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We propose a technique for calculating and understanding the eigenvalue distribution of sums of
random matrices from the known distribution of the summands. The exact problem is formidably
hard. One extreme approximation to the true density amounts to classical probability, in which the
matrices are assumed to commute; the other extreme is related to free probability, in which the eigen-
vectors are assumed to be in generic positions and sufficiently large. In practice, free probability
theory can give a good approximation of the density.

We develop a technique based on eigenvector localization/delocalization that works very well for
important problems of interest where free probability is not sufficient, but certain uniformity proper-
ties apply. The localization/delocalization property appears in a convex combination parameter that
notably, is independent of any eigenvalue properties and yields accurate eigenvalue density approx-
imations.

We demonstrate this technique on a number of examples as well as discuss a more general tech-
nique when the uniformity properties fail to apply.

I. SUMMARY OF THE MAIN RESULTS

This paper proposes an answer to an applied mathematics problem with a rich pure history: what are the eigen-
values of the sum of two symmetric matrices? Knutson and Tao remind us [8] that in 1912 Hermann Weyl asked
for all the possible eigenvalues that can result given the eigenvalues of the summands [17]. We ask a less precise
question that we suspect may also be more useful. What might the spectrum (as a distribution) look like?

Let us start by the eigenvalue decompositions of two m × m self-adjoint matrices M1 = Q−1
1 Λ1Q1 and M2 =

Q−1
2 Λ2Q2 where Λ1 and Λ2 are diagonal matrices of eigenvalues of M1 and M2, and Q1 and Q2 are β−orthogonal

matrices with β = 1, 2, 4 denoting real orthogonal, unitary and symplectic respectively. The goal then becomes to
compute the eigenvalue distribution of M ≡ M1 + M2 from the knowledge of the distributions of Λ1 and Λ2.

Let us change basis and write M1 + M2 as

M ≡ Λ1 + Q−1
s Λ2Qs, (1)

where Qs ≡ Q2Q−1
1 .

Let us define the classical and finite free versions of this problem, respectively, by

Mc = Λ1 + Π−1Λ2Π (2)
M f = Λ1 + Q−1Λ2Q (3)

where Π denotes a uniform random permutation matrix and Q is a β−Haar orthogonal matrix. Note that we only
replaced the exact Qs in Eq. (1) with the appropriate approximations. That is Λ1 and Λ2 are kept the same in Mc,
and M f .

Remark 1. The eigenvalue distribution of Mc and M f are, respectively, the classical and finite “free” convolution of
the distributions corresponding to Λ1 and Λ2.

Let dν1 and dν2 be the eigenvalue densities of M1 and M2 respectively. By assumption the distribution of M,
denoted by dνM, is hard to compute. The notation we use for the classical and finite free convolutions of dν1 and dν2
respectively is

dνc = dν1 �c dν2 classical (4)
dν f = dν1 � f dν2 Free. (5)

Classical approximation assumes that M1 and M2 commute (Eq. (2)), whereas, the free approximation (Eq. (3)) is
the extreme opposite in the sense that in M f the relative eigenvectors are in completely generic positions. Moreover,
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Figure 1: Depiction of the proposition. Inside the spheres we show the parameter count for the corresponding β−orthogonal
matrix

the number of random parameters in Π and Q are the minimum and maximum possible respectively (Fig. (1)).
These observations motivate the proposal that the actual problem is in-between.

There is a line, the convex combination, that connects these two extremes that is both mathematically natural and
in practice very powerful for obtaining the density of the sum. We denote it by

dν(p) ≡ dν1 �p dν2 = p dν f + (1− p) dνc (6)

for 0 ≤ p ≤ 1. Note that dν(0) ≡ dνc and dν(1) = dν f .
Many applied problems involve summing random objects whose measures are dν1 and dν2. We hypothesize that

very often the measure of the sum is well approximated by either dν(1) or dν(p) for some 0 ≤ p ≤ 1, where we
describe how to obtain the appropriate parameter p.

We define the kth empirical moment of M by

mk = ϕ[Mk] =
1
m

ETr[Mk]. (7)

We find that ETr(Mk) = ETr(Mk
c ) = ETr(Mk

f ) for k = 1, 2, 3, i.e., the fourth moment is where the three problems
distinguish themselves. Therefore, we define p by matching fourth moments

m4 = pm f
4 + (1− p)mc

4 , (8)

where m4 ≡ ϕ(M4), mc
4 ≡ ϕ(M4

c ), and m f
4 ≡ (M4

f ) need to be calculated exactly to solve for p, which using the above
equation is simply

p =
mc

4 −m4

mc
4 −m f

4

=
ϕ(M4

c )− ϕ(M4)

ϕ(M4
c )− ϕ(M4

f )
. (9)

So far in this section, the problem setup has been completely general. An interesting and a surprisingly simple
and general formula for p can be derived if we make an assumption (Assumption (1)). In practice the domain of
applicability of this technique (Eqs. (6) and (9)) extends beyond.

Definition 1. We say the eigenvector matrix U is permutation invariant, when given two permutation matrices Π1
and Π2, the joint distribution of the entries of U and the joint distribution of the entries of Π1UΠ2 are the same.
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Figure 2: Left: Density of states (DOS) of a quantum spin chain with generic local interactions [11]. Here p = 0.43, the solid grey
curve is the DOS of the free approximation (i.e, p = 1) and dashed grey curve is the DOS of classical version (p = 0). The red dots
are the exact DOS and the black solid line is the approximation obtained from our technique. Right: DOS of the Anderson model
with p = 1. Sum of a diagonal standard random gaussian matrix, M1, and the hopping matrix, M2 = QT(2I + L)Q, where L is
the Laplacian matrix. Please see Section VI for the details.

Assumption 1. In Eq. (1), Λ1 and Λ2 are independent random diagonal matrices. Qs is random and permutation invariant
(but not necessarily Haar).

Proposition. Under this assumption, the eigenvalues density of M is approximated by dνM ≈ dν(p), where dν(p) ≡ pdν f +
(1− p)dνc. The parameter 0 ≤ p ≤ 1 is defined by

p =
mc

4 −m4

mc
4 −m f

4

=

{
1−mE

(
|qs|4

)}
{1−mE (|q|4)}

m→∞
= 1−mE(|qs|4), (10)

where qs denotes any entry of Qs, and q denotes any entry of the β−Haar Q.

We were surprised to find that p is independent of the eigenvalue distributions and in that sense is universally
given by Eq. (10) as long as the eigenvectors are permutational invariant.
Remark 2. In the finite case, in Eq. (10) we have a ratio of 1− mE

(
|qs|4

)
and 1− mE

(
|q|4
)
. These are measures of

the localization of the eigenvectors of Qs and Q respectively, and in physics literature are called inverse participation
ratios. Let us illustrate this by taking a general eigenvector matrix U and denote any column of it by u. Denote
its entries by ui. Since E(|ui|2) = (1/m)∑i |ui|2 = 1 and, because of centrality E(u3

i ) = 0 , a good measure for
distribution of entries of u is

1−mE(|ui|4) = 1−
m

∑
i=1
|ui|4 =

{
0 u = (0, . . . , 0, 1, 0, . . . , 0)T most localized,

1− 1/m u = 1√
m (1, 1, . . . , 1) most delocalized.

As m → ∞ the inverse participation ratio goes to 1 for the most delocalized eigenvectors. It is fascinating that
in quantifying localization and teasing apart the difference among empirical measures, the fourth moment is what
matters most.

Illustration

We provide two illustrations of this theory that are relevant in quantum many-body systems (see Fig. (2)) and
defer the details and further examples to Section VI. The Figure on the left shows the density of states (DOS) of a
quantum spin chain with generic local interactions in which p = 0.43. The example on the right is the DOS of the
Anderson model in which p = 1 (i.e., the free approximation suffices).

II. INTRODUCTION

Given the eigenvalues of two m×m Hermitian matrices, how does one determine all the possible set of the eigen-
values of the sum? As stated at the very beginning of this paper, H. Weyl’s question lead to many mathematical
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developments and A. Horn’s seminal work that conjectured a (over-complete) set of recursive inequalities for the
eigenvalues of sums of Hermitian matrices [6]. This conjecture was proved by Klyachko [7] and later made clearer
with the use of Schubert calculus by Knudson and Tao [8]. However, the bounds obtained from these works are
not very good for sparse matrices which are often encountered in practice (e.g., local Hamiltonians that physicists
often consider). In any case and despite these great successes, there are not many results that with a high accuracy
compute the eigenvalues of the sum from the knowledge of the summands.

Our goal is pragmatic: we seek a method that enables us to draw (on a computer) an accurate picture of the
density of the eigenvalues of the sum from those of the summands.

Given the probability measures dν1 and dν2 of two random variables, one can ask: what is the measure of the sum
of the random variables? In classical probability theory in which the random variables commute, the measure of the
sum is the convolution of the measures. In the other extreme, where the random variables do not commute and are
generic (e.g., random matrices), the measure in the infinite limit is the free convolution [12, 16].

Let us define the ϕ notation following [12]. Let A be unital algebras over C 1. The elements of A are in general
non-commuting.

Definition 2. Let ϕ be a unital linear functional ϕ : A → C, with the properties that ϕ is a trace and ϕ[1A] = 1. ϕ is
a trace in the sense that

ϕ[ab] = ϕ[ba], ∀a, b ∈ A,

Let ϕc be the “commutative” version of ϕ, that has the additional property that the order of the product of its
arguments do not matter, i.e., ϕc[abc] = ϕc[bac] = · · · .

Notation 1. When the variables (elements of A) are m×m matrices, then

ϕ[�] ≡ 1
m Tr[�] non-random matrices

ϕ[�] ≡ 1
m ETr[�] random matrices .

ϕ[�] =
∫
� dµ operators

Given a random matrix M, the expected empirical measure of its eigenvalues is

dνM = ϕ[M] =
1
m

E

{
m

∑
i=1

δ (λ− λi(M))

}
.

A. Introduction to Free Probability Theory

Free probability theory (FPT) is suited for non-commuting random variables. The more conventional probability
theory (CPT) deals with commuting random variables.

Supposed M1, M2, · · · , MN are m× m random matrices with known eigenvalue distributions, what is the eigen-
value distribution of

M = M1 + M2 + · · ·+ MN ? (11)

FPT answers this question if Mk’s are free. We define free independence following Nica and Speicher [12].

Definition 3. ([Nica Speicher] Free Independence) Let (A, ϕ) be a non-commutative probability space and let I be a
fixed index set. The subalgebras (Ai)i∈I are called free independent with respect to the functional ϕ, if

ϕ(a1 . . . ak) = 0

whenever we have the following:

1 Everything goes through the same if the algebra is over reals R or quaternions Q
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Field Real Complex Quaternions “Ghosts”

β 1 2 3 > 3
Haar matrices Q U S G

Table I: Notation for various fields of numbers

• k is a positive integer;

• aj ∈ Ai(j) , (i(j) ∈ I) for all j = 1, . . . , k;

• ϕ(aj) = 0 for all j = 1, . . . , k;

• and neighboring elements are from different subalgebras, i.e., i(1) 6= i(2), i(2) 6= i(3), . . . , i(k− 1) 6= i(k).

Recall that in CPT the distribution of sum of random variables is not additive but the cumulants or log-characteristics
are. The analogous additive quantities in FPT are free cumulants and r−transforms [12].

How can we make utilize FPT to analytically obtain the eigenvalue distribution of Eq. (11)? As long as Mk’s
are free from one another, theoretically, the free convolution will provide the distribution of the sum. However, its
numerical computation may be difficult.

For the sake of concreteness, suppose we have two matrices M1 and M2 , which may not be free, and we are
interested in the spectrum of the sum

M = M1 + M2; (12)

the free approximation can be obtained by (possibly slightly) changing the problem. Mathematically, FPT would
obtain the eigenvalue distribution of

M1 + Q−1M2Q

where, Q is an m×m Haar distributed β−orthogonal matrix as before. This amounts to spinning the eigenvectors
to point randomly and uniformly on a sphere in orthogonal group O(m) uniformly. Our technology can treat both
finite and infinite matrices. One need not use the standard fields; arbitrary number fields can be used by replacing
Q in Eq. (12) by the corresponding Haar matrices (see Table (I)).

Remark 3. Standard FPT proves that M1 and Q−1M2Q are asymptotically free. If we look at the moments of the

sum, i.e., ϕ
[
M1 + Q−1M2Q

]k
= 1

m ETr
[
M1 + Q−1M2Q

]k then O(1) terms would match the answer that FPT would
provide and there will be additional terms (finite corrections) that will be at most O(1/m).

Since its eigenvectors are Haar, one naturally thinks of the free approximation as the most delocalized. For finite
Haar distributed β−orthogonal matrices (compare with Eq. (10)),

1−mE(|q|4) = (m− 1)β

mβ + 2
(13)

which in the limit of m→ ∞ is independent of β and equal to one. More generally, for β−Haar orthogonal matrix of
size m×m we have

Moments of β−Haar Orthogonal matrix

Expected values Count

E(|qi,j|2) = 1/m m2

E(|qi,j|4) =
β+2

m(mβ+2) m2

E(|qi,j|2|qi,k|2) =
β

m(mβ+2) , j 6= k 2m2(m− 1)

E(q̄jiqjk q̄pkqpi) =
−β

m(mβ+2)(m−1) , i 6= k and j 6= p m2(m− 1)2

Comment: These formulas can be derived from Weingarten formulas or direct calculations for β = 1, 2, 4. We have
checked the quantities in the table above against numerical experiments for β = 1, 2. General β /∈ {1, 2, 4} is a subject
of current speculation.
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III. MORE THAN TWO MATRICES

In our work we satisfy ourselves with sums of two hermitian matrices. However, in the next two subsections we
provide results that extend the moment computation for the classical and free modifications of the problem.

A. Classical irreducible moment expansion

Definition 4. (Classically Equivalent) In the expansion of ϕc
[
(M1 + M2 + · · ·+ Mk)

n], there are kn monomials that
can be put into distinct equivalent classes under ϕc. Each equivalence class is defined by the distinct set of positive
integers ji ∈ [n] for 1 ≤ i ≤ k, where any fixed set j1, . . . , jk corresponds to the number of times M1, . . . , Mk appear
in the expansion respectively.

Because of the commutativity, the binomial theorem can be evoked, and by the cyclic property of ϕc

ϕc
[
(M1 + M2)

n] = n

∑
j=0

(
n
j

)
ϕc

[
Mj

1Mn−j
2

]
, (14)

where each summand is the contribution of the jth equivalent class. More generally,

ϕc
[
(M1 + M2 + · · ·+ Mk)

n] = ∑
j1+···+jk=n

(
n

j1 , · · · , jk

)
ϕc

[
Mj1

1 Mj2
2 . . . Mjk

k

]
,

where each summand once again is the contribution of one of the equivalent classes.

We wish to generalize these classical notions to the non-commutative setting, whereby the reduced form of the non-
classical (i.e., non-commuting) moment expansion ϕ

[
(A + B)n] is found. As a first step, it would be helpful to know

the number of terms of each type that are cyclically equivalent with respect to ϕ.

B. Free irreducible moment expansion

Definition 5. (trace-equivalent) In the general non-commuting nth moment expansion

ϕ [(M1 + M2 + · · ·+ Mk)
n] (15)

there are nk monomials each of which is a product of n terms chosen from the alphabet {M1, M2, . . . , Mk}. We define
each trace-equivalent class to be the subset of monomials that are equal under ϕ.

So how many of such equivalent classes are there? The answer to this question is equivalent to a theorem by Polya
[14].

Definition. An (n, k)-necklace is an equivalence class of words of length n over an alphabet of size k under rotation
(i.e., cyclically equivalent). The total number of such distinct necklaces is denoted by a(n, k).

Theorem. (Polya) Let φ(d) be the Euler function of the positive integer d and d|n denote all the divisors of the integer n then

a(n, k) =
1
n

n

∑
i=1

kgcd(n,i) =
1
n ∑

d|n
φ(d)kn/d.

For example, in ϕ [(M1 + M2)
n] there are a(n, 2) necklaces. More generally, in ϕ [(M1 + M2 + · · ·+ Mk)

n] there
are a(n, k) necklaces. In Fig. (3) we illustrate the equivalent classes of a(3, 2) and a(4, 2). The former corresponds to
ϕ
[
(M1 + M2)

3] and the latter to ϕ
[
(M1 + M2)

4].
Lemma 1. In the expansion ϕ [(M1 + M2)

n] there are only (n− 1)2 + 1 terms that are classical.

Proof. These would coincide with the terms that are cyclically equal to ϕc

[
Mj

1Mn−j
2

]
. Suppose M1 appears j times.

If 0 < j < n the length of the cyclic orbit is exactly n. However, if j = 0 or j = n, then there is no orbit and each has
exactly one term in the corresponding equivalence class. We have altogether (n− 2)n + 2 classical terms.



7

a(n,k)

a(3, 2) = 4

a(4, 2) = 6

Classical	  ?	  

Classical	  ?	   Yes	   Yes	   Yes	   Yes	   Yes	   No	  !	  

Yes	   Yes	   Yes	   Yes	  

Equivalence	  Classes	  

Figure 3: Illustration of Theorem. The one-to-one correspondence with moment expansion in Eq. (15) can be done by thinking of
circles as M1 and squares as M2.

IV. TECHNICAL RESULTS

We now return to the problem of approximating the eigenvalue distribution of sums of two hermitian matrices.
Below we use U to denote an eigenvector matrix that is permutation invariant and β−orthogonal; it can be Qs, Π or
Q. That is we reserve U when the results being proved do not depend on the choice of the three cases. We assume
that the columns of U are chosen so that each column and its negation are equiprobable. One consequence is that
the mean of every element of U is zero. Below repeated indices are summed over unless states otherwise. We denote
the (diagonal) entries of Λ1 and Λ2 by

λi → Λ1

µi → Λ2

Lemma 2. The elements of U are (dependent) random variables with mean zero and variance 1/m.

Proof. The invariance under the change of sign implies the zero mean. The variance is 1
m2 ∑ |uij|2 = 1/m.

Lemma 3. (departure lemma) ϕ
[
Λk1

1 U−1Λk2
2 U

]
= E

(
λk1

i

)
E
(

µk2
j

)
.

Proof. By permutation invariance and Lemma (2), E(|uij|2) = 1/m . For integers k1 > 0 and k2 > 0, we have

ETr
(

Λk1
1 U−1Λk2

2 U
)

= E
(

∑i,j |uij|2λk1
i µk2

j

)
. By the independence of the eigenvalues from the eigenvectors, this

expected value is equal to m2
(

1
m

)
E
(

λk1
i µk2

j

)
for any i or j. By Def. (2), we now have

ϕ
[
Λk1

1 U−1Λk1
2 U

]
= E

(
λk1

i µk2
j

)
= E

(
λk1

i

)
E
(

µk2
j

)
,

where the last equality follows from the independence of Λ1 and Λ2.

Lemma 4. The first three moments of Λ1 + U−1Λ2U are equal (and independent of the distribution of U).

Proof. Using the trace property Tr(AB) = Tr(BA), the first three moments are

m1 ≡ ϕ [Λ1 + Λ2] in all three cases
m2 ≡ ϕ

[(
Λ1 + U−1Λ2U

)2
]
= ϕ

(
Λ2

1 + 2Λ1U−1Λ2U + Λ2
2
)

m3 ≡ ϕ
[(

Λ1 + U−1Λ2U
)3
]
= ϕ

(
Λ3

1 + 3Λ2
1U−1Λ2U + 3Λ1U−1Λ2

2U + Λ3
2
)

,
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Λ1
4 + 4Λ1

3U −1Λ2U + 4Λ1
2U −1Λ2

2U + 4Λ1U
−1Λ2

3U + 2(Λ1U
−1Λ2U)

2 +Λ2
4

Figure 4: Fourth moment expansion and (non)-crossing partitions. We represent each Λ1 with a vertical line and connect products
of Λ1 by a horizontal line (similarly with U−1Λ2U). Note that (Λ1U−1Λ2U)2 is the only crossing partition, and is the only term
whose expected trace differs among the three cases. The crossing partitions appear first in the fourth moment expansions.

By linearity of the ETr(�) and Lemma (3) m1, m2 and m3 above are all equal to the corresponding classical first,
second and third moments respectively.

The fourth moments of the three cases will differ because of the appearance of the terms that we put in bold-faced
and underlined in.

m4 ≡ ϕ

[(
Λ1 + U−1Λ2U

)4
]
= ϕ

[
Λ4

1 + 4Λ3
1U−1Λ2U + 4Λ2

1U−1Λ2
2U + 4Λ1U−1Λ3

2U + 2
(

Λ1U−1Λ2U
)2

+ Λ4
2

]
.

(16)
In Fig. (4) we express these terms in their natural combinatorial representation in terms of (non)-crossing partitions.

Let the symmetric polynomials of degree k in m variables be denoted by SP(k, m). Moreover let ∨ denote a sym-
metric product, which we take to mean that the product is invariant under exchange, i..e, x ∨ y = y ∨ x. Moreover,

let κ2(Λ) = 1
m ∑i λ2

i −
(

∑ λi
m

)2
, which is the “variance”2 of (λ1, λ2, . . . , λm).

Lemma 5. Let f (Λ1, Λ2) ∈ SP(k, m) ∨ SP(k, m) such that f (I, Λ2) = 0. Then if k = 2, f (Λ1, Λ2) = c κ2(Λ1)κ2(Λ2),
where c is a constant.

Proof. It is clear that f as a polynomial in Λ1 is a multiple of κ2(Λ) because f vanishes at Λ1 = I and SP(2, m) is
only two-dimensional. Similarly f is a multiple of κ2(Λ2) as a polynomial in Λ2. Since f vanishes at Λ2 = I the only
polynomials in SP(2, m) ∨ SP(2, m) with this property are multiples of κ2(Λ1)κ2(Λ2).

The following lemma is key:

Lemma 6. ϕ
[(

Λ1 + Π−1Λ2Π
)4 −

(
Λ1 + U−1Λ2U

)4
]
= κ2(Λ1)κ2(Λ2)

{
1−mE

(
|uij|4

)}
.

Proof. U = Π is trivial so we think of U as a place holder for Qs and Q. Because of the linearity of ϕ and Lemma (3)
the general form of this difference is

ϕ

[(
Λ1 + Π−1Λ2Π

)4
−
(

Λ1 + U−1Λ2U
)4
]

= 2ϕ

[(
Λ1Π−1Λ2Π

)2
−
(

Λ1U−1Λ2U
)2
]

, (17)

where the expectation is taken with respect to the random permutations Π and eigenvectors U respectively.
In Eq. (17) if Λ1 → αΛ1 then the right hand side gets multiplied by α2, so it is a homogenous polynomial of

second order. Since conjugating either Λ1 or Λ2 by any permutation matrix leaves the expected trace invariant, the
expression is a symmetric polynomial in entries of Λ1 and Λ2. Therefore, by Lemma (5), we have

ϕ

[(
Λ1Π−1Λ2Π

)2
−
(

Λ1U−1Λ2U
)2
]
= c(U) κ2(Λ1)κ2(Λ2).

2 We denote by mλ
2 = E(λ2), mλ

1,1 = E(λiλj) and similarly for mµ
2 and m1,1. They are computed by

mλ
2 =

1
m

m

∑
i=1

λ2
i , mλ

1,1 =
1

m(m− 1) ∑
i 6=j

λiλj.
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To evaluate c (U), it suffices to let Λ1 and Λ2 be projectors of rank one where Λ1 would have only one nonzero entry
on the ith position on its diagonal and Λ2 only one nonzero entry on the jth position on its diagonal. Further take
those nonzero entries to be ones, giving mλ

1,1 = mµ
1,1 = 0 and mλ

2 = mµ
2 = 1/m, and we have

ϕ

[(
Λ1Π−1Λ2Π

)2
−
(

Λ1U−1Λ2U
)2
]
=

1
m2 c (U) . (18)

But the left hand side is

ϕ
[
δij − |uij|4

]
=

1
m

{
1

m2 ∑
ij

δij −
1

m2 ∑
ij

E
(
|uij|4

)}
=

1
m

{
1
m
−E

(
|uij|4

)}
,

where we used the homogeneity of U. Consequently, by equating this to c (U) /m2, we get the desired quantity

c (U) =
{

1−mE
(
|uij|4

)}
.

Our final result, i.e., Eq. (17), reads

ϕ

[(
Λ1Π−1Λ2Π

)2
−
(

Λ1U−1Λ2U
)2
]
= κ2(Λ1)κ2(Λ2)

{
1−mE

(
|uij|4

)}
. (19)

where κ2(Λ1) =
(

mλ
2 −mλ

1,1

)
and κ2(Λ2) =

(
mµ

2 −mµ
1,1

)
as before.

Theorem 1. (universality of p) In defining p by matching fourth moments via m4 = pm f
4 + (1− p)mc

4, we find that p is
independent of the eigenvalues and is given by

p =
mc

4 −m4

mc
4 −m f

4

=

{
1−mE

(
|qs|4

)}
{1−mE (|q|4)}

m→∞
=

{
1−mE

(
|qs|4

)}
, (20)

where, as before, qs and q denote any entry of Qs and Q respectively (see Eqs. (1) and (3)).

Proof. The first equality follows the definition of p via fourth moment matching. The second equality follows Lemma
(6) , where the dependence on eigenvalues as well as an overall factor of 2 that appear in the numerator and the
denominator cancel. The last equality follows Eq. (13) in the limit of m → ∞, which corresponds to free probability
theory.

Corollary 1. (Slider) 0 ≤ p ≤ 1.

Proof. Since by normality of eigenvectors ∑m
i=1 |qi

s|2 = 1, we have that 0 ≤ ∑m
i=1 |qi

s|4 ≤ 1. Now mE
(
|qs|4

)
=

m
(

1
m ∑m

i=1 |qi
s|4
)

. So we have that 0 ≤ 1−mE
(
|qs|4

)
≤ 1.

Comment: p can analytically be calculated if one computes E(|qs|4). This for example has been done for quantum
spin chains with generic interactions [9, 11].

Remark 4. Often in applications, one of the summands is a perturbation of the other. Namely, M = M1 + εM2, where
‖M1‖ = ‖M2‖ and ε� 1. From the analysis above it should be clear that p is independent of ε.

V. COMPUTATION OF THE DENSITY

The eigenvalue distribution of the classical extreme is simple; one simply takes the convolution of the density of
the summands. Less known and more difficult is the computation of the density of the free sum. Mathematically
this is done by taking the free convolution via the R−transform (See [12] for a detailed discussion). However, the
actual computation of the free convolution is subtle. Olver and Rao made a numerical package that works well
in computing the free convolution under the assumption that the eigenvalue distribution of the summands has a
connected support (it does not work as well when the support has disjoint intervals) [13]. Below we provide a
complementary method for calculating the free convolution when the eigenvalues are discrete.
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A. Density of the free sum

Suppose we seek the density of M in Eq. (11) under the assumption that M1, M2, . . . , MN are free. This, as stated
above, requires the matrices to be infinite in size. In practice, however, finite (e.g., 30× 30) random matrices act free.

One could fix a given matrix M0 and take an N−fold free sum of it and ask: What is the density of M when

M = Q†
1 M0Q1 + Q†

2 M0Q2 + · · ·+ Q†
N M0QN , (21)

and each Qi is a β−Haar orthogonal matrix?
We now define a few important ingredients and outline how the density of a free sum is computed in theory. The

Cauchy transform of any function, f (x), is given by

G(z) =
1

2πi

∫
R

dx
f (x)

z− x
, (22)

where for our purposes we use the density fk(x) which denotes the distribution of the eigenvalues of Mk in Eq. (11)
(each summand is assumed to be free).

In conventional probability theory, the log-characteristics and cumulants are additive. In free probability theory,
the so called R−transform is additive.

Using the Cauchy transform Gk(z), the R−transform is defined by

Rk (Gk(z)) = z− 1
Gk(z)

, (23)

where in order to obtain z, the Cauchy transform Eq. (22) needs to be inverted. It is good practice to let wk ≡ Gk(z),
by which Eq. (23) reads,

Rk(wk) = G−1
k (wk)−

1
wk

; (24)

in solving for z in wk = Gk(z), among multiple roots one chooses the one that is consistent with limz→∞ w ∼ 1/z.
Given that we find a way of inverting Eq. (22), we have in our hands the R−transform of each summand.
Comment: The inversion may be tedious. See the next section for a routine for doing so efficiently.
Let us denote the density of the sum by f (x) and its R−transform by R(w). As stated above, it is a fact of FPT that

the R−transforms of the sum are additive [12]. We have

R(w) =
N

∑
k=1

Rk(w)
i.d.
= NR0(w) (25)

where the last equality only holds if each Mk has identically distributed eigenvalues, whose R−transform is denoted
by R0(w). The last equality also applies in the case of Eq. (21) where each Mi = M0.

Now we have at our disposal the R−transform of the sum and from it we want to infer the density f (x). The
inverse Cauchy transform of R(w) is

G−1(w) = R(w) +
1
w

.

The distribution satisfies

w ≡ G(z) =
∫

R

f (x)
G−1(w)− x

dx.

Since G−1(w) introduces a branch cut on the real line, we perform analytical continuation into the complex plane.
Let g+(z) be located right above the branch cut. The distribution is calculated using Plemelj-Sokhotsky formula:

f (x) =
1
π

lim
[
Im(g+(z)

]
. (26)

This completes the procedure for finding the density of the free sum of N matrices.

Remark 5. The discrete Cauchy transform of the spectrum of Mk is Gk(z) = 1
m ∑m

i=1

1
z−λi(Mk)

, where λi(Mk) is an eigen-

value of Mk. However, inverting each of the Cauchy transforms involves finding the roots of a high order complex
polynomial, which can be quite difficult. In subsection V B, we provide a routine that finds the roots efficiently
without solving the high degree polynomial.
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B. Detailed Algorithm for discrete spectra

Suppose we have a discrete distribution

f (x) =
1
m

m

∑
i=1

δ(x− λi) (27)

and we want the free probability distribution of a random variables that is distributed according to an N-fold sum
of random variables, each of which is distributed according to f (x). More explicitly, suppose M0 is distributed ac-
cording to f (x) in Eq. (27) and we want the distribution of Eq. (21) under the assumption that the eigenvalues of M0
are a finite and discrete set. We now show how to obtain this by using free probability theory as an approximation.

The Cauchy distribution of f (x) becomes

G(z) ≡ w =
1
m

m

∑
i=1

1
z− λi

. (28)

By the definition of the R−transform we can eliminate z by

z = R(w) +
1
w

;

we are interested in an N−fold free sum which by additivity of the R-transform amounts to R(w)→ R(w)/N.
The z of the sum is therefore

z =
R(w)

N
+

1
w

;

if one were to solve for R(w), one would obtain the R−transform of the sum of N copies the random variables.
The above procedure can succinctly be performed by only doing the following transformation on the z of a single

random variable

z→ z
N

+
1
w

(
1− 1

N

)
,

where the right hand side is the inverse Cauchy transform of the sum denoted by G−1
N (w).

The discrete inverse Cauchy transform of a sum of N copies of m×m matrix M0 (Eq. (28)) now reads

F(w, z, m) ≡ −w +
1
m

m

∑
i=1

1
z
N + 1

w

(
1− 1

N

)
− λi

= 0 (29)

This is the desired formula. To get the density one applies the Plemelj-Sokhotsky formula; i.e., one solves for w at
a fixed z, and take the imaginary part and divide by π.

Solving for w as a function of z requires solving a high degree polynomial, which may analytically be impossible
for polynomials of degree higher than four.

After dividing through by w, Eq. (29) can be rewritten as

m

∑
i=1

vi
w− vi

= α, (30)

where vi =
N−1

Nλi−z and denote the poles in Eq. (29) and α = −m
(

N−1
N

)
< 0.

The solutions of Eq. (30) correspond to the intersection of the horizontal line located at α with ∑m
i=1 vi/(w− vi);

the latter is plotted in Fig. (5). When all the vi are positive or negative, there are in general exactly m solutions to Eq.
(30); however, when the vi have mixed signs, then for certain values of α (α > −4 in Fig. (5)) there are m− 2 real
roots and a complex conjugate pair.

This follows because between any pair of consecutive vi’s that are both negative (positive), the function in Eq. (30)
goes from negative (positive) to positive (negative) infinity. Thus there is at least m − 2 real solutions to Eq. (30).
Therefore there are at most a complex conjugate pair of solutions. When a complex conjugate pair of solutions exist,
they correspond to the solution of Eq. (30) where vi changes sign (see Fig. (5)).
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Figure 5: The red horizontal line is at α = −6. Left: v = [−1,−2,−3,−7], Middle: v = [−2,−1, 1, 2], has mixed signs, Right:
v = [1, 2, 3, 7]

The non-existence of a complex conjugate pair means lack of support in the distribution of the N−fold sum. In
Plemelj-Sokhotsky formula the imaginary part needs to be taken. Lastly note, that there are at most one pair of
complex conjugate roots to Eq. (30). In other words, the roots are either real (i.e. zero probability in the density) or
have at most a complex conjugate pair.

How would one find the roots? There exists a matrix such that its eigenvalues are the roots (set of w that are the
zeros of Eq. (30)) of the above

diag(v1, . . . , vm) +
1
α

uvT ≡ diag(v) +
1
α

uvT , (31)

which is a general rank-one update, where u = [1, . . . , 1]T is a column vector of length m. This is the non-symmetric
generalization of the more standard secular equations method [15].

To see this, assume non-singularity, which yields det
(

diag(v) + uvT

α − λI
)

= 0 or

det
(

I + (diag(v)− λI)−1 uvT

α

)
= 0; therefore (using trace properties): 1 + 1

α vT (diag(v)− wI)−1 u = 0. Writ-
ing it out we have:

1
α

m

∑
i=1

vi
vi − w

= −1

Therefore, eigenvalues of diag(v) + 1
α uvT give the roots that we were seeking 3.

Remark 6. It seems possible that one can compute the complex eigenvalues efficiently for an interval of different z
values by performing one initial computation, obtain the 2− dimensional eigenspace for a complex pair, and then
update only that space with different z values by an Arnoldi method.

VI. ILLUSTRATIONS AND APPLICATIONS

For majority of applications involving non-commuting matrices, we believe, free probability theory suffices. How-
ever, when the latter fails, we have found that a combination of the two extreme approximations (i.e., free and clas-
sical) to work very well. In particular, under rather very mild conditions the natural parameter, p, for a convex
combination is obtained by matching fourth moments. Below we illustrate the theory using some examples.

Let us push the analytical calculation of p. Using Eq. (9) we have

p =
ETr

[
M4

c
]
−ETr

[
M4]

ETr [M4
c ]−ETr

[
M4

f

] ,

3 We can just generate the Matlab code by:
(

diag(v) + 1
α uvT

)
y = v. ∗ y+ u ∗ dot(v, y)/α; where v = [v1 · · · vm];
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Figure 6: Sum of a diagonal random matrix with normally distributed diagonal entries with a block diagonal matrix whose
diagonal blocks are independently drawn from the `× ` GOE. Left: ` = 8 and Right: ` = 4. In each sample we generate new
matrices. Compare the empirical p values on the plots with the theoretical that one obtains from Eq. (35), which for ` = 8 is
p = 0.8048 and for ` = 4 is p = 0.62264.

which by Eq. (16), and noting that in the classical approximation the summands commute, reads

p =
ETr

[
M2

1 M2
2
]
−ETr

[
(M1M2)

2
]

ETr
[
M2

1 M2
2
]
−ETr

[(
Λ1Q†

βΛ2Qβ

)2
] , (32)

where with no loss of generality we take M1 = diag(λ1, . . . , λm) and we have

Classical : ETr
[
M2

1 M2
2
]

= E ∑i,j λ2
i |bij|2

Exact : ETr
[
(M1M2)

2
]

= E ∑i,j λibijλjbji = E ∑i,j λiλj|bij|2,

Free : ETr
[(

M1Q†
βΛ2Qβ

)2
]

= E ∑i,j,k,p λi q̄jiµjqjkλk q̄pkµpqpi,

where for the Free approximation of M2 we substituted Q†
βΛ2Qβ and recall that Λ2 = diag(µ1, . . . , µm). It is useful

to further the computation of the Free approximation

ETr
[(

M1Q†
βΛ2Qβ

)2
]

= E ∑i 6=k,j 6=p λiλkµjµp q̄jiqjk q̄pkqpi ”i 6= k”, ”j 6= p”

+ E ∑k,j 6=p λ2
k µjµp |qjk|2|qpk|2 ”i = k”, ”j 6= p”

+ E ∑i 6=k,j λiλk µ2
j |qjk|2 |qji|2 ”i 6= k”, ”j = p”

+ E ∑j,k λ2
k µ2

j |qjk|4 ”i = k”, ”j = p”.

(33)

A. Sum of a diagonal and a block diagonal matrix

Let m = 64. As before and with no loss of generality we take M1 to be diagonal. Let M1 = diag(λ1, . . . , λm) with
λi ∼ N (0, 1), and let M2 the block diagonal matrix:

M2 =


B1

B2
. . .

Bk

 (34)
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where each Bk is an ` × ` independent GOE matrix with k` = m (see Fig. (6)). We illustrate the technique with
ai ∼ N (0, 1). In Fig. (6) we plot the eigenvalue distribution based on samples of M1 and M2 as indicated on the
plots for ` = 8 and ` = 4. Numerically, in each sample we obtain each Bi by first generating an `× ` random real
gaussian matrix Gi, whose entries are standard normals and then define Bi

Bi =
GT

i + Gi

2
.

This is an example for which the relative eigenvectors have a block-diagonal structure and therefore do not satisfy
the uniformity property in Assumption (1).

Below we derive formulas for general matrices of size m with k blocks of size `× ` (clearly k` = m) and for general
β.

From the above, and using the fact that M1 and M2 are independent, it is easy to see that ETr[M2
1 M2

2] =

∑i,j E(λ2
i )E(|bij|2). If λi ∼ N (0, 1), then E(λ2

i ) = 1 for all i. Moreover, since the total number of nonzero diag-
onal terms in B is m and the total number of nonzero diagonal terms is k`(`− 1) = m(`− 1) we have

E(|bij|2) =
1

m2 ∑
i,j
|bij|2 =

1
m2

{
mE(b2

11) + m(`− 1)E(|b12|2)
}

=
1
m

[
1 + (`− 1)

β

2

]
For G(O/U/S)E block-diag. matrix.

because for the G(O/U/S)E matrix, the variance of any diagonal entry is clearly 1 and any off diagonal entry is β/2.
Therefore the classical answer is ETr[M2

1 M2
2] = ∑i,j E(|bij|2) = m (1 + β(`− 1)/2).

Let us now calculate, the exact departing term. By the independence of M1 and M2 and since E(λiλj) = δi,jE(λ2
i ),

we have ETr[(M1M2)
2] = E ∑i,j λiλj|bij|2 = kE ∑1≤i,j≤` λiλj|bij|2 = k

{
`E(λ2

i )E(|bii|2)δi,j
}
= k` = m.

We now turn to the corresponding quantity in the free approximation. In the formulas above (Eq. (33)) we
need E(µi) , E(µiµj) and E(µ2

i ), where now µi denotes an eigenvalue. For the G(O/U/S)E, E(λi) = 0. De-
noting by || � ||F the Frobenius norm, for any ` × ` G(O/U/S)E matrix Bk we have E(µ2

i ) = 1
`E||Bk||F, but

||Bk||F = 1
`E
{

∑1≤i,j≤` |bi,j|2
}

= 1
` {`E(|bi,i|2 + `(` − 1)E(|bi,j|2)}. We conclude that E(µ2

i ) = (1 + β(`− 1)/2).
However, the size of Qβ matrix is still m. To calculate E(µiµj) for j 6= i note that

E[Tr(Bk)Tr(Bk)] = E
`

∑
i=1

µ2
i + E ∑

i 6=j
µiµj

But X` ≡ Tr(Bk) is a sum of ` independent standard normal variables, which has mean zero and variance `. More-
over, by independence and zero mean, the cross terms are zero and we have E[Tr(Bk)Tr(Bk)] = E[X2

` ] = `. Lastly,
we just derived E(µ2

i ), so we have

E(µ2
i ) = 1 +

β(`− 1)
2

,

E ∑
i 6=j

µiµj = `(`− 1)β/2 =⇒ E(µiµj) = −
β

2
. For G(O/U/S)E

Comment: For E(µiµj) the size of the matrix and its blocks are irrelevant.
Because of independence of M1 from M2 and E(λiλj) = δi,j, the first and third sums in Eq. (33) vanish. Moreover

by the independence of eigenvalues from eigenvectors the expectation is taken term-wise as

ETr
[(

M1Q†
βΛ2Qβ

)2
]

=
β

(mβ + 2) ∑
j 6=p

E(µjµp) +
β + 2

(mβ + 2) ∑
j

E(µ2
j )

=
m(`β + 2)

mβ + 2
,

because ∑j 6=p E(µjµp) = k ∑1≤j 6=p≤` E(µjµp) and Weingarten formulas (see Eq. (13) and the Table below it).
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Figure 7: Sum of a diagonal random matrix, M1, with standard normal entries and the matrix, M2 = QTKQ, where K is taken to
be Kac-Mudrock-Szego. Note that the eigenvalues of M2 are fixed.

Comment: The analytically derived values for E(|bij|2), E(µiµj), E(µ2
j ), and ETr

[(
M1Q†

βΛ2Qβ

)2
]

were all

checked against numerics with high accuracy.
We can now analytically obtain p (Eq. (32)) for this problem to be

p =
(`− 1)(mβ + 2)

(`− 1)(mβ + 2) + 2(m− `)
. (35)

Remark 7. Note that when ` = m, p = 1 as expected the free answer becomes exact when one sums a random diagonal
matrix with an m × m G(O/U/S)E. Also note the remarkable agreement of theoretical (Eq. (35)) and empirical p
values in Fig. (6)

If we were to use Eq. (20) we would obtain for the example in this section p = 1− mE[|qs|4] = (`− 1)/(`+ 2).
The reason there is a discrepancy with Eq. (35) is that the block diagonal matrix M2 does not obey Assumption (1).

B. Sum of a diagonal with fixed Kac-Mudrock-Szego or Laplacian matrix

Next we take the diagonal entries of M1 to be ai ∈ [−1,+1] and take M2 = K, where Q is a Haar orthogonal matrix
and K is the Kac-Mudrock-Szego matrix, whose entries, denoted by ki,j, are

kij = ρ|i−j|

where we take ρ = 1/2; it can be shown that when 0 < ρ < 1 then M2 ≥ 0. We show the eigenvalues of the sum in
Fig. (7).

Lastly, we illustrate how well the density of states of the Anderson model is captured by this technique. In this
case M1 = diag(a1, . . . , an), where ai’s are independent standard gaussians and M2 is the nearest neighbors hopping
matrix with periodic boundary conditions

M2 =



0 1 1
1 0 1

1 0
. . .

. . . . . . 1
1 1 0


.

M2 is equal to a shifted Laplacian matrix, where M2 = 2I + L, where I is the identity and L is the Laplacian
matrix. Elsewhere, we took ai to be randomly distributed from the semi-circle law and proved that M1 and M2 have
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Figure 8: Left: (Anderson model) with variance var(λi) = 0.3. Sum of a diagonal random gaussian matrix, M1, and the hopping
matrix, M2 = QT(2I + L)Q, where L is the Laplacian matrix. Right: (Anderson model) with var(λi) = 3. Note that in all these
plots examples M2 has a fully deterministic set of eigenvalues. In Fig. (2) we show the case where var(λi) = 1.

moments matching up to 8 [4]. We showed that the method is successful across the range of the strength of disorder
(see Fig. (2) and Fig. (8)). Like in there we find that the free approximation alone is quite adequate.

Comment: If one sets to find p numerically by matching fourth moments, one should note that the kurtosis can be
very slow to converge. In principle, if two matrices are free, one could numerically observe a p > 1 or if the classical
end is the exact theory then p < 0 can be observed. These are byproducts of numerical inaccuracies of computing
the kurtoses.

VII. AN APPLICATION: DENSITY OF STATE OF GENERIC LOCAL QUANTUM SPIN CHAINS

The density of states encodes useful information about the physics of many-body systems. Here we apply our
technique to quantum many-body systems with generic interactions [9, 11]. Consider the Hamiltonian acting on the
joint Hilbert space of n d−dimensional complex vector spaces (e.g., spin s particles, where d = 2s + 1). The joint

Hilbert space is
(

Cd
)⊗n

and the nearest neighbor interactions is given by the Hamiltonian

H =
n−1

∑
k=1

Idk−1 ⊗ Hk,k+1 ⊗ Idn−k−1 (36)

where each Hk,k+1 is a d2× d2 matrix that we take to be generic. For example, the local interactions can be distributed
according to GUE, or be random projectors, or Wishart matrices etc.

The problem statement is then: Suppose the eigenvalue distribution of Hk,k+1 is known, what is the eigenvalue
distribution of H?

The exact problem is NP-Complete [3]. There are two main sources of difficulties: 1. The size of the matrix H is
dn × dn, which makes the exact diagonalization difficult even for moderate sized problems. 2. Any two consecutive
terms in Eq. (36) do not commute.

Despite these challenges and the NP-completeness of the exact result, the method described above provides an
excellent approximation to the true distribution. We now proceed to detail the results corroborated with various
numerical illustrations.

In Eq. (36) the summands with k odd all commute. Similarly the summands with k even all commute. This enables
us to write H in Eq. (36) as

Hodd + Heven, (37)
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Figure 9: Comparison of our technique with Gram-Charlier and Beta-ensemble. The left corresponds to what was shown in Fig.
(2) and the right is a spin chain of length 3 where each of the two local interactions has Haar eigenvectors and Bernoulli ±1
eigenvalues. In the latter, we took the size of each local term to be 25× 25; therefore H is 125× 125.

where each Hodd and Heven is dn dimensional and is given by

Hodd = ∑
k odd

Idk−1 ⊗ Hk,k+1 ⊗ Idn−k−1 ,

Heven = ∑
k even

Idk−1 ⊗ Hk,k+1 ⊗ Idn−k−1 .

We take Hodd and Heven as our two known matrices, where an eigenvalue decomposition gives

Hodd = U†
oddΛoddUodd

Heven = U†
evenΛevenUeven.

The unitary matrices of eigenvectors, Uodd and Ueven, are (for an odd sized chain)

Uodd = U1,2 ⊗U3,4 ⊗ · · · ⊗Un−2,n−1 ⊗ Id

Ueven = Id ⊗U2,3 ⊗U4,5 ⊗ · · · ⊗Un−1,n.

In these equations Uk,k+1 denotes the eigenvector matrix of Hk,k+1 and is therefore d2 × d2 in size.
The diagonal real matrices of eigenvalues Λodd and Λeven are

Λodd = ∑
k odd

Idk−1 ⊗Λk,k+1 ⊗ Idn−k−1 ,

Λeven = ∑
k even

Idk−1 ⊗Λk,k+1 ⊗ Idn−k−1 ,

and Λk,k+1 is the real and diagonal matrix of the eigenvalues of Hk,k+1. The eigenvalues of Λodd corresponds to all
possible sums of the eigenvalues of Λk,k+1, which is easy to obtain. Similarly Λeven is easy to compute.

With no loss of generality we change basis in which Hodd is diagonal, whereby we have

H = Λodd + Q−1
s ΛevenQs

and Qs ≡ UoddU†
even. The problem then is to find a good approximation for the density of states of H. Recall that we

have two extreme ends that correspond to the classical and free approximations

Hc = Λodd + Π−1ΛevenΠ

H f = Λodd + Q−1ΛevenQ

where Π and Q are permutation and β−orthogonal Haar matrices respectively (exactly as before). In the left figure
of Fig. (2) we showed the DOS for H, Hc , H f and the proposed technique; the convex combination parameter here
is p = 0.43.

How does our technique compare to other known techniques? To the best of our knowledge there are two note-
worthy techniques that we can compare against. The first is the Gram-Charlier expansion [5] which builds the
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distribution from the knowledge of first k moments4. The second is a fit to the beta-distribution, which is part of
MatLab’s library of function (pearson.m). Our technique, unlike the others, seems to work much better than what
one would expect from the knowledge of the first four moments alone.

VIII. DISCUSSIONS: LIMITATIONS AND COMPARISON

In this paper we described a technique for calculating the eigenvalue distribution of sums of matrices from the
knowledge of the distribution of the summands. The input to the theory is the known distribution of the summands
and the output is an approximation to the density of the sum. We have laid out a step by step technology by which
such calculations can be carried out and provided an eigenvalue finding subroutine which circumvents solving high
order polynomials to solve for the complex roots needed. We then compared our theory against exact diagonal-
ization. Through our numerical work we find that the theory proposed gives excellent approximation of the exact
eigenvalue distributions in most cases.

The technique described above outputs an eigenvalue distribution, which is a continuous curve or union of con-
tinuous curves. It is limited in that it does not provide level spacing statistics (for M in Eq. (1)). For many problems
of interest in physics, such as quantum many-body systems, the difference between the smallest two eigenvalues is
of utmost importance. This difference is simply called the gap. Elsewhere we have proved that there is a continuum
of eigenvalues above the smallest eigenvalue [10]. Although this implies that the gap tends to zero as m → ∞ for
generic (local) interactions and that we can quantify how it goes to zero for gaussian ensembles, we do not have a
detailed enough description of eigenvalue spacings beyond.

Density of states does not necessarily provide information about 2-point or higher order correlation functions. It
would be interesting if they were investigated.

We are aware of two other works ([1] and [2]) that formulate some form of interpolation between a “free” object
and a “classical” object: In [1], a random unitary matrix is explicitly constructed through a Brownian motion process
starting at time t = 0, and going to time t = ∞. “Classical” corresponds to t = 0, and “free” corresponds to
t = ∞. The random unitary matrix starts non-random and is randomized continuously until it fully reaches Haar
measure. In [2], through detailed combinatorial constructions and investigation into Fock space representations of
Fermions and Bosons, unique measures are constructed that interpolate between the limit of the classical central
limit theorem, the gaussian, and the free central limit theorem, the semicircle. The curve also continues on to t = −1,
which corresponds to two non-random atoms.

An unknown question is whether the unitary construction in [1] leads to the same convolution interpolate as this
paper where we take a convex combination. Another unknown question is whether our proposal and [1] lead to an
analog of a limit of a central limit theorem which would match that of [2].

We outline in the table below features found in each paper. The empty boxes are opportunities for further research.

Application Unitary Matrix Construction Interpolate Convolution Iterate Convolution to a CLT

This work " "

[1] " "

[2] "

Lastly, this work proposes a technique to obtain the eigenvalue distribution. To ultimately understand the powers
and limitations of it, it would be most useful to take an applied perspective and apply it to concrete problems.
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4 A limitation of Gram-Charlier is that it can at times output a negative densities.
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