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Figure 1: 2500 dots representing normalized eigenvalues of �fty random matrices of size n = 50. Clearlyvisible are the points on the real axis.
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Figure 2: Histogram of normalized real eigenvalues for 2222 matrices of size 502



in the unit disk. It follows that the proportion of eigenvalues on the real line (also strikingly visible to theeye) must tend to 0 as n!1. Our results show how fast this converges.A simpler version of this circular law occurs when the random matrix has elements from a complexnormal distribution, i.e. the real and imaginary parts of each element are independent standard normals.In this case the exact distribution for the eigenvalue distribution and radius can be found in Ginibre [11]and is reported by Mehta [24, p.300] and Hwang [17]. In this case, the squares of the absolute values ofthe eigenvalues are independent random variables with distributions that are �2 with 2; 4; : : : ; 2n degrees offreedom [20]. The spectral radius is then the maximum of such random variables.Figure 2 takes a closer look at the real eigenvalues again taking n = 50, but this time we took over2200 random matrices, and histogrammed the real normalized eigenvalues. Notice the data suggests thatthe density is nearly uniform on [�1; 1]. The plotted curve is the exact density for n = 50. This suggeststhe form of the asymptotic density of real eigenvalues that we prove in Corollary 4.5: If �n denotes a realeigenvalue of an n by n random matrix, then as n ! 1, �n=pn is uniformly distributed on the interval[�1; 1]:This result is the limit of the probability density for �n proven in Theorem 4.3: if �n denotes a realeigenvalue of an n by n random matrix, then its probability density fn(�) is given byfn(�) = 1En  1p2� ��(n� 1; �2)�(n� 1) �+ j�n�1je��2=2�(n=2)2n=2 �((n � 1)=2; �2=2)�((n� 1)=2) �! :A related function that we study closely in Section 3 is the unnormalized density for �n. Given a �xedmatrix A we can de�ne the empirical cumulative distribution function of its real eigenvalues:#(�1;x](A) � f number of real eigenvalues of A � xg:Let �n(x) = ddxEA#(�1;x](A);where EA denotes expectation for random A. Thenfn(�) = 1En�n(�):In fact, if � is any Lebesgue measurable set of the real line,Z�2� �n(�)d� = EA#�(A) � The expected number of real eigenvalues in �:Most simply put, �n(�) is a true density; it is the \expected number of eigenvalues per unit length" in anin�nitesimal interval near �.We provide a Mathematica expression for En below and list enough values of En to suggest a conjecturewhich turns out to be true. Table 1 tabulates En for n from 1 to 10 and suggests a di�erence in the algebraicform of En for n even or odd.We see that a 10 by 10 random matrix can be expected to have fewer than 3 real eigenvalues. Morestriking is the observation that if n is even, En is a rational multiple of p2, while if n is odd, En is one morethan a rational multiple of p2. We like to think of this as the \extra" real eigenvalue guaranteed to existsince n is odd. Also notice that the denominators in the ratios are always powers of 2. The observationsabove and many others may be derived from the exact formulas below.3



n En1 1 1.000002 p2 1.414213 1 + 12p2 1.707114 118 p2 1.944545 1 + 1316p2 2.149056 211128p2 2.331247 1 + 271256p2 2.497088 19191024p2 2.650279 1 + 25972048p2 2.7933210 6784332768p2 2.92799Table 1: Expected number of real eigenvaluesExact Formulas for En. (Some notation is de�ned below the box.)If n is even, En = p2 n=2�1Xk=0 (4k � 1)!!(4k)!! ;while if n is odd, En = 1 +p2 (n�1)=2Xk=1 (4k � 3)!!(4k � 2)!! :Alternatively, for both even and odd n,En = 12 +r2� �(n+ 1=2)�(n) 2F1(1;�1=2;n; 1=2)= 12 +p2 2F1(1;�1=2;n; 1=2)B(n; 1=2)= 1� (�1)n2 +p2 P (1�n;32 )n�2 (3); if n > 1.Perhaps nicer yet, we have the generating functionz(1 � z + zp2� 2z)(1� z)2(1 + z) = 1Xn=0Enzn: Theorem 5.1 and corollaries.In the formulas above we use the Euler Beta function, a Jacobi polynomial evaluated at three, and also thefamiliar double factorial (also known as the semifactorial) notation de�ned byn!! = � 1� 3� 5� : : :� n if n is odd2� 4� 6� : : :� n if n is even:By convention, 0!! = (�1)!! = 1. 4



Mathematica users who may wish to compute En may do so by typinge[n ]:=(1-(-1)^n)/2 + Sqrt[2] JacobiP[n-2, 1-n, 3/2, 3]As an example, the above Mathematica expression e�ortlessly computed the expected number of real eigen-values of a 100 by 100 random matrix:E100 = 75002314698289190681410505950979137956286758500731773968829p2=2193:In Section 6, we consider the generalized eigenvalue problemdet(M1 � �M2) = 0;where M1 and M2 are independent and random. One might guess that questions about generalized eigen-values would be more di�cult than corresponding questions about eigenvalues, but in fact they are simpler.If EGn denotes the expected number of real generalized eigenvalues of a pair of independent n by n randommatrices, then EGn = p��((n+ 1)=2)�(n=2) :The asymptotic number of real generalized eigenvalues islimn!1 EGnpn =r�2 :An asymptotic series for this expression as n!1; isEGn =r�n2 �1� 14n + 132n2 + 5128n3 � 212048n4 + O( 1n5 )� :We also compute the probability density for the real generalized eigenvalues in Theorem 6.2. If � denotesa real generalized eigenvalue of a pair of independent random matrices, then its probability density fG(�) isgiven by fG(�) = 1�(1 + �2) ;that is, � obeys the standard Cauchy distribution. Equivalently, atan(�) is uniformly distributed on [��2 ; �2 ].Notice that the density function of a real generalized eigenvalue does not depend on n. We could also de�ne�Gn (�) in analogy to �n(�), but this will not be of use to us.2 Motivation, History, BackgroundEigenvalues of random matrices arise in many applications areas, perhaps the most well-known areas arenuclear physics, multivariate statistics, and as test matrices for numerical algorithms. See [10] for referencesto some of these numerous applications. We strongly suspect that random eigenvalue models have beenconsidered in any area where eigenvalues have been considered. The subject is also a favorite for puremathematicians because it touches on harmonic analysis, combinatorics, and integral geometry.The �rst investigation of the eigenvalues of real non-symmetric matrices with normally distributed entriesbegan with Ginibre [11]. He attempted to calculate the probability distribution of the real eigenvalues underthe assumption that some �xed number k of them are real, but only succeeded in the case when all of theeigenvalues are real.1 In Section 3.5 of [13], Girko derives formulas for the distribution of the eigenvalues1This is an extremely rare event for n not too small. It occurs with probability 2�n(n�1)=4, a fact that will be derived inan upcoming paper. 5



under the same assumption that a �xed number are real. Unfortunately, derivations are tedious and the text,at least in translation, contains su�ciently many typographical errors as to make the derivations di�cult tocheck.Research into the analogous question for polynomials has been much more successful, as is well docu-mented in [2]. For example, in the 1940s Kac [18, 19], considered an nth degree polynomial whose coe�cientsare independent standard normals. He derived an integral formula for the expected number of real rootsand was able to show that there are, asymptotically as n ! 1, (2=�) log(n) real roots. Kostlan [21] wasable to derive an integral formula for the expected number of real roots of a polynomial with any centralnormal distribution using the Poincar�e formula of integral geometry. Furthermore, Kostlan [21], and Shuband Smale [27] were able to apply geometric methods to show that if the coe�cients have independent centralnormal distributions with variances equal to the binomial coe�cients, then the expected number of real rootsis exactly the square root of the degree. That these geometric methods, unlike the purely analytic methodsof Kac and others, give results for (even underdetermined) systems of equations, demonstrates the power ofintegral geometry.Thus from the pure mathematics side, the problem of computing the expected number of real eigenvaluesgrew out of an attempt to apply integral geometry to linear algebra. The ease with which integral geometrygives the expected number of real generalized eigenvalues (Section 6) gave added hope that the problem ofthe expected number of real eigenvalues could be solved.From the applied mathematics side, we wished to respond to a question by Shiu-Hong Lui [23] who wastesting homotopy methods to �nd the eigenvalues and eigenvectors of a general real matrix using randomtest matrices. Random matrices are often used to test algorithms because of the small e�ort involved inproducing them. As an example, the eigenvalues of random matrices are computed in the LAPACK testsuite [4] though LAPACK makes no e�ort to count the number of eigenvalues that are real.The physics community has also addressed this problem. Experimental evidence is presented in [22] thatthe expected number of real eigenvalues is O(pn)3 Eigenvalue InationWe begin by de�ning a process that might be called eigenvalue ination because it inverts the usual numericalprocess known as eigenvalue deation. Let A0 be any real n � 1 by n � 1 matrix, v be any unit n-vectorsuch that vn � 0, and w = (w1 : : : wn) be any n � 1 dimensional row vector. We can \inate" the set ofeigenvalues of A0 by building the n by n matrixA � H(v)0BBB@ 0A0 ...0w1 : : : wn�1 � 1CCCAH(v): (1)Here H(v) is the linear operator that exchanges v and en = (0 0 : : :0 1)T . For de�niteness, let H(v) denotereection across the angle bisector of v and en. In numerical linear algebra, reections of the sort thatexchange an arbitrary vector v with en are usually called Householder reections, they are orthogonal andsymmetric, see [14].If we make a change of variables from A to v, �, w and A0, the following lemma tells us how to integrate.Lemma 3.1 Let � be a Lebesgue measurable subset of the real line, let #�(A) denote the number of realeigenvalues of A in �, and let J(�; v; A0; w) denote the Jacobian of the transformation de�ned in (1). Further6



let � denote the density function (Radon-Nikodym derivative) of any measure that is absolutely continuouswith respect to Lebesgue measure. We then haveZA#�(A)� (A)dA = Zv;�2�;w;A0 J(v; �; w;A0) � (A(�;w;A0; v)) dS(v) d� dw dA0; (2)where dS(v) is the standard (Haar) measure on the unit sphere, and where dA, d�, dw and dA0 are standardLebesgue measures. In particular, the expected number of real eigenvalues isEn � ZA#<(A)� (A)dA = Zv;�;w;A0 J(v; �; w;A0) � (A(�;w;A0; v)) dS(v) d� dw dA0; (3)Proof It is easy to see that as A0 varies over all n� 1 by n� 1 matrices, w varies over <n�1, and v variesover the unit hemisphere in <n, every matrix A is covered exactly k times, where k is the number of realeigenvalues of A in �, unless A falls on the set (of measure zero) of matrices with an eigenvector v wherevn = 0 or the set (of measure zero) of matrices with multiple eigenvalues.Lemma 3.2 The Jacobian of the transformation de�ned in (1) isJ(v; �; w;A0) = j det(A0 � �I)j:Proof The proof requires calculation of some di�erentials near �xed �; v; A0; and w so that we omit thedependence of H on v etc. In the following, matrices and vectors of di�erential quantities are in bold faceRoman letters so as to distinguish them from the notation for Lebesgue measure.Notice that vTdv= 0 so thatHTdv, which is also the last column ofHTdH, has the form (dy1 : : : dyn�1 0)T .The element of surface area in this rotating coordinate system, dS = dy1dy2 : : :dyn�1, is the natural elementof surface area on the unit sphere. See Muirhead [25, p.63] for a slightly similar treatment in a more generalsetting.Let M denote HAH. Since H2 = I, we have HdH= �dHH. Therefore A = HMH and dA=dHMH+HdMH +HMdH or HdAH =dM+(HdH)M �M (HdH). It follows that if we omit the last componentof the last column of HdAH we obtain (A0 � �I)0B@ dy1...dyn�1 1CA : The other elements of HdAH containdi�erential forms composed of the corresponding element of dM and the dyi. Taking exterior products ofthe di�erential forms of the n2 components using standard techniques, we see thatîj dAij = j det(A0 � �I)j dS(v) d� dw dA0;completing the derivation.This derivation in terms of di�erentials almost hides the action on the tangent spaces. Consider thetangent space at en and ask how does that map to the tangent space at Â in directions orthogonal to Â. Aperturbation theory argument would derive a relationship from(Â+ �weTn )(en + �y) = (� + ��1)(en + �y);with the assumption that eTnw = 0 and eTn y = 0. A quick calculation shows that the relationship betweenthe last n�1 components of w as a function of those of y is given by �I �A0: This is more informative thansaying the Jacobian is j det(�I � A0)j, because it gives a clear interpretation to the matrix itself.We now specialize to the case when the matrixA has independent standard normally distributed elements,or, in other words, where � (A) = (2�)�n2=2 exp(�12Pni;j=1 a2ij):7



Theorem 3.1 ZA#�(A)24(2�)�n2=2 exp(�12 nXi;j=1a2ij)dA35= Z�2�;A0 �1=22(n�1)=2�(n=2) j det(A0 � �I)j �(2�)�1=2 exp(�12�2)d��24(2�)�(n�1)2=2 exp(�12 n�1Xi;j=1(a0)2ij)dA035 ;and where dA, d� and dA0 are standard Lebesgue measures. For clarity, we have placed Gaussian measuresin brackets.Proof By Lemma 3.1 and Lemma 3.2, it is clear that the variables v and w are independent of � andA0 and also they are independent of each other. Thus we can readily integrate out the v and w terms:Rv dS(v) = 12Vol(Sn�1) = �n=2=�(n=2) (where Sn�1 denotes the unit sphere in <n), and Rw exp(�12Pw2i ) =(2�)(n�1)=2: From these equations and the previous two lemmas the theorem is immediate.Taking � to be <, we have thatCorollary 3.1 En = �1=22(n�1)=2�(n=2)EA0;�j det(A0 � �I)j;where the E denotes expectation over the variables in the subscripts.De�nition 3.1 Let Dn�1(�) = EA0 j det(A0��I)j, where the expected value is taken over all n� 1 by n� 1matrices A0 with independent standard normally distributed elements. Also de�ne�n(�) = e��2=22n=2�(n=2)Dn�1(�); En = Z 1�1 �n(�)d�; and fn(�) = 1En�n(�):From the discussion above, all of these quantities are related statistically to expectations concerning thereal eigenvalues of a random matrix:�n(�) = lim�!0 1� (expected number of eigenvalues in [���=2; �+�=2]) :Therefore, Z�2� �n(�)d� (4)represents the expected number of eigenvalues in �; En is the expected number of real eigenvalues (i.e. theexpected number of eigenvalues in <); fn(�) is the derivative of the cumulative distribution function of thereal eigenvalues. It is sometimes called a condensed density function, in contrast to join densities [2]. Since weconsider all the real eigenvalues to be identical, fn(�) is nothing more than the marginal (probability) densityfunction of a single real eigenvalue. In the next two sections we obtain explicit closed-form expressions for�n(�), En and fn(�).4 Density ComputationThe computation of the density of a real eigenvalue of an n by n random matrix proceeds by evaluatingDn�1 = EA0 (j det(A0 � �I)j) where A0 is an n� 1 by n � 1 random matrix �rst in terms of objects knownas zonal polynomials2, and then in terms of more elementary functions.2Zonal polynomials arise in group representation theory and the study of related hyergeometric functions [25].8



For simplicity we calculate Dn instead of Dn�1. Let A be an n by n random matrix. From Theorem10.3.7 of [25, p.447], we have thatDn(�) = EA(j det(A � �I)j) = 2n=2�((n + 1)=2)p� 1F1(�12 ; n2 ;��22 In):The scalar valued hypergeometric function of a matrix argument that appears in the formula above arises inmultivariate statistics [25], and should not be confused with the matrix valued function obtained by applyinga Taylor series to the matrix. A useful expansion for this hypergeometric function which may be taken asits de�nition may be found in the proof of Theorem 4.1. An alternative de�nition for a symmetric n by nmatrix X is that1F1(a; c;X) = constant � Z0<Y<In exp(tr(XY ))(det Y )a�(n+1)=2 det(In � Y )c�a�(n+1)dY;where Re(a);Re(c);Re(c�a) > (n�1)=2. The integration is over the symmetric matrices Y for which Y andIn� Y are positive de�nite matrices. The measure is Lebesgue measure on the upper triangular elements ofY . Lastly, the constant is chosen so that 1F1(a; c; 0) = 1.We introduce the following abbreviation:De�nition 4.1 Fn(�) = 1F1(�12 ; n2 ;��22 In):It is not generally known when hypergeometric functions with a scalar matrix argument can be writtenas a �nite sum of hypergeometric functions with scalar arguments. Gupta and Richards [16] have exploredwhen certain hypergeometric functions of a scalar matrix argument can be written as in�nite sums of simplerexpressions. In our case, Fn(�) can be written in terms of incomplete gamma functions.Theorem 4.1 Fn(�) = e�2=2�(n; �2)�(n) + 2n�1�(n) ��22 �n=2 (n2 ; �22 ):We postpone the proof of this theorem until the end of this section.Corollary 4.1 The generating function of the Fn(�) is given by1Xn=0Fn(�)zn = 1 + z1� z e(2z�1)�2=2 + zp��2=2 ez2�2=2ferf[zp�2=2] + erf[(1� z)p�2=2]g:Proof Rewrite the formula in Theorem 4.1 using�(n; �2) = Z 1�2 tn�1e�tdt and (n2 ; �22 ) = Z �2=20 tn=2�1e�tdt:Switching the order of summation and integration, the generating function can be written as a sum of twointegrals. These integrals are easy to evaluate.In the previous section we established that�n(�) = e��2=22n=2�(n=2)Dn�1(�):Thus �n(�) = e��2=2p2� Fn�1(�): (5)Using the duplication formula [1, 6.1.18] to rewrite �(n) in the second term of the formula in Theorem 4.1and then combining with (4) and (5) proves the following two corollaries.9



Corollary 4.2 The expected number of eigenvalues on the interval [a; b] is equal toZ ba  1p2� ��(n � 1; �2)�(n� 1) �+ j�n�1je��2=2�(n=2)2n=2 �((n � 1)=2; �2=2)�((n� 1)=2) �! d�:Corollary 4.3 If �n denotes a real eigenvalue of an n by n random matrix, then its marginal probabilitydensity fn(�) is given byfn(�) = 1En  1p2� ��(n� 1; �2)�(n� 1) �+ j�n�1je��2=2�(n=2)2n=2 �((n � 1)=2; �2=2)�((n� 1)=2) �! :The probability density for the normalized eigenvalue x = �=pn is gn(x) = pnfn(xpn): We wish tounderstand the limiting behavior of this function as n becomes large.Corollary 4.4 For all real values of x,limn!1 gn(x) =8<: 1=2 jxj < 1(2 +p2)=8 jxj = 10 jxj > 1Furthermore, the functions gn(x) converge in the Lp norms for all 1 � p <1.Proof First we analyze pointwise convergence. We will show in Corollary 5.2 thatlimn!1 Enpn =r2� : (6)Furthermore [1, 6.5.34],limm!1 �(m + �;my)�(m + �) = 1� limm!1 (m + �;my)�(m + �) = 8<: 1 0 � y < 11=2 y = 10 y > 1 ; (7)and, using Stirling's (asymptotic to equality) inequality�(m+ 1) � mme�mp2�m; (8)we can easily establish that limn!1 (pnx)n�1e�nx2=2�(n=2)2n=2 = � 1=(2p�) jxj = 10 jxj 6= 1 : (9)Combining (6), (7) and (9), we establish the desired pointwise convergence. Using elementary calculus onecan show that for all y � 0 and m � 1=2, y2m�1em�my2 � e1�y: (10)Furthermore, the Gaussian continued fraction for the incomplete gamma function [15, 8.358] shows that fory > �� 1, �(�; y) � e�yy�y � �+ 1 : (11)Using (6), (8), (10) and (11), it is not hard to show that for all su�ciently large n,gn(x) � e1�jxj:Thus by the dominated convergence theorem, the sequence fgng converges in the Lp norm for all 1 � p <1.Since L1 convergence of densities implies convergence in distribution, we have at once another corollary.10
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Figure 3: Density of normalized eigenvalues for n = 5; 10; 20; 50;100; 200: The bigger n is the closer itresembles the uniform density on [�1; 1].Corollary 4.5 If �n denotes a real eigenvalue of an n by n random matrix, then as n!1, the normalizedeigenvalue �n=pn converges in distribution to a random variable uniformly distributed on the interval [�1; 1]:Figure 3 illustrates the convergence to the uniform density.Proof of Theorem 4.1: Following Muirhead, we begin by considering ordered partitions � of an integer k� = (k1; k2; : : : ; kn); where k1 + : : :+ kn = k and k1 � k2 � : : : � kn � 0:The (conuent) hypergeometric function of a matrix argument is de�ned as1F1(a; b;xI) = 1Xk=0 xkk! X� (a)�(b)� C�(I);where (a)� = nYi=1(a� (i� 1)=2)ki;(a)k = a(a + 1) : : : (a + k � 1) = �(a+ k)=�(a)and the zonal polynomial [25, p.237] isC�(I) = 22kk!(n=2)�Qni<j(2ki � 2kj � i + j)Qni=1(2ki + n� i)! :Observe that (�12)� = nYi=1(�i=2)ki : (12)However, since (�1)k = 0 unless k = 0 or 1, (�12 )� = 0 unless 1 � k2 � k3 � : : : � kn � 0. In other words,we are only interested in partitions where possibly only the �rst component is not 0 or 1.11



We now focus on Fn(�)�Fn�1(�). Since C�(In)=(n=2)� is independent of n, the only di�erence betweenthe expansion for Fn and Fn�1 is the summation over partitions with exactly n non-zero components. Tobe precise, we may restrict our attention to partitions of the form� = (k � n+ 1; 1; 1; : : : ; 1| {z }n�1 ); k � n:We see from (12) that (�1=2)� = (�1=2)k�n+1 n!(�2)n�1 ;and that C�(In)(n=2)�k = 22kk!Qnj=2(2(k � n + 1)� 2� 1 + j)Qnj=3(j � 2)!(2(k � n+ 1) + n� 1)!Qni=2(2 + n� i)!= 22kk!f(2k� n � 1)!=(2k� 2n)!gQn�2i=1 i!(2k � n + 1)!Qni=1 i!= 22kk! (2k � n� 1)!(2k� n+ 1)!(2k � 2n)!n!(n� 1)! :Therefore, Fn(�) � Fn�1(�) = 1(n� 1)!(�2)n�1 1Xk=n (�1=2)k�n+1(2k � n� 1)!22k(2k � n+ 1)!(2k� 2n)! (��2=2)k: (13)Letting l = k � n and noting (�1=2)l+122l(2l)! = �12l! ;we can rewrite (13) asFn(�) � Fn�1(�) = 2n�(n) ��22 �n 1Xl=0 (��2=2)ll!(2l + n+ 1)(2l + n)= 2n�(n) ��22 �n " 1Xl=0 (��2=2)ll!(2l + n) � 1Xl=0 (��2=2)ll!(2l + n+ 1)#= 2n�1�(n) ��22 �(n�1)=2 "��22 �1=2 1Xl=0 (�1)l(�2=2)l+n=2l!(l + n=2) � 1Xl=0 (�1)l(�2=2)l+(n+1)=2l![l+ (n+ 1)=2] #= 2n�1�(n) ��22 �(n�1)=2 "��22 �1=2 (n2 ; �22 )� (n + 12 ; �22 )#= 2n�1�(n) ��22 �n=2 (n2 ; �22 ) � 2n�2�(n� 1) ��22 �(n�1)=2 (n � 12 ; �22 ) +��22 �n�1 2n�1e��2=2�(n) :To calculate Fn(�), we sum the preceding formula over n. The �rst two terms of the formula telescopeand it is only the last term that must be summed. HowevernXk=1��22 �k�1 2k�1e��2=2�(k) = e��2=2 nXk=1 (�2)k�1�(k) = e+�2=2�(n; �2)�(n) :Thus we see that Fn(�) = e�2=2�(n; �2)�(n) + 2n�1�(n) ��22 �n=2 (n2 ; �22 );as required. 12



5 Expected Number of Real EigenvaluesTo calculate the expected number of real eigenvalues, we need only perform the integration indicated inCorollary 4.2, taking the interval to be [�1;1]. The integrals involved may be found in classical references(e.g. [15, 6.455]). This produces a closed-form expression for En in terms of the Gaussian hypergeometricfunction: En =r 2� �(n� 1=2)�(n) �n� 1 + 12 2F1(1; n� 1=2; (n+ 1)=2; 1=2)� :We wish to rewrite En in various forms, each form having its own advantages. The above form was notincluded in the �rst section of this paper, because we found it unenlightening. In principle, manipulations ofGaussian hypergeometric functions should be able to prove the equality of any two formulas for En. However,it is easier to check formulas for En by computing their generating functions and then comparing them tothe result in the following theorem.Theorem 5.1 The generating function of the En is given by1Xn=0Enzn = z(1� z + zp2� 2z)(1� z)2(1 + z) :Proof Using the generating function for Fn (Corollary 4.1), we can easily produce the generating functionfor the �n and integrate it to produce the generating function appearing in this theorem.The following corollary will be convenient for computing the asymptotic character of En for large n.Corollary 5.1 In terms of Gaussian hypergeometric functions,En = 12 +r 2� �(n+ 1=2)�(n) 2F1(1;�1=2;n; 1=2) = 12 +p2 2F1(1;�1=2;n; 1=2)B(n; 1=2) :Proof Observe that [15, 9.111]p2 2F1(1;�1=2;n; 1=2) = (n� 1) Z 10 (1� t)n�2p2� t dt:Interchanging summation and integration, we can therefore write the generating function for the postulatedEn as a single integral. This integral will evaluate to an algebraic function. We then compare this with thegenerating function in Theorem 5.1.Corollary 5.2 We have the asymptotic seriesEn =r2n� �1� 38n � 3128n2 + 271024n3 + 49932768n4 +O( 1n5 )�+ 12as n!1.Proof The standard series for the hypergeometric function serves as an asymptotic formula for large n sincen appears in the denominator. An asymptotic formula for �(n+ 1=2)=�(n) can be found in [29, 43:6:10].Corollary 5.3 If n is even, En = p2 n=2�1Xk=0 (4k � 1)!!(4k)!! ;while if n is odd, En = 1 +p2 (n�1)=2Xk=1 (4k � 3)!!(4k � 2)!! :13



Proof Using Corollary 5.1, the Gauss recursion formulas for Gaussian hypergeometric functions give1p2(En �En�2) = �(n� 3=2)p��(n� 1) = (2n� 5)!!(2n� 4)!! :Thus it is elementary to establish this corollary by induction.Corollary 5.4 For n > 1, En = 1� (�1)n2 +p2 P (1�n;32 )n�2 (3):Proof The Jacobi polynomials are Gaussian hypergeometric functions. To be precise [15, 8.962.1],P (1�n;32 )n�2 (z) = (�1)n 4�(n+ 1=2)3p��(n� 1) 2F1(2� n; 3=2; 5=2; (z+ 1)=2):Rewrite the postulated En using this formula, and then proceed as in Corollary 5.1, or as in Corollary 5.3.6 Real Generalized EigenvaluesA \generalized eigenvalue" of the pair of matrices (M1;M2) (or of the pencil M1 � �M2), is de�ned to be asolution � to the equation det(M1 � �M2) = 0:In this section we show how symmetry can be used to obtain the expected number of real generalizedeigenvalues and their density.Theorem 6.1 If EGn denotes the expected number of real generalized eigenvalues of a pair of independent nby n random matrices, then EGn = p��((n+ 1)=2)�(n=2) :Since the asymptotic series of the Euler Beta function is known [29, 43:6:10] we have an immediatecorollary.Corollary 6.1 We have the asymptotic seriesEGn =r�n2 �1� 14n + 132n2 + 5128n3 � 212048n4 + O( 1n5 )�as n!1.Theorem 6.2 If � denotes a real generalized eigenvalue of a pair of independent random matrices, then itsprobability density fG(�) is given by fG(�) = 1�(1 + �2) ;that is, � obeys the standard Cauchy distribution. Equivalently, atan(�) is uniformly distributed on [��2 ; �2 ].Since a standard Cauchy random variable can be de�ned as the ratio of two independent standard normals,it seems appropriate to call the random matrix M = M�12 M1 a \(standard) Cauchy matrix." Clearly theeigenvalues of M are just the generalized eigenvalues of the pair (M1;M2). Thus the expected number of realeigenvalues of an n by n Cauchy matrix is equal top��((n+ 1)=2)�(n=2) ;and a real eigenvalue of a Cauchy matrix is Cauchy.We now prove these results. A straight forward calculation using Jacobians would be possible here, butwe prefer to use the more elegant tools of integral geometry.14



De�nition 6.1 Let �n denote the set of all n by n singular matrices of Frobenius norm one.Following standard notation, the Frobenius norm of a matrix A is de�ned as kAkF � qP a2ij. In thelanguage of algebraic geometry, �n is a real algebraic subvariety of dimension n2 � 2 of the unit sphereSn2�1 in <n2 . Now let (M1;M2) be a pair of matrices. The intersection in <n2 of the plane spanned byM1 and M2 and the sphere Sn2�1 is a great circle. Real generalized eigenvalues correspond to (pairs ofantipodal) intersections of �n with this great circle.Thus when we consider real generalized eigenvalues of the random pair (M1;M2), we are consideringintersections of �n with random great circles in Sn2�1. From the choice of probability measure for thepair (M1;M2), it is not hard to show that the random circles have the standard (Haar) measure. This isa classical set up for integral geometry. We wish to know the expected number of intersections of a �xedvariety and a random variety.Lemma 6.1 (Poincar�e) Let V be a variety in Sm of dimension m�1. The expected number of intersectionsof V and a random great circle (with the normalized Haar measure) is equal to twice the volume of V dividedby the volume of Sm�1.This formula and its generalizations appear in integral geometry books such as [26]. Poincar�e's formulareduces the problem of calculating the expected number of real generalized eigenvalues to �nding the volumeof �n.The set �n was studied by Demmel [3] and Edelman [8] in the context of studying the probabilitythat a numerical analysis problem is di�cult. In particular, they investigated the probability distributionof Demmel's scaled condition number �D(M ) � kMkFkM�1k2. Computing the volume of �n reduces tocomputing the asymptotics of the probability that �D > � as �!1:Let V�(�n) be the volume of an � neighborhood of �n in Sn2�1. Clearly,Vol(�n) = lim�!0(2�)�1V�(�n):By the de�nition of the Demmel condition number �D,V�(�n) = Prob[�D > 1=�]Vol(Sn2�1):Edelman [8, Corollary 2.2] has shown thatlim�!0 ��1Prob[�D > 1=�] = 2�((n+ 1)=2)�(n2=2)�(n=2)�((n2 � 1)=2) :We conclude that Vol(�n) = 2�n2=2�((n+ 1)=2)�(n=2)�((n2 � 1)=2) :Dividing this by the volume of Sn2�2 gives the expected number of real generalized eigenvalues.We now deduce the density function of a real generalized eigenvalue. Consider the pair (M1;M2) to bea collection of n2 bivariate normals. The generalized eigenvalue equation may be rewrittendet[cos(�)M1 � sin(�)M2] = 0:Since each of the bivariate normals is invariant under rotation, we can readily see that (cos(�); sin(�)) isuniformly distributed on the unit circle. Since � = tan(�), we have immediately that � is Cauchy.15



7 Numerical ExperimentsFairly early into our investigation, we had some notion that the expected number of real eigenvalues mustbe roughly 0:8pn from numerical simulations. We were later pleased to learn that this 0:8 was the numberp2=�.With the investigation completed, we can now provide the numerical experiments alongside the exacttheoretical results. The numerical experiments were performed using the newly released LAPACK eigenvaluealgorithms which we ran on 64 processors of the CM-5 parallel supercomputer. We are pleased to reportthat the LAPACK algorithm on the CM-5 computed results consistent with our theorems:Expected number of real eigenvalues: CM-5 Experiments using LAPACK on 64 processorsn trials experimental En theoretical En minutes80 640 7.6 7.603 1160 640 10.7 10.569 7320 640 14.9 14.756 51640 128 20.8 20.673 82900 64 24.5 24.427 107We used the CM-5 in what is sometimes called \embarrassingly parallel mode" because each individualmatrix never crossed any processor boundaries. Indeed, a 900 by 900 double precision real matrix is aboutthe largest that can �t on any one processor. The results of the computations were sent to the CM-5's hostusing the CM-5's message passing language CMMD.In order to save some computing time, rather than working with a dense matrix with normally distributedelements, we de�ned random upper Hessenberg matrices A with exactly the same eigenvalue distribution asa matrix with normally distributed elements. This upper Hessenberg matrix is de�ned byaij is8<: normally distributed i � jdistributed like �n�j i = j � 10 otherwiseTo prove that this random matrix does indeed have the same eigenvalue distribution, merely consider thestandard reduction to upper Hessenberg form using Householder matrices as described in books such as [14].The subdiagonal is the length of the column below it which is a � distribution, the appropriate elements arezeroed out creating Hessenberg form, and the remainder of the matrix remains normally distributed becauseof the orthogonal invariance.8 Extensions to Other DistributionsMehta [24, Conjectures 1.2.1 and 1.2.2] conjectures from extensive numerical experience that the statisticalproperties of matrices with independent identically distributed entries behave as if they were normallydistributed as n ! 1. Mehta focuses on the symmetric or Hermitian cases, but surely the idea is quitegeneral.Through our own numerical experience, we believe that any eigenvalue property of most any well-behaveddistribution can be modeled by the normal distribution. Below are some numerical experiments performedon matrices whose entries came from the uniform distribution on [�1; 1] and also the discrete distributionf�1; 1g. Notice that both of these measures have mean zero and �nite variance. Though we have not testedthis, we suspect that these are the crucial hypotheses. As indicated in the caption, our CM-5 was upgradedto 128 processors before running these experiments. 16



Expected number of real eigenvalues: CM-5 Experiments using LAPACK on 128 processorsuniform distribution [-1,1] discrete distribution f-1,1gn trials experimental En minutes trials experimental En minutes80 3200 7.6 3.5 3200 7.5 3.3160 3200 10.6 24.5 3200 10.5 24.1320 3200 14.9 191 3200 14.8 188640 896 21.1 412 640 20.8 308900 384 24.6 499 384 24.7 500
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