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that identify the tangent spaces of these manifolds and the other based upon existing numericalalgorithms for computing the Jordan and Kronecker forms [8, 9, 10, 11, 13, 16, 15, 19, 20].The classical approach to solving this problem requires the computation of the tangent spaceto the orbits. In the single matrix case, the tangent vectors have the formXA� AX; (1)while in the matrix pencil case, the tangents have the formX(A� �B)� (A� �B)Y: (2)Thus the codimension of the single matrix orbit is the number of linearly independent matrices Xfor which (1) vanishes, while the codimension of the matrix pencil orbit is related to the numberof linearly independent matrix pairs X; Y for which (2) vanishes.Arnold [1] has rederived the formula for the Jordan case for the purpose of de�ning a particularnormal form for deformations of a matrix with a given Jordan form. This form is convenientbecause of its minimum number of parameters [4]. We are unaware of any general dimension countfor matrix pencils in the literature. One partial result of Waterhouse [18] counts the codimensionof a singular pair of n by n matrices (i.e. the square case) to be n+ 1.Our new approach is based on the so called staircase algorithms for the Jordan and Kroneckercanonical forms. The staircase algorithm for the Jordan canonical form proceeds by computing theWeyr characteristics of the matrix, while the staircase canonical form proceeds by computing amore complicated set of structural indices.In this paper we lay the groundwork for a theory that we hope might explain the occasionalfailures of existing staircase algorithms to �nd the \right" Jordan or Kronecker form. These al-gorithms are used in systems and control theory to �nd the input matrix (or pencil) of highestcodimension within a user-supplied distance � of the input data. The structures of these matricesor pencils re
ect important physical properties of the systems they model, such as controllability[3, 17]. The user chooses � to measure the uncertainty in the data. The existence of a matrix orpencil with a di�erent structure within distance � of the input means that the actual system mayhave a di�erent structure than the approximation supplied as input. So the goal of these algorithmsis to perturb the input by at most � so as to �nd the matrix or pencil of as high a codimension aspossible. The algorithm is said to fail if there is another perturbation of size at most � which wouldraise the codimension even further. Therefore, we need to understand how the algorithm producesoutputs of each codimension, which is explained in this paper, although this is just a �rst step toexplaining the failures. In particular, this is why we need to prove a known result (Theorem 2.1)using a new technique: staircase form. We believe the dimension count for the matrix pencil case(Theorem 2.2) is new.2 Main ResultsTheorem 2.1 The codimension of the orbit of a given matrix A iscJor =X� (q1(�) + 3q2(�) + 5q3(�) + : : :);where q1(�) � q2(�) � q3(�) � : : :, denotes the sizes of the Jordan blocks of A corresponding to �.Theorem 2.2 The codimension of the orbit of A � �B depends only on its Kronecker structure.This codimension can be computed as the sum of separate codimensions as given in the table below.2



This equation is expressed more compactly in Equation 6 in the next section. Section 7 providesexamples of how to use these formulas. Readers already familiar with the Kronecker form may wishto proceed directly to Section 7 before reading the proofs.Breakdown of the codimension count:The codimension of the orbit of A � �B depends only on its Kronecker structure. It can becomputed as the sum cTotal = cJor + cRight + cLeft + cJor;Sing + cSing, whose components arede�ned as:1. The codimension of the Jordan structure:cJor =X� (q1(�) + 3q2(�) + 5q3(�) + : : :);where the sum is over all eigenvalues as in Theorem 2.1, including the in�nite eigenvalueif it is present.2. The codimension of the L singular blocks:cRight =Xj>k(j � k � 1);where the sum is taken over all pairs of blocks Lj and Lk for which j > k.3. The codimension of the LT singular blocks:cLeft = Xj>k(j � k � 1);where the sum is taken over all pairs of blocks LTj and LTk for which j > k.4. The codimensions due to interactions of the Jordan structure with the singular blocks:cJor;Sing = (size of Jordan structure)(number of singular blocks):Here the number of singular blocks counts both the left and the right blocks.5. The codimensions due to interactions between L and LT singular blocks:cSing =Xj;k (j + k + 2);where the sum is taken over all pairs of blocks Lj and LTk .These are complex codimensions, but the answers are correct for real codimensions when thematrices or matrix pencils have real Jordan or Kronecker forms. For the rest of this paper alldimensions will be complex dimensions (half the number of real dimensions).3



3 Mathematical Preliminaries and Notation3.1 Matrix Canonical FormsThe basic notation in this area has been reinvented by many authors. So as to make this workself-contained and also to �x notation, we review the basic de�nitions. Further information maybe found in standard matrix theory texts such as [5] or [12].Given a matrix A that has only one eigenvalue � it is always possible to �nd a similarity thattransforms A into the form J�(A) = diag(J�q1 ; J�q2 ; : : :) (3)where J�q is a q by q matrix with � on the diagonal and 1 on the superdiagonal known as a Jordanblock.For an arbitrary matrix, it is always possible to �nd a similarity that transforms A into a unionof blocks of the form (3): J(A) = diag(J�1(A); J�2(A); : : :); (4)where �1; �2 denotes the distinct eigenvalues of A.To �x the order of the Jordan blocks within (3), we assumeq1(�) � q2(�) � : : : ;but we do not �x the order of the eigenvalues:De�nition 3.1 The matrix J(A) de�ned up to eigenvalue orderings is known as the JordanCanonical Form of A.De�nition 3.2 The sequence of numbers (qi(�)) de�ned above gives the sizes of the Jordan blocksfor the eigenvalue �. They are known as the Segre characteristics of A relative to �.It is sometimes convenient to think of this as an in�nite sequence with qj(�) = 0 for j >(thenumber of Jordan blocks corresponding to �).De�nition 3.3 The elementary divisors of the matrix A�xI are the polynomials (��x)qi(�) inthe indeterminate x, where � is an eigenvalue of A and qi(�) is a Segre characteristic correspondingto �.De�nition 3.4 The invariant factors of the matrix A�xI are the polynomials Pi(x) = Q�(��x)qi(�). It follows that if we let pi denote the degree of the ith invariant factor thenpi =X� qi(�):Of course n = P pi because this counts the sizes of all the Jordan blocks of all the eigenvaluesof A.Some authors (see [12] pages 43 and 93) consider the quantity mi de�ned as the degree of thegreatest common divisor of all the i by i minors of the linear matrix polynomial A� �I . It can beshown that mi = pn+1�i + : : :+ pn.De�nition 3.5 The nullity of an n by n matrix A is n� rank(A). For m by n matrices the rownullity and the column nullity are m� rank(A) and n� rank(A) respectively.4



De�nition 3.6 Let wj(�) denote the di�erencenullity(A� �I)j � nullity(A� �I)j�1 � rank(A� �I)j�1 � rank(A� �I)j:The numbers wj(�) are the Weyr characteristics of A relative to �.It turns out that the number of blocks J�q with q � j is exactly wj(�). The dimension of thenullspace of (A� �I) is w1(�) ([5, 12]).The following lemma is critical for the construction of the staircase algorithm.Lemma 3.1 Let Q be any unitary matrix whose �rst w1 columns span the nullspace of A � �I.Then QTAQ =  w1 n � w1�I S0 Â !where Â is an n � w1 by n � w1 matrix. With the deletion of w1(�), the Weyr characteristics ofÂ are the same as that of A. In particular, the Weyr characteristics of the other eigenvalues areunchanged.Proof IdeaWithout loss of generality we may assume that QTAQ is already a (row and column permutationof a) Jordan form. The Jordan structure of Â is the same as the Jordan structure of A except thatevery Jordan block of Â corresponding to the eigenvalue � is exactly one dimension smaller.Let A� �B be an m by n matrix pencil. (When discussing the Kronecker case, � is always anindeterminate.) It is possible to �nd an equivalent pencil Kron(A� �B) in the Kronecker Form:Kron(A� �B) = diag(L�1 ; : : : ; L�g ; LT�1; : : : ; LT�h; J; J1): (5)The L� blocks are � by �+1 rectangular blocks with � on the diagonal and 1 on the superdiagonal.The LT� blocks are � + 1 by �, with � on the diagonal, and 1 on the subdiagonal. The � and �(sometimes referred to as the size) can be 0, leading to 0 columns and rows respectively. The Jblock is of the form (4) with the addition of �I . This constitutes the Jordan structure of the �niteeigenvalues. The J1 block is the union of blocks of size qi(1) each of which has 1 on the maindiagonal and � on the superdiagonal. This constitutes the Jordan structure corresponding to thein�nite eigenvalue. Frequently there will be no need to distinguish between the �nite and in�niteeigenvalues. Indeed, with an appropriate M�obius transformation sending A� �B to (�A+ �B) ��(
A+ �B), all eigenvalues may be assumed �nite.The L and LT blocks constitute the singular part of the pencil. The Jordan structure for �niteand in�nite eigenvalues constitutes the regular part of the pencil. The Segre characteristics remainwell de�ned for a matrix pencil, but we must include the characteristics for the in�nite eigenvalueas well.De�nition 3.7 Let 0 � �1 � �2 � : : : � �gdenote the sizes of the g L blocks of a pencil, and let0 � �1 � �2 � : : : � �hdenote the sizes of the h LT blocks. Then the numbers �i are known as the column minimalindices, while the �i are the row minimal indices.5



We can now recast Theorem 2.2 using the notation from the previous de�nitions. The codi-mension of the orbit of A� �B can be written compactly ascod(orbit(A� �B)) = (p1 + 3p2 + 5p3 + : : :) + (g + h)X pi+ X�i>�j(�i � �j � 1) + X�i>�j(�i � �j � 1) +Xi;j (�i + �j + 2); (6)where the pi include any in�nite eigenvalue blocks.3.2 Conjugate PartitionsThe Weyr characterists and the Segre characterists of a matrix for a given eigenvalue are closelyrelated.De�nition 3.8 Let k1 � k2 � k3 � : : : � 0 be a partition of the positive integer k (i.e. k =k1+ k2 + : : :). Let lj denote the number of ki that are greater than or equal to j. Then the lj forma partition of k known as the conjugate partition of the ki.It is easy to verify that the property of being a conjugate partition is symmetric. For example,17=6+6+3+1+1=5+3+3+2+2+2 are conjugate partitions of 17. This is easy to verify by readingthe diagram below (known as a Ferrers diagram) vertically and horizontally:6 6 3 1 15 . . . . .3 . . .3 . . .2 . .2 . .2 . .The idea of the conjugate partition is very simple, yet very powerful. It allows the interchangeof summations: Xi kiXj f(i; j) =Xj ljXi f(i; j);where f(i; j) is any function of i and j, and the ki and lj are conjugate partitions.Lemma 3.2 The Weyr characteristics and the Segre characteristics of a matrix corresponding toa particular eigenvalue are conjugate partitions.The proof of this lemma is evident from the Jordan form of the matrix [12, p.74].3.3 A Fundamental Codimension CountOur codimension counts for the Jordan and Kronecker form are built up from the fundamentalLemma 3.3. To state it, we need to introduce a little notation from manifold theory.6



De�nition 3.9 The set of k dimensional subspaces of n dimensional space along with its naturalmanifold structure forms the Grassmann manifold denoted Gk(n).The Grassman manifold and its dual Gn�k(n) are isomorphic of dimension k(n � k). InLemma 3.3 we will need a full-rank parameterization for Gn�k(n), which we construct asfollows. (Recall that a chart for a complex d-dimensional manifold M is an open neighborhood Uin Cd plus a homeomorphism from M into U . A full rank parameterization is the inverse of thishomeomorphism.) Because of the action of the unitary group, it su�ces to specify a local full rankparameterization near any one element, say Ek, the one generated by the �rst k coordinate vectors.We create a parameterization from unitary matrices of the formQ0 =  I �R�R I ! I +R�R 00 I +RR� !�1=2 ; (7)where R is n� k by k. The homeomorphism maps complex n � k by k matrices R to the span ofthe �rst k columns of Q0. If Q is any �xed unitary matrix, the homeomorphism from R 2 Cn�k�kto the space spanned by the �rst k columns of QQ0 provides the parameterization mapping froma neighborhood of the origin in Cn�k�k to a neighborhood in Gk(n) of the space spanned by the�rst k columns of Q.Lemma 3.3 The set of m by n matrices with rank r is a manifold with codimension (m�r)(n�r).Proof We construct a parameterization whose image is a neighborhood of a particular m by n rankr matrix A as follows. A neighborhood of the origin in the product space Cr�n�r�Cm�r will serveas a domain for the parameterization. Let Q be any unitary matrix whose �rst n� r columns spanthe nullspace of A, so that AQ = [0M ] is zero in its �rst n � r columns and its last r columns Mhave full rank. Let Q0 be as in (7), with k = n� r. Then the map from (R; T ) 2 Cr�n�r � Cm�rto [0;M + T ]Q�0Q� is the desired homeomorphism. If m = n, then we may equally well use thehomeomorphism mapping (R; T ) to QQ0[0;M + T ]Q�0Q�. Thus the dimension is r(n � r) + mr,and the codimension is mn � r(n� r)�mr = (m� r)(n� r).We graphically depict the independent parameters as follows:n � r rm� r Sr R Â (8)Here R refers to the coordinates that de�ne the null space, while T = [ST ; ÂT ]T is the matrixin Cm�r. The black square in the upper left clearly indicates the codimension of (m� r)(n� r).Later, we will take advantage of this construction to recursively construct further submanifoldsby placing analogous rank constraints on Â, so that Â still lies in a small neighborhood of theorigin. Therefore, it will be easy to see that we need merely add the codimensions of our constraintsat each level in order to compute the overall codimension of the �nal submanifold. Indeed, theparameterization of Lemma 3.3 is constructed explicitly at each step of the staircase algorithm.7



4 Proofs of Theorem 2.1 (Codimension Count for Jordan Form)4.1 Classical ProofConsider conjugating the matrix A by I + �X , where � is a small scalar. This yields(I + �X)�1A(I + �X) = A + �(XA� AX) +O(�2);from which it is evident that the tangent space to orbit(A) at A consists of the matrices of the formXA� AX . The dimension of the orbit is equal to the dimension of the tangent space so that thecodimension of the orbit is equal to the dimension of the nullspace of the mapping that sends Xto XA� AX . The codimension of the orbit is then the number of linearly independent solutionsto AX = XA. This number of solutions is well known to bep1 + 3p2 + 5p3 + : : : :(See page 222 of volume 1 of [5].)An alternative expression for the number of solutions to AX = XA isn + 2(m1 + : : :+mn�1)as given in [12]. According to the remark following De�nition 3.4, these expressions are identical.4.2 Outline of the Staircase AlgorithmThe staircase algorithm for the computation of the Jordan Canonical Form appears in [6, 7, 10,11, 13]. Some references refer to \stairacase form" to mean a slightly di�erent concept [2, 14]. Thestaircase algorithm of interest to us computes the Weyr characteristics. It is built recursively uponthe idea in Lemma 3.1.Staircase algorithm for computing the Jordan form for eigenvalue �i = 0Atmp = A� �Iwhile Atmp not full ranki = i+ 1Let n0 =Pi�1j=1 wj and ntmp = n � n0 = dim(Atmp)Compute an ntmp by ntmp unitary matrix Q whose leading wi columns span the null spaceof AtmpA = diag(In0 ; Q�) �A � diag(In0 ; Q)Let Atmp be the lower right ntmp � wi by ntmp � wi corner of AAtmp = Atmp � �IendwhileThe �nal A is easily seen to be unitarily similar to the initial A. The �nal A is in staircaseform, as illustrated with the following example:w1 w2 w3 w4 n0w1 �I A12 � � �w2 �I A23 � �w3 �I A34 �w4 �I �n0 A08



Here, the superdiagonal blocks Ai;i+1 (the \stairs") and also A0 � �I are of full column rank,while the staircase region in the lower triangle is entirely 0. If A has only one eigenvalue � then n0is 0 and the last block row and block column do not appear. If A has other eigenvalues �0, then thestaircase form corresponding to the remaining eigenvalues may be extracted by applying the samealgorithm to A0.An easy observation is thatLemma 4.1 The wi computed by the staircase algorithm for the eigenvalue � are the Weyr char-acteristics corresponding to the eigenvalue �.4.3 Second Proof of Theorem 2.1Let A be any matrix. We will show that the staircase algorithm, in e�ect, creates a parameterizationfor an open neighborhood N(A) of A on the manifold orbit(A). Let � be an eigenvalue of A.Then A � �I has rank n � w1. The independent parameters portrayed in (8) may be used as aparameterization for a neighborhood of A � �I on the manifold of rank n � w1 matrices. Lemma3.1 tells us that we have a parameterization for orbit(A) if we make further assumptions on theJordan structure of Â. Notice that in a small enough neighborhood of A, the last n � r columnsof the staircase form are full rank. It is important to observe the independence of the w1(n� w1)parameters in R1 from the w1(n�w1) parameters of S1 and the as of yet uncounted parameters inÂ. The �rst eigenvalue � is \fully parameterized" when Â� �I has full rank. The parameters arepictorially depicted below in an example that recurs two more times before Â� �I has full rank.
w1 w2 w3 ÂR1 R2 R3 S1S2S3 w1w2w3This parameterization process is repeated on Â with a new eigenvalue shift in an identicalmanner. This repetition continues until Â does not exist. The areas of the black squares in the�gure above indicate the codimension that we might attribute to the eigenvalue �. This codimensionis then Xi w2i = Xi wiXk=1(2k � 1)= Xk qkXi=1(2k� 1)= Xk (2k � 1)qk;using the fact that the Weyr and Segre characteristics are conjugate partitions.The total codimension for the entire Jordan structure of A is obtained by summing over all theeigenvalues because of the independence of the parameters.9



5 Tangent Space Proof of Theorem 2.2We include two proofs both of which we believe to be new. The �rst proof requires counting thenumber of independent solutions to two simultaneous matrix equations derived by analyzing thetangent space, while the second proof (in Section 6) requires an analysis of the staircase algorithmsfor the Kronecker canonical form.Consider an orbit preserving transformation of them by n pencil A��B obtained by multiplyingon the left by I + �X and the right by I � �Y , where � is a small scalar. This yields A � �B +�(X(A� �B)� (A � �B)Y ) +O(�2); from which it is evident that the tangent space to the orbitof the pencil consists of the pencils that can be represented in the formf(X; Y ) = X(A� �B)� (A� �B)Y; (9)where X is an m by m matrix and Y is an n by n matrix.Since (9) maps a space of dimension m2 + n2 linearly into a space of dimension 2mn, thedimension of the image space is m2 + n2 � d, where d is the dimension of the kernel of f(X; Y ),and so the codimension is 2mn� (m2 + n2 � d) = d� (m� n)2: (10)The term (m� n)2 represents extra baggage due to our consideration of rectangular pencils. As inthe Jordan case, we need to calculate d, the number of linearly independent solutions to f(X; Y ) =0. This can be written as the two simultaneous equationsXA = AY and XB = BY: (11)Unfortunately, we can not simply quote a classical count of the number of independent solutionsto (11) as we were able to do in Section 4.1. However sincePf(X; Y )Q�1 = (PXP�1)P (A� �B)Q�1 � P (A� �B)Q�1(QYQ�1);it follows that the number of linearly independent solutions to f(X; Y ) = 0 depends only on theKronecker structure of A � �B. Thus, we assume that A � �B is already in Kronecker canonicalformM = diag(M1;M2; : : :). The Kronecker case is more complicated than the Jordan case due tothe greater number of possibilities for the Kronecker structure M .We partition the equation XM = MY conformally with M = diag(M1;M2; : : :) so thatXijMj =MiYij , where Mk is mk by nk, Xij is mi by mj , and Yij is ni by nj : m1 m2m1 X11 X12m2 X21 X22!  n1 n2m1 M1m2 M2! =  n1 n2m1 M1m2 M2 !  n1 n2n1 Y11 Y12n2 Y21 Y22!The next lemma allows us to compute the quantity d mentioned before Equation (11) as thesum of the number dij of independent solutions of XijMj =MiYij in the variables Xij and Yij .Lemma 5.1 In terms of the above notationd =Xi;j dij :10



Proof As is evident from the example X11 X12X21 X22 ! M1 M2 ! =  M1 M2 ! Y11 Y12Y21 Y22 ! ;the equations XijMj =MiYij , i = 1; 2; : : :, j = 1; 2; : : : are all mutually independent.Given any two blocks, Mi and Mj (we allow i = j here) we de�ne their interaction and thecointeraction:De�nition 5.1 LetMi be mi�ni and letMj bemj�nj . Let X be an arbitrary mj�mi matrix andY be an arbitrary nj � ni matrix. We de�ne the interaction dij of Mi with Mj as the dimensionof the linear space fX; Y g such that XMj =MiY . We de�ne the cointeraction of Mi with Mj ascij = dij � (mi � ni)(mj � nj). We also consider the combined cointeraction which we de�neas cij + cji when i 6= j, and simply cii when i = j.Notice that the combined cointeraction has a di�erent de�nition depending on whether Mi andMj are distinct blocks (even if they happen to be equal) on one hand, or if i = j on the other hand.Strictly speaking the combined cointeraction is a function of Mi, Mj , and the Kronecker delta �ij .Lemma 5.2 The codimension of a matrix pencil M with Kronecker structure diag(M1;M2; : : :) isthe sum of cointeractions of Mi with Mj for all combinations of i and j.Proof The sum of the cointeractions isXi;j fdij � (mi � ni)(mj � nj)g = d� (m� n)2as in Equation (10).We must now count the number of linearly independent solutions (and the associated combinedcointeractions) to the following equations:� XLj = LkY and XLTj = LTk Y� XLj = LTk Y and XLTj = LkY� XJ = LjY and XLj = JY and related structures� XJ = JYwhere J denotes the non-singular structure of the pencil.5.1 XLj = LkY and XLTj = LTk YConsider the equation XLj = LkY , where X is an unknown k by j matrix and Y is an unknownk + 1 by j + 1 matrix. This equation is equivalent to the two equationsX [0 Ij ] = [0 Ik]YX [Ij 0] = [Ik 0]Y;11



where 0 denotes a column of zeros. These two equations are in turn equivalent to the conditionsX�;� = Y�;� ; � = 1; : : : ; k; � = 1; : : : ; jY�;� = Y�+1;�+1; � = 1; : : : ; k; � = 1; : : : ; jY�+1;1 = Y�;j+1 = 0; � = 1; : : : ; kIf j < k there is only the trivial solution X = 0 and Y = 0. The interaction is 0, so that thecointeraction is 0� (j � (j + 1))(k� (k + 1)) = �1.If j � k then there are non-trivial solutions: Y can be any upper triangular Toeplitz matrixwith 1 + j � k diagonals starting from the main diagonal. X is then obtained from Y by omittingthe �rst row and column. The interaction of Lj with Lk is 1 + j � k so that the cointeraction is(1 + j � k)� 1 = j � k.We conclude that the combined cointeraction of Lj and Lj is 0, while if j > k then the combinedcointeraction of Lj with Lk is j � k � 1.Taking the transpose and interchanging the roles of j and k, we see that the same result holdsfor blocks of the form LTj . We also remark that the analysis is correct even if j or k is 0.5.2 XLj = LTk Y and XLTj = LkYWe proceed in a manner similar to the previous case. Consider the equation XLj = LTk Y; whereX is an unknown k + 1 by j matrix and Y is an unknown k by j + 1 matrix. The equations areequivalent to X�;� = Y�;� ; � = 1; : : : ; k; � = 1; : : : ; jY�+1;� = Y�;�+1; � = 1; : : : ; k; � = 1; : : : ; jY�;1 = Y�;j+1 = 0; � = 1; : : : ; kXk+1;� = 0; � = 1; : : : ; jThis has only the trivial solution X = Y = 0 so that the interaction of Lj with LTk is 0 and thecointeraction is 0� (�1)(1) = 1.A similar examination of the equation XLTj = LkY shows that the interaction of LTj with Lk isj+k so the cointeraction is j+k�(1)(�1) = j+k+1. We conclude that the combined cointeractionis j + k + 2.5.3 Jordan Blocks and Singular BlocksIn one way, the computation involving Jordan blocks is easier since the interaction is equal to thecointeraction. (This is true simply because the Jordan block is square.) However, we must nowallow for arbitrary eigenvalues.Assume that Jk is a single Jordan block of size k corresponding to the �nite eigenvalue e. (We usee here so that there is no confusion with the indeterminate �.) We consider solutions toXJk = LjY .The reader can verify that the dimension of the space of solutions is k. Indeed the �rst row ofthe j + 1 by k matrix Y can be chosen arbitrarily and this determines the remaining elements asfollows: Y�1 = Y11e��1, X is obtained from Y by deleting the last row, and eY�;�+Y�;��1 = Y�+1;�.An analogous, though simpler argument shows that the case of in�nite eigenvalues gives the same12



answer. (We can also resort to a M�obius transformation as well.) We conclude that the interactionof Jk with Lj is k.The interaction of Lj with Jk is readily shown to be 0. From the equation XLj = JkY; we canconclude that X is obtained from Y by deleting the last column, that the last column of Y is zero,and if the mth column of Y is 0, then so is the m� 1st column of X and hence so is the m � 1stcolumn of Y .The cases XLTj = JY and XJ = LTj Y can be reduced to the previous cases by rememberingthat if J is a Jordan block, JT = PJP where P is the permutation that renumbers indices inbackwards order. For example, the number of independent solutions to XLTj = JY is the same asthe number of solutions to (Y TP )(PJTP ) = (LjXTP ).5.4 Jordan Blocks with other Jordan BlocksLet J + �I be the entire non-singular portion of the Kronecker structure. If we assume that thereare no in�nite eigenvalues, then the equation X(J + �I) = (J + �I)Y implies X = Y and then weare reduced to the case XJ = JX in Theorem 2.1. We remark that Theorem 2.1 tells us that thereis no interaction among Jordan blocks with di�erent eigenvalues.We omit the tedious algebra, but it is possible to show that an in�nite eigenvalue behavesexactly as if it were �nite. (A simpler argument would point out that we can rotate the Riemannsphere to insure that all the eigenvalues are �nite, without changing the codimension count.) Weconclude that the combined cointeractions of the non-singular portion of the pencil is exactly as inTheorem 2.1.5.5 Proof of Theorem 2.2The proof follows from the analysis of the cases presented in Sections 5.1.1 through 5.1.4.6 Proof of Theorem 2.2 Based on the Staircase AlgorithmWe begin by reviewing the staircase algorithm. The version we use has three passes. Let A��B bean m by n matrix pencil. The �rst pass produces two sequences of numbers si and ri and returnsa pencil A0 � �B0 with no Lj blocks and no zero eigenvalues. The sequence satis�ess0 � r0 � s1 � r1 � s2 � : : : ;where� si � ri = the number of Li blocks and� ri � si+1 = the number of J0i+1 blocks.The algorithm is as follows.
13



Staircase algorithm for computing the Kronecker form for the 0 eigenvalue and Lj blocksi = �1Atmp = Awhile Atmp not full ranki = i+ 1Let n0 =Pi�1j=0 sj and ni = n � n0 = #cols(Atmp)Let m0 =Pi�1j=0 rj and mi = m�m0 = #rows(Atmp)Compute an ni by ni unitary matrix Q whose leading si = nullity(Atmp) columns spanthe right null space of AtmpLet A = A � diag(In0 ; Q) and B = B � diag(In0 ; Q)Btmp = B(m0 + 1 : m ; n0 + 1 : n0 + si)Compute an mi by mi unitary matrix P whose �rst ri = rank(Btmp) rows spanthe column space of BtmpLet A = diag(Im0 ; P ) �A and B = diag(Im0 ; P ) �BLet Atmp be the last mi � ri rows and ni � si columns of AendwhileIt is easy to see the �nal A� �B is unitarily equivalent to the initial A��B. We illustrate the�nal form of A� �B with the following small example:s0 s1 s2 s3 n0r0 0� �B00 A01 � �B01 � � �r1 0� �B11 A12 � �B12 � �r2 0� �B22 A23 � �B23 �m0 A0 � �B0On completion, the Bii blocks have full row rank, and the Ai;i+1 blocks have full column rank.The �rst pass through the inner loop of the algorithm postmultiplies A and B by a unitary Qso A's leading s0 = nullity(A) columns are 0, and then premultiplies A and B by a unitary P sothat B00, the leading r0 by s0 submatrix of B, is full rank, and the remaining rows of the �rst s0columns of B are zero. We then repeat the process on the trailing m� r0 by n � s0 submatrix ofA� �B to get s1 and r1. We continue until the trailing block of A has full rank (or is null).Just as with the Jordan form, each step of the algorithm incrementally builds a parameterizationfor the set of matrices of a given Kronecker form. Each step of the algorithm restricts the Kroneckerform of the pencil to a set of higher codimension. The restrictions imposed at each step areindependent for the same reason they were in the Jordan case, so we can just add codimensions.The increase in codimension at each step is given by Lemma 3.3, as the sum of the products ofthe row and column nullities of submatrices of A and B. Speci�cally the mi by ni submatrix ofA has column nullity si, rank ni � si, row nullity mi + si � ni, and so by Lemma 3.3 codimension(mi + si � ni)si. Similarly the codimension due to B at step i is (mi � ri)(si � ri). The �rst passthrough the algorithm determines the L and J0 blocks so that the codimension due to these blocksis given by Xi f(mi + si � ni)si + (mi � ri)(si � ri)g : (12)We proceed to show that (12) is the formula given in Theorem 2.2.For convenience we list our notation: 14



mi number of rows in the lower right subpencil at step i = m�Pi�1k=0 rkni number of columns in the lower right subpencil at step i = n�Pi�1k=0 sksi column nullity of Atmp at step iri row rank of Btmp at step ili number of Li blocks in the original pencill0i number of LTi blocks in the original pencilti number of J0i blocks in the original pencilu size of the regular structure corresponding to � 6= 0.6.1 Only left singular blocksWe begin by assuming that our pencil only contains left singular blocks. Let li denote the numberof Li blocks. It is easy to show by induction that the algorithm computesmi = 1Xj=i(j � i)ljni = 1Xj=i(1 + j � i)ljsi = 1Xj=i ljri = 1Xj=i+1 lj :To see this, �rst check that m0 = m and n0 = n. Indeed it is obvious that m = P jlj becausethis counts the j rows in each Lj block. It is also obvious that n =P(1+ j)lj because this countsthe 1+j columns of each Lj block. Just by looking at the form of an Lj block, we see that each leftsingular block makes a contribution of one to the column nullity of the pencil, thus s0 is the totalnumber of left singular blocks. Finally, we have s0 � r0 = l0; the number of L0 blocks. To checkthe validity of the formulas for arbitrary i proceed by induction using the de�nition and propertiesof mi, ni, ri and si listed immediately above and at the beginning of Section 6.When there are only left singular blocks, we see that expression (12) evaluates to� = 1Xi=0 li 1Xj=i+1(j � i� 1)lj: (13)This corresponds to the term P�i>�j (�i � �j � 1) from (6) using a di�erent notation. In ourcurrent notation, (13) counts every pair (Li; Lj) for which j > i with the weight j � i� 1 becausethere are exactly lilj such pairs. For example, if we have two L1 blocks and two L5 blocks, then�1 = 1; �2 = 1; �3 = 5; and �4 = 5. In the current notation l1 = 2 and l5 = 2. Either way the sum is(5� 1� 1) = 3 four times i.e. 12.6.2 Left singular blocks and J0 blocksWe now add the assumption that there are J0 blocks as well. Let ti be the number of J0i blocks,i.e., Jordan blocks of size i corresponding to a zero eigenvalue. Again by induction it is possible to15



show mi = 1Xj=i(j � i)(lj + tj)ni = mi + 1Xj=i ljsi = 1Xj=i lj + 1Xj=i+1 tjri = 1Xj=i+1(lj + tj):Now for this case Expression (12) evaluates to� = 1Xi=08<:0@ 1Xj=i+1 tj1A0@ 1Xj=i lj + 1Xj=i+1 tj1A + li 1Xj=i+1(j � i� 1)(lj + tj)9=; (14)which can readily be manipulated to be� = � + 1Xi=0( 1Xj=i+1 tj)2 + 1Xi=08<: 1Xj=i lj 1Xk=i+1 tk + li 1Xj=i+1(j � i� 1)tj9=; ;where � is the same interaction among the left singular blocks as in Equation (13). We recognizefrom De�nition 3.6 that (P1j=i+1 tj)2 is w2i+1, the square of the i + 1'st Weyr characteristic of thezero eigenvalue. From our new proof of Theorem 2.1 we know that P1i=0 w2i+1 is the codimensiondue to the zero eigenvalue alone.Lastly, we must evaluate1Xi=08<: 1Xj=i lj 1Xk=i+1 tk + li 1Xj=i+1(j � i� 1)tj9=;= 1Xi=0 li( iXj=0 1Xk=j+1 tk + 1Xk=i+1(k � i� 1)tk)= 1Xi=0 li8<: iXk=1 k�1Xj=0 tk + 1Xk=i+1 iXj=0 tk + 1Xk=i+1(k � i� 1)tk9=;= ( 1Xi=0 li)( 1Xk=1ktk)= (size of Jordan structure for � = 0)(number of left singular blocks).Therefore � = �+ gPi q0i .6.3 Arbitrary singular blocks and arbitrary Jordan structureWe complete the �rst pass through the algorithm by de�ning l0i to denote the number of LTi blocks,and u to be the size of the regular Jordan structure for � 6= 0. Thus, u =Pi(pi � q0i ) includes thestructure for � =1 which plays no special role during the �rst pass through the algorithm.16



We once again omit the details, but it is possible to show by induction that the algorithmcomputes mi = m0i + 1Xj=0(j + 1)l0j + uni = n0i + 1Xj=0 jl0j + usi = s0iri = r0i ;where the superscript 0 indicates no right singular structure and no non-zero regular structure, i.e.as in the notation of Section 6.2.We now have that the codimension expression in (12) is
 = � + 1Xi=08<:( 1Xj=0 l0j)( 1Xj=i lj + 1Xj=i+1 tj) + li( 1Xj=0(j + 1)l0j + u)9=; ;where � is as in (14). With some algebraic manipulation, we obtain
 = � + 1Xi;j=0 lil0j(i+ j + 2) + u 1Xi=0 li + ( 1Xi=0 l0i)( 1Xk=1 ktk):The terms here are the terms
 = � +Xi;j (�i + �j + 2) + gXi (pi � q0i ) + hXi q0i :6.4 Second and third passes through algorithmThe �rst pass through the algorithm gives us a pencil A0 � �B0, which may have only LTj blocksand nonzero eigenvalues. We then run the algorithm on (B0 � �A0)T , so that the indices that gavethe right singular blocks before now give the left singular blocks. The indices that described � = 0now describe � =1. This algorithm returns a pencil with only a regular part that has no zero orin�nite eigenvalues.If we reinvoke the previous results, we see that the second pass through the algorithms nearlycompletes the entire expression (6). The only gap isX�62f0;1g(q�1 + 3q�2 + 5q�3 + : : :):This is just the Jordan structure of the regular part other than the zero and in�nite eigenvalues.This is covered in the third phase of the algorithm, completing the proof.7 Examples, Observations About Genericity, and Applicationsto the Waterhouse TheoremsWe illustrate how these theorems may be used with a number of examples:17



1. Let A be a matrix all of whose eigenvalues are �. The most generic such matrix, whose orbithas codimension n, is a single Jordan block. The least generic such matrix, with codimension1 + 3 + 5 + : : : = n2, i.e. dimension 0, is the single point �I .2. Let A be a matrix with no multiple eigenvalues. The codimension of its orbit is then P� 1or n. One might intuitively think of this as having speci�ed the n eigenvalues, but no otherinformation about the matrix. Indeed, if you do not wish to specify the value of an eigenvalue,the correct codimension for this unspeci�ed eigenvalue is one less:�1 + q1(�) + 3q2(�) + 5q3(�) + : : : :In the Kronecker algorithm one sometimes speci�es that that the eigenvalues are 0, 1 or\other". It would therefore be correct to subtract one for eigenvalues classi�ed as \other".3. Let the Kronecker structure of a particular 8 by 12 pencil be diag(L0; L2; L3; L3). Since thispencil has only Lj blocks, the entire codimension is to be found in cright. It is 1 + 2 + 2 = 5.Notice that the interactions of two Lj blocks that are equal or di�er by only one, make nocontribution to the codimension. If a pencil contains only blocks of the form L� or L�+1, thecodimension is 0. We have therefore observedCorollary 7.1 The generic Kronecker structure for a matrix pencil with d = n �m > 0 isdiag(L�; : : : ; L�; L�+1; : : : ; L�+1);where � = bm=dc, the total number of blocks is d, while the number of L�+1 blocks is givenby m mod d (which is 0 when d divides m).The same statement holds when d = m�n > 0 if we replace the L� and L�+1 blocks by theirtransposes. Corollary 7.1 was obtained by Van Dooren, Wilkinson, and Wonham as discussedon page 3.55 of [15].4. Let an n by n matrix pencil have the Kronecker structure diag(Lj ,LTn�j�1), where 0 � j <n. From the cSing portion of the codimension, we learn that the orbit has codimensionj + (n� j � 1) + 2 = n+ 1. If a square pencil has any singular part at all, it is fairly easy tocheck that the smallest possible codimension is n + 1 and it must be of this form. We havethus reproduced a result of Waterhouse([18]:Corollary 7.2 The generic singular pencils of size n by n have Kronecker structuresdiag(Lj; LTn�j�1);where j = 0; : : : ; n� 1.Intuitively, we might think of this as the n+1 conditions on the coe�cients of � that det(A��B) = 0.)More generally, [18] has shown that if a square matrix has one Lr block and one LTs blockand otherwise has a generic n� r� s� 1�n� r� s� 1 block (eigenvalues unspeci�ed), thenthe codimension is (r+ s+2)+ 2(n� r� s� 1) = 2n� (r+ s). This too readily follows fromour results. 18



5. If an 11 by 12 pencil has the Kronecker form diag(L1; LT1 ; L3; J15 ), where here J15 denotes asingle 5 by 5 Jordan block with eigenvalue 1, then cJor = 5, cRight = 1, cJor;Sing = 5�3 = 15,and cSing = 4+ 6 = 10 giving a total codimension of 31.6. The 0 pencil has a Kronecker structure consisting of m LT0 blocks and n L0 blocks. Thecodimension from cSing only is 2mn, i.e. the dimension is 0.
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