
Curvature in Conjugate Gradient Eigenvalue Computationwith Applications to Materials and Chemistry CalculationsAlan Edelman� Tom�as A. Ariasy Steven T. SmithzAbstractWe illustrate the importance of using curvature information when performingconstrained conjugate gradient minimization on manifolds and identify certain commonand useful submanifolds in numerical analysis. This minimization approach promisesto be useful in materials and chemistry calculations.1 IntroductionThe computation of the extreme eigenvalues of symmetric matrices may be posed as aconstrained optimization problem. Minimization of 12trXTAX , where X 2 Vn;k, the Stiefelmanifold of n�k matrices with orthonormal columns, yields the lowest k eigenvectors of thematrixA. In this picture, non-linear eigenvalue problems become the simple generalizationof the minimization of general smooth functions on the Stiefel manifold as well as theGrassman manifold of k dimensional subspaces of an n dimensional space.The optimization approach for the eigenvalue problem has been considered onlyrelatively recently. Commitment to this formulation raises the issue of whether conjugategradient minimization is or can be an appropriate approach to solving the problem. Inthe numerical analysis community conjugate gradient style approaches to the solution ofthe symmetric eigenvalue problem through trace minimization may be found in work byGeradin, Sameh, and Wisniewski [7, 16]. Such techniques have also been used by Berry forsingular value problems [3]. This work closely follows that of Smith [17] who shows how tosolve such problems directly on the constraining manifold (so-called intrinsic techniques)by carefully taking into account the Riemannian curvature of the manifold.A research area where conjugate gradient minimization of non-quadratic but smoothfunctions on the Stiefel manifold arises is the ab initio calculation of electronic structurewithin the local density approximation. Such approaches use only the charge andmass of electrons and atomic nuclei as input and have greatly furthered understandingof the thermodynamic properties of bulk materials [5], the structure and dynamics ofsurfaces [11, 13], the nature of point defects in crystals [14], and the di�usion andinteraction of impurities in bulk materials [19]. Mirroring the numerical analysis community,optimization approaches have been only considered quite recently. Less than ten years ago,Car and Parrinello [6] in a watershed paper proposed minimization through simulatedannealing. Teter and Gillan [8, 18] later introduced conjugate gradient based schemes�Department of Mathematics Room 2-380, Massachusetts Institute of Technology, Cambridge, MA 02139,edelman@math.mit.edu.yDepartment of Physics Massachusetts Institute of Technology, Cambridge, MA 02139,muchomas@mit.edu.zM.I.T. Lincoln Laboratory, 244 Wood Street; Room AN1-1K, Lexington, MA 02173-9108,stsmith@ll.mit.edu. 1



2 Edelman et al.and demonstrated an order of magnitude increase in the convergence rate. These initialapproaches, however, ignored entirely the e�ects of curvature on the choice of conjugatesearch directions. Taking the curvature into partial account using a generalization of theRiemannian projection led to a further improvement in computation times by over a factorof three under certain conditions [1], suggesting that signi�cant gains can be made byaccounting for the curvature fully.The goal of this note is to bridge the gap between the various communities and toshow how the geometrical framework developed by Smith [17] may be applied towards thedevelopment of practical algorithms for ab initio density functional computations.2 Conjugate gradient eigenvalue computation2.1 Conjugate gradient on the sphere and the importance of curvatureTo understand the issues that arise in the conjugate gradient method on arbitraryRiemannian manifolds in [17], it is easiest to begin with the example of minimizing12xTAx on the sphere [17, Algorithm 4.5]. There are two important new features notseen in the classical algorithm: 1) straight line minimization is replaced by minimizationalong geodesics (great circles on spheres); correspondingly search directions and steepestdescent directions are replaced with tangent vectors. A more subtle new feature is that2) the Hessian must properly include the curvature terms associated with the manifold.Fortunately the latter may be done implicitly to su�cient accuracy.On the sphere, tangent directions v at the point x satisfy vTx = 0. The steepestascent direction of any smooth function that is de�ned on all of <n is the gradient ofthat function projected to the sphere. Therefore the function f(x) = 12xTAx, has steepestdescent direction �Ax+(xTAx)x. Of course, the eigenvectors of A have vanishing steepestdescent direction, as they are stationary points of our function.Minimization of f(x) = 12xTAx along the geodesic that starts at x and heads in thedirection v requires the solution of the 2 by 2 eigenvalue problem that is the projection ofA on the plane spanned by x and v. Thus the exact minimization is roughly the solution ofa quadratic equation. Of course if the function is more complicated, then some numericaloptimization procedure is needed along the geodesic.The �nal piece of the puzzle is the question of how to determine new search directions.The �rst requirement is that the new search direction is Hessian conjugate to the previoussearch direction. The second is that the new direction be in the space spanned by thesteepest descent and the previous search directions. First of all the previous search directionmust be rotated (\parallel transported" in the language of di�erential geometry) to the newposition. Once we have the Hessian explicitly or implicitly, there is no di�culty in insuringconjugacy.What is the correct Hessian for 12xTAx? The answer turns out not to be A, but ratherA � (xTAx)I . In Euclidean space the Hessian contains all the information necessary tocompute the second derivative of the function along any straight line through a point x.On the sphere, the Hessian must contain the information necessary to compute the secondderivative of the objective function along any geodesic through x. Since the geodesics arecurved (great circles), there is a curvature term associated with the Hessian. (Curvatureterms never show up when taking one derivative, but are essential when taking two.) Adown-to-earth way to verify that A� (xTAx)I is the correct Hessian is to see if the secondderivative in the direction v is vTAv�(xTAx), when kvk = 1. To second order the geodesicmay be written p(t) = x+ tv�(t2=2)x since the acceleration must point inward towards the



Curvature in Conjugate Gradient 3center. (To full order the geodesic is p(t) = x cos(t) + v sin(t).) Then (d2=dt2)p(t)TAp(t) isreadily seen to be vTAv � xTAx. The term xTAx exists because of the second order terms.This Hessian has the nice property that it is invariant under shifts of the formA! A� sI , while a Hessian that ignores the curvature term has no such nice property.2.2 Conjugate Gradient Minimization is not LanczosThere are well known links between the Lanczos algorithm to compute eigenvalues of asymmetric matrix and the classical conjugate gradient algorithm to minimize quadraticforms [9, p.494, 523]. However, it should be understood that the conjugate gradient methodthat we are using here to compute eigenvalues is not the same.Our algorithm is similar to Lanczos in that it computes the extreme eigenvalues ofsymmetric matrices and is invariant under shifts A ! A� sI . In contrast to the classicalconjugate gradient algorithm that solves linear systems by minimizing 12xTAx � xTb, thisalgorithm computes eigenvalues by minimizing xTAx subject to constraints.Classical conjugate gradient terminates in �nitely many steps; of course no algorithmcan generally compute eigenvalues exactly in a �nite number of steps using the fourelementary operations and square roots.2.3 More than one eigenvalueWe now outline the important features of the generalization of the algorithm in Section 2.1to the computation of the smallest k eigenvalues of an n by n matrix A. The function thatwe are now minimizing is f(X) = 12tr(XTAX), subject to the constraint that XTX = IkThese are k(k + 1)=2 constraints on the point X thought of an element of nk dimensionalEuclidean space.The function f(X) = 12tr(XTAX) depends only on the vector space spanned by thecolumns of X , i.e. it is unchanged if X is replaced by XQ where Q is a k � k orthogonalmatrix. Therefore f is a well de�ned function of the Grassman manifold, the set of kdimensional subspaces of an n dimensional space, which identi�es all points in the Stiefelmanifold related by an orthogonal transformation as a single point.Let In;k denote the �rst k columns of the identity matrix In. The tangent vectorsV to the Stiefel manifold at In;k are the n by k matrices V satisfying V T In;k is k by kanti-symmetric.The curves P (t) = exp(tW )In;k , where W is an n by n anti-symmetric matrix of theform W =  k n � k0 �Y TY 0 !:are all geodesics through In;k on the Grassman manifold.3 Application: Predicting material behavior from �rst principlesOur ability to compute ab initio, using only the charge and mass of electrons and atomicnuclei as input, the behavior of systems of everyday matter has advanced greatly inrecent years. However, the computational demands of the approach and the attendantbounds on the size of systems which may be studied (roughly one hundred atoms) havelimited the direct impact of the approach on materials and chemical engineering. Severalab initio applications which will bene�t technology tremendously remain out of reach,



4 Edelman et al.requiring an order of magnitude increase in the size of addressable systems. Problemsrequiring the simultaneous study of thousands of atoms include defects in glasses (�beroptics communications), complexes of extended crystalline defects (materials' strength andprocessing), and large molecules (drug design).The theoretical problem of interest is to �nd the smallest eigenvalue E0 of theSchr�odinger equation in the space of 3N dimensional antisymmetric functions,H = E0 ;where the Hamiltonian operator H is de�ned byH = Xn=1:::N [� 12r2n + Vion(rn)] + 12 X1<n<m�N 1krn � rmk2 :Here, N is the number of electrons in the system under study, now typically on the orderof several hundred, ri is the position of the ith electron, Vion(r) is the potential functiondue to the nuclei and inner electrons, and the second summation is recognized as the usualCoulomb interactions. Directly discretizing this equation at M grid-points in space wouldlead to absurdly huge eigenvalue problems where the matrix would be MN �MN . This isnot just a question of dense versus sparse methods, a direct approach is simply infeasible.The fundamental theorems which make the ab initio approach tractable come from thedensity functional theory of Hohenberg and Kohn [10] and Kohn and Sham [12]. Densityfunctional theory states that the ground states energy of a quantum mechanical systemof interacting electrons and ions is equal to the solution of the problem of minimizing anenergy function over all possible sets of N three-dimensional functions (electronic orbitals)obeying the constraints of orthonormality. Practical calculations generally use a �nite basisto expand the orbitals, but for purposes of discussion, we may discretize the problem ontoa �nite spatial grid consisting of M points. The Kohn-Sham minimization then becomes,E0 = minXTX=IN E(X)(1) � minXTX=IN tr(XTHX) + f(�(X));where each column of X is a di�erent electronic orbital sampled on the spatial grid, � isthe vector �i(X) � Pn jXinj2, H is an M �M matrix (single-particle Hamiltonian), andf is a function which we leave unspeci�ed in this discussion. In full generality the X arecomplex, but the real case applies for physical systems of large extent that we envisage forthis application [15], and we, accordingly, take X to be real in this note.Recent advances in multicomputers have enabled such calculations on systems withseveral hundreds of atoms [2, 4]. Further improvements in memory and performance willsoon make feasible computations with upwards of a thousand atoms. However, with growinginterest in calculations involving larger systems has come the awareness that as the physicallength of systems under study increases, the Hessian about the minimum of (1) becomesincreasingly ill-conditioned and non-conjugate minimization approaches exhibit a criticalslowing down [18]. This observation prompted workers [8, 18] to apply conjugate gradientconcepts to problem. The promise of the geometric ideas in this note is that they mayallow the e�ects of the curvature of the Stiefel manifold to be accounted properly for �rsttime and thus signi�cantly increase the e�ciency of ab initio calculations.The condition for the framework laid out in this note to be of practical use to the abinitio density-functional community is that inner product computation through the Hessian



Curvature in Conjugate Gradient 5of E(X) be no more computationally complex to evaluate than calculating the energyfunction E(X) or maintaining the orthonormality constraints XTX = IN . A suitable formfor this inner product computation is12 Xin;jm Yin @2E@Xin@XjmZjm = tr[Y T (H + V )Z] +Xij �i[2 @2f@�i@�j ]�j(2) �tr[XT (H + V )(XY TZ)]where V is the diagonal matrix de�ned by Vij = (@f)=(@�i)�ij , �i � Pn YinXin,�i � Pn ZinXin. Written this way, the �rst two terms of (2) have the same form andmay be evaluated in the same manner as the corresponding terms in (1), with � and �playing roles similar to �. The third term, coming from the curvature, may be evaluatedin the same way as the �rst term of (2) once given the object [XY TZ], which is nomore computationally complex to obtain than the Gram-Schmidt orthonormalization of anobject like X . Thus, geometrical conjugate gradient concepts bring no signi�cant additionalcomputational complexity to ab initio calculations.The next section illustrates the gains a�orded by taking account of the curvature ina simple test case. Work is currently underway to determine the increases in convergencerate associated with taking proper account of the curvature terms in full blown ab initiocalculations. The potential utility of geometrically correct minimization algorithms to theelectronic structure community is great as this community is nearing a qualitative changein the complexity and technological relevance of the problems it addresses.4 Numerical IllustrationThe �gure to the right illustrates the compu-tation of the smallest eigenvalue of a 500 �500 matrix with eigenvalues 101 through 600using three di�erent algorithms: steepest de-scent, conjugate gradient without the curva-ture term in the Hessian, and conjugate gra-dient with the correct curvature term. Lineminimizations along the geodesic were com-puted by solving the 2 � 2 eigenvalue prob-lem, and each algorithm begins with the samerandom initial starting vector. We see thatfor this example, even the \wrong" approachto conjugate gradient is an improvement oversteepest descent, but by properly taking intoaccount curvature, we get further improve-ment. 0 100 200 300 400 500 600 700 800
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