations are possible. The above graph shows the normal 
distribution recovered by the method in this paper using 10 and 20 moments. The thick line is the normal 
computed by e−x2/2√2π, and the thin lines on top of it use our algorithm.

J1 = 1
2π

μ+∫
μ−

xk
√

(μ+ − x)(x− μ−)dx.

If x = su, dx = sdu and this integral becomes

J1 = sk+2

2π

μ+
s∫

μ−
s

uk

√(
μ+

s
− u

)(
u− μ−

s

)
du.

To compare this expression to the Marchenko–Pastur law, we need to pick s and λ such 
that μ+

s = (1 +
√
λ)2 and μ−

s = (1 −
√
λ)2 for λ ≥ 1. There are more than one choices 

of each parameter, but we pick 
√
s = 1

2 (√μ+ −√
μ−) and

√
λ =

√
μ+ + √

μ−√
μ+ −√

μ−
.

Using the Narayana numbers, and the formula for the moments of the Marchenko–Pastur 
law, the integral equals

J1 =
(

1
2(√μ+ −√

μ−)
)2k+4

Nk+1

((√
μ+ + √

μ−√
μ+ −√

μ−

)2)
.

Using a and b, this becomes

J1 =
(√

a(a + b− 1)
)2k+4

Nk+1

(
b

)
.

a + b a(a + b− 1)
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We also need to integrate

J2 = 1
2π

μ+∫
μ−

√
(μ+ − x)(x− μ−)

1 − x
dx

Let su = x − 1, sdu = dx. This becomes

J2 = − s

2π

μ+−1
s∫

μ−−1
s

√
(μ+−1

s − u)(u− μ−−1
s )

u
du,

which by symmetry is

J2 = s

2π

1−μ−
s∫

1−μ+
s

√
(1−μ−

s − u)(u− 1−μ+
s )

u
du.

Using the same technique as previously, 
√
s = 1

2(
√

1 − μ− −√
1 − μ+) and

√
λ =

√
1 − μ+ +

√
1 − μ−√

1 − μ− −√
1 − μ+

.

Using the fact that the Marchenko–Pastur law is normalized, the answer is

J2 = s = 1
4(

√
1 − μ− −

√
1 − μ+)2 = a

(a + b)2 .

Now we are ready to find the moments of the Wachter law. Using the geometric series 
formula,

mk = a + b

2π

μ+∫
μ−

xk−1
√

(μ+ − x)(x− μ−)
1 − x

dx

= a + b

2π

∞∑
j=k−1

μ+∫
μ−

xj
√

(μ+ − x)(x− μ−)dx

= a + b

2π

μ+∫
μ−

√
(μ+ − x)(x− μ−)

1 − x
dx− a + b

2π

k−2∑
j=0

μ+∫
μ−

xj
√

(μ+ − x)(x− μ−)dx

= a

a + b
− (a + b)

k−2∑
j=0

[(√
a(a + b− 1)

a + b

)2j+4

Nj+1

(
b

a(a + b− 1)

)]
. �
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