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1 IntroductionWhat is the expected number of real zeros En of a random polynomial of degree n? If the coe�cients areindependent standard normals, we show that as n!1,En = 2� log(n) + 0:6257358072::: + 2n� + O(1=n2) :The 2� logn term was derived by Kac in 1943 [26], who produced an integral formula for the expected numberof real zeros. Papers on zeros of random polynomials include [3], [16], [23], [34], [41, 42] and [36]. There isalso the comprehensive book of Bharucha-Reid and Sambandham [2].We will derive the Kac formula for the expected number of real zeros with an elementary geometricargument that is related to the Bu�on needle problem. We present the argument in a manner such thatprecalculus level mathematics is su�cient for understanding (and enjoying) the introductory arguments,while elementary calculus and linear algebra are su�cient prerequisites for much of the paper. Nevertheless,we introduce connections with advanced areas of mathematics.A seemingly small variation of our opening problem considers random nth degree polynomials withindependent normally distributed coe�cients, each with mean zero, but with the variance of the ith coe�cientequal to �ni� (See [4] [31] [46]). This particular random polynomial is probably the more natural de�nitionof a random polynomial. It has En = pnreal zeros on average.As indicated in our table of contents, these problems serve as the departure point for generalizations tosystems of equations and the real or complex zeros of other collections of random functions. For example, weconsider power series, Fourier series, sums of orthogonal polynomials, Dirichlet series, matrix polynomials,and systems of equations.Section 2 begins with our elementary geometric derivation. Section 3 shows how a large class of randomproblems may be covered in this framework. It is Section 4 where we reveal what is going on mathematically.Section 5 studies arbitrary distributions, but focuses on the non-central normal. Section 6 relates randompolynomials to random matrices, while Section 7 extends our results to systems of equations. Complex roots,which are ignored in the rest of paper, are addressed in Section 8. We relate random polynomials to theBu�on needle problem in Section 9.2 Random polynomials and elementary geometrySection 2.1 is restricted to elementary geometry. Polynomials are never mentioned. The relationship isrevealed in Section 2.2.2.1 How fast do equators sweep out area?We will denote (the surface of) the unit sphere centered at the origin in IRn+1 by Sn. Our �gures correspondto the case n = 2. Higher dimensions provide no further complications.De�nition 2.1 If P 2 Sn is any point, the associated equator P? is the set of points of Sn on the planeperpendicular to the line from the origin to P .This generalizes our familiar notion of the Earth's equator, which is equal to (north pole)? and alsoequal to (south pole)?. See Figure 1 below. Notice that P? is always a unit sphere (\great hypercircle") ofdimension n� 1. 4
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PFigure 1 Points P and associated equators P?.Let 
(t) be a (recti�able) curve on the sphere Sn.De�nition 2.2 Let 
?, the equators of a curve, be the set fP?jP 2 
g.Assume that 
 has a �nite length j
j. Let j
?j to be the area \swept out" by 
? { we will provide aprecise de�nition shortly. We wish to relate j
j to j
?j.If the curve 
 is a small section of a great circle, then [
? is a lune, the area bounded by two equatorsas illustrated in Figure 2. If 
 is an arc of length �, then our lune covers �=� of the area of the sphere. Thesimplest case is � = �. We thus obtain the formula valid for arcs of great circles, thatj
?jarea of Sn = j
j� :
γ

⊥ γFigure 2 The lune [
? when 
 is a great circular arcIf 
 is not a section of a great circle we may approximate it by a union of small great circular arcs, andthe argument is seen to still apply.The alert reader may notice something wrong. What if we continue our 
 so that it is more than justhalf of a great circle or what if our curve 
 spirals many times around a point? Clearly 
 may have quitea large length, but j
?j remains small. The correct de�nition for j
?j is the area swept out by 
(t)?, as tvaries, counting multiplicities. We now give the precise de�nitions.De�nition 2.3 The multiplicity of a point Q 2 [
? is the number of equators in 
? that contain Q, i.e.the cardinality of ft 2 IRjQ 2 
(t)?g.De�nition 2.4 We de�ne j
?j to be the area of [
? counting multiplicity. More precisely, we de�ne j
?jto be the integral of the multiplicity over [
?.Lemma 2.1 If 
 is a recti�able curve, then j
?jarea of Sn = j
j� : (1)5



As an example, consider a point P on the surface of the Earth. If we assume that the point P is receivingthe direct ray of the sun | for our purposes, we consider the sun to be �xed in space relative to the Earthduring the course of a day, with rays arriving in parallel | then P? is the great circle that divides day fromnight. This great circle is known to astronomers as the terminator. During the Earth's daily rotation, thepoint P runs through all the points on a circle 
 of �xed latitude. Similarly, the Earth's rotation generatesthe collection of terminators 
?.The multiplicity in 
? is two on a region between two latitudes. This is a fancy mathematical way ofsaying that unless you are too close to the poles, you witness both a sunrise and a sunset every day! Thesummer solstice is a convenient example. P is on the tropic of Cancer and Equation (1) becomes2� (The surface area of the Earth between the Arctic/Antarctic Circles)The surface area of the Earth = The length of the Tropic of Cancer� � (The radius of the Earth)or equivalentlyThe surface area of the Earth between the Arctic/Antarctic CirclesThe surface area of the Earth = The length of the Tropic of CancerThe length of the Equator :
P
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γ

TerminatorFigure 3 On the summer solstice, the direct ray of the sun reaches P on the Tropic of Cancer 
.2.2 The expected number of real zeros of a random polynomialWhat does the geometric argument in the previous section and Formula (1) in particular have to do withthe number of real zeros of a random polynomial? Letp(x) = a0 + a1x+ � � �+ anxn;be a non-zero polynomial. De�ne the two vectorsa = 0BBBBB@ a0a1a2...an 1CCCCCA and v(t) = 0BBBBB@ 1tt2...tn 1CCCCCA :6



The curve in IRn+1 traced out by v(t) as t runs over the real line is called the moment curve.The condition that x = t is a zero of the polynomial a0+ a1x+ � � �+ anxn is precisely the condition thata is perpendicular to v(t). Another way of saying this is that v(t)? is the set of polynomials which have t asa zero.De�ne unit vectors a � a=kak; 
(t) � v(t)=kv(t)k:As before, 
(t)? corresponds to the polynomials which have t as a zero.When n = 2, the curve 
 is the intersection of an elliptical (squashed) cone and the unit sphere. Inparticular, 
 is not planar. If we include the point at in�nity, 
 becomes a simple closed curve when nis even. (In projective space, the curve is closed for all n.) The number of times that a point a on oursphere is covered by an equator is the multiplicity of a in 
?. This is exactly the number of real zeros of thecorresponding polynomial.So far, we have not discussed random polynomials. If the ai are independent standard normals, then thevector a is uniformly distributed on the sphere Sn since the joint density function in spherical coordinatesis a function of the radius alone.What is En � the expected number of real zeros of a random polynomial? A random polynomial isidenti�ed with a uniformly distributed random point on the sphere, so En is the area of the sphere with ourconvention of counting multiplicities.Equation (1) (read backwards!) states that En = 1� j
j:Our question about the expected number of real zeros of a random polynomial is reduced to �nding thelength of the curve 
. We compute this length in Section 2.3.
Figure 4 When n = 2, 
 is the intersection of the sphere and cone. The intersection is a curve thatincludes the north pole and a point on the equator.2.3 Calculating the length of 
We invoke calculus to obtain the integral formula for the length of 
, and hence the expected number ofzeros of a random polynomial. The result was �rst obtained by Kac in 1943.7



Theorem 2.1 (Kac formula) The expected number of real zeros of a degree n polynomial with independentstandard normal coe�cients is En = 1� Z 1�1s 1(t2 � 1)2 � (n+ 1)2t2n(t2n+2 � 1)2 dt= 4� Z 10 s 1(1� t2)2 � (n + 1)2t2n(1� t2n+2)2 dt: (2)Proof The standard arclength formula is j
j = Z 1�1 k
0(t)kdt:We may proceed in two di�erent ways.Method I (Direct approach):To calculate the integrand, we �rst consider any di�erentiable v(t) : IR! IRn+1. It is not hard to showthat 
0(t) =  v(t)pv(t) � v(t)!0 = [v(t) � v(t)]v0(t)� [v(t) � v0(t)]v(t)[v(t) � v(t)]3=2 ;and therefore,k
0(t)k2 =  v(t)pv(t) � v(t)!0 � v(t)pv(t) � v(t)!0 = [v(t) � v(t)][v0(t) � v0(t)]� [v(t) � v0(t)]2[v(t) � v(t)]2 :If v(t) is the moment curve then we may calculate k
0(t)k with the help of the following observations andsome messy algebra: v(t) � v(t) = 1 + t2 + t4 + :::+ t2n = 1� t2n+21� t2 ;v0(t) � v(t) = t+ 2t3 + 3t5 + :::+ nt2n�1 = 12 ddt �1� t2n+21� t2 � = t �1� t2n � n t2n + n t2n+2�(t2 � 1)2 ;v0(t) � v0(t) = 1 + 4t2 + 9t4 + :::+ n2t2n�2 = 14t ddtt ddt �1� t2n+21� t2 � = t2n+2 � t2 � 1 + t2n �n t2 � n� 1�2(t2 � 1)3 :Thus we arrive at the Kac formula:En = 1� Z 1�1 p(t2n+2 � 1)2 � (n+ 1)2t2n(t2 � 1)2(t2 � 1)(t2n+2 � 1) dt = 1� Z 1�1s 1(t2 � 1)2 � (n+ 1)2t2n(t2n+2 � 1)2 dt:Method II (Sneaky version):By introducing a logarithmic derivative, we can avoid the messy algebra in Method I. Let v(t) : IR! IRn+1be any di�erentiable curve. Then it easy to check that@2@x@y log[v(x) � v(y)]����y=x=t = k
0(t)k2: (3)Thus we have an alternative expression for k
0(t)k2.When v(t) is the moment curve,v(x) � v(y) = 1 + xy + x2y2 + :::+ xnyn = 1� (xy)n+11� xy ;8



the Kac formula is then En = 1� Z 1�1s @2@x@y log 1� (xy)n+11� xy ����y=x=tdt:This version of the Kac formula �rst appeared in [31]. In Section 4.4, we relate this sneaky approach to theso-called \Fubini-Study" metric.2.4 The density of zerosUp until now, we have focused on the length of 
 = f
(t)j �1 < t <1g, and concluded that it equals theexpected number of zeros on the real line multiplied by �. What we really did, however, was compute thedensity of real zeros. Thus �n(t) � 1�s 1(t2 � 1)2 � (n + 1)2t2n(t2n+2 � 1)2is the expected number of real zeros per unit length at the point t 2 IR. This is a true density: integrating�n(t) over any interval produces the expected number of real zeros on that interval. The probability densityfor a random real zero is �n(t)=En. It is straightforward [26, 27] to see that as n ! 1, the real zeros areconcentrated near the point t = �1.The asymptotic behavior of both the density and expected number of real zeros is derived in the subsectionbelow.2.5 The asymptotics of the Kac formulaA short argument could have shown that En � 2� logn [26], but since several researchers, including Chris-tensen, Sambandham, Stevens and Wilkins have sharpened Kac's original estimate, we show here howsuccessive terms of the asymptotic series may be derived, although we will only derive a few terms of theseries explicitly. The constant C1 and the next term 2n� were unknown to previous researchers. See [2, pp.90{91] for a summary of previous estimates of C1.Theorem 2.2 As n!1, En = 2� log(n) + C1 + 2n� + O(1=n2) ;where C1 = 2�  log(2) + Z 10 (s 1x2 � 4e�2x(1� e�2x)2 � 1x+ 1) dx ! = 0:6257358072::: :ProofWe now study the asymptotic behavior of the density of zeros. To do this, we make the change of variablest = 1 + x=n, so En = 4 Z 10 �̂n(x) dx ;where �̂n(x) = 1n�s n4x2(2n+ x)2 � (n+ 1)2(1 + x=n)2n[(1 + x=n)2n+2 � 1]2is the (transformed) density of zeros. Using�1 + xn�n = ex�1� x22n�+O(1=n2) ;9



we see that for any �xed x, as n!1, the density of zeros is given by�̂n(x) = �̂1(x) + �x(2� x)2n �̂1(x)�0 + O(1=n2) ; (4)where �̂1(x) � 12� � 1x2 � 4e�2x(1� e�2x)2 �1=2 :This asymptotic series cannot be integrated term by term. We solve this problem by noting that�[x > 1]2�x � 12�(2n+ x) = �[x > 1]2�x � 14n� + O(1=n2) ; (5)where we have introduced the factor �[x > 1] � � 1 if x > 10 if x � 1to avoid the pole at x = 0. Subtracting (5) from (4), we obtain�̂n(x)���[x > 1]2�x � 12�(2n+ x)� = ��̂1(x) � �[x > 1]2�x �+ (�x(2� x)2n �̂1(x)�0 + 14�n) + O(1=n2) :We then integrate term by term from 0 to 1 to getZ 10 �̂n(x) dx � 12� log(2n) = Z 10 ��̂1(x)� �[x > 1]2�x � dx+ 12n� + O(1=n2) :The theorem immediately follows from this formula and one �nal trick: we replace �[x > 1]=x with 1=(x+1)in the de�nition of C1 so we can express it as a single integral of an elementary function.3 Random functions with central normal coe�cientsReviewing the discussion in Section 2, we see that we could omit some members of our basis set f1; x; x2; : : : ; xngand ask how many zeros are expected to be real of an nth degree polynomial with, say, its cubic term deleted.The proof would hardly change. Or we can change the function space entirely and ask how many zeros ofthe random function a0 + a1 sin(x) + a2ejxjare expected to be real { the answer is 0:63662. The only assumption is that the coe�cients are independentstandard normals. If f0; f1; : : : ; fn is any collection of recti�able functions, we may de�ne the analogue ofthe moment curve v(t) = 0BBB@ f0(t)f1(t)...fn(t) 1CCCA : (6)The function 1�k
0(t)k is the density of a real zero; its integral over IR is the expected number of real zeros.We may relax the assumption that the coe�cient vector a = (a0; : : : ; an)T contains independent standardnormals, by allowing for any multivariate distribution with zero mean. If the ai are normally distributed,E(a) = 0 and E(aaT ) = C, then a is a (central) multivariate normal distribution with covariance matrix C.It is easy to see that a has this distribution if and only if C�1=2a is a vector of standard normals. Sincea � v(t) = C�1=2a �C1=2v(t);10



the density of real zeros with coe�cients from an arbitrary central multivariate normal distribution is1�kw0(t)k; where w(t) = C1=2v(t); and w(t) = w(t)=kw(t)k: (7)The expected number of real zeros is the integral of 1� kw0(t)k.We now state our general result.Theorem 3.1 Let v(t) = (f0(t); : : : ; fn(t))T be any collection of di�erentiable functions and a0; : : : ; anbe the elements of a multivariate normal distribution with mean zero and covariance matrix C. Theexpected number of real zeros on an interval (or measurable set) I of the equationa0f0(t) + a1f1(t) + : : :+ anfn(t) = 0is ZI 1�kw0(t)kdt;where w is de�ned by Equations (7). In logarithmic derivative notation this is1� ZI � @2@x@y �log v(x)TCv(y)���y=x=t�1=2 dt:Geometrically, changing the covariance is the same as changing the inner product on the space of functions.We now enumerate several examples of Theorem 3.1. We consider examples for which v(x)TCv(y) isa nice enough function of x and y that the density of zeros can be easily described. For a survey of theliterature, see [2], which also includes the results of numerical experiments. In our discussion of randomseries, proofs of convergence are omitted. Interested readers may refer to [45]. We also suggest the classicbook of J-P. Kahane [28], where other problems about random series of functions are considered.3.1 Random polynomials3.1.1 The Kac formulaIf the coe�cients of random polynomials are independent standard normal random variables, we saw in theprevious section that from v(x)TCv(y) = 1� (xy)n+11� xy ; (8)we can derive the Kac formula.3.1.2 A random polynomial with a simple answerConsider random polynomials a0 + a1x+ : : :+ anxn;where the ai are independent normals with variances �ni�. Such random polynomials have been studiedbecause of their mathematical properties [31, 46], and because of their relationship to quantum physics, [4].By the binomial theorem, v(x)TCv(y) = nXk=0�nk�xkyk = (1 + xy)n:11



We see that the density of zeros is given by �(t) = pn�(1 + t2) :This is a Cauchy distribution, that is, arctan(t) is uniformly distributed on [��=2; �=2]. Integrating thedensity shows that the expected number of real zeros is pn. As we shall see in Section 4.1, this simpleexpected value and density is re
ected in the geometry of 
.As an application, assume that p(t) and q(t) are independent random polynomials of degree n withcoe�cients distributed as in this example. By considering the equation p(t)� tq(t) = 0, it is possible to showthat the expected number of �xed points of the rational mappingp(t)=q(t) : IR Uf1g ! IR Uf1gis exactly pn+ 1.3.1.3 Application: Spijker's lemma on the Riemann sphereAny curve in IRn can be interpreted as v(t) for some space of random functions. Letr(t) = a(t) + ib(t)c(t) + id(t)be any rational function, where a; b; c; and d are real polynomials of a real variable t. Let 
 be the stereo-graphic projection of r(t) onto the Riemann sphere. It is not di�cult to show that 
 is the projection of thecurve (f0(t); f1(t); f2(t))onto the unit (Riemann) sphere, where f0 = 2(ac+ bd); f1 = 2(bc�ad); f2 = a2+ b2� c2�d2. The geometryis illustrated in the �gure below.
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Therefore the length of 
 is � times the expected number of real zeros of the random functiona0f0 + a1f1 + a2f2;where the ai are independent standard normals. For example, if a; b; c; and d are polynomials of degrees nomore than n, then any such function has degree at most 2n, so the length of 
 can be no more than 2n�.By taking a M�obius transformation, we arrive at Spijker's lemma:The image of any circle in the complex plane under a complex rational mapping, with numerator and de-nominator having degrees no more than n, has length no longer than 2n�.This example was obtained from Wegert and Trefethen [51].12



3.1.4 Random sums of orthogonal polynomialsConsider the vector space of polynomials of the formPnk=0 akPk(x) where ak are independent standard nor-mal random variables, and where fPk(x)g is a set of normalized orthogonal polynomials with any nonnegativeweight function on any interval. The Darboux-Christo�el formula [21, 8.902] states thatnXk=0Pk(x)Pk(y) = � qnqn+1� Pn(y)Pn+1(x)� Pn(x)Pn+1(y)x� y ;where qn (resp. qn+1) is the leading coe�cient of Pn (resp. Pn+1). With this formula and a bit of work, wesee that �(t) = p36�p2G0(t)� G2(t);where G(t) = ddt log ddt �Pn+1(t)Pn(t) � :This is equivalent to formula (5.21) in [2]. Interesting asymptotic results have been derived by Das andBhatt. The easiest example to consider is random sums of Chebyshev polynomials, for which the density ofzeros is an elementary function of n and t.3.2 Random in�nite series3.2.1 Power series with uncorrelated coe�cientsConsider a random power series f(x) = a0 + a1x+ a2x2 + : : : ;where ak are independent standard normal random variables. This has radius of convergence one withprobability one. Thus we will assume that �1 < x < 1. In this case,v(x)TCv(y) = 11� xy :The logarithmic derivative reveals a density of zeros of the form�(t) = 1�(1� t2) :We see that the expected number of zeros on any subinterval [a; b] of (�1; 1) is12� log (1� a)(1 + b)(1 + a)(1� b) :This result may also be derived from the original Kac formula by letting n!1.3.2.2 Power series with correlated coe�cientsWhat e�ect does correlation have on the density of zeros? We will consider a simple generalization of theprevious example. Consider random power seriesf(x) = a0 + a1x+ a2x2 + : : : ;where ak are standard normal random variables, but assume that the correlation between ak and ak+1 equalssome constant r for all k. Thus the covariance matrix is tridiagonal with one on the diagonal and r on thesuperdiagonal and subdiagonal. In order to assure that this matrix be positive de�nite, we will assume that13



jrj � 12 . By the Gershgorin Theorem the spectral radius of the covariance matrix is less than or equal to1 + 2r, and therefore the radius of convergence of the random sequence is independent of r. Thus we will,as in the previous example, assume that �1 < x < 1. We see thatv(x)TCv(y) = 1 + r(x+ y)1� xy ;so �(t) = 1�s 1(1� t2)2 � r2(1 + 2rt)2 :Notice that the correlation between coe�cients has decreased the density of zeros throughout the interval.3.2.3 Random entire functionsConsider a random power series f(x) = a0 + a1x+ a2x2 + : : : ;where ak are independent central normal random variables with variances 1=k!, i.e., the covariance matrixis diagonal with the numbers 1=k! down the diagonal. This series has in�nite radius of convergence withprobability one. Now clearly v(x)TCv(y) = exy;so �(t) = 1=�. In other words, the real zeros are uniformly distributed on the real line, with a density of 1=�zeros per unit length.3.2.4 Random trigonometric sums and Fourier seriesConsider the trigonometric sum 1Xk=0 ak cos �k� + bk sin �k�;where ak and bk are independent normal random variables with means zero and variances �2k. Notice thatv(x)TCv(y) = 1Xk=0�2k(sin �kx sin�ky + cos �kx cos �ky) = 1Xk=0�2k cos �k(x� y);and we see that the density of roots is constant. Thus the real zeros of the random trigonometric sum areuniformly distributed on the real line, and the expected number of zeros on the interval [a; b] isb� a� sP �2k�2kP�2k :Note that the slower the rate of convergence of the series, the higher the root density. For example, if�k = 1=k amd �k = k, then the series converges with probability one, but the root density is in�nite.The similarity between this formula and the Pythagorean theorem is more than super�cial, as we willsee when we discuss the geodesics of 
at tori in Section 4.2. Several authors, including Christensen, Das,Dunnage, Jamrom, Maruthachalam, Qualls and Sambandham [2] have derived results about the expectednumber of zeros of these and other trigonometric sums.14



3.2.5 Random Dirichlet seriesConsider a random Dirichlet series f(x) = a1 + a22x + a33x + : : : ;where ak are independent standard normal random variables. This converges with probability one if x > 1=2.We see that v(x)TCv(y) = 1Xk=1 1kx+y = �(x+ y);and that the expected number of zeros on any interval [a; b]; a > 1=2 is12� Z ba p[log �(2t)]00dt:4 Theoretical considerations4.1 A curve with more symmetries than meet the eyeWe return to the example in Section 3.1.2 and explore why the distribution of the real zeros was so simple.Take the curve v(t) and make the change of variables t = tan � and scale to obtain
(�) = (cosn �)(v(tan �)):Doing so shows that 
(�) = 0BBBBBBB@ �n0�1=2 cosn ��n1�1=2 cosn�1 � sin ��n2�1=2 cosn�2 � sin2 �...�nn�1=2 sinn � 1CCCCCCCA ;i.e. 
k(�) = �nk�1=2 cosn�k � sink �; where the dimension index k runs from 0 to n.We have chosen to denote this curve the super-circle. The binomial expansion of (cos2 � + sin2 �)n = 1tells us that our super-circle lives on the unit sphere. Indeed when n = 2, the super-circle is merely asmall-circle on the unit sphere in IR3. When n = 1, the super-circle is the unit circle in the plane.What is not immediately obvious is that every point on this curve \looks" exactly the same. We willdisplay an orthogonal matrix Q(�) that rotates IRn+1 in such a manner that each and every point on thesuper-circle 
(�) is sent to 
(� +�). To do this, we show that 
 is a solution to a \nice" ordinary di�erentialequation.By a simple di�erentiation of the kth component of 
(�), we see thatdd� 
k(�) = �k
k�1(�) � �k+1
k+1(�); k = 0; : : : ; n;where �k �pk(n+ 1� k): In matrix{vector notation this means thatdd�
(�) = A
(�); where A = 0BBBBBBB@ 0 ��1�1 0 ��2�2 0 ��3. . . . . . . . .�n�1 0 ��n�n 0 1CCCCCCCA : (9)15



i.e. A has the �i on the subdiagonal, the ��i on the superdiagonal, and 0 everywhere else including themain diagonal.The solution to the ordinary di�erential equation (9) is
(�) = eA�
(0): (10)The matrixQ(�) � eA� is orthogonal because A is anti-symmetric, and indeed Q(�) is the orthogonal matrixthat we promised would send 
(�) to 
(� + �). We suspect that Equation (10) with the speci�cation that
(0) = (1; 0; : : : ; 0)T is the most convenient description of the super-circle. Di�erentiating (10) any numberof times shows explicitly that dj
d�j (�) = eA� dj
d�j (0):In particular, the speed is invariant. A quick check shows that it is pn. If we let � run from ��=2 to �=2,we trace out a curve of length �pn.The ideas here may also be expressed in the language of invariant measures for polynomials [31]. Thisgives a deeper understanding of the symmetries that we will only sketch here. Rather than representing apolynomial as p(t) = a0 + a1t+ a2t2 + : : :+ antn;we homogenize the polynomial and considerp̂(t1; t2) = a0tn2 + a1t1tn�12 + : : :+ an�1tn�11 + antn1 :For any angle �, a new \rotated" polynomial may be de�ned byp̂�(t1; t2) = p̂(t1 cos�+ t2 sin�;�t1 sin�+ t2 cos�):It is not di�cult to show directly that if the ai are independent and normally distributed with variance �ni�,then so are the coe�cients of the rotated polynomial. The symmetry of the curve and the symmetry of thepolynomial distribution are equivalent. An immediate consequence of the rotational invariance is that thedistribution of the real zeros must be Cauchy.4.2 Geodesics on 
at toriWe now a take a closer look at the random trigonometric sums in Section 3.2.4. Fix a �nite interval [a; b].For simplicity assume that nXk=0�2k = 1 :The curve 
(�) is given by (�0 cos �0�; �0 sin�0�; : : : ; �n cos �n�; �n sin �n�) :This curve is a geodesic on the 
at (n+ 1)-dimensional torus(�0 cos �0; �0 sin �0; : : : ; �n cos �n; �n sin �n) :Therefore if we lift to the universal covering space of the torus, 
 becomes a straight line in IRn+1. By thePythagorean theorem, the length of 
 is (b � a)vuut nXk=0�2k�2k ;16



which equals the expected number of zeros on the interval [a; b].Now replace [a; b] with (�1;1). If �i=�j is rational for all i and j, then 
 is closed, otherwise it is densein some subtorus. If we choose the �k and the �k correctly, though not obvious, the polynomial examplein Section 3.1.2 becomes a special case of a random trigonometric sum. Thus the super-circle discussed inSection 4.1 is a spherical helix.4.3 The Kac matrixMark Kac was the �rst mathematician to obtain an exact formula for the expected number of real zeros ofa random polynomial. Ironically, he also has his name attached to a certain matrix that is important tounderstanding the second example, yet we have no evidence that he ever made the connection.The n+ 1 by n + 1 Kac matrix is de�ned as the tridiagonal matrixSn = 0BBBBBBB@ 0 n1 0 n� 12 0 n � 2.. . . . . . . .n � 1 0 1n 0 1CCCCCCCA :The history of this matrix is documented in [49] where several proofs that Sn has eigenvalues �n;�n+2;�n+4; : : : ; n�2; n. One of the proofs is denoted as \mild trickery by Kac." We will derive the eigenvaluesby employing a di�erent trick.Theorem 4.1 The eigenvalues of Sn are the integers 2k � n for k = 0; 1; : : : ; n.Proof De�ne fk(x) � sinhk(x) coshn�k(x); k = 0; : : : ; n;gk(x) � (sinh(x) + cosh(x))k(sinh(x)� cosh(x))n�k; k = 0; : : : ; nIf V is the vector space of functions with basis ffk(x)g, then the gk(x) are clearly in this vector space.Also, ddxfk(x) = kfk�1(x)+(n�k)fk+1(x), so that the Kac matrix is the representation of the operator d=dxin V . We actually wrote gk(x) in a more complicated way than we needed to so that we could emphasizethat gk(x) 2 V . Actually, gk(x) = exp((2k � n)x) is an eigenfunction of d=dx with eigenvalue 2k � n fork = 0; : : : ; n. The eigenvector is obtained by expanding the above expression for gk(x).An alternative tricky proof using graph theory is to consider the 2n � 2n incidence matrix of an n-dimensional hypercube. This matrix is the tensor (or Kronecker) product of � 0 11 0 � n times, so theeigenvalues of this matrix are sums of the form Pni=1�1, i.e., this matrix has 2n eigenvalues all of whichhave the form 2k�n for k = 0; : : : ; n: This matrix is closely related to the discrete Laplacian of the hypercubegraph, and the n-fold discrete Fourier transform on a grid with edge length 2. So far we have the right setof eigenvalues, but the wrong matrix. However, if we collapse the matrix by identifying those nodes withk = 0; 1; : : : ; n ones in their binary representation, we obtain the n+1 by n+1 Kac matrix transposed. (Anynode with k ones has k neighbors with k� 1 ones, and n� k neighbors with k+ 1 ones.) It is an interestingexercise to check that by summing eigenvectors over all possible symmetries of the hypercube, the projectedoperator inherits the eigenvalues 2k � n (k = 0; : : : ; n) each with multiplicity 1.We learned of this second tricky proof from Persi Diaconis who explained it to us in terms of randomwalks on the hypercube and the Ehrenfest urn model of di�usion [8, 9]. The Kac matrix is also known as the17



\Clement matrix" in Higham's Test Matrix Toolbox for Matlab [25] because of Clement's [7] proposed use ofthis matrix as a test matrix. Numerically, it can be quite di�cult to obtain all of these integer eigenvalues.The symmetrized Kac matrix looks exactly like the matrix A in (9) without any minus signs. IndeediSn is similar to the matrix in (9) that explains the symmetry when the coe�cients have variances that arebinomial coe�cients.4.4 The Fubini-Study metricWe now reveal the secret that inspired the \sneaky" approach to the calculation of the length of the curve
(t) = v(t)=kv(t)k that appears in Section 2.3. (See equation (3).) The secret that we will describe is theFubini-Study metric.An interesting struggle occurs in mathematics when quotient spaces are de�ned. Psychologically, it isoften easier to think of an individual representative of an equivalence class, rather than the class itself. Asmathematicians, we train ourselves to overcome this, but practically speaking when it is time to compute,we still must choose a representative. As an example, consider vectors v 2 IRn and its projection v=kvk ontothe sphere. (If we do not distinguish �v=kvk we are then in projective space.) The normalization obtainedfrom the division by kvk is a distraction that we would like to avoid.Perhaps a more compelling example may be taken from the set of n � p matrices M with n > p. TheGrassman manifold is obtained by forming the equivalence class of all matrices M whose columns span thesame subspace of IRn. To compute a canonical form for M may be an unnecessary bother that we wouldlike to avoid. When p = 1 the Grassman manifold reduces to the projective space example in the previousparagraph.The Fubini-Study metric on projective space allows us to keep the v for our coordinates in the �rstexample. The more general version for the Grassman manifold allows us to keep the M . Historical discussionof Fubini's original ideas may be found in [35]. We have only seen the complex version in the standard texts[22, 29], but for simplicity, we discuss the real case here.We see that the length of 
(t) is independent of the length of v(t), i.e., it is invariant under scaling. Thelogarithmic derivative is speci�cally tailored to be invariant under scaling by any �(t):@2@x@y log[�(x)v(x) � �(y)v(y)] = @2@x@y flog[v(x) � v(y)] + log(�(x)) + log(�(y))g = @2@x@y log[v(x) � v(y)]:The logarithmic derivative may appear complicated, but it is a fair price to pay to eliminate kv(t)k. Thelength of the projected version of v(t) traced out by t 2 [a; b] isZ ba s @2@x@y log[v(x) � v(y)]����y=x=tdt:The integrand is the square root of determinant of the metric tensor. This is the \pull-back" of the canonicalinvariant metric on projective space.The Grassman version is almost the same, it takes the formZ ba s @2@x@y log det[M (x)TM (y)]; ����y=x=tdt:where M (t) denotes a curve in matrix space.4.5 Integral geometryIntegral geometry (sometimes known as Geometric Probability) relates the measures of random manifoldsand their intersections. References (such as [43], [47], [44, p. 253], and [5, p. 73]) vary in terms of setting18



and degree of generality.For our purposes we will consider two submanifoldsM and N of the sphere Sm+n, where M has dimensionm and N has dimension n. If Q is a random orthogonal matrix (i.e. a random rotation), thenE(#(M \QN )) = 2jSmjjSnj jM jjN j: (11)In words, the formula states that the expected number of intersections of M with a randomly rotated N istwice the product of the volumes of M and N divided by the product of the volumes of spheres.For us \number of intersections" has the interpretation of \number of zeros" so that we may relate theaverage number of zeros with the lengths of curves (or more generally volumes of surfaces). We will applythis formula directly when we consider random systems of equations in Section 7.If the manifold N is itself random, then the formula above is correct with the understanding that jN jrefers to the average volume of N . This formulation is needed for Lemma 6.1.The factor of 2 often disappears in practical computations. Mathematically, all of the action is on thehalf sized projective space rather than on the sphere.4.6 The evaluation mappingThe de�ning property of a function space is that its elements can be evaluated. To be precise, if F is avector space of real (or complex) valued functions de�ned on some set S, we have an evaluation mapping,ev : S ! F �, de�ned by ev(s)(f) = f(s), that tells us everything about the function space. Conversely, if weare given any vector space F and any function from S to F �, we may take this function to be the evaluationmapping and thus convert F into a function space.Pick an element f of F (at random). The annihilator of f is the set f? = f� 2 F �j�(f) = 0g. Checkingde�nitions, we see that the intersections of f? with the image of ev correspond to zeros of f . Thus theaverage number of intersections is the average number of zeros.Now let us choose an inner product for F , or equivalently, let use choose a central normal measure forF . If ev(S) is a reasonable set, we may apply integral geometry and conclude the following:Theorem 4.2 The expected number of zeros is the volume of the projection of the image of the evaluationmapping onto the unit sphere in the dual space.Thus the expected number of zeros is proportional to the \size" of the image of the evaluation mapping.The inner product also gives rise to an isomorphism � : F ! F �, de�ned by �(f)(g) = f � g. It's just amatter of checking de�nitions to see that v(t) = ��1ev(t)is the dual of the evaluation mapping. Thus v(t) is the natural object that describes both the function spaceF and the choice of inner product.5 Extensions to other distributionsThis paper began by considering random polynomials with standard normal coe�cients, and then we realizedquickly that any multivariate normal distribution with mean zero (the so-called \central distributions")hardly presented any further di�culty. We now generalize to arbitrary distributions, with a particularfocus on the non-central multivariate normal distributions. The basic theme is the same: the density ofzeros is equal to the rate at which the equators of a curve sweeps out area. Previous investigations aresurveyed in [2]. In the closely related work of Rice [41] and [42, Page 52], expressions are obtained for19



the distributions of zeros. Unfortunately, these expressions appeared unwieldy for computing even thedistribution for the quadratic [41, p. 414]. There is also the interesting recent work of Odlyzko and Poonenon zeros of polynomials with 0; 1 coe�cients [40].5.1 Arbitrary distributionsGiven f0(t); f1(t); : : : ; fn(t) we now ask for the expected number of real roots of the random equationa0f0(t) + a1f1(t) + � � �+ anfn(t) = 0;where we will assume that the ai have an arbitrary joint probability density function �(a).De�ne v(t) 2 IRn+1 by v(t) = 0B@ f0(t)...fn(t) 1CA ;and let 
(t) � v(t)=kv(t)k: (12)Instead of working on the sphere, let us work in IRn+1 by de�ning 
(t)? to be the hyperplane through theorigin perpendicular to 
(t).Fix t and choose an orthonormal basis such that e0 = 
(t) and e1 = 
0(t)=jj
0(t)jj. As we change t tot+ dt, the volume swept out by the hyperplanes will form an in�nitesimal wedge. (See �gure.)This wedge is the Cartesian product of a two dimensional wedge in the plane span(e0,e1) with IRn�1, theentire span of the remaining n� 1 basis directions. The volume of the wedge isjj
0(t)jj dt ZIRn�fe0�a=0g je1 � aj�(a)dan ;where the domain of integration is the n-dimensional space perpendicular to e0, and an denotes n-dimensionalLebesgue measure in that space. Intuitively k
0(t)kdt is rate at which the wedge is being swept out. Thewidth of the wedge is in�nitesimally proportional to je1 � aj, where a is in this perpendicular hyperspace.The factor �(a) scales the volume in accordance with our chosen probability measure.Theorem 5.1 If a has a joint probability density �(a), then the density of the real zeros of a0f0(t) + � � �+anfn(t) = 0 is �(t) = jj
0(t)jj Z
(t)�a=0 j
0(t) � ajk
0(t)k �(a)dan = Z
(t)�a=0 j
0(t) � aj �(a)dan ;where dan is standard Lesbesgue measure in the subspace perpendicular to 
(t).
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5.2 Non-central multivariate normals: theoryWe apply the results in the previous subsection to the case of multivariate normal distributions. We beginby assuming that our distribution has mean m and covariance matrix I. We then show that the restrictionon the covariance matrix is readily removed. Thus we assume that�(a) = (2�)�(n+1)=2e�P(a�mi)2=2; and m = (m0; : : : ;mn)T :Theorem 5.2 Assume that (a0; : : : ; an)T has the multivariate normal distribution with mean m and covari-ance matrix I. Let 
(t) be de�ned as in (12). Let m0(t) and m1(t) be the components of m in the 
(t) and
0(t) directions, respectively. The density of the real zeros of the equation P aifi(t) = 0 is�n(t) = 1�k
0(t)ke� 12m0(t)2 �e� 12m1(t)2 +r�2m1(t)erf �m1(t)p2 �� :For polynomials with identically distributed normal coe�cients, this formula is equivalent to [2, Section4.3C].ProofSince we are considering the multivariate normal distribution, we may rewrite �(a) in coordinatesx0; : : : ; xn in the directions e0; : : : ; en respectively. Thus�(x0; : : : ; xn) = (2�)�(n+1)=2e� 12P(x�mi(t))2 ;where mi(t) denotes the coordinate ofm in the ei direction. The n-dimensional integral formula that appearsin Theorem 5.1 reduces to 12� Z 1�1 jx1j e� 12 (m0(t)2)e� 12 (x1�m1(t))2 dx1after integrating out the n� 1 directions orthogonal to the wedge. From this, the formula in the theorem isobtained by direct integration.We can now generalize these formulas to allow for arbitrary covariance matrices as we did with Theorem3.1. We phrase this corollary in a manner that is self-contained: no reference to de�nitions anywhere else inthe paper is necessary.Corollary 5.1 Let v(t) = (f0(t); f1(t); : : : ; fn(t))T and let a = (a0; : : : ; an) be a multivariate normal dis-tribution with mean m = (m0; : : : ;mn)T and covariance matrix C. Equivalently consider random functionsof the form Paifi(t) with mean �(t) = m0f0(t) + : : : + mnfn(t) and covariance matrix C. The expectednumber of real roots of the equation P aifi(t) = 0 on the interval [a; b] is1� Z ba k
0(t)ke� 12m20(t)�e� 12m21(t) +r�2m1(t)erf �m1(t)p2 �� dt ;where w(t) = C1=2v(t); 
(t) = w(t)kw(t)k ; m0(t) = �(t)kw(t)k ; and m1(t) = m00(t)k
0(t)k :Proof There is no di�erence between the equation a � v = 0 and C�1=2a �C1=2v = 0. The latter equationdescribes a random equation problem with coe�cients from a multivariate normal with mean C�1=2m andcovariance matrix I. Since �(t)=kw(t)k = 
(t) � C�1=2m and m00(t)=k
0(t)k = 
0(t) � C�1=2m=k
0(t)k, theresult follows immediately from Theorem 5.2.The reader may use this corollary to compute the expected number of roots of a randommonic polynomial.In this case m = en and C is singular, but this singularity causes no trouble. We now proceed to considermore general examples. 21



5.3 Non-central multivariate normals: applicationsWe explore two cases in which non-central normal distributions have particularly simple zero densities:� Case I: m0(t) = m and m1(t) = 0� Case II: m0(t) = m1(t)Case I: m0(t) = m and m1(t) = 0If we can arrange for m0 = m to be a constant then m1(t) = 0 and the density reduces to�(t) = 1�k
0(t)ke� 12m2 :In this very special case, the density function for the mean m case is just a constant factor (e� 12m2 ) timesthe mean zero case.This can be arranged if and only if the function kw(t)k is in the linear space spanned by the fi. The nextfew examples show when this is possible. In parentheses, we indicate the subsection of this paper where thereader may �nd the zero mean case for comparison.Example 1 (3.1.2) A random polynomial with a simple answer, even degree: Let fi(t) = ti; i = 0; : : : ; nand C = diag[�ni�]. so that kw(t)k = (1+ t2)n=2. The constant weight case occurs when our space has mean�(t) = (1 + t2)n=2.For example, if n = 2 and a0; a1; and a2 are independent standard Gaussians, then the random polynomial(a0 +m) + a1p2t+ (a2 +m)t2;is expected to have p2e�m2real zeros. The density is �(t) = 1� p2(1 + t2)e�m2=2:Note that as m !1, we are looking at perturbations to the equation t2 + 1 = 0 with no real zeros, so weexpect the number of real zeros to converge to 0.Example 2 (3.2.4) Trigonometric sums : �(t) = mp�20 + � � �+ �2n.Example 3 (3.2.2) Random power series : �(t) = m(1 � t2)�1=2.Example 4 (3.2.3) Entire functions : �(t) = met2=2.Example 5 (3.2.5) Dirichlet Series: �(t) = mp�(2t) = 1Xk=1 mkkt ;where mk = 0 if k is not a square, and mk = mQi (2ni�1)!!(2ni)!! if k has the prime factorization Qi p2nii .Case II: m0(t) = m1(t) 22



We may pick a �(t) for which m0(t) = m1(t) by solving the �rst order ordinary di�erential equationm0(t) = m00(t)=k
0(t)k. The solution is�(t) = mkw(t)k exp �Z tK jj
0(x)jjdx� :There is really only one integration constant since the result of shifting by K can be absorbed into the mfactor. If the resulting �(t) is in the linear space spanned by the fi, then we choose this as our mean.Though there is no reason to expect this, it turns out that if we make this choice of �(t), then the densitymay be integrated in closed form. The expected number of zeros on the interval [a; b] isZ ba �(t)dt = 14erf2(m0(t)=p2) � 12��[0;m20(t)]����ba :Example 6 (3.2.2)Random power series : Consider a power series with independent, identically distributednormal coe�cients with mean m. In this case �(t) = m1�t , where m = (mean=standard deviation), som0(t) = mq1+t1�t . A short calculation shows that m1(t) = m0(t).Example 7 (3.2.3) Entire functions: In this case �(t) = met+t2=2, so m0(t) = met.Example 8 (3.2.5) Dirichlet Series: This we leave as an exercise. Choose K > 1=2.Theorem 5.3 Consider a random polynomial of degree n with coe�cients that are independent and identi-cally distributed normal random variables. De�ne m 6= 0 to be the mean divided by the standard deviation.Then as n!1, En = 1� log(n) + C12 + 12 � 
� � 2� log jmj+ O(1=n) ;where C1 = 0:6257358072::: is de�ned in Theorem 2.2, and where 
 = 0:5772156649::: is Euler's constant.Furthermore, the expected number of positive zeros is asymptotic to12 � 12erf2(jmj=p2) + 1��[0;m2]:Sketch of proofWe break up the domain of integration into four subdomains: (�1;�1], [�1; 0], [0; 1] and [1;1). Observethat the expected number of zeros on the �rst and second intervals are the same, as are the expected numberof zeros on the third and fourth intervals. Thus we will focus on the �rst and third interval, doubling our�nal answer.The asymptotics of the density of zeros is easy to analyze on [0,1], because it converges quickly to thatof the power series (Example 6, above). Doubling this gives us the expected number of positive zeros.On the interval (�1;�1], one can parallel the proof of Theorem 2.2. We make the change of variables�t = 1+x=n. The weight due to the nonzero mean can be shown to be 1+O(1=n). Therefore, the asymptoticseries for the density of the zeros is the same up to O(1=n). We subtract the asymptotic series for the densityof the zeros of the non-central random power series, and then integrate term by term.The 1� log(n) term was �rst derived by Sambandham. Farahmand [17] has improved on his results.6 Eigenvalues of random matricesEigenvalues of random matrices arise in a surprising number of disciplines of both pure and applied mathe-matics. Already three major books [19, 37, 38] on the subject exist, each specializing in di�erent disciplines,yet these books serve as mere stepping-stones to the vast literature on the subject. The book by Mehta23



[37] covers developments of random matrices (mostly symmetric) that began with the work of Wigner whomodeled heavy atom energies with random matrix eigenvalues. Muirhead's book [38] focuses on applicationsto multivariate statistics including eigenvalue distributions of Wishart matrices. These are equivalent to sin-gular value distributions of rectangular matrices whose columns are iid multivariate normal. His expositionis easily read with almost no background. Girko's large book [19] translates his earlier books from Russian,and includes more recent work as well.An entire semester's interdisciplinary graduate course [12] was inadequate for reviewing the subject ofeigenvalues of random matrices. Some exciting recent developments may be found in books by Voiculescuet. al., [50] relating Wigner's theory to free random variables, and Faraut and Koranyi [18] which extendsthe special functions of matrix argument described in [38] from the harmonic analysis viewpoint. Other newareas that we wish to quickly mention concern matrix models for quantum gravity [1], Lyapunov exponents[39], and combinatorial interpretations of random matrix formulas [20, 24]. By no means should the handfulof papers mentioned be thought of as an exhaustive list.Developers of numerical algorithms often use random matrices as test matrices for their software. Animportant lesson is that a random matrix should not be equated to the intuitive notion of a \typical" matrixor the vague concept of \any old "matrix. Random matrices, particularly large ones, have special propertiesof their own. Often there is little more information obtained from 1000 random trials than from one trial[14].6.1 How many eigenvalues of a random matrix are real?Assume that we have a random matrix with independent standard normal entries. If n is even, the expectednumber of real eigenvalues is En = p2 n=2�1Xk=0 (4k � 1)!!(4k)!! ;while if n is odd, En = 1 +p2 (n�1)=2Xk=1 (4k � 3)!!(4k � 2)!! :As n!1, En �p2n=�:This is derived in [13] using zonal polynomials. The random eigenvalues form an interesting Saturn-likepicture in the complex plane. Figure 6 below plots normalized eigenvalues �=p50 in the complex plane for�fty matrices of size 50 � 50. There are 2500 dots in the �gure. Girko's [19] circular law (which we havenot veri�ed) states under general conditions that as n ! 1, �=pn is uniformly distributed on the circle.If the entries are independent standard normals, a proof may be found in [15], where also may be found aderivation of the repulsion from the real axis that is clearly visible.
24
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Figure 6 2500 dots representing normalized eigenvalues of �fty random matrices of size n = 50. Clearlyvisible are the points on the real axis.Girko's circular law stands in contrast to the result that roots of random polynomials are uniformlydistributed on the unit circle rather than the disk.6.2 Matrix polynomialsThis may come as a shock to some readers, but characteristic polynomials are a somewhat unnatural wayto discuss the eigenvalues of a matrix. It seems irrelevant that a random matrix happens to have a randomcharacteristic polynomial, so we will not discuss random characteristic polynomials any further. An analogoussituation occurs in the numerical computation of eigenvalues, where nobody would dream of forming thecharacteristic polynomial.The proper generalization that includes polynomials and matrices as special cases is the so-calledmatrixpolynomial. A matrix polynomial has the formP (t) = A0 + A1t+A2t2 + : : :+ Antn;where the Ai are p by p matrices and t is a scalar. The solutions to detP (t) = 0 are the eigenvalues ofthe matrix polynomial. Notice that we are not trying to set P (t) to be the zero matrix, but rather we aretrying to �nd a t for which P (t) is a singular matrix. It is sometimes convenient to take An = I. Thestandard eigenvalue problem takes n = 1 and A1 = I. When n = 1 and A1 6= I, the problem is known asthe generalized eigenvalue problem. Pure polynomials correspond to p = 1.The beauty of random matrix polynomials is that the expected number of real eigenvalues depends on pby a geometric factor: 25



Theorem 6.1 Let f0(t); : : : ; fn(t) be any collection of di�erentiable functions and that A0; : : : ; An arep � p random matrices with the property that the p2 random vectors ((A0)ij ; (A1)ij; : : : ; (An)ij) (i; j =1; : : : ; p) are iid multivariate normals with mean zero and covariance matrix C. Let �p denotes theexpected number of real solutions in the interval [a; b] to the equation0 = det [A0f0(t) +A1f1(t) + : : :+Anfn(t)] :We then have that �p=�1 = p� �((p+ 1)=2)�(p=2) :�1 may be computed from Theorem 3.1.In particular, if all of the matrices are independent standard normals, the expected number of realsolutions is En �p��((p+ 1)=2)�(p=2) ;where En is the quantity that appears in Theorem 2.1. The proof of Theorem 6.1 follows from a simpleconsequence of the integral geometry formula.Lemma 6.1 Choose an interval [a; b], and a random functiona0f0(t) + a1f1(t) + : : :+ anfn(t); t 2 [a; b];where the ai are independent standard normals. Generate a random curve in IRk by choosing an independentsample of k such functions. The expected length of the projection of this curve onto the unit sphere in IRk isequal the expected number of zeros of the chosen random function on the chosen interval, multiplied by �.Proof The lemma follows from Equation (11). Let N be the random curve. Since the distribution of QNis the same as that of N , we may take M to be any �xed hyperplane, say x1 = 0. The intersections of acurve with this hyperplane are exactly the zeros of the �rst coordinate of the curve, and thus the zeros ofour random function.Notice that the expected length does not depend on k. This result generalizes to random embeddings ofmanifolds in Euclidean space. See [33] for a discussion of these and other random varieties.Proof of Theorem 6.1We prove this theorem by using integral geometry twice to obtain expressions for the average length ofthe random curve 
 de�ned by A(t) = A0f0(t) + A1f1(t) + : : :+Anfn(t);on some interval [a; b], and 
(t) = A(t)=kA(t)kF .On the one hand, Lemma 6.1 states that the expected length of the projection 
(t) is �1�.On the other hand, Equation (11) may be used withM chosen to be the set of singular matrices on Sp2�1and N is the random curve 
. Thus the expected number of t for which 
(t) is singular is�p = 1� jM jjN jjSp2�2j : (13)The volume of M is known [13] to bejM j = 2�((p+ 1)=2)�(p=2)�((p2 � 1)=2) :The average volume of N is �1. The volume of Sp2�2 is 2�(p2�1)=2=�((p2 � 1)=2). Plugging these volumesback into (13) yields the result. 26



7 Systems of equationsThe results that we have derived about random equations in one variable may be generalized to systems ofm equations in m unknowns. What used to be a curve v(t) : IR ! IRn+1 is now an m-dimensional surfacev(t) : IRm ! IRn+1 de�ned in the same way. The random coe�cients now form an m � (n + 1) matrix A.Theorem 7.1 Let v(t) = (f0(t); : : : ; fn(t))T be any recti�able function from IRm to IRn+1, let U be ameasurable subset of IRm, and let A be a random m � (n + 1) matrix. Assume that the rows of A areiid multivariate normal random vectors with mean zero and covariance matrix C. The expected numberof real roots of the system of equations Av(t) = 0that lie in the set U is��m+12 ��m + 12 �ZU  det � @2@xi@yj �logv(x)TCv(y)���y=x=t�ij!1=2 dt:Proof This is an application of the integral geometry formula (11). To apply this formula on the unit sphereSn � IRn+1, we choose a submanifold M of dimension m, and a submanifold N of dimension n�m.For simplicity assume �rst that C = I. We take M to be the projection of fv(t) : t 2 Ug to the unitsphere. For N we take the intersection of a plane of dimension n�m+1with the sphere i.e. M = Sn�m � Sn.According to (11), if we intersect M with a random n �m + 1 dimensional plane, the expected numberof intersections isE(#(M \QN )) = 2jSmjjSn�mj jM jjN j = 2jM j=jSmj = ��m+12 ��m + 12 � jM j:The Fubini-Study metric conveniently tells us that jM j is the integral in the statement of the theorem.Of course, the number of real roots of Av(t) = 0 is the number of intersections of M with the null-spaceof A (counting multiplicity). Since for the moment we assume that C = I, the random null-space of A isinvariant under rotations, proving that the average number of intersections is the average number of realroots.For arbitrary C the entire derivation applies by replacing A with AC�1=2.We now extend our previous examples to random systems of equations.7.1 The Kac formulaConsider systems of polynomial equations with independent standard normal coe�cients. The most straight-forward generalization occurs if the components of v are all the monomials fQmk=1 xikk g, where for all k, ik � d.In other words, the Newton polyhedron is a hypercube.Clearly, v(x)T v(y) = mYi=1 dXk=0(xiyi)kfrom which we see that the matrix in the formula above is diagonal, and the density of the zeros on IRmbreaks up as a product of densities on IR. Thus if E(m)d represents the expected number of zeros for thesystem, E(m)d = ��m+12 ��m + 12 � (�E(1)d )m:27



The asymptotics of the univariate Kac formula shows that as d!1,E(m)d � ��m+12 ��m + 12 � (2 logd)m:The same asymptotic formula holds for a wide range of newton polyhedra, including the usual de�nition ofdegree: Pmk=1 ik � d [32].7.2 A random polynomial with a simple answerConsider a system of m random polynomials each of the formXi1;:::;im ai1:::im�mk=1xikk ;where Pmk=1 ik � d, and where the ai1:::im are independent normals with mean zero and variances equal tomultinomial coe�cients: � di1; : : : ; im� = d!(d�Pmk=1 ik)!Qmk=1 ik! :The multinomial theorem simpli�es the computation ofv(x)TCv(y) = Xi1;:::;im� di1; : : : ; im� mYk=1xikyik = (1 + x � y)d :We see that the density of zeros is�(t) = ��m+12 ��m + 12 � dm=2(1 + t � t)(m+1)=2 :In other words, the zeros are uniformly distributed on real projective space, and the expected number ofzeros is dm=2.Shub and Smale [46] have generalized this result as follows. Consider m independent equations of degreesd1; : : : ; dm, each de�ned as in this example. Then the expected number of real zeros of the system isp�mk=1dk:The result has also been generalized to underdetermined systems of equations [31]. That is to say, we mayconsider the expected volume of a random real projective variety. The degrees of the equations need not bethe same. The key result is as follows. The expected volume of a real projective variety is the square root ofthe product of the degrees of the equations de�ning the variety, divided by the volume of the real projectivespace of the same dimension as the variety. For a detailed discussion of random real projective varieties, see[33].7.3 Random harmonic polynomialsConsider the vector space of homogeneous polynomials of degree d in m+1 variables that are harmonic, thatis, the Laplacians of the polynomials are equal to zero. If Q is an orthogonalm+1 by m+1 matrix, then themap that sends p(x) to p(Qx) is a linear map from our vector space to itself, i.e. we have a representationof the orthogonal group O(m + 1). It is a classical result in Lie group theory that this representation isirreducible. It follows that there is, up to a constant, a unique normal measure on harmonic polynomialsthat is invariant under orthogonal rotations of the argument.28



We outline a proof by considering the invariance of v(x)TCv(y). Assume that for any orthogonal matrixQ, v(Qx)TCv(Qy) = v(x)TCv(y). This implies that v(x)TCv(y) must be a polynomial in x � x, x � y, andy �y. This is classical invariant theory. For proofs and discussion of such results, see [48, Vol. 5, pp. 466{486].We thus deduce that v(x)TCv(y) must be of the form[d=2]Xk=0 �k(x � x)k(y � y)k(x � y)d�2k:Setting the Laplacian of this expression to zero, we see that 2k(m+2d�2k�1)�k+(d�2k+2)(d�2k+1)�k�1 =0, and therefore that �k�0 = (�1)kd!(m+ 2d� 2k � 3)!!2kk!(d� 2k)!(m+ 2d� 3)!! :Thus we see that v(x)TCv(y) is uniquely determined (up to a constant).From this formula we can show that the expected number of roots for a system of m such randomharmonic polynomials equations is �d(d+m � 1)m �m=2 :Because of the orthogonal invariance of these random polynomials, results hold in the generality of thepolynomials in Section 7.2. Thus we may consider systems of harmonic polynomials of di�erent degrees, orwe may consider underdetermined systems, and the obvious generalizations of the above result will hold.See [32] for a detailed discussion.7.4 Random power seriesFor a power series in m variables with independent standard normal coe�cients, we see that the density ofzeros on IRm breaks up as the product of m densities:�(t) = ��m+12 ��m + 12 � mYk=1 1(1� t2k) :Notice that the power series converges with probability one on the unit hypercube, and that at the boundariesof this domain the density of zeros becomes in�nite.7.5 Random entire functionsConsider a random power series f(x) = Xi1;:::;in ai1:::im�mk=1xikk ;where the ai1:::im are independent normals with mean zero and variance (Qmk=1 ik!)�1. Clearlyv(x)TCv(y) = ex�y;so the zeros are uniformly distributed on IRm with��m+12 ��m+ 12 �zeros per unit volume. 29



8 Complex zerosWe now present the complex version of Theorem 7.1 and discuss some consequences. We de�ne a complex(multivariate) normal vector to be a random vector for which the real and imaginary parts are independentidentically distributed (multivariate) normal vectors.Theorem 8.1 Let v(z) = (f0(z); : : : ; fn(z))T be any complex analytic function from Cm to Cn+1, letU be a measurable subset of Cm, and let A be a random m � (n+ 1) matrix. Assume that the rows ofA are iid complex multivariate normal vectors with mean zero and covariance matrix C. The expectednumber of roots of the system of equations Av(z) = 0that lie in the set U is m!�m ZU det � @2@zi@�zj �log v(z)TCv(�z)��ijYi dxidyi :Sketch of proof The proof is analogous to that of Theorem 7.1, but uses complex integral geometry [43,p. 342]. The volume of the projection of v(z) is calculated using the complex Fubini-Study metric [22, p.30{31].If U is Zariski open, then by Bertini's theorem, the number of intersections is constant almost everywhere.This number is called the degree of the embedding (or of the complete linear system of divisors, if we wish toemphasize the intersections). From what we have seen, the volume of the embedding is this degree multipliedby the volume of complex projective space of dimension m. For example, the volume of the Veronese surfacev : IP(C3)! IP(C6), de�ned by v(x; y; z) = (x2; y2; z2; xy; xz; yz);is 4� �2=2!. This corresponds to the fact that pairs of plane conics intersect at four points.We could plot the zeros of a random polynomial, just as plotted the eigenvalues of a random matrix inFigure 6.For the univariate case, if the coe�cients are complex independent standard normals, the zeros concen-trate on the unit circle (not the disk!) as the degree grows.For the complex version of the polynomial considered in Section 3.1.2 the zeros are uniformly distributedon complex projective space. Just as was observed for the real version of this example in Section 4.1, thisuniformity is a consequence of (unitary) invariance of the homogeneous version of these random polynomials.But for the complex case more can be said: these polynomials provide the unique normal measure (up to aconstant) on the space of polynomials that is unitarily invariant. A simple proof and discussion of this maybe found in [30].8.1 Growth rates of analytic functionsComplex analysts know that there is a connection between the asymptotic growth of analytic functions andthe number of zeros inside disks of large radius. Functions whose growth may be modeled by the functionexp(�z�) are said to have order � and type � . Precise de�nitions may be found in [6, p. 8]. Let n(r) be thenumber of zeros of f(z) in the disk jzj < r. If f(z) has at least one zero anywhere on the complex plane,then [6, Eq. (2.5.19) ] lim supr!1 logn(r)log r � �: (14)30



It is possible [6, (2.2.2) and (2.2.9)] to compute the order and type from the Taylor coe�cients off(z) = a0 + a1z + a2z2 + : : :, by using � = lim supn!1 �n lognlog janj (15)and � = 1e� lim supn!1 njanj�=n: (16)We now illustrate these concepts with random power series. We shall restrict to the univariate case, andwe shall assume that the coe�cients are independent.Theorem 8.2 Let f(z) = a0 + a1z + a2z2 + : : : ;be a random power series (or polynomial), where the ai are independent complex normals with mean zeroand variances �2i � 0. Let �(z) = �20 + �21z + �22z2 + : : :be the generating function of the variances, and assume that �(z) has a nonzero radius of convergence. Letn(r) be the expected number of zeros of the random function f(z) in the disk jzj < r. Thenn(r) = r2 ddr log�(r2):Proof Observe that v(z)TCv(�z) = �(z�z) = �(r2), where v(z) is the (in�nite dimensional) moment curve.Thus it is easy to check that @2@z@�z logv(z)TCv(�z) = 14r ddrr ddr log�(r2):This is multiplied by rdrd�=� and then integrated over the disk jzj < r.This theorem, together with the fact that the distribution of zeros is radially symmetric, completely describesthe distribution of zeros for these random functions. In fact, n(r) is exactly the unnormalized cumulativedistribution function for the absolute values of the zeros.As a simple example, let �(z) = e2�z�=2 :By applying the Borel-Cantelli Lemma [45, p.253] to (15) and (16), we see that the random function f(z)has order � and type � with probability one. The theorem we have just established then givesn(r) = ��r� :This result is reasonable in light of (14).8.2 A probabilistic Riemann hypothesisWe conclude our discussion of complex zeros with a probabilistic analogue of the Riemann hypothesis.Theorem 8.3 Consider the random Dirichlet seriesf(z) = a1 + a22z + a33z + : : : ; (17)31



where ak are independent complex standard normal random variables. This converges with probability one ifRe(z) > 1=2. Then the expected number of zeros in the rectangle 1=2 < x1 < Re(z) < x2, y1 < Im(z) < y2,is 12� ��0(2x2)�(2x2) � � 0(2x1)�(2x1) � (y2 � y1) :In particular, the density of zeros becomes in�nite as we approach the critical line fz j Re(z) = 1=2g fromthe right.Proof Following Section 3.2.5, we see that v(z)TCv(�z) = �(z + �z), so the density of zeros is14� d2dx2 log �(2x) ;where x = Re(z).Since (17) converges with probability one for Re(z) > 1=2, one might try using random Dirichlet seriesto study the Riemann zeta function inside the critical strip. Unfortunately, as Section 3.2.5 and Theorem8.3 suggest, random Dirichlet series are more closely related to �(z+ �z) than to �(z), and so the penetrationof the critical strip is illusory.9 The Bu�on needle problem revisitedIn 1777, Bu�on showed that if you drop a needle of length L on a plane containing parallel lines spaced adistance D from each other, then the expected number of intersections of the needle with the lines is2L�D :Bu�on assumed L = D, but the restriction is not necessary. In fact the needle may be bent into anyreasonable plane curve and the formula still holds. This is perhaps the most celebrated theorem in integralgeometry and is considered by many to be the �rst [43].Let us translate the Bu�on needle problem to the sphere as was �rst done by Barbier in 1860 { see [51]for a history. Consider a sphere with a �xed great circle. Draw a \needle" (a small piece of a great circle) onthe sphere at random and consider the expected number of intersections of the needle with the great circle.If we instead �x the needle, and vary the great circle, it is clear that that the answer would be the same.Any recti�able curve on the sphere can be approximated by a series of small needles. The expectednumber of intersections of the curve with a great circle is the sum of the expected number of intersection ofeach needle with a great circle. Thus the expected number of intersections of a �xed curve with a randomgreat circle is a constant multiple of L, the length of the curve. To �nd the constant consider the case wherethe �xed curve is itself a great circle. Then the average number of intersections is clearly 2 and L is clearly2�. Thus the formula for the expected number of intersections of the curve with a random great circle mustbe L� :Of course the theorem generalizes to curves on a sphere of any dimension.To relate Barbier's result to random polynomials, we consider the curve 
 on the unit sphere in IRn+1.By Barbier, the length of 
 is � times the expected number of intersections of 
 with a random great circle.What are these intersections? Consider a polynomial p(x) = Pn0 anxn, and let p? be the equatorial Sn�1perpendicular to the vector p � (a0; : : : ; an). Clearly 
(t) 2 p? for the values of t where 
(t) ? p. As wesaw in Section 2, these are the values of t for which p(t) = 0. Thus the number of intersections of 
 with p?32



is exactly the number of real zeros of p, and the expected number of real roots is therefore the length of 
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