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Abstract. Computing the Jordan form of a matrix or the Kronecker structure of a pencil
is a well-known ill-posed problem. We propose that knowledge of the closure relations, i.e., the
stratification, of the orbits and bundles of the various forms may be applied in the staircase algorithm.
Here we discuss and complete the mathematical theory of these relationships and show how they
may be applied to the staircase algorithm. This paper is a continuation of our Part I paper on versal
deformations, but it may also be read independently.
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Notation.

A A square matrix of size n× n. I or In is the identity matrix.
AT The transpose of A.
vec(A) An ordered stack of the columns of a matrix A from left to

right.
det(A) Determinant of A.
N (A) The column nullspace of A.
diag(A1, . . . , Ab) A block diagonal matrix with diagonal blocks Ai.
A⊗B The Kronecker product of two matrices A and B whose (i, j)th

block element is aijB.
A1 A2 A canonical form whose Segre characteristics are the sum of

those of A1 and A2, or equivalently whose Weyr characteristics
are the union of those of A1 and A2.

A− λB A matrix pencil of size m× n. Also denoted P .
A(k) − λB(k) Deflated pencil at step k of a staircase algorithm.
mk, sk mk = dimension of nullspace of A(k),

mk − sk = dimension of common nullspace of A(k) and B(k).
λi Eigenvalue of A or A− λB. Also μi, α, β, γ, and δ are used.
Jj(λi) Jordan block of size j × j associated with λi.
Nj Jordan block of size j×j associated with the infinite eigenvalue

(sometimes denoted Jj(∞)).
Lj Singular block of right (column) minimal index of size j×(j+1).
LT
j Singular block of left (row) minimal index of size (j + 1) × j.
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αiαjβk Compact notation for Ji(α) ⊕ Jj(α) ⊕ Jk(β).
nrk(A− λB) Normal rank of A− λB.
O(A) The orbit of A, i.e., the set of matrices similar to A.
O(A− λB) The orbit of A − λB, i.e., the set of matrix pencils equivalent

to A− λB.
O(·) The closure of an orbit.
B(A) The bundle of A, i.e., the set of matrices with the Jordan struc-

ture of A, but with the eigenvalues unspecified.
B(A− λB) The bundle of A − λB, i.e., the set of matrix pencils with the

Kronecker structure of A − λB, but with the eigenvalues un-
specified.

B(·) The closure of a bundle.
S ⊕ T Direct sum of subspaces S and T of Rn.
dim(S) Dimension of subspace S. dim(S) denotes dimension of sub-

space spanned by the columns of S.
cod(S) Codimension is the dimension of the subspace complementary

to S.
κ(A) κ = (k1, k2, . . .) is the integer partition representing the Segre

characteristics for an eigenvalue λi of A.
μ(A) Integer partition representing the Weyr characteristics for an

eigenvalue λi of A.
κ′ The conjugate partition of κ, e.g., μ(A) = κ(A)′.
Jμi Jμi = (j1, j2, . . .) is the integer partition representing the Weyr

characteristics of A− λB for the eigenvalue μi.
R R = (r0, r1, . . .) is the integer partition representing the right

singular structure of A− λB.
L L = (l0, l1, . . .) is the integer partition representing the left

singular structure of A− λB.
〈P1, P2〉1 Inner product for Kronecker structures defined as dim{V :

A2V BT
1 = B2V AT

1 }, where P1 = A1−λB1 and P2 = A2−λB2.
〈P1, P2〉2 Inner product for Kronecker structures defined as dim{(U, V ) :

UP1 = P2V } (also denoted 〈P1, P2〉).
Am, Ãm The quivers Am and Ãm.
(x− y)+ max(x− y, 0).

1. Introduction. The determination of the Jordan form of a matrix A with
multiple defective or derogatory eigenvalues is an ill-posed problem in the presence
of roundoff error [26]. The same is true for the Kronecker form of a matrix pencil
A − λB. Therefore modern numerical software such as GUPTRI [15, 16] regularizes
the problem by allowing a tolerance for rank decisions so as to find a matrix pencil near
A − λB with an interesting Kronecker (or Jordan) structure. These algorithms are
known to occasionally fail, thereby accidentally producing wrong nearby structures.
Failure appears to occur when the matrix or pencil is close to a manifold of interesting
structures of higher codimension [13]. Motivating examples arise in control theory,
where linear control systems have been found that the staircase algorithm can decide
are easily controllable, but in fact these systems were nearly uncontrollable (see, e.g.,
[6]). Because of these occasional failures, we propose to make use of the mathematical
knowledge of the stratification of the Jordan and Kronecker structures in order to
enhance the staircase algorithm. This stratification, in effect, shows which structures
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Fig. 1.1. Perturbed eigenvalues of J3(2) ⊕ J2(2). Left: predominate structure. Right: nearby
structure J5(2).

are near other structures (in the sense of being in the closure) in the space of matrices.
During the execution of a staircase algorithm the user or the program can be aware
of the other nearby structures.

There are a number of ways to see the effects of nearby structures. Numerical ex-
periments on random perturbations of 2×3 matrix pencils using GUPTRI are reported
by Elmroth and K̊agström [21, Table 3.1]. Assuming a fixed relative accuracy of the
input data, the structures are studied as functions of the sizes of the perturbations.
Even in the admittedly small 2 × 3 case, it becomes clear that there is an interesting
combinatorial relationship among the possibilities, which we will investigate.

Consider the qualitative approach to the Jordan form proposed by Chaitin-
Chatelin and Frayssé [10] using their example of the Ruhe matrix whose Jordan
structure for eigenvalue λ = 2 is J3(2)⊕ J2(2). The computed eigenvalues of roughly
1000 (real) normally distributed random perturbations of size

√
ε (ε = 2−52 is the

usual IEEE double precision “epsilon”) allow us to plot perturbed eigenvalues as in
the picture to the left in Figure 1.1.

The six lines from the origin (four are fuzzy) and the smaller cross predict the
Jordan structure J3(2) ⊕ J2(2). Besides this predominant structure, other structures
may also appear [10]. We ran 50, 000 tests and filtered out those with roughly the
predominant structure, thereby leaving around 1000 matrices whose perturbed eigen-
values appear to the right in Figure 1.1. This figure suggests that the structure J5(2)
is somehow nearby. It turns out that J4(2) ⊕ J1(2) is also nearby but is much rarer.
In 500,000 random tests none were found.

In addition to J4(2)⊕ J1(2) and J5(2), one may wonder if we may have somehow
missed other nearby structures. (We have not!) A more important question is if
an algorithm such as GUPTRI or the qualitative approach suggest a certain Jordan
structure, how can the user or a program be given the information of what struc-
tures are worth considering? The answer is that the staircase algorithm may be given
expert knowledge of the combinatorial relationships among the various Jordan struc-
tures known as strata. In this paper we discuss these relationships and complete the
mathematical theory needed not only for the Jordan eigenvalue case, but also for the
Jordan bundle (see section 2.3) problem, the Kronecker structure problem, and the
Kronecker bundle problem.
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Before we introduce the form of the relationships among the strata, it is helpful to
think about the information produced from one iteration to the next in the staircase
algorithm. Suppose that we already have determined a subblock corresponding to a
single eigenvalue. For simplicity suppose that the eigenvalue is zero so that we know
from the beginning that we are trying to find the Jordan structure of a nilpotent
matrix. It is well known that the most generic such matrix has the single Jordan
block Jn(0) as its Jordan form. Such matrices form a dense set within the set of
nilpotent matrices. Therefore all we know at first is that the matrix is in the closure
of the matrices similar to a single Jordan block. As the staircase algorithm to deduce
the Jordan form proceeds, we gain more and more information about the matrix.
What in fact happens at each point in the algorithm is that we learn that the matrix
is in the closure of the set of matrices similar to some other Jordan form. Indeed one
may view the algorithm as identifying a nested sequence of closures. If during the
course of the algorithm the user is unhappy with any choice, he or she might wish
to have the power to backtrack through the algorithm and be offered other choices.
Alternatively at the end of the algorithm the user might wish to know what he or
she has missed in what has been described eloquently by Hough [30, p. 270] (in the
polynomial case) as the “thicket” of nearby structures.

Following Arnold, Gusein-Zade, and Varchenko [3, p. 41] (also see historical and
rather technical discussions by Goresky and MacPherson [27, pp. 33, 37]), we say
that we have a stratified manifold if it is the union of nonintersecting manifolds whose
closure is the finite union of itself with strata of smaller dimensions (thereby defining
stratified manifolds recursively). For matrices, the strata are orbits of similar matrices,
or perhaps the union of such orbits (known as bundles). For pencils, the strata consist
of strictly equivalent pencils (or bundles). The problem of stratification is to find the
closure relations among the various orbits or bundles. These relations define a partial
ordering on orbits or bundles. One structure covers another if its closure includes the
closure of the other and there is no other structure in between.

While we are the first to propose the use of stratifications in an algorithm, some of
the mathematical theory, at least for nilpotent matrices, goes back to 1961. It is known
to the lie algebra community as the closure ordering [11] and to the algebra community
as degenerations of modules over the Ã0 quiver (see section 5.2) [9]. Combinatorically
it is trivial; it is the well-known dominance ordering on partitions. This is the case
of relevance in an algorithm when the eigenvalues are well clustered so that we may
shift all the blocks to be nilpotent.

When eigenvalues are not well clustered, we have to consider the bundle case
as defined by Arnold [2]. We have not seen the closure relation for this case in the
literature so we believe that our theorems are new. We show that testing the closure
relation for bundles leads to an NP-complete problem; therefore it may be expensive
to use a stratification-enhanced algorithm in the bundle case when more than only a
few eigenvalues need to be clustered.

For orbits of matrix pencils, the closure ordering was published in a linear algebra
journal by Pokrzywa [37] in 1986. A general unifying algebraic theory of degenerations
has been obtained for quivers by several authors including Abeasis and Del Fra [1]
and Bongartz [9]. Bongartz studied the pencil case in 1990, apparently unaware of
Pokrzywa’s work. In algebraic language, for a matrix or pencil orbit or bundle to
cover another, it is necessary to have an extension. This condition is not sufficient;
another new result in this paper is the necessary and sufficient conditions for covers.
The Kronecker bundle case also seems to be new.
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We summarize the main theorems in the box below. The closure decision problem
is the question of how to test whether the closure of a given orbit or bundle is contained
within the closure of another. The closely related covering relationship tells us which
structures are covered by a given structure. The * indicates that to the best of
our knowledge the results were either previously unknown or not strong enough for
purposes of numerical computations. (For example, we extend Pokrzywa’s results by
providing both necessary and sufficient conditions for one Kronecker orbit to cover
another.)

Closure Decision Problem Covering Relationship

Jordan Orbits Theorem 2.2 Corollary 2.3
Jordan Bundles Theorem 2.6, 2.7 * Theorem 2.6 *
Kronecker Orbits Theorem 3.1 Theorem 3.2 *
Kronecker Bundles Theorem 3.3 * Theorem 3.3 *

We begin our paper reviewing the combinatorics of integer partitions in section
2.1. We then discuss the nilpotent orbit case already known in section 2.2, providing
our own simple proof in terms of the staircase form. Section 2.3 addresses the bundle
case showing that the decision procedure is an NP-complete problem. Section 3
covers the more complicated Kronecker case. In section 3.1 we state the stratification
theorems for both orbits and bundles. Examples are worked out in section 3.2. Some
special cases that arise in applications are further explored in sections 3.3 and 3.4.
The proofs of the theorems may be found in section 3.5. Section 4 provides some of
the necessary details for using the theorems inside of the staircase algorithms yielding
our so-called “stratification-enhanced staircase algorithm.” Finally, section 5 covers
some mathematical aspects of the problem and also provides a short exposition on
the algebraic notation so as to narrow the gap between the numerical and algebraic
communities.

2. Stratification of the Jordan canonical form. When the user of a numer-
ical algorithm is confident in the clustering of the eigenvalues, then the only question
that may arise is, What is the Jordan structure corresponding to an individual eigen-
value? In that case, there is no loss of generality assuming the eigenvalue is 0; hence we
are interested in the stratification of orbits of nilpotent matrices, the topic of section
2.2. When we are less confident in the clustering, we must consider the stratification
of bundles as discussed in section 2.3. We start with some elementary combinatorial
notions.

2.1. Integer partitions. A partition κ of an integer n is a sequence of integers
(k1, k2, k3, . . .) such that k1 + k2 + · · · = n and k1 ≥ k2 ≥ · · · ≥ 0. We use standard
vector operations and if m is a scalar we denote (k1 + m, k2 + m, . . .) as κ + m. The
partitions of an integer form a lattice ([40] is a good undergraduate reference) under
the dominance ordering: the dominance ordering on partitions (or integer sequences)
specifies that κ ≥ λ if and only if k1 + · · · + ki ≥ l1 + · · · + li, for i = 1, 2, . . ., and
we say that κ > λ if and only if κ ≥ λ and κ 	= λ. To say that we have a lattice
means that for every pair of partitions one can find an upper bound and a lower
bound, i.e., a partition that dominates the pair, and a partition that is dominated
by the pair. In a lattice we say that κ covers λ if and only if κ > λ, but there is
no μ such that κ > μ > λ. In Figure 2.1, the covering relationship for all integer
partitions of n = 8 is illustrated in a Hasse diagram. Notice that we have placed the
most dominant partition at the bottom of the diagram, i.e., the diagram shows the
reversed dominance ordering.
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Fig. 2.1. Covering relationship for all integer partitions of n = 8.

One can easily illustrate the covering relationship (Figure 2.2) by placing n coins
in a table with k1 in the first column, k2 in the second column, etc., corresponding to
a Ferrer diagram. A partition κ1 covers κ2 if κ2 may be obtained from κ1 by moving
a coin rightward one column, or downward one row, so long as the partition remains
monotonic [11]. Or equivalently, κ1 covers κ2 if κ1 may be obtained from κ2 by moving
a coin leftward one column, or upward one row, and keeping the monotonicity of the
partition. We call these moves a minimum rightward and a minimum leftward coin
move, respectively.

The final elementary notion that we need is the conjugate partition, which is the
partition obtained by “transposing” the coins and is here denoted κ′. Figure 2.3
shows how (3,2,2,1) and (4,3,1) are conjugate partitions. Since transposing reverses
the direction of coin moves, it is clear that κ > λ if and only if κ′ < λ′.

2.2. Stratification of nilpotent orbits. Consider two set of matrices; the first
consists of the matrices similar to the nilpotent matrix A1 and the second is the set
similar to the nilpotent matrix A2. When is the closure of the second set similar to
that of the first? The closure is a mathematically precise way to discuss the vague
idea of a Jordan form being “near” another Jordan form.
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Fig. 2.2. “Coin move” illustrates that (3,2,2,1) covers (2,2,2,2).

Fig. 2.3. Transposing illustrates that (3,2,2,1) and (4,3,1) are conjugate partitions.

Formally, in n2-dimensional matrix space, consider the orbits of matrices under
similarity transformations:

O(A) ≡ {SAS−1 : det(S) 	= 0}.

When is O(A1) ⊇ O(A2)? Trivially, if A1 and A2 are similar, then O(A1) = O(A2).
If O(A1) ⊃ O(A2), then A1 is “more generic” than A2 or A1 “degenerates” into A2.
In general, if an orbit O1 is more generic than an orbit O2, then dim O1 > dim O2.
However, this is not a sufficient condition for the closure of O2 to be a proper subset
of the closure of O1.

Associated with every nilpotent matrix A is the partition κ(A) = (k1, k2, k3, . . .)
that lists in decreasing order the sizes of the Jordan blocks associated with A. The
ki are known as the Segre characteristics. The partition μ(A) that is conjugate to
κ(A) contains what are known as the Weyr characteristics. (See, for example, [13] or
older textbooks for discussion.) The staircase form [26, 33] is obtained by applying
a unitary similarity transformation that puts the nilpotent matrix A in the form
illustrated in Figure 2.4 for a partition with four parts. Here, the Ai,i+1 blocks are of
full column rank, the *’s are arbitrary, the “lower staircase” (below the Ai,i+1 blocks)
consists of only zero entries, and mi (= the number of principal vectors of grade i) are
the Weyr characteristics. The Weyr characteristics are the block sizes that appear in
the staircase form. The nilpotent A in Figure 2.4 has m1 −m2,m2 −m3,m3 −m4,
and m4 Jordan blocks Ji(0) of size i = 1, 2, 3, and 4, respectively.

Strictly upper triangular matrices are associated with directed acyclic graphs by
taking the sparsity graph, meaning that node i points to node j if the (i, j) entry
is not 0. Conversely, one can start with a directed acyclic graph G and find the
Jordan structure of a generic matrix with sparsity graph G by a procedure suggested
by Gansner [22]: a path in G is a sequence of vertices connected by directed edges
in the usual orientation. A k-path is a subset of vertices that can be partitioned into
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Fig. 2.4. Example of a nilpotent A in staircase form.
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Fig. 2.5. Digraph illustrating a J4 ⊕ J2.

k or fewer paths. Let s1 denote the length of the longest path (1-path) in G, and
inductively define sj by letting s1 + · · ·+sj denote the size of a longest (most vertices)
j-path. These si are the Segre characteristics associated with the digraph. The dual
notion to longest k-paths is the shortest k-truncated path. Consider a partition of the
vertices of the digraph into paths labeled 1, . . . , l. Let wi denote the length of the ith
path or k, whichever is smaller. The length of such a k-truncated path is w1+ · · ·+wl;
the smallest such sum is the length of the shortest k-truncated path. This gives a
graph interpretation of the Weyr characteristics.

It would be a misconception that the size of the kth largest Jordan block can be
found by looking at the longest path remaining after removing the longest (k−1)-path,
since this may not be included in the longest k-path, as in the example in Figure 2.5.
Here, the longest 1-path (1, 2, 5, 6) of length four is not included in the longest 2-path
(1, 2, 3), (4, 5, 6) of length six. (The Jordan normal form (JNF) of the generic matrix
corresponding to the graph is J4 ⊕ J2, not J4 ⊕ J1 ⊕ J1.) By inspection we also see
that this matrix cannot be put in staircase form by using only permutations. Even if
the longest (k − 1)-path is a subset of the longest k-path, it still may not necessarily
be permuted into staircase form. The following is a graph characterization of the
staircase form for nilpotent matrices.

Theorem 2.1. Denote the sources of a digraph as the 1-sources; deleting these
sources we may denote the new sources as 2-sources, etc. A nilpotent matrix may be
permuted to staircase form if and only if the k-sources form an antichain (i.e., no
edges between them) and there is a matching between a subset of the (k − 1)-sources
and the k-sources.
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Weyr: (4, 3, 3) → (4, 4, 2) (4, 3, 2, 1) → (5, 2, 2, 1) (4, 2, 2, 2) → (4, 3, 2, 1)
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Fig. 2.6. The ♦ goes from 1 to 0. The ♠ = 1 is introduced to preserve rank conditions. The
solid lines indicate the original Jordan structure in staircase form. The dashed lines indicate the
diagonal blocks of the final Jordan structure obtained when ♦ = 0.

Proof. The nodes in the k-sources correspond to the kth diagonal block of the
staircase form. The antichain corresponds to Ak,k = 0, and the matching condition
is the full-rank condition on Ak,k+1.

Our own version of the proof of the nilpotent stratification is quite short. Much
of the proof may be understood by inspection of the staircase form or the digraph.

Theorem 2.2. O(A1) ⊇ O(A2) if and only if μ(A2) ≥ μ(A1), or equivalently
κ(A1) ≥ κ(A2), where μ and κ denote the Weyr and Segre characteristics, respec-
tively.

Proof. We first remark that if A2 ∈ O(A1), then O(A2) ⊆ O(A1) by taking
similarity transformations. It then follows upon taking the closure of both sides that
O(A2) ⊆ O(A1). Therefore, to prove the “if” assertion, it suffices to assume that
μ2 covers μ1 and to exhibit an A1 and A2 such that μ(Ai) = μi for i = 1, 2 and
A2 ∈ O(A1).

For any μ2 that covers μ1, we have a “coin move” that decrements a column
of size mj and increments that of mi, where i < j. The A1 that we will pick with
μ(A1) = μ1 has square identity matrices placed at the top of the superdiagonal blocks,
except for Aj,j+1, where the identity matrix is placed at the bottom (if j < jmax, the
size of the largest Jordan block). We also place a 1 (denoted ♠ in Figure 2.6) in the
first column of the super-super diagonal block Ai−1,i+1 in the last row (if i > 1). By
zeroing the 1 in the first column of Ai,i+1 continuously, we effect a coin move that
reduces mj by one and increases mi by one.

In Figure 2.6 we illustrate a few cases. The diamond (♦) moves continuously
from 1 to 0. The spade (♠ = 1) is introduced if i > 1. Note the cascading effect when
j 	= i+ 1 in the equal blocks. The graph picture of the proof in terms of paths is also
displayed in Figure 2.6. The deletion of the edge with the diamond corresponds to a
coin move.

To prove the “only if” assertion, we assume that A2 is a limit point of a contin-
uous path Γ in O(A1). We may continuously decompose every point on Γ into the
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staircase form corresponding to the partition μ(A1). By the boundedness of the set
of orthogonal matrices (compactness of the orthogonal group), although A2, which is
in the closure of O(A1), may not be in O(A1), it may also be put into the very same
staircase form, although we may lose the full rank conditions on the Ai,i+1.

A rank one drop in one such Ai,i+1 corresponds to a leftward coin move. For
example, if the rank of A23 in Figure 2.4 drops by one, then after an orthogo-
nal similarity transformation, m3 is decremented by one and m2 (or possibly m1 if
m1 = m2) increments by one. (This assumes that the matrix consisting of A13

on top of A23 does not itself lose column rank, otherwise we have a more “long-
distance” coin move obtainable by cascading short coin moves.) Therefore μ(A2)
dominates μ(A1).

From Theorem 2.2 and the definition of covering partitions we get the following
obvious characterization for covering orbits of nilpotent matrices A1 and A2.

Corollary 2.3. O(A1) covers O(A2) if and only if μ(A2) can be obtained from
μ(A1) by a minimum leftward coin move.

By reading the Hasse diagram in Figure 2.1 from top to bottom we get the
stratification in terms of the Weyr characteristics. Reading the diagram from bottom
to top, we get the closure hierarchy in terms of the Segre characteristics.

2.3. Stratification of Jordan bundles. Let Jn(α) denote a single n× n Jor-
dan block with eigenvalue α. Our first example of a bundle as defined by Arnold
[2, Sect. 5.3] is

⋃
α O(Jn(α)), the set of all matrices whose Jordan form consists of

a single block. Notice that the bundle is the union of orbits. Here is the general
definition. If two matrices have the same Jordan structure except that the distinct
eigenvalues are different, we say they are in the same bundle. More precisely, let
w(λ1), w(λ2), . . . , w(λp) be the Weyr characteristics of a matrix A with distinct eigen-
values λ1, . . . , λp. (Remember that w(λi) is a partition of ni, the algebraic multiplicity
of the eigenvalue λi.) Another matrix B is said to be in the bundle B(A) if the dis-
tinct eigenvalues μ1, . . . , μp of B may be ordered in such a way that the sequence of
partitions w(μ1), w(μ2), . . . , w(μp) is identical to that of A.

Let A1 and A2 be two nilpotent matrices. We define A1 A2 to be the matrix
in Jordan form (with the Jordan blocks ordered in decreasing order) whose Segre
characteristics are the sums of those of A1 and A2, or equivalently whose Weyr char-
acteristics are the union of those of A1 and A2. We point out that A1 ⊕A2 goes the
other way: the Segre characteristics are the union, and the Weyr characteristics are
the sum. For example, if A1 = J3(0) ⊕ J1(0) and A2 = J3(0) ⊕ J2(0) ⊕ J1(0), then
A1 ⊕ A2 = 2J3(0) ⊕ J2(0) ⊕ 2J1(0) and A1 A2 = J6(0) ⊕ J3(0) ⊕ J1(0). We define
an extension of A1 and A2 to be any matrix of the form

(
A1 X
0 A2

)
,

where X could be any matrix of conforming size. For the example above, we get an
extension with Jordan structure A1 A2 by choosing x31 and x44 nonzero and all
other elements in X (of size 4 × 6) as zero.

We have already pointed out that when X = 0, the Segre characteristics of the
extension is the union of the Segre characteristics of A1 and A2. Therefore, an easy
consequence of Theorem 2.2 is that O(A1 ⊕A2) ⊂ O(A1 A2).

Lemma 2.4. The most generic extensions of A1 and A2 are in the orbit of
A1 A2.

Proof. The easiest proof of this statement is obtained by assuming that A1 and
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A2 are in Jordan form and by examining the longest k-paths in an extension. At most
we can connect the longest path from the graph of A1 to that of A2, then the next
longest of each, etc. Another proof may also be found in [25, Prop. 4.2.2].

If A is an extension of A1 and A2, then we have the obvious statement that

O(A1 ⊕A2) ⊆ O(A) ⊆ O(A1 A2).(2.1)

The set of matrices A satisfying the relation (2.1) form a sublattice of the domi-
nance ordering. Unfortunately, in general, this sublattice is not the set of extensions
of A1 and A2. (An example is A1 = J6(0) and A2 = J4(0) ⊕ J2(0). In the lattice,
J6(0) ⊕ J5(0) ⊕ J1(0) is between A1 A2 and A1 ⊕ A2, but it is not an extension
of A1 and A2.) The characterization of the extensions (a further sublattice of this
sublattice) is an open problem according to [25, p. 133], but it is not needed for our
purposes.1

In the next lemma, we consider limit points of continuous paths A(t) such that
when 0 ≤ t < 1, the path is contained in a bundle consisting of two distinct eigenval-
ues.

Lemma 2.5. Suppose A(t) is similar to A1(t) ⊕ A2(t) for 0 ≤ t ≤ 1, where
A1(t) − β(t)I and A2(t) − γ(t)I are nilpotent, and for 0 ≤ t < 1, β(t) 	= γ(t), but
when t = 1, β(1) = γ(1) = 0. In other words, A1(t) has the unique eigenvalue β(t),
A2(t) has the unique eigenvalue γ(t), and these eigenvalues coalesce at 0 when t = 1.
Then

O(A(1)) ⊆ O(A1(1) A2(1)).

Proof. We may find a continuous orthogonal similarity transformation Q(t) such
that

QT (t)A(t)Q(t) =

(
A′

1(t) X(t)
0 A′

2(t)

)
,

and A′
1(t) is similar to A1(t) and A′

2(t) is similar to A2(t) for 0 ≤ t < 1. Therefore,
by Lemma 2.4,(

A′
1(t) X(t)
0 A′

2(t)

)
−
(

β(t)I
γ(t)I

)
∈ O(A1(1) A2(1))

for 0 ≤ t < 1. Letting t → 1 shows that A(1) ∈ O(A1(1) A2(1)), from which the
result follows.

The Jordan bundle stratification theorem follows below. Our results for the clo-
sure decision problem are also derived in [36, 17]. We believe the covering relationship
is new.

Theorem 2.6. Suppose that we have two bundles B(A1) and B(A2) such that the
former has at least as many distinct eigenvalues as the latter. Then B(A1) ⊇ B(A2)
if and only if it is possible to coalesce eigenvalues and apply the dominance ordering
coin moves to the bundle defined by A1 to reach that of A2. Furthermore, a cover
is obtained either by a minimal coin move (on the structure for one eigenvalue) or a
generic extension (of the structures for two distinct eigenvalues assumed to coalesce).

Proof. All that remains is to prove the minimality property of these covering
relations. There are two natural quotient lattices of the bundle lattice. The first

1We prefer the use of the word “extension” rather than “completion” as used by [25] for consis-
tency with the algebraic notion of extension of two modules.
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Fig. 2.7. The bundle stratification for 4 × 4 matrices.

counts the number of eigenvalues. The second is the partition of n obtained by taking
the union of the partitions corresponding to all of the eigenvalues. Moving a coin
in one partition moves down the first lattice but not the second. Coalescing two
eigenvalues (forming the union of two partitions) moves down the second lattice but
not the first. Therefore each operation cannot be obtained from the result of the other
operation, so each is minimal.

Figure 2.7 plots the bundle stratification for 4×4 matrices. Here, we use Arnold’s
compact notation for Jordan blocks: αk ≡ Jk(α). Circled in the top of the figure
are those structures corresponding to coalescing eigenvalues. It is possible to gain
an appreciation of the complicated manner of how these structures fit inside each
other from the swallowtail diagram in Figure 2.8 [2], which shows the projection
of these structures into three-dimensional space. The point α4 is the swallowtail
point, the curve α3β are the two cusp edges coming out from the swallowtail, α2β2 is
the transversal intersection of the wings, and α2βγ is the surface of the swallowtail.
Everything outside the swallowtail is represented by αβγδ. Any reliable numerical
attempt to find the nearest structure of a certain particular form must somehow
implicitly or explicitly deal with this kind of geometry. The circled structures in the
lower part of the figure are those that correspond to the stratification of nilpotent
orbits.

Figure 2.7 captures all distinct singularities of codimension 1 (α2) and 2 (α3, α2β2)
and two of the four distinct bundles of codimension 3 (α4 and αα). The missing ones
are α3β2 and α2β2γ2.
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Fig. 2.8. The swallowtail.

Unfortunately, although the decision procedure for testing the closure relation for
nilpotent matrices is trivial (all that is required is to test if one partition dominates
the other), the corresponding procedure for bundles is an NP-complete problem. We
speculate that this may capture some of the essence of the true difficulty associated
with the clustering problem for perturbed eigenvalues. Another result that is slightly
related was obtained by Gu [28], who showed that finding a well-conditioned similarity
transformation to block-diagonalize a nonsymmetric matrix is an NP-hard problem.

Theorem 2.7. Deciding whether a bundle is in the closure of another bundle is
an NP-complete problem.

Proof. Suppose that we have a matrix of dimension n = km that has 3m distinct
eigenvalues with multiplicities k1, . . . , k3m with the property that k/4 < ki < k/2
for each i. Consider the existence of a clustering of all of these eigenvalues into m
triples so that the sum of the multiplicities of the three eigenvalues in each cluster
is exactly k. This problem is the three-partition problem and is well known to be
NP-complete [24].

The implication of Theorem 2.7 is that it is unlikely to find an efficient algorithm
that solves all instances of the decision problem. However, it is still possible that
there exist algorithms that can solve most practical cases efficiently.

3. Stratification of the Kronecker canonical form. The notions of canoni-
cal form, orbits, bundles, and partitions extend to the matrix pencil case in a straight-
forward manner as follows. Any matrix pair (A,B), where A and B are m × n with
real or complex entries, defines an orbit (manifold) of strictly equivalent matrix pencils
in the 2mn-dimensional space P of m× n pencils:

O(A− λB) = {U−1(A− λB)V : det(U)det(V ) 	= 0}.(3.1)

Let P1 = A1 − λB1, P2 = A2 − λB2 be two pencils (of possibly different sizes). A
pair (U, V ) satisfying UP1 = P2V defines a homomorphism from P1 to P2 (see section
5.1). Let the dimension of such (U, V ) be

〈P1, P2〉 = dim{(U, V ) : UP1 = P2V }.(3.2)

We also define cod(A−λB) as the codimension of O(A−λB), which is the dimension
of the space complementary to the orbit, e.g., the dimension of the space normal to
O(A−λB) at the point A−λB [43, 13, 19]. It is known that cod(P ) = 〈P, P 〉−(m−n)2.

The Kronecker canonical form (KCF) (e.g., see [23]) for a pencil is the direct sum
of the right singular, left singular, and regular structures, consisting of Lk blocks of
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size k × (k + 1) for the right singular structure and LT
k blocks for the left singular

structure. The regular structure consists of Jordan blocks Jk(μ) corresponding to
eigenvalue μ and Nk for the eigenvalue ∞. For short, we omit the word “singular”
when clear from context. If A − λB is m × n, where m 	= n, then for almost all A
and B it will have the same KCF, depending only on m and n (the generic case; see
section 3.3).

Define the normal rank of A− λB as

nrk(A− λB) = n− r0 = m− l0,

where r0 and l0 are the total number of right and left blocks, respectively, in the KCF
of A− λB.

As in the matrix case we consider two main problems in order to understand the
stratification of matrix pencils. First, given two m×n matrix pencils P1 = A1 − λB1

and P2 = A2−λB2 we want to have a procedure for deciding whether O(P1) ⊇ O(P2).
Second, we want to find a procedure for generating covering pencils, i.e., the closest
neighboring orbits above or below in the closure hierarchy. These two problems are
also investigated for bundles of pencils.

Because of the three basic structures (right, left, regular) in the Kronecker form,
the complete characterization of all possible m×n Kronecker forms, their orbits, and
bundles is somewhat more intricate than for the matrix case. We not only will need to
define partitions for each eigenvalue, but in addition we will need partitions to define
the right and left singular structures.

Let R(P ) and L(P ) denote the partitions for the right and left structures, respec-
tively, of P = A − λB and let Jμ(P ) denote the partition for the Jordan structure
corresponding to the eigenvalue μ (finite or infinite). When it is clear from context,
we use the abbreviated notation R, L, and Jμ. The ji’s in a J partition are the Weyr
characteristics for the eigenvalue μ, i.e., ji is the number of Jk(μ) blocks of size k ≥ i.
Similarly, ri of R (or li of L) is the number of Lk (or LT

k ) blocks of size k ≥ i.
We have shown in section 2 that the closure hierarchy of the set of n×n nilpotent

matrices is completely determined by the dominance ordering of the integer n. Since
the Kronecker structure for matrix pencils includes both Jordan blocks and singular
blocks, a corresponding characterization involves integer sequences corresponding to
each kind of block.

3.1. Stratification of Kronecker orbits and bundles. The decision proce-
dure for the closure of orbits was derived by Pokrzywa [37] in 1986, was later refor-
mulated by De Hoyos [12] in 1990, and was formulated differently by Bongartz [9] in
1990. In the following we give our formulation of De Hoyos’s closure characteriza-
tion. In section 5.2 we explain the algebraic and geometric connections between these
approaches.

Theorem 3.1 (see [37, 12, 9]). O(P1) ⊇ O(P2) if and only if the following
relations hold:

• R(P1) + nrk(P1) ≥ R(P2) + nrk(P2),
• L(P1) + nrk(P1) ≥ L(P2) + nrk(P2),
• Jμi(P1) + r0(P1) ≤ Jμi

(P2) + r0(P2)
for all μi ∈ C, i = 1, 2, . . ., where C = C

⋃
{∞}.

We remark that we could have used the more symmetric looking expression
Jμi(P1) − nrk(P1) ≤ Jμi(P2) − nrk(P2) as item three in the theorem at the cost
of having “negative coins.” If nrk(P1) = nrk(P2), we say that P1 and P2 are on the
same level playing field, and the relations in Theorem 3.1 reduce to R(P1) ≥ R(P2),
L(P1) ≥ L(P2), and Jμi(P1) ≤ Jμi(P2).
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In a contemporary paper [7], Boley applies Theorem 3.1 and shows similar ma-
jorizing results of integer sequences associated with the KCF when a single row or
column is appended to a matrix pencil. The application considered is adding a single
input or output to a linear time-invariant dynamical system.

Now that we can test if one structure is more generic than another in the closure
lattice, the next question we consider is the generation of all structures covered by
a given pencil. Necessary conditions for two structures to be (closest) neighbors in
the lattice are given in [37, 12, 9] and are used in an algorithm for computing the
complete Kronecker structure hierarchy in [20]. We believe we are the first to give both
necessary and sufficient conditions for neighbors in the lattice (which in addition gives
an optimal algorithm for computing the complete hierarchy). We present these results
in the form of coin moves associated with R, L, and Jμi

for different eigenvalues μi.
Theorem 3.2. O(P1) covers O(P2) if and only if P2 can be obtained by applying

one of the rules (1)–(4) to the integer partitions of P1:
(1) Minimum rightward coin move in R (or L).
(2) If the rightmost column in R (or L) is one single coin, append that coin as a

new rightmost column of some Jμi (which may be empty initially).
(3) Minimum leftward coin move in any Jμi .
(4) Let k denote the total number of coins in all of the longest (= lowest) rows

from all of the Jμi . Remove these k coins, add one more coin to the set, and
distribute k + 1 coins to rp, p = 0, . . . , t and lq, q = 0, . . . , k− t− 1 such that
at least all nonzero columns of R and L are given coins.

Rules (1) and (2) may not make coin moves that affect r0 (or l0).
Notice that the restriction for rules (1) and (2) implies that the number of left

and right blocks remains fixed, while rule (4) adds one new block of each kind. We
also remark that rule (4) cannot be applied if the total number of nonzero columns
in R and L is more than k + 1. Rule (3) corresponds to the nilpotent case.

As in the matrix case we also consider stratification of bundles. Two pencils are in
the same bundle if they have the same left and right singular structures and the same
Jordan structure except that the distinct eigenvalues may be different. Of course, if
O(P1) covers O(P2), then B(P1) ⊃ B(P2), but the two bundles may not necessarily
be covering, since there is a possibility of other structure changes from coalescing
eigenvalues.

Theorem 3.3. B(P1) covers B(P2) if and only if P2 can be obtained by applying
one of the rules (1)–(5) to the integer partitions of P1:

(1) Same as rule 1 in Theorem 3.2.
(2) Same as rule 2 in Theorem 3.2, except it is allowed only to start a new set

corresponding to a new eigenvalue (i.e., no appending to nonempty sets).
(3) Same as rule 3 in Theorem 3.2.
(4) Same as rule 4 in Theorem 3.2, but apply only if there is just one eigenvalue

in the KCF or if all eigenvalues have at least two Jordan blocks.
(5) Let any pair of eigenvalues coalesce, i.e., take the union of their sets of coins.
The problem of deciding if the closure of the bundle of one pencil contains the

bundle of another is NP-complete, just as for the matrix case (see Theorem 2.7). We
postpone the proofs of Theorems 3.2 and 3.3 to section 3.5 and continue by illustrating
the theorems with some examples. In section 4 an algorithmic implication of Theorem
3.2 is presented. We express different structure transitions in rules (1)–(4) in terms
of the structure indices computed by a staircase algorithm.
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P1 = L0 ⊕ L1 ⊕ L2 ⊕ J1(μ1) ⊕ J4(μ1) ⊕ J3(μ2) ⊕ LT
1 ⊕ LT

3

Structure blocks Partition Coins

Right L0 ⊕ L1 ⊕ L2 R = (3, 2, 1)
◦◦ ◦◦ ◦ ◦

Left LT
1 ⊕ LT

3 L = (2, 2, 1, 1) ◦ ◦◦ ◦ ◦ ◦

Regular eig=μ1 J1(μ1) ⊕ J4(μ1) Jμ1 = (2, 1, 1, 1) ◦◦ ◦ ◦ ◦

eig=μ2 J3(μ2) Jμ2
= (1, 1, 1) ◦ ◦ ◦

Fig. 3.1. Example Kronecker structure P1 with corresponding partitions.

3.2. Examples. To focus the reader’s attention on how the covering theorem
may be used in a numerical algorithm, we will examine two examples in detail. In the
first example we take a particular pencil P1 of size 17×18 and illustrate the application
of some of the rules from Theorem 3.2. In the second example, we focus on a smaller
case—the 2× 3 pencils—and show the entire lattices for orbits and bundles. We also
use this example to illustrate Theorem 3.1.

Our example pencil P1 has KCF L0⊕L1⊕L2⊕J1(μ1)⊕J4(μ1)⊕J3(μ2)⊕LT
1 ⊕LT

3 .
We illustrate how the four rules in Theorem 3.2 can be used to find a pencil P2 that is
covered by P1. The starting configuration for P1 may be found in Figure 3.1 and the
application of some of the rules is shown in Figure 3.2. We display KCF structures
as both integer partitions and columns of “coins” (◦). In Figure 3.2 we illustrate how
each of the rules can be applied to P1. (We append the notation a and b to rules (1)
and (2) to denote application to the right or left structure, respectively.) The symbol
• is used to denote a coin that will be moved in P1’s coin arrays or a coin that has been
moved in P2’s coin arrays. Notice that some of the rules can also be applied to other
combinations of blocks of P1, i.e., the figure does not show all possible transitions
that give a pencil P2 that is covered by P1. Each row of the figure shows how one
of the rules may be applied to some of the blocks in the KCF. In the last column of
Figure 3.2 (labeled “Block transitions”) we record only the blocks that are involved
in the application of the rule.

Recently, Elmroth and K̊agström did a comprehensive study of the set of 2 × 3
pencils, including the stratification problem [21]. There are 9 possible bundles in this
case. (From an algorithmic point of view, we may not want to bundle in the zero
and infinite eigenvalue, in which case there are 20 bundles.) Fix the eigenvalues in
the bundle to be γ and δ, with γ 	= δ. The closure lattice corresponding to the orbits
is shown in Figure 3.3. Following [21] we display the lattice with orbits (nodes) of
the same codimension on the same horizontal level. The generic case (L2) is at the
highest level and the most degenerate pencil (3L0⊕2LT

0 which is the 2×3 zero pencil)
is at the lowest level. A pencil P2 is in O(P1) if and only if there is a path from P1

to P2. The labels of the arcs correspond to which covering rules in Theorem 3.2 we
have applied.

In Figure 3.4 we show the closure lattice corresponding to the bundles of 2 × 3
pencils. Here, a node represents the bundle consisting of all pencils with the displayed
Kronecker structure, where the value of the eigenvalues γ and δ may vary, but γ 	= δ.
The arc labels show which of the rules in Theorem 3.3 we have applied. Since the
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Rule Partition P1 P2 Block transitions

(1a) R ◦◦ •◦ ◦ ◦
◦◦◦ ◦ ◦ • L1 ⊕ L2 −→ L0 ⊕ L3

(1b) L ◦ •◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ • LT
1 ⊕ LT

3 −→ LT
0 ⊕ LT

4

(2a) R ◦◦ ◦◦ ◦ •
◦◦ ◦◦ ◦ L2 ⊕ J4(μ1) −→ L1 ⊕ J5(μ1)

Jμ1
◦◦ ◦ ◦ ◦ ◦◦ ◦ ◦ ◦ •

(2b) L ◦ ◦◦ ◦ ◦ • ◦ ◦◦ ◦ ◦ J3(μ2) ⊕ LT
3 −→ J4(μ2) ⊕ LT

2

Jμ2
◦ ◦ ◦ ◦ ◦ ◦ •

(3) Jμ1
◦◦ ◦ ◦ • ◦ •◦ ◦ ◦ J1(μ1) ⊕ J4(μ1) −→ J2(μ1) ⊕ J3(μ1)

(4) R ◦◦ ◦◦ ◦ ◦
•◦ •◦ ◦ •◦ ◦ ◦ J4(μ1) ⊕ J3(μ2) −→ L2 ⊕ LT

4

L ◦ ◦◦ ◦ ◦ ◦
• •◦ ◦ • •◦ ◦ ◦ ◦ •

Jμ1
◦• • • • ◦

Jμ2
• • •

Fig. 3.2. Illustration of the covering rules in Theorem 3.2 starting with P1 as in Figure 3.1.

eigenvalues may vary in the bundles, the codimension for each Kronecker structure
with regular part is one less for each eigenvalue compared to the orbit case (see Figure
3.3). For example, the codimension of L1 ⊕ J1(γ) is 2 in Figure 3.3 and 1 in Figure
3.4, since γ is an extra degree of freedom in the bundle case.

When comparing the closure hierarchies for bundles and orbits, we see that the
bundle structure L0 ⊕ J2(γ) is found as the most generic one when γ and δ coalesce
(rule (5)) in L0 ⊕ J1(γ) ⊕ J1(δ), while these two structures are on different branches
in the hierarchy for orbits (where the eigenvalues are assumed to be specified and
therefore never may coalesce). This illustrates the restriction of rule (2) in Theorem
3.3.

Finally, we illustrate Theorem 3.1 by investigating the closure relations for the
orbits of 2×3 pencils P1 = L1⊕J1(γ), P2 = L0⊕J2(γ), P3 = L0⊕J1(γ)⊕J1(δ), and
P4 = 2L0 ⊕ LT

1 . From Table 3.1 we see that P2, P3, P4 are in O(P1), P4 is in P1, P2

and P3, but neither P2 or P3 are in the closure of the other. To realize that P1 and
P4 are closest neighbors to both P2 and P3 we have to apply Theorem 3.2 (see Figure
3.3).

3.3. Generic and full normal rank pencils. The generic Kronecker structure
for A− λB of size m× n with d = n−m > 0 is

diag(Lα, . . . , Lα, Lα+1, . . . , Lα+1),(3.3)

where α = �m/d�, the total number of blocks is d, and the number of Lα+1 blocks
is m mod d (which is 0 when d divides m) [41, 13]. The same statement holds for
d = m − n > 0 if we replace Lα, Lα+1 in (3.3) by LT

α , L
T
α+1. Indeed, a generic



684 ALAN EDELMAN, ERIK ELMROTH, AND BO KÅGSTRÖM
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Fig. 3.3. Closure hierarchy of orbits for the set of 2 × 3 pencils.

nonsquare pencil A− λB is equivalent to one of the following two forms:

[
0 Im

]
− λ

[
Im 0

]
, (m < n) and

[
0
In

]
− λ

[
In
0

]
, (m > n).

Square pencils are generically regular, i.e., det(A − λB) = 0 if and only if λ is an
eigenvalue. The generic singular pencils of size n × n have the Kronecker structures
[43]:

diag(Lj , L
T
n−j−1), j = 0, . . . , n− 1.

All generic pencils have full normal rank, i.e., nrk(A−λB) = min(m,n). However,
a pencil can have full normal rank without being generic. An m×n pencil with m < n
has full normal rank if and only if it has no LT

k blocks. Similarly, if m > n the pencil
has full normal rank if and only if it has no Lk blocks. Finally, a square pencil (m = n)
has full normal rank if and only if it has no singular blocks.



A STRATIFICATION-ENHANCED STAIRCASE ALGORITHM 685

�
�

�
�

L2

�

2a

�
�

�
�L1⊕J1(γ)

�

2a

�
�

�
�L0⊕J1(γ)⊕J1(δ)

�

5

�
�

�
�L0⊕J2(γ)

�
�

�
�

�
���

�
�

�
�

�
���

3 4

�

4

�
�

�
�L0⊕2J1(γ)

	
	

	
	

	
	

	
	

	
	


4

�
�

�
�L0⊕L1⊕LT

0

�
�

�
�

�
�

�
�

�
��

2a
�
�

�
�2L0⊕LT

1

�

2b

�
�

�
�2L0⊕J1(γ)⊕LT

0

�

4

�
�

�
�3L0⊕2LT

0

Cod(A− λB)

0

1

2

3

5

6

7

12

Fig. 3.4. Closure hierarchy of bundles for the set of 2 × 3 pencils.

Next we consider full normal rank pencils with only Lk or LT
k blocks in their

KCF. Let us assume that m < n; otherwise we can just perform the same process
on the transposed pencil. The R partition corresponding to the generic pencil is
(r0, r1, · · · , rα, rα+1), where

r0 = r1 = · · · = rα = d and rα+1 = m mod d

for d = n −m and α = �m/d�. Notice that ri = 0 for i > α + 1. Then we have the
following corollary of Theorem 3.2.

Corollary 3.4. The dominance ordering of R = (r0, r1, . . . , rα, rα+1) with
r0 = d = n−m > 0 kept fixed defines the closure hierarchy of the set of m×n matrix
pencils with only Lk blocks.
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Table 3.1

Partitions for deciding closure relations between sample 2 × 3 pencils.

R L Jγ Jδ r0 nrk(·)
P1 (1, 1, 0, . . .) (0, . . .) (1, 0, . . .) (0, . . .) 1 2
P2 (1, 0, . . .) (0, . . .) (1, 1, 0, . . .) (0, . . .) 1 2
P3 (1, 0, . . .) (0, . . .) (1, 0, . . .) (1, 0, . . .) 1 2
P4 (2, 0, . . .) (1, 1, 0, . . .) (0, . . .) (0, . . .) 2 1

R + nrk(·) L + nrk(·) Jγ + r0 Jδ + r0
P1 (3, 3, 2, 2, . . .) (2, 2, 2, 2, . . .) (2, 1, 1, 1, . . .) (1, 1, 1, 1, . . .)
P2 (3, 2, 2, 2, . . .) (2, 2, 2, 2, . . .) (2, 2, 1, 1, . . .) (1, 1, 1, 1, . . .)
P3 (3, 2, 2, 2, . . .) (2, 2, 2, 2, . . .) (2, 1, 1, 1, . . .) (2, 1, 1, 1, . . .)
P4 (3, 1, 1, 1, . . .) (2, 2, 1, 1, . . .) (2, 2, 2, 2, . . .) (2, 2, 2, 2, . . .)
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|
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|
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/ \
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| \ |

| 43311

441111 |
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| / |

432111 42222

| \ |
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\ /

4221111

|

42111111

|

411111111

Fig. 3.5. Covering relationship for R = (4, 4, 4) with r0 = 4 kept fixed.

We illustrate the corollary for the set of 8 × 12 pencils. The generic Kronecker
structure is 4L2 (d = 4, α = 2,m mod d = 0) which gives R = (4, 4, 4). The
example is chosen so that parts of the dominance ordering for n = 8 can be reused
(see Figure 2.1). The dominance ordering for R with r0 kept fixed is displayed in
Figure 3.5. Note the diagram is not symmetric since we are using only a sublattice
from Figure 2.1.

A similar result holds for the set of m × n matrix pencils with a regular part of
fixed Jordan structure besides Lj blocks in the KCF. The R partition corresponding
to the most generic pencil with a k × k regular part is similar to (3.3), where now

d = m − n − k and α = �(m − k)/d�. Since we can write P1 as P
(1)
1 ⊕ P

(2)
1 , where

P
(1)
1 and P

(2)
1 correspond to the regular and right singular parts, respectively, we can

apply Corollary 3.4 to P
(2)
1 which defines the R partition.
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Corollary 3.5. The dominance ordering of R = (r0, r1, . . . , rα, rα+1) with
r0 = n−m− k > 0 kept fixed defines the closure hierarchy of the set of m× n matrix
pencils with a fixed Jordan structure (regular part) of size k × k (0 ≤ k ≤ m) and Lj

blocks only in the KCF.
These sets of matrix pencils have important applications in linear systems theory.

Let A−λB = [F,C]−λ[E, 0], where Eẋ(t) = Fx(t)+Cu(t) is a linear system with m
states and p controls. Then Corollary 3.4 gives the closure hierarchy for the the set of
completely controllable systems with m states and p controls. Similarly, Corollary 3.5
gives the closure hierarchy for the sets of linear systems with k uncontrollable modes
with fixed Jordan structure.

3.4. Interesting nearness problems. One motivation for our work on versal
deformations (see Part I [19]) and stratifications of orbits and bundles (the present
paper) was to get an improved understanding of important nearness problems, such
as

• closest degenerate (nongeneric) pencil of a generic A− λB,
• closest matrix pencil with a specified Kronecker structure,
• closest neighbors (covering pencils) of a given A− λB.

Several of these problems have interesting applications in linear system theory.
For example, if we add the restriction that the closest degenerate pencil to a generic
m× n pencil (with m < n) should have a regular part, then the first problem corre-
sponds to finding the closest uncontrollable system (see also section 3.3).

The closure hierarchy lattice gives one kind of answer to these nearness prob-
lems for equivalence orbits of pencils, where we use the codimension instead of the
Euclidean distance. We make use of the theorem for covering pencils to prove the
following statement.

Theorem 3.6. Let m < n. Then the m × n pencils with regular part form a
codimension n−m+ 1 stratified submanifold of all pencils equal to the closure of the
orbit of

J1(γ) ⊕A1 − λB1, where A1 − λB1 = diag(Lᾱ, . . . , Lᾱ, Lᾱ+1, . . . , Lᾱ+1),(3.4)

ᾱ = �(m− 1)/d�, d = n−m > 0, is the total number of L blocks, and the number of
Lᾱ+1 blocks is (m− 1) mod d. Therefore, the nearest pencil with a regular part to a
generic pencil is generically of the form (3.4).

Proof. First, we can apply rule (1a) of Theorem 3.2 only until we get a single
largest Lk block. Then we apply rule (2a) with the implication that Lk ⊕ ∅ →
Lk−1 ⊕ J1(γ). The codimension of J1(γ) ⊕A1 − λB1 is n−m + 1.

Notably, A1 − λB1 is the generic pencil of size (m − 1) × (n − 1) and J1(γ) is a
Jordan block of size one with an unspecified eigenvalue γ.

We illustrate Theorem 3.6 for 7 × 12 pencils. In Figure 3.6 we show a sublattice
corresponding to equivalence orbits of codimension ≤ 8. We see that L0 ⊕ 2L1 ⊕ 3L2

has the least nonzero codimension (= 3) (Corollary 3.4), and 4L1 ⊕ L2 ⊕ J1(γ) has
codimension 6 and is the most generic pencil with a regular part (Theorem 3.6). We
remark that no structures with a regular part and codimension less than 8 can be
found by following the “empty” arc from L0 ⊕2L1 ⊕L2 ⊕L3, since application of rule
(2a) here gives L0 ⊕ 2L1 ⊕ L2 ⊕ L3 and 2L0 ⊕ 2L2 ⊕ L3, with codimensions 8 and 9,
respectively.

Given a generic m× n pencil we can apply Theorem 4.2 in our Part I paper [19]
to get lower bounds on the distance (measured in the Frobenius norm) to the closest
nongeneric pencils of codimension n−m + 1.
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Fig. 3.6. Illustration of Theorem 3.6. The closure hierarchy shows that 4L1 ⊕ L2 ⊕ J1(γ) is
the most generic 7 × 12 structure with one eigenvalue.

3.5. Proofs of Theorems 3.2 and 3.3. Given a pencil P1, Pokrzywa’s Lemma
5 [37] on necessary conditions for covering pencils exhibits a pencil P2 such that
O(P1) ⊃ O(P2), but there may still exist another pencil P such that O(P1) ⊃ O(P ) ⊃
O(P2), i.e., Pokrzywa’s rules do not guarantee a cover. The pencils found by his
lemma, however, include all pencils P2 that are covered by P1; therefore the lemma
includes the necessary conditions for covering pencils. We prove Theorem 3.2 by
showing that we have included all possible restrictions to the rules without missing
any links. For each rule in the proof we denote Pokrzywa’s corresponding rule [37,
Lem. 5] as (P1), (P2), etc., and consider them in terms of coin moves.

Proof of Theorem 3.2.
(1) (P1) is a rightward coin move in R (or L) that is consistent with the columns

being monotonically ordered. The restriction to a minimum rightward coin
move precludes the possibility of reaching the same state with another se-
quence of moves.

(2) (P2) is a coin move from R (or L) to Jμi for any μi. In Theorem 3.2, the
reason for moving the rightmost coin in R (or L) is that if we move a coin
c that is not the rightmost one, then the same partition can be found by a
series of moves (move the coin c using rule (1) until it is in the rightmost
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position and then move it to the Jμi
partition). This shows that we can

generate the same partition with other partitions in between. Similarly, the
reason for placing the coin in the rightmost position of Jμi is that a partition
obtained by placing it in any other position can be obtained by first placing
it in the rightmost position and then applying rule (3).

(3) (P3) is a leftward coin move in Jμi
that is consistent with the columns being

monotonically ordered. Our restriction to a minimum leftward coin move is
obvious.

(4) (P4) is the removal of a row of coins from one or several eigenvalues. Add one

more coin to these k̂ coins and distribute all k̂+1 coins from left to right in R
and L. There are several restrictions. By picking the longest row from each
of the Jμi , we can always move coins back again (using rule (2)) in order to
find the partitions we would have found by removing a shorter row. This is
also the reason why we pick the longest row for all eigenvalues; if we want to,
we can bring them back for all but one eigenvalue. The restriction that each
column of R and L must have one coin each is required, since otherwise we
could obtain the same sequence by first moving more coins to the J partitions
using rule (2) and then applying rule (4).

It is obvious that these four rules are now minimal under these restrictions.
The proof of Theorem 3.3 is based on the fact that if one orbit is covered by

another, then also its bundle is in the closure of the bundle of the other, but the
covering relation may be overruled by the possibility of eigenvalues coalescing.

Proof of Theorem 3.3. Rule (5) follows from the matrix case, and since the bundles
are unions of orbits, all the covering relations for orbits are also valid for the bundle
case, as long as the same operation cannot be performed in more than one step using
rule (5). Since it is obvious that the operations corresponding to rules (1) and (3)
cannot be done in more steps using rule (5), we only have to focus on rules (2) and
(4).

Rule (2) in Theorem 3.2 allows a coin to be moved to any eigenvalue μi, but for
bundles this can be done in two steps: move the coin to a new eigenvalue μj and
apply rule (5) on μi and μj , i.e., append the coin from μj to the longest row of coins
for μi (now = μj).

The next question is whether rule (4) can be replaced with a sequence involving
rule (5). If there is only one eigenvalue, rule (5) is not applicable, and if each eigenvalue
has at least two Jordan blocks, then rule (5) must necessarily decrement the number
of distinct eigenvalues while rule (4) does not. Otherwise if an eigenvalue has only
one Jordan block, one may apply rule (5) before rule (4) to achieve the same result
as a single application of rule (4).

4. Empowering the staircase algorithm with stratifications. The stair-
case algorithm is a powerful tool for computing the Kronecker structure of an m× n
pencil A−λB [4, 8, 32, 35, 34, 41, 44]. The reduction of A−λB into generalized Schur
form requires several applications of the staircase algorithm. Typically, the first ap-
plication extracts the right structure and the Jordan structure of the zero eigenvalue
using a finite sequence of orthogonal (unitary) equivalence transformations. This
decomposition is called the RZ-staircase form (RZ for “right-zero”).

In step k (= 1, 2, . . .) of the first phase, GUPTRI [15, 16] computes the RZ form
by determining mk = dimension of the column nullspace of A(k) and mk − sk =
dimension of the common column nullspace of A(k) and B(k). Here, A(1) = A and
B(1) = B and (A(k), B(k)) for k > 1 correspond to the deflated matrix pair obtained
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after the equivalence transformation in step k−1. The structure indices (RZ-indices)
display the Kronecker structure as follows:

mk − sk = number of Lk−1 blocks, sk −mk+1 = number of Jk(0) blocks.

The Jordan structure associated with a finite but nonzero eigenvalue is obtained
by applying the RZ-staircase algorithm to a shifted pencil. One way to find the left
structure is to apply the same algorithm to the transposed pencil. Another way is
to directly determine the sizes of the corresponding row nullspaces as done in the
GUPTRI algorithm. Then by working on B − μA we get the LI-staircase form and
now mk−sk and sk−mk+1, which are the number of LT

k−1 and Nk blocks, respectively,
define the LI-indices. Applying the RZ-staircase algorithm to B−μA gives the right
structure and the Jordan structure of ∞ (RI-indices). Similarly, we can get the left
structure and the Jordan structure of zero (LZ-indices) by applying the LI-staircase
algorithm to A− λB. All combinations (RZ, RI, LI, and LZ) are possible.

Knowing the RZ- and LI-indices we can easily extract the integer sequences
(partitions) R,L, and Jμi

or the corresponding staircase indices (R, L, Z, and I).
For example, the R and J0 partitions are obtained from the RZ-indices as

ri−1 =

∞∑
k=i

mk − sk and ji =

∞∑
k=i

sk −mk+1.

4.1. Modified staircases and covering pencils. In the following we make an
algorithmic application of Theorem 3.2. Given a pencil P1 and the staircase indices
defining its Kronecker structure, we want to find all pencils P2 covered by P1. We
can therefore, for example, give the user a selection of choices or perhaps choose
one automatically. The four rules in Theorem 3.2 correspond to different structure
transitions. Rules (3) and (1) correspond to finding a covering orbit for nilpotent
matrices (Corollary 2.3) and full normal rank pencils with only L (or LT ) blocks
(Corollary 3.4), respectively. Rule (2) is applicable only if there exists a unique
largest Lj (or LT

j ) block in P1. Then the size of that block is decreased by one, while
the size of the largest Jordan block (possibly 0× 0) for one eigenvalue is increased by
one. Rule (4) replaces the regular structure consisting of the largest Jordan blocks
associated with all eigenvalues in P1 by a generic square singular part. The new L
and LT blocks in P2 must be at least as large as the corresponding largest singular
blocks in P1.

We assume that the left and right structures are captured only in the structure in-
dices corresponding to one eigenvalue (possibly different for left and right structures).
The remaining structure indices capture only Jordan structures, e.g., the RZ-indices
associated with an eigenvalue μi reduces to Z-indices (mk = sk).

We propose that a nice user interface based on Algorithm 4.1 should be available
to the user.

Algorithm 4.1. For all valid coin moves from column j to column k in the
appropriate integer sequences (R,L, and Jμi

) of rules (1)–(3) in Theorem 3.2, the
staircase indices are adjusted as follows. (Remember that R and L start counting
columns from 0 but Jμi

starts from 1.) We use a right arrow (→) to show how one
block in the KCF is transferred to another.

(1a) Let mk and sk be RZ-indices (or RI-indices). Then mj+1 := mj+1 − 1,
sj := sj − 1 (Lj → Lj−1), mk+1 := mk+1 + 1, and sk := sk + 1 (Lk−1 → Lk).

(1b) Same as item (1a), where now mk and sk are LI-indices (or LZ-indices).
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(2a) Let mk and sk be the RZ-indices (or RI-indices) associated with an eigenvalue
μ ∈ C (RI-indices if μ = ∞). Then mj+1 := mj+1 − 1, sj := sj − 1
(Lj → Lj−1), mk := mk + 1, and sk := sk + 1 (Jk−1(μ) → Jk(μ)).

(2b) Same as item (2a), where now mk and sk are the LZ-indices (or LI-indices)
associated with μ ∈ C.

(3) Let mk and sk be any of the staircase indices (RZ, RI, LI, or LZ) associated
with μ ∈ C. Then mj := mj−1, sj := sj−1 (Jj(μ) → Jj−1(μ)), mk := mk+1,
sk := sk + 1 (Jk−1(μ) → Jk(μ)).

For all valid coin moves in the appropriate integer sequences (R,L, and Jμi) of
rule 4 in Theorem 3.2, the staircase indices are adjusted as follows.

(4) Each valid coin move is defined by k and t in the theorem and the following
operations replace the selected k×k regular part with a generic square singular
pencil (Jk1(μi)⊕ Jk2(μ1)⊕ · · · ⊕ Jkp(μp) → Lt ⊕LT

k−t−1). Here, ki is the size
of the largest Jordan block of μi and k =

∑
ki.

– Repeat for all p eigenvalues μi: Let mk and sk be the RZ-indices (or
RI-indices) of μi ∈ C. Then sι := sι − 1, mι := mι − 1 for ι = 1, . . . , ki.

– Update RZ-indices (or RI-indices) with respect to new Lt block: mι :=
mι + 1 for ι = 1, . . . , t + 1, sι := sι + 1 for ι = 1, . . . , t (if t > 0).

– Update LZ-indices (or LI-indices) with respect to new LT
k−t−1 block:

mι := mι + 1 for ι = 1, . . . , k − t, sι := sι + 1 for ι = 1, . . . , k − t− 1 (if
k − t− 1 > 0).

Each valid application of any of the rules (1)–(4) results in a pencil P2 such that
O(P1) covers O(P2) and each P2 is on a different branch in the closure lattice. Starting
with a generic pencil, repeated applications of the stratification-enhanced algorithm
will give us the complete closure hierarchy. Given mk and sk corresponding to any
of the staircase forms of an arbitrary m × n pencil up to a certain point, the most
generic object is the one where the remaining m̃× ñ pencil is generic. In other words,
based on the information obtained up to this point, we know that the pencil is in the
closure of the orbit corresponding to this situation. The values of m̃ and ñ determine
the KCF and the staircase indices of the remaining generic pencil (see section 3.3).
Any application of the rules (1)–(4) will result in a less generic pencil. Note that the
number of different orbits in the closure lattice is exponentially growing as a function
of the problem size (m,n), so the algorithm is recursively applied only a few steps if
m and n are large.

Similarly, given P1 it is possible to characterize a pencil P2 such that O(P2)
covers O(P1). Of course, this will impose different prerequisites on and changes of
P1’s structure indices. Moreover, algorithmic applications of Theorem 3.3 for finding
covering bundles can be formulated similarly. The algorithmic details are omitted
here.

For an illustration of the stratification-enhanced staircase algorithm we return
to the examples in Figure 3.2. In Figure 4.1 we display staircase form transitions
corresponding to different blocks of P1 with KCF L0 ⊕ L1 ⊕ L2 ⊕ J1(μ1) ⊕ J4(μ1) ⊕
J3(μ2)⊕LT

1 ⊕LT
3 . Each of the six cases illustrates the structure index changes imposed

by one of the rules of the algorithm. The diagonal blocks in the staircase forms of size
sk ×mk reveal the Kronecker structures of P1 and P2. In order to keep the picture
small and clear, we display only the blocks that are directly affected by the transition
from P1 to P2. These staircase forms correspond to the coin moves illustrated in
Figure 3.2. Following the notation from Figure 2.6 the diamond (♦ for A and ♦λ for
B) is used to denote a matrix entry that the algorithm forces to zero and thereby
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Blocks of P1 −→ Blocks of P2

(1a)

⎡
⎣ −λ 1

♦λ ♠λ 1

−λ 1

⎤
⎦−→

⎡
⎣ −λ 1

0 ♠λ 1

−λ 1

⎤
⎦

(1b)

⎡
⎢⎢⎢⎢⎢⎣

−λ

1 −λ

1 −λ
♠ −λ

♦
1

⎤
⎥⎥⎥⎥⎥⎦
−→

⎡
⎢⎢⎢⎢⎢⎣

−λ

1 −λ

1 −λ

♠ −λ

0
1

⎤
⎥⎥⎥⎥⎥⎦

(2a)

⎡
⎢⎢⎢⎢⎢⎣

−λ 1
−λ 1

−λ 1
♦λ ♠λ 1

−λ 1

−λ

⎤
⎥⎥⎥⎥⎥⎦
−→

⎡
⎢⎢⎢⎢⎢⎣

−λ 1
−λ 1

−λ 1

0 ♠λ 1

−λ 1

−λ

⎤
⎥⎥⎥⎥⎥⎦

(2b)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

♠ −λ

♦ −λ
1 −λ

1 −λ
1 −λ

1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

♠ −λ

0 −λ
1 −λ

1 −λ
1 −λ

1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)

⎡
⎢⎢⎢⎣

−λ 1
−λ ♠

−λ ♦
−λ 1

−λ

⎤
⎥⎥⎥⎦−→

⎡
⎢⎢⎢⎣

−λ 1
−λ ♠

−λ 0
−λ 1

−λ

⎤
⎥⎥⎥⎦

(4)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−λ 1

−λ 1

♦λ 1

−λ 1

μ̃2 − λ 1
μ̃2 − λ 1

μ̃2 − λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−λ 1

−λ 1

0 1
−λ 1

μ̃2 − λ 1
μ̃2 − λ 1

μ̃2 − λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 4.1. RZ- and LI-staircase forms of P1 and P2 displayed in Figure 3.2.

changes the computed Kronecker structure from the KCF of P1 to the KCF of P2.
The spade (♠ for A and ♠λ for B) in P1 is a nonzero entry that if not existing can
be introduced by an equivalence transformation. If not introduced (i.e., the spade
does not appear in P2), then the KCF of P2 is even less generic, which corresponds
to further applications of the stratification-enhanced algorithm.

For cases (1a), (2a), (3), and (4) Figure 4.1 shows the RZ-staircase form of
P1 and P2. Similarly, the LI-staircase form is displayed for cases (1b) and (2b).
For completeness, we could have included the LI-staircase form for case (4) as well.
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Rule Indices P1 P2

(1a) RZ
k 1 2 3 4 5
mk 5 3 2 1 0
sk 4 2 1 1 0

k 1 2 3 4 5
mk 5 2 2 2 0
sk 3 2 2 1 0

(1b) LI
k 1 2 3 4 5
mk 3 3 2 1 0
sk 3 2 2 0 0

k 1 2 3 4 5 6
mk 3 2 2 1 1 0
sk 2 2 2 1 0 0

(2a) RZ See (1a)
k 1 2 3 4 5 6
mk 5 3 1 1 1 0
sk 4 1 1 1 1 0

(2b) LI See (1b)
k 1 2 3 4 5
mk 3 3 2 1 0
sk 3 2 1 1 0

(3) RZ See (1a)
k 1 2 3 4
mk 5 4 2 0
sk 4 3 1 0

(4) RZ See (1a)
k 1 2 3 4
mk 5 3 2 0
sk 4 2 0 0

LI See (1b)
k 1 2 3 4 5 6
mk 3 3 2 2 1 0
sk 3 2 2 1 0 0

Fig. 4.2. Examples of structure index changes in the stratification-enhanced staircase algorithm.

However, we see immediately that the last diagonal block of P2 is an LT
4 block. Here

μ̃2 corresponds to an eigenvalue μ2 − μ1 of the shifted pencil A − (λ + μ1)B. The
sizes (mk × sk) of the diagonal blocks of these staircase forms reveal the changes in
the local structure indices that result after applying rules (1)–(4) in the algorithm.
For the RZ-staircase forms we start at the top left corner when listing mk and sk for
k = 1, . . .. Similarly, for the LI-staircase forms we start at the bottom right corner.
More interesting are the corresponding changes in the global structure indices (RZ,
LI, etc.) for these examples, which are displayed in Figure 4.2. Without loss of
generality we have chosen μ1 = 0 and μ2 = ∞ in Figure 4.2.

Applying the GUPTRI algorithm in finite precision arithmetic means that all rank
decisions for computing the structure indices are made with respect to a user supplied
tolerance which reflects the relative accuracy of the data [15, 16]. Assuming a fixed
accuracy of the input data it is possible to increase or decrease the tolerance for rank
decisions such that a less generic or a more generic pencil, respectively, is computed.
Alternatively, given a Kronecker structure computed by the staircase algorithm we
can impose a more degenerate Kronecker structure by applying any of the applicable
structure index changes. A stratification-enhanced GUPTRI algorithm can deliver an
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upper bound on the size of the distance from the pencil P1 we started with to the
pencil P2 we imposed such that O(P1) covers O(P2). The other way around, we can
start with a pencil P1 and construct a more generic pencil P2 by adding perturbations
(whose sizes are dependent on the rank decision tolerance) such that O(P2) covers
O(P1).

In infinite precision arithmetic we can always go upwards in the closure hierarchy
by adding arbitrary small perturbations. This is normally not the case for going
downwards in the hierarchy. See [21] for computable normwise bounds of the smallest
perturbations for going downward (or upward) in the closure hierarchy of the set of
2 × 3 pencils.

5. The abstract algebra of matrix pencils. We give a high-level view of
the proofs of Theorem 3.1, mentioning a few new conjectures that we have solved.
The Pokrzywa proof uses ordinary linear algebra notation; the algebraic notation by
Bongartz would be foreign to many numerical readers. Moreover, we provide a quick
introduction to narrow the gap between the algebra and numerical communities. The
elegance in the algebraic approach is the unifying treatment obtained for the Jordan,
Kronecker, echelon, and many other forms.

5.1. Closure relations, inner products, and codimension counts. While
the covering relationships might be thought of as combinatorial, the closure relations,
which are statements about geometry, are derived mainly by algebraic techniques. As
discussed earlier, there have been two independent derivations [37, 9] of the closure
hierarchy. We suspected that the two very different looking proofs might be somehow
“isomorphic,” particularly since both count the dimension of the space of solutions to
test homogeneous equations.

To be more precise, consider the two inner products on Kronecker structures for
pencils P1 = A1 − λB1 and P2 = A2 − λB2,

〈P1, P2〉1 = dim{V : A2V BT
1 = B2V AT

1 },

defined by Pokrzywa [37], and the already defined (before without subscript (3.2))

〈P1, P2〉2 = dim{(U, V ) : UP1 = P2V }.

The inner product 〈P1, P2〉2 is used by Bongartz, who generalizes techniques of Abeasis
and Del Fra [1], and by Riedtmann [38], who studied the dimension of the linear space
of homomorphisms (dim Hom(P1, P2) = 〈P1, P2〉2 in our case) between path algebra
modules (see section 5.2).

Using Kronecker products we can express the inner products as

〈P1, P2〉1 = dim{x : T1x = 0} and 〈P1, P2〉2 = dim{y : T2y = 0},

where

T1 =
[
B1 ⊗A2 −A1 ⊗B2

]
, x = vec(V ),

and

T2 =

[
AT

1 ⊗ Im −In ⊗A2

BT
1 ⊗ Im −In ⊗B2

]
, x =

[
vec(U)
vec(V )

]
.

Thus, indeed we have that

〈P1, P2〉1 = dim N (T1) and 〈P1, P2〉2 = dim N (T2),
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where N (·) denotes the nullspace of a matrix. It is clear that with either inner product,
if O(P1) ⊇ O(P2), then 〈P1, T 〉 ≤ 〈P2, T 〉 for any test pencil T . Both Pokrzywa and
Bongartz prove the converse, giving necessary and sufficient conditions. Furthermore,
both observe that one need consider only the indecomposable blocks T ∈ {Lk, L

T
k , Jk}

as test pencils giving three sequences of conditions. Explicit formulas may be found
in Demmel and Edelman (under the term “interaction”) [13] and Beitia and Gracia
[5, Thm. 4.5] although these papers did not make the connection to closure relations.

Since the inner product is bilinear, it is sufficient to display a table where the
arguments are indecomposable blocks:

〈P1, P2〉1 Lk LT
k Jk(γ)

Lj j + k + 1 (k − j)+ k
LT
j (j − k)+ 0 0

Jj(γ) j 0 min(j, k)

〈P1, P2〉2 Lk LT
k Jk(γ)

Lj (j + 1 − k)+ 0 0
LT
j j + k (k + 1 − j)+ k

Jj(γ) j 0 min(j, k)

The inner product on Jordan structures corresponding to different eigenvalues is 0.
Here, Jk(λ) denotes a Jordan block for a finite or infinite eigenvalue. Notice from the
tables that

〈P,Lk〉1 = 〈PT , Lk+1〉2, 〈P,LT
k 〉1 = 〈PT , LT

k−1〉2, 〈P, Jk〉1 = 〈PT , Jk〉2.

This is not coincidence; we have shown that by eliminating the U from the Bongartz
equation involving U and V , one obtains exactly the corresponding Pokrzywa relation,
which the reader may notice is symmetric.

Demmel and Edelman were interested in cod(P ) = 〈P, P 〉2 − (m − n)2 so as to
understand the codimension of O(P ) and the relation to the staircase algorithms for
their computation. In our Part I paper [19] we observed that 〈P, P 〉2 = dim N (T2).
Indeed, when P = P1 = P2, the tangent space of P = A − λB is the range of the
Kronecker product block matrix T2 [19].

Of course cod(P1) ≤ cod(P2) if O(P1) ⊇ O(P2), but the converse does not hold.
We at first conjectured that a test pencil approach might work here. The conjecture
was that if cod(P1 ⊕ T ) ≤ cod(P2 ⊕ T ) for all test pencils T , then O(P1) ⊇ O(P2).
Unfortunately, this does not hold even for the Jordan case. We found a counterex-
ample consisting of two matrices A1 and A2 with Segre characteristics (5, 1, 1, 1) and
(4, 3, 1), respectively. For this example cod(A2 ⊕ Jk) ≤ cod(A1 ⊕ Jk) for every k, but
there is no closure relationship between the orbits of the two matrices (see Figure
2.1).

5.2. Quiver representations and path algebra modules. Perhaps some
numerical analysts find it unsatisfying to talk about the Jordan case and then proceed
to “analogues” or “generalizations” to the Kronecker case. In fact, the notions of
equivalent structures, closure relations, indecomposable blocks, etc., all are elements
of an elaborate general theory of quiver representations and path algebra modules.

In this theory, the echelon form corresponds to an A2 quiver with graph consisting
of a single arrow (•−→•), the Jordan form is an Ã0 quiver whose graph is a loop
( �•



), and the Kronecker form is an Ã1 quiver with two arrows ( • −→−→ •). A

quiver is really a synonym for a directed graph. We obtain a representation [18, 39]
of the quiver if we associate vertices with vector spaces and arrows with linear maps
between the spaces, i.e., matrices. If two vectors are connected tail to tip, then
the matrices may be multiplied. A representation of the quiver with three arrows
(• −→ • −→ • −→ • ) is simply three matrices A,B,C that can be multiplied to form
CBA. Two representations are said to be equivalent if one can be obtained from the
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other by a change of basis in the vector space. Thus we have defined similarity of
square matrices, strict equivalence of pencils, and many other equivalences with one
sentence.

Let E be the incidence matrix of the quiver defined so that Eij is the number of
arrows pointing from i to j. The matrix B = E+ET is independent of the orientation
of the arrows. The diagonal elements of B count the number of loops at the node
twice. Depending on whether the matrix 2I − B is positive definite, semidefinite, or
indefinite, the graph is said to be finite, tame, or wild. The finite graphs are known as
Dynkin diagrams [31]. They correspond to canonical forms built from finitely many
blocks, e.g., there are three building blocks for the echelon form: matrices of dimension
1 × 1, 1 × 0, and 0 × 1. The tame quivers include the Jordan and Kronecker forms
and are manageable. The wild quivers are more difficult.

We may now define the path algebra of a quiver. Formally, it is a vector space
generated by elements called paths where multiplication also is defined. A path is
simply a sequence of vertices that follow edges. A path of length l may be denoted
(a|α1, . . . , αl|b), where a and b are nodes, α1 is an arrow pointing away from a, the
successive arrows point towards each other, and the last arrow points toward b. Paths
that connect may be multiplied in the obvious way

(a|α1, . . . , αl|b)(b|β1, . . . , βs|c) = (a|α1, . . . , αl, β1, . . . , βs|c).

Two paths that do not connect are defined to have product 0. Notice that the paths
of length 0: (a|a) are idempotent: (a|a)2 = (a|a) and the sum of all the length 0 paths
(one for each node) is the identity.

The Kronecker pencil example is the path algebra for Ã1. With the arrows labeled
e1 and e2, it may be thought of as the four-dimensional space of the form

α(1|1) + β(1|e1|2) + γ(1|e2|2) + δ(2|2)

with the path algebra multiplication table:

(1|1) (1|e1|2) (1|e2|2) (2|2)
(1|1) (1|1) (1|e1|2) (1|e2|2) 0

(1|e1|2) 0 0 0 (1|e1|2)
(1|e2|2) 0 0 0 (1|e2|2)
(2|2) 0 0 0 (2|2)

We can write such an element as (α, β, γ, δ). This algebra is isomorphic to the set of
four-dimensional matrices ⎛

⎝ α 0 β
0 α γ
0 0 δ

⎞
⎠

with ordinary matrix multiplication. Let A and B be arbitrary m × n rectangular
matrices. We say that vectors v of length m+n form a module over the path algebra
of Ã1. Define (α, β, γ, δ)v to mean(

αIm βA + γB
0 δIn

)
v.(5.1)

It is easy to check that the product

(α1, β1, γ1, δ1)(α2, β2, γ2, δ2)v
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may be computed in either order giving the same answer. (One way requires multi-
plication in the path algebra; the other is ordinary matrix-vector multiplication.)

There is a one-to-one correspondence between equivalent pencils and modules
over the path algebra of Ã1, and generally this holds between representations and
modules over a path algebra of a quiver. Given two representations of a quiver, if we
have linear maps Ui from the first to the second, we say that we have a homomorphism
if the diagram composed of the two quivers and the connecting Ui’s is commutative,
as in the following example:

U1 U2 U3 U4

A B C1 11

A C2 B 22

It is the dimension of the set of homomorphisms between two quivers (dim Hom)
that is used explicitly by Bongartz and implicitly by Pokrzywa to obtain the closure
relations.

The coin moves also have an algebraic interpretation. Pencils with only Lk blocks
correspond to what algebraists call projective modules, while those with only LT

k

blocks are the injective modules. To denote that a matrix A is an extension of A1

and A2 (see section 2.3), algebraists write a short exact sequence:

0 → A1 → A → A2 → 0.

This generalizes to any quiver, and each coin move corresponds to some exact se-
quence.

This concludes our brief introduction to the algebraic language for these ideas.
It is worthwhile to mention that not every equivalence relation in systems theory
corresponds to a quiver. The set of matrix pairs (A,B) with A m × m and B n ×
n with the equivalence (A,B) ∼ (U−1AU,U−1B) does not correspond to a quiver
representation, but if we add the matrix V : (A,B) ∼ (U−1AU,U−1BV ) then we do
have a (wild) quiver [29]. Similarly if we have the matrix quadruples often studied in
systems theory [42, 14] with the equivalence relation

(
P R
O Q

)(
A B
C D

)(
P−1 0
S T

)
=

(
A′ B′

C ′ D′

)
,

we do not have a quiver, but if we omit the matrices R and S, then once again we
have a wild quiver.
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[36] A. S Markus and E. É. Parilis, The change of the Jordan structure of a matrix under small
perturbations, Linear Algebra Appl., 54 (1983), pp. 139–152.

[37] A. Pokrzywa, On perturbations and the equivalence orbit of a matrix pencil, Linear Algebra
Appl., 82 (1986), pp. 99–121.

[38] C. Riedtmann, Degenerations for representations of quivers with relations, Ann. Sci. École
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