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We survey the empirical models for the Hermite, Wishart, Laguerre, Jacobi, and
MANOVA beta ensembles. The eigenvalue distributions of these ensembles are expressed
in terms of the hypergeometric function of a matrix argument. We present a number of
identities for this function that have been instrumental in computing these distributions
in practice. These identities include a number of new results.
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1. Introduction

Multivariate statistical analysis relies heavily on the classical random matrix
ensembles—Hermite, Wishart, Laguerre, Jacobi, and MANOVA—and the distribu-
tions of their eigenvalues in order to infer information about multivariate datasets.
Muirhead’s text [29] provides an in-depth analysis of the real (5 = 1) case. Most of
the results have complex (8 = 2) analogues [31] and the extension to quaternions
(8 =4) is straightforward although lacking on applications thus far.

In the past 10-15 years generalizations of these ensembles to any 5 > 0 have
been introduced. This suggests that most of the classical results (and perhaps most
of random matrix theory) also generalize to any 8 > 0 [12]. Advances in compu-
tational tools have also made these theoretical results very important in practice.
The theoretical importance of the distributions of the extreme eigenvalues is also
well documented [20,21].

The goal of this paper is to present in one place the empirical models, the eigen-
value distributions, and the identities that have made computing those distributions
possible. We include several new results.

This paper is organized as follows. In section 2 we introduce the random matrix
ensembles, their empirical models as well as the hypergeometric function of a matrix
argument and the various combinatorial objects that we will need later on. In
section 3 we present the identities for the hypergeometric function and the Jack
function. The known distributions and densities of the extreme eigenvalues of the
beta ensembles are in 4. We prove all new results in section 5. The numerical
experiments are in section 6. We finish with open problems in section 7.

2. Preliminaries

In this section we survey the classical definitions from combinatorics and multivari-
ate polynomials. We refer to Stanley [34,35] for a more detailed treatment of the
material in this section.

For an integer k > 0 we say that k = (K1, ke,...) is a partition of k (denoted
Kk k) if kg > kg > -+ > 0 are integers such that k1 + k2 + - -+ = k. The quantity
|k| = k is called the size of k.

All partitions can be partially ordered: we say that u C A if pu; < A; for all
i =1,2,.... Then A/u is called a skew shape and consists of those boxes in the
Young diagram of A that do not belong to p. Clearly, |A/u| = |A| — |ul.

The skew shape «/p is called a horizontal strip when k1 > pg > kg > g >

- [35, p. 339].

The upper and lower hook lengths at a point (4,j) in a partition s (i.e., i <

K}, j < K;) are, respectively,

2 2
h:(i,j)zﬁ;—i—&—ﬁ(m—j—i—l) and h:(i,j)zn;——i—i—l—i—g(m—j).
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The products of the upper and lower hook lengths are denoted, respectively, as

Hy= [ kiGg)  and  HE= ] BEG.J).

(i.4)€r (i,)€R
Their product is denoted as j., = HiH.
For a partition x = (k1,K2,...,%n) and 8 > 0, the Generalized Pochhammer

symbol is defined as

@@= TI (a—’;lﬁﬂ—l) (2.1)

(i,7)ER

=ﬁﬁ<a—i_21ﬂ+j—1>

i=1j=1

- i—1
:H(a— 5 B)N,

i

where (a)y = ala+1)---(a+ k — 1) is the rising factorial.
For a partition £ = (k) in only one part (a)? = (a) is independent of S.
The multivariate Gamma function of parameter 3 is defined as

m .
m(m=—1) 1—1 m—1
r'oc)=a v P][T(c— for R(c) > . (22
e | Ll ) I
Definition 2.1 (Jack function).

The Jack function J¢(X) = J (21, x2, ..., %) is a symmetric, homogeneous
polynomial of degree |x| in the eigenvalues z1,xa, ..., 2, of X. It can be defined
recursively [34, Proposition 4.2]:

I (z1, 9, ... xy) =0, if Kpy1 > 0;
_ .k 2 2.
Ty (@) =21 (1+5) - (1+ (k= 1)3);
JN @1, 9, . ) = Z TP (21, w2, . )G > 2, (2.3)
jer

where the summation in (2.3) is over all partitions p1 C & such that x/u is a
horizontal strip, and

5., = [Lijyen Bin(isg)

= Tsyen Braling)’
Definition 2.2 (Hypergeometric function of matrix arguments). Let p > 0
and ¢ > 0 be integers, and let X and Y be m X m complex symmetric matrices

with eigenvalues 1, 2, . .., Ty, and y1,Ys, . - ., Ym, respectively. The hypergeometric
function of two matrix arguments X and Y, and parameter 8 > 0 is defined as

oo B ) ARG = s
where BW(ZJ) = {hi(i,j), otherwise. 24)

qu(ﬁ)(al,...,ap;bl,...,bq;X7Y)

) 3) DR 0 LESICY QRIS LEARos

k=0 kkk (b E‘QB) e (bq)’<‘55> O’(ﬁﬁ)(l)
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Beta ensemble (m x m) Joint eigenvalue density

m(m—1)8
4

NNCETL) e

@2m%  TWa+s/2) )

Hermite

. Y] - L _
Wishart (n DOF, cov. %) IC|(B|)(”B)A| 8 'oFéﬁ)(—gA,Z Ddu(A)
m 3
: 1 A a—r 7Mﬁ A
Laguerre (with param. a) m| |“""e™ 72 Pdu(A)
3 3 1 a—rT T
Jacobi (with param. a,b) mm‘ 1T — A|P~"du(A)

K& (n+p B PR _p _2g_p
MANOVA (param. n,p Mmp |A|2P~"|T — A|7%F

and covariance 2) X 1 FP (B2 AN — 1), Q)dp(A)

Table 1. Joint eigenvalue densities of the beta ensembles (where r = m2_1 B+1).

For one matrix argument X, we define

pF(ar, . apiby, . by X) = JFSP(an, . api b, b X T, (2.6)

—piq

2.1. A new measure—the Vandermonde determinant

The Vandermonde determinant to power [ is a part of every multivariate integral
we consider. To avoid it appearing everywhere, we conveniently incorporate it into
a new measure [

du(X) = H |zi — j|Pdeyday - - - dayy,

1<j

where X = diag(x1,x9,...,ZTm).

2.2. Beta random matriz ensembles

The Beta random matrices are defined in terms of their joint eigenvalue dis-
tributions. A matrix is from a particular beta ensemble if its (unordered)
eigenvalues A1, Ag,..., A\, have joint density as in Table 2.2. We denote A =
diag(A1, A2, ..., A\pm) and for any matrix A we denote its determinant as |A|.

We require that the parameters above be such that g > 0 and a,b > mT_lb’. We
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define
ml(Z2)me e ([ (m
k(0= TR Tl (35) (27)
s (0(3))
T (m '® (g) T®

Trm(n;—l)ﬁ (F(g))m Fﬁﬁ) (a + b)

The expression (2.8) is the value of the Selberg Integral [32].
We refer to [10] (Hermite), [8,17] (Wishart), [15] (Laguerre), [11] (Jacobi),
and [7] (MANOVA).

2.3. Empirical models for the classical random matriz ensembles

The following are the empirical models for the beta—ensembles above which are
valid for any 8 > 0.

e Hermite [10]:

N(Oa 2) Cm—1
1 Cm—1 N(O,Q)
H=—"— . . ’
\/Q - .. Co
Co N(O, 2) C1
ca N(0,2)
where ¢; ~ xig, 1 = 1,2,...,m — 1, are independent and all elements on

the diagonal are i.i.d. N(0,2).
e Wishart [8,17]: The procedure is iterative. Let the eigenvalues of the covari-
ance ¥ be d2,d3,...,d?,. The Wishart model is W = %(Z,(,f)(n))Tqu?(n),

where
T1 Xgd;
7n) = ~
Ti—1 Xﬁdi
X(n—it+1)pdi
Here 74, 72,...,7;—1 are the singular values of Z{”, (n). The base (m = 1)

case is Z{”(n) = xnpds.
Note than the number of degrees of freedom n need not be integer.
o Laguerre [10,33]: L = 5BB", where

X2a

XB(m—1) X2a—p

B = ,a>§(m—1).

XB X2a—B(m—1)
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e Jacobi [14] (see also [23,26]):

Cm —SmChn_1
/
J=2"Z  where Z= Cm—19m—1 ,
=890
18]

with

¢~ \/Beta(a — 5k B b — mEp) g =1
ch ~ \/Beta(gﬂaa—i— b—2mehelg) g = m

e MANOVA [7] Let A be m x m beta—Wishart with n degrees of freedom
and covariance ) and let M be m x m Wishart with p degree of freedom
and covariance A~!. Then

(Mt 4+ D7

is m x m beta-MANOVA with parameters n, p and covariance €.

3. Identities involving pFé’j)(algp; b1.¢; X,Y)

Let

T1,T2,... ,$m);
y17y27"'7ym);

Ty — X1, L3 — Ty, Ty — T1);

diag(
diag(
diag(
diag(

Yo — Y1, Y3 — Yls- > Ym — Y1)
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3.1. Identities for pFéB)
JF(X) = o), (3.1)
oF(X,Y) = ") [ FP(X,Y — 1) (3.2
= et COFmu(V)—mein pO)(m=lg mg ¥ ¥,
1F(’3>(a X)=I-X|7%, (X <1I); (3.3)
(@ X,Y) = | - X| “.1F5’*>(a X(I - X)Ly —1I); (3.4)
FP(2B:X,Y) =TT, (1 — zayy)™ 3 (3.5)
1F1<m(a ¢ X) tr(X) VP (e —aye; —X); (3.6)
F(’”( X)= Fl(f”(z, BB X —tl)-e (3.7)
(G BB X) = (L= )" o P (5 g ( — )X +t), (t#1);  (3.8)
&) ()T _
ZFP (a,b;¢; 1) = iwg in )(m) (Z_ Z; (3.9)
o F{V(a,b;c;xl) = Pf(A)  (see [19] for the definition of A); 3.10
JFP (a6 X) =, FP (e —a,bye; —X (I — X)71) - [T — X|° 3.11)
=,F” (c—a,c—bc; X) - |I—X|C*“*b;
2 (a,b;6,X) = oF” (a,b;a+ b+ 1 — ;1 — X)
x o F{”(a,b;¢; 1), (a or b€Z<); 3.12)
pFéﬁ)(2,a2 pibrgial) = JF (5B, agp; big; x); 3.13)
(2 Fylarp — 5 + Libug — 5+ L)) 1’
pFéz)(alsz brg; X) = A(X) ’ (3.14)
o5 —1)! 1
e | R e
} (pFy(ary —m+ 1361, — m+ 1 asi?!j))gzl‘ . (315)
A(X)A(Y) ’ '
JE (ry — 15— X) = F(B’; ) e Z ST e o) (316)
k=0 kkk, k1 <r :
o (a1 1.5 X) = lim p+1F(5)(a1:p,c; bg; 1 X)
= hm quH(al:p;bl:q,c; cX). (3.17)

The references for the above identities are:

27, (6.29)];

(16
[2,
16,
[
[27, (6.10)];

, (13.3), p. 593] (also [29, p. 262] for f =1 and [31, p. 444] for 8 = 2);
2 sectlon 6] (also [27] for B = 1);
p. 593, (13.4)] (also [29, p. 262] for 8 =1 and [31, p. 444] for S = 2);
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(3.6) [16, p. 596, (13.16)] (also [29, (6), p. 265] for the case 5 =1);
(3.7) New result, see Theorem 5.2. For m = 3, § = 1 this is due to Bingham [3,

Lemma 2.1];
(3.8) New result, see Theorem 5.2;
(3.9) [16, (13.14), p. 594] (also [5, p. 24, (51)] for the case 5 = 1);
(3.10) [19];
(3.11) [16, Proposition 13.1.6, p. 595]; see also [29, p. 265, (7)] for the case 5 = 1;
(3.12) [16, Proposition 13.1.7, p. 596]. The condition a or b € Z<( implies that

the series expansion for ,F” terminates.

(3.13) New result, see Theorem 5.3. See also [18, (5.13)] for 8 = 2;

(3.14) [30, (33), p. 281];

(3.15) [18, Theorem 4.2] (there is a typo in [18, (4.8)]: 8, should be 3,,), see also
30, (34), p. 281];

(3.16) [13];

(3.17) [16, (13.5)]. Trivially implied by lim, o () - 2~ 1% = 1.

3.2. Integral identities
Define

Z

7m('m. 1) L

P = Bl | | 26
5

and recall that r = mT’lﬂ + 1. Then

B . .
p+1F¢; )(a/lzp; a; bl:q7 Y)

1 —tr —r
= m Am (& t (X)pFéﬁ)(al;p; bl:q; )(7 Y)‘Xla d/,L(X), (318)

+

p+1F +1(a1 py @ b1 q,b Y)

1 —r —a—r
- 1 / JE (a1, brg: X, V) X271 — X [P0 du(X); (3.19)
Sm’(a,b—a) Jio,1m

IY\“

Cf(f)(y_ ) (B)F(B)

e / OFP (— X, V)| X[*TCO (X )du(X).  (3.20)

The references for the above identities are:

(3.18) [27, (6.20)] (see also [13]);

(3.19) [27, (6.21)] (see also [13]);

(3.20) This is a conjecture of Macdonald [27, Conjecture C, section 8], proven by
Baker and Forrester [2, section 6], with Dubbs and Edelman [7] correcting
a typo in [2].
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Define T = diag(t1,ta, ..., t,). The following identities are due to Kaneko [22]

m,n m

/ IT @i —te) [T 2 (1 = w)?dp(X) = S5 (a+ 7,0 +7)
[0,1]™ ; k=1 i=1

4
><2F1ﬁ) (—m,%(a-ﬁ—b—kn—&-1)+m—1;%(a+n);T>; (3.21)

where S is the value of the Selberg integral (2.8).

3.3. Identities involving the Jack function

We will predominantly use the “C” normalization of the Jack function, but there
are other normalizations, J¢, P{® and Q' related as in (3.25). The properties
of these normalizations are that J¢ (X) is such that for || = n the coefficient of
T1%g - Ty in J(X) is n! [34, Theorem 1.1]. The zonal polynomial is C{V(X) and
PP(X)=Q%?(X) = sx(X) is the Schur function.

> CP(X) = (trX)*; (3.23)
kkk
Te(wly) = (x3)"!(5:8).” (3.24)
T ) = O () = HiQ () = HEP (X); (3.25)
E K.
TOX) = 1X1- T2 ey O [ [(m =i+ 14 3(rs = 1)), (3.26)
=1
where k,,, > 0;
CO(I+ X) K\ C(X)
L S —g v/ ; 3.27
i -2 (o) e 20
N 3 —1
PP(X) = [X|V PP (X7, (3.28)

where gy < N and fi; = N — ppps1-4, 2 =1,2,...,m
(i.e., the partition f is the complement of p in (N™));
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For partitions « = (k) in only one part,

—1
o =(30),((3),) (329)
k k\ CP(X)
Y (X + 1) = (1) tks( ) : (3:30)
k k sg() s) P ()
m o\ = the (k)
_(m CP (X)), 3.31
(QB)kg(w)s L)cren (3.31)
For partitions x = (1¥)
k—1
T ) = (2B = [Lm - (3.52)
1=0
k—1 k—1 .
O, (1) = j%(%)kk! H(m,i) - ] Zglll for 8 =2 this is (7). (3.33)
=0 =0 "2

The references for the above identities are:

(3.23) This is the definition of the normalization C{*(X) [34, Theorem 2.3];

(3.24) [34, Theorem 5.4];

(3.25) [22, (16)], [28, (10.22), p. 381]. Then P = Q" = s, the Schur function

[34, Proposition 1.2];

(3.26) [34, Propositions 5.1 and 5.5];

(3.27) [22, (33)]. This also serves as a definition for the generalized binomial coef-
ficient (Z),

(3.28) This is a result of Macdonald [27, (4.5), (6.22)]: Both sides have 2/ - - z/m
as the leading term and for the scalar product (-,-); defined in [28,
(1033)]), (XN Bu(X 1), X[V P, (X)), = (Pu(X), Po(X)),, which is 0
for 1 # v [28, (10.36)].

(3.29) Directly from (3.24);

(3.31) Directly from (3.27);

(3.32) Directly from (3.24);

(3.33) Directly from (3.25).

3.4. Multivariate Gamma function identities

We found the following identities useful in simplifying expressions involving the
multivariate Gamma function.

L@ T
(-8 T30 .

. I(r+4a)
P T e (3:39)



January 25, 2014 13:18 WSPC/INSTRUCTION FILE mvs-paper

COMPUTING WITH BETA ENSEMBLES 11

The first identity (3.34) is due to Pierre-Antoine Absil in the case 8 = 1. In general,
from the definition (2.2)

(@)  _pplle-56) T
- L Te- 19 T30

The second identity, (3.35)], follows directly from the definition (2.2). See also [13].

4. Distributions of the extreme eigenvalues

In this section we review the known explicit formulas for the densities and distri-
butions of the extreme eigenvalues of the beta ensembles.

4.1. Wishart
These results are from [13]. Recall again that r = 218 + 1. Then

5B
L) [38871° -
PApax(A) < ) = m L2 FP>r;284+rm L0, (4.1
( ( ) :L’) P%)(%ﬁ-‘r?“) tr( Bx-1) 1-1 (T 25 T 25 ) ( )
and when t = 2/ — r is a nonnegative integer, then
P(Amin(A) < 7) =1 — 527D 37 Wcw( BEh. (4.2)
kC(mt)

It is an open problem to obtain an expression that does not have the requirement
for t to be a nonnegative integer—see section 7.
For the trace we have

dens a(e) = |28 [Fle E0Y oo [ R C ).
2 =T ,8+k) 2212
<Y (38) gy Y- 2E Y, (43)
Kk ’

where z is arbitrary. Muirhead [29, p. 341] suggests the value z = 2010, /(01 4+ 0m),
where 01 > - -+ > 0, > 0 are the eigenvalues of X.

The second sum in (4.3) is the marginal sum of | F§” (%8;I — z¥7') thus the
truncation of (4.3) for |k| < M can be computed using mhg as follows. If s is the
vector of eigenvalues of 3, these marginal sums (for say k = 0 through M) are
returned in the variable ¢ by the call:

[f,cl=mhg(M ,a,n/a,[1,1-2./9),

where o = 2/, making the remaining computation trivial.
Empirically, the trace can be generated off the Wishart model from [8], which
upon closer observation reveals that

1
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4.2. Laguerre

The eigenvalues of the Laguerre ensemble are Wishart distributed with ¥ = I and
n= a%.

Interestingly, we have explicit expressions for the densities of the largest and
smallest eigenvalue which are not related in an obvious way to the distributions.
In these expressions the matrix argument is of size m — 1 making them faster to
compute (fewer partitions to sum over) than the straightforward derivatives of the

distributions.

NEWSTUFF (4.4)
F(ﬁ)(m5+1) m ma
dens)\nﬁn(L)(m) = %5 = Fg)(a) ’ (%ﬁ) e 2 ’
X o Fy” (BB +1,—t; =g ln—1). (4.5)

The density (4.4) is new; it generalizes the 8 = 1 result of Sugiyama [36]—see
Theorem ??. The result for the smallest eigenvalue (4.5) is a generalization of the
same result of Krishnaiah and Chang [25] for 8 = 1. Dumitriu [9, Theorem 10.1.1,
p. 147] established (4.5), but did not provide the scaling constant. We give full
derivation in Theorem 5.5.

Forrester [15] used (3.21) to obtain the following expressions for the smallest

eigenvalue
_ma8 (3)
PAmin <z)=1—€""2 1F, " (—m;2t/B, —xL}); (4.6)
ro—man Ky (a4 B) (4
dens y..(r)(z) = mz"e” 2 Wdﬂ P=m A+ 12t)B 4 2 —xly), (4.7)

with K (a) as in (2.7).
4
The expression (4.6) is identical (as a function of x) to (4.2)—the 1F1(’3) function
in (4.6) and the truncated oF;” function in (4.2) are the same polynomial in z of
degree mt.

4.3. Jacobi

Let the m x m matrix C' be Jacobi distributed with parameters a, b. Define

_ T+ ()
D) = For e e

and recall that r = mT’lﬁ + 1. Then [11]

P(Amax(C) < z) = D (a,b) - ™ - o F{? (a,7 — bya + r; 21); (4.8)
b—r_ma—1

dens . (c)(z) = D{(a,b) - ma(l —x)" "z
x o F{?(a — %r—b;a—kr;xlm_l). (4.9)
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When ¢t = b—r is a nonnegative integer, the above expressions are finite and (3.12)
yields the following alternatives:

PAmax(C) <) =a™ > 3" (a);mc,gmk('a —ab, (4.10)
k=0 kkFk, k1<t

C(a+b—=FB)T(b+ 5)I(5)

L(b— 2=28)0(t + )T (Z5)T(a)

x (1—a)tam 1 FP(q— 8 —t;—t — Bial,_y).  (4.11)

densy, (o)(z) =

For the smallest eigenvalue we use that the matrix C’ = I — C is Jacobi dis-
tributed with parameters b, a:

PAmin(C) <) =1 — PAmax(C') <1 —12) (4.12)
densy . (oy(xz) =densy  (c)(1—x). (4.13)

The distribution (4.8) is due to Dumitriu and Koev [11]. The density result (4.9)
is new (see section 5.3). For 8 = 1, the above results are due to Constantine [6,
(61)] (eq. (4.8)), Absil, Edelman, and Koev [1] (eq. (4.9)), and Muirhead [29, (37),
p. 483] (eq. (4.10)).

5. New results

We now prove the identities (3.2), (3.7), (3.8), and (3.13) (section 5.1), and prove
the formulas for the densities of the smallest eigenvalue of the Jacobi ensemble,
(4.9) (section 5.3) and the Laguerre ensemble (4.5) (section 5.4).

5.1. New identities for pF(;ﬁ)

Theorem 5.1. With the notation from Section 3.1 the identity
o (XY) =" (XY — 1)
_ eyltrX—Q—mltrY—m,mlyl1F{B)(m;16 %B X }7) (51>
holds for any B > 0.

Proof. The first part is from Baker and Forrester [2, sec. 6]. Let Ij be the identity
matrix of size k. Since C(X — z11,,) = C¥(X) and analogously for Y,
oy (X,Y) = e (F(X,Y — )
_ eyltrX-i-xltrY—mxlyl . F(B)(X _ x1[m7 Y — yllm)

_ eyltrX-l-:rltrY—mwlyl Z Z 1 C(B) - 2171.[ )C<B)(Y - lem)

pre O’ (Im)
_ eyltrXJr:L’ltrYfm:rlyl ZZ (B) m 1) . C’;ﬂ)(X)C’(iﬂ)(Y)
k=0 rk K Cm) Im) C (Im—1)

eyltrX-l-a:ltrY—mzlyl . lFl(B)(mQ 16; %6;){7 Y) 0



January 25, 2014 13:18 WSPC/INSTRUCTION FILE mvs-paper

14 DRENSKY, EDELMAN, GENOAR, KAN, and KOEV

The following two theorems use the fact that (g)(‘” = 0 for partitions x in more
than one part.

Theorem 5.2. Let the matrices X and I be m x m. Let t and n be real numbers
and let B > 0. The following identities hold:

O (8 mB X 4+t = FP (4,28 X) - (5.2)
2F1(ﬁ)(§’ ;76; ):( - ) 2F1(ﬂ)(27 ;7ﬁ;(1_t)X+tI)a t#]-'

Proof. We transform the left hand side of (5.2) using (3.29) and (3.31):
o0 8
F® (L. mpg. x T 1 (2) C(B) X T
FIO(5: 368, X +t) = ZE( +tI)
k=0 " 28
_ i 1 C,(f)(X +tI)
= k! CP(I)
o] k
1 . (K CP¥(X)
= Z — N ks, < ) L s 2
! Z @)
=kl = s) CP(I)
_ i Ci7(X) " (])
— C;”(I) e g! i
0o 1 g)k C(B>(X) i tj*z
St (35) (=)

We use (3.31) again to obtain (5.3):
(1 =) B (8, 28, (1 — )X +t])

I I
— —
= =
| |
~ ~
= =
3 3
e T[e
—~ a‘
=z ==
=S !
=
/N
M;r — rore
IS N——
Eal
3

k
SCP((1 =X +tI)

E
Q/—\
~—
B

k=0 s=0 § Céﬁ)('[)
S CO0 S ()
—ﬂ%)%cwma—w;;ﬂQym
1) s
_;5 c<ﬁ>(1)( +§07

_2F1(ﬁ)(27 ;%ﬁ; ) o
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Theorem 5.3.

pFém(% a2:p;3 bl:q§ :L'I) = qu(%ﬂa A2:p; bl:q;x)~

Proof. Using (3.29),

5 1 (Plaz)k o (ap)k
PP Gy el) = 3 gy ST @)
L1 Dl (@ (2B
=2 e B © (O
:qu(%ﬁva2:p§b1:q;$)~ O

5.2. Density of the largest eigenvalue of the Jacobi ensemble

We repeat the argument in [1] to extend the result for the density of the smallest

eigenvalue of the Jacobi ensemble to any 8 > 0 (see equations (4.9) and (4.13)). We

start with the joint density of the eigenvalues of the Jacobi ensemble from Table 2.2:
1 m

—— [[A @ =2 T 1A = AlPdr - d.

dens(A1, Agy ..., Am) 5P (a,b)
m 5 i=1 1<j

where, as before, r = mT_15—|— L.Letz=A1 > Ao > - A1

dens(z) =m dens(z, Aa, ..., Ap)dAg -+ - dA,
[O?I]rnfl
m
=1 aper(1- x)b—r/ A — A
qué)(a, b) [0,z]m—1 1<1:['<j ‘ ]‘

< [Tl = MIPALT" (1= X)P"dAg -+ d .
=2

We change variables \; = xt;,i = 2,3,...,m.
m
dens(z :71:‘“”_11—33(’_’“/ t; —t:]°

( ) S’ﬁg)(a’ b) ( ) [0,1]m71 | ]|
m—1

) J] (= ata) 777 (1 = t) dty - - Aty
i=1

From (3.19) we have for T = diag(ts, t3,...,tm—1), a matrix of size m — 1,
1
2F1(E)(T_ba a+§;a+m;16+1;xl’m—1) = |tz_t]|ﬁ
S (5 +7r,b— é) [0,1]m 1 E

x T = ata)> "t (1 = t) dty - - - At s

1=2
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(Note that 1 Fy” (r — a, 21,1, T) = 1 Fy” (r —a,2T) = [[1Lo(1 — at;)?7". )
Therefore

Sta (§+0-5)
S’ (a,b)
x 2B (~atr g brsb S )

dens(z) =m x(a—r)m(l _ m)mb—l

which using (3.11) gives

S (g +7r,b— g)
S (a,b)
X 2F1(’3) (fa +7rb— g; b+r;(1— I)Im_l) g~ (@=r)(m=1)

soLy (§4m0-14)
T ' —r b—1
=y )
x 2P (a4 b= G5b4 1 (1= 0) o)
=mb-DP (b,a) 2 "(1 —z)m01

x B (—atrb— G4 a)lns),

dens(z) =m x(afr)m(l _ x)mbfl

which yields (4.9) and (4.13).

5.3. Density of the smallest eigenvalue of the Jacobi ensemble

We repeat the argument in [1] to extend the result for the density of the smallest
eigenvalue of the Jacobi ensemble to any 8 > 0 (see equations (4.9) and (4.13)). We
start with the joint density of the eigenvalues of the Jacobi ensemble from Table 2.2:

m

[T =20 TT I = Al - dg.

i=1 i<j

1

dens(A1, A2, ... Ap) = m

where, as before, r = mT’l B + 1. We integrate all but the smallest eigenvalue (call
it ) out of the above density:

dens(z) =m dens(A1, ..., Ap—1,2)dAy - dA—q

[w,1]m =1

m
= — xa—Tl_xb—T/ AZ—)\B
S’ﬁrﬁl)(a’b) ( ) [m71]m— H | ]|

1
1<j<m—1

m—1
s T 1 = 22871 = XA)P 7 dAy - dA.
=1
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We change variables \; = (1 — 2)t; + z,i=1,2,...,m — 1.

m
dens(z) = ——— @1 — g mb_l/ ti —t:]P
( ) S%%)(a,b) ( ) [071]"171 | J|
m—1 T 1 a—r
B — b—r

X 1 - t; 17t1 dt dtm_ .

il;[l i ( . ) ( ) 1 1
From (3.19) we have for T' = diag(t1,t2,...,tm-1), a matrix of size m — 1,

2F1<ﬁ>(r7a,§ +r;b+r;zfm—1) =

ol
t: —t,]°
S (2o 2) Joa LI

i<j
m—1
x TT (= 2t)2 42 (1 = ,)°"dty - - dt .
i=1
(Note that  F¢” (—a 4 7, 2Ln_1, T) = 1 F§” (—a + 7, 2T) = [["5 (1 = 2t:)*7". )

Now, for z = %1

S (g +r,b— g)
St (a,b)
x oF? (faJr T, g +rib+r; walIm_l) ,

dens(z) =m x(a—r)m(l _ m)mb—l

which using (3.11) gives
Sii1 (g +r.b— g
S’ (a,b)

x o (fa +r,b—Zib+r (1 - x)Im_l) g~ (e=mim-1)
Sy (§+rb-14)
S’ (a,b)

X oFY (—a +r,b—Bib (1 x)Im,l) )
=mb-DP(b,a) 227 "(1 —z)mb1

x o B (—a—i—r,b— g;b—l—r;(l —x)Im_l),

dens(z) =m ) x(“_”m(l _ x)mb—l

=m xa—r(l _ x)mb—l

which yields (4.9) and (4.13).

5.4. The density of the smallest eigenvalue of the Laguerre
ensemble

We will obtain this result as a limiting argument from the density of the smallest

eigenvalue of the Jacobi ensemble. The connection is that if \; are the eigenvalues

of a Jacobi matrix, then A\, = limp o0 % are the eigenvalues of a Laguerre

matrix.
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Proposition 5.1. Let L% (a; A) be the joint eigenvalue density of the Laguerre
ensemble and J (a,b; A) be the joint eigenvalue density of the Jacobi ensemble as
defined in Table 2.2. Then

1
; () A2 —1\ _ 7B (.
blggo (%b)m I (a, b’A(BbI+A) ) =L (a; A).
Proof.
T (a,b; A(301 + A)71) 1 1
(Zb) ~ G s% b)
xHA“* T BT TN - Al
j<k
m(nz 1)
)" reaey
mam|r(ﬂ (% )F(ﬁ) F%)(b)bma
2—a—b
XH)‘i ECEE T N | RV
i=1 i<k

We then take the limit as b — oo and use (3.35) to obtain the desired result. ]

Next, we derive the density of the largest eigenvalue of the Laguerre ensemble.

Theorem 5.4. The density of the largest eigenvalue of the Laguerre ensemble is

nmg _ 4
nmB2L (1) moe (ﬂw) 2 (8) (mB 3 3
- ‘e 2 —_— 1F mi‘i‘].,n*""r,m* m—1)- (54)
41_‘%) (Lf + T) 2 1 ( 2 2 2 )

Proof. The density of the maximum eigenvalue of the Jacobi ensemble with pa-
rameters a and b is given by

()

(a+ )00 (r) b—r, ma—1_ p(8) B
flz) = ma(l —x)" " "x™ T F a— =, 7r—bya+r;xly_
F(B (a + )T (b) o 2 1
W (a+ )0 (r) bo1—at? ma_1 (6) B T
1 _ a 5 ma F s . . I
F(B ( 4 )F%)(b)ma( .13) T 24 a 2,a—|—b,a—|—r, 1— =z 771(:515
where r = (m — 1)58/2 4 1. Let y = (2b/8)xz/(1 — x), we have

1 By

142 .
1—x + 2b’ (56)
%
— B (5.7)
1+ 62
1— 2
dz = udy, (5.8)

2b
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and the density function of y is given by
' (a+ b)F(g (r) map B

_ 1— b+l—a—L2 ma—1 F(ﬁ) _ = b: . 5y[
I T4 (a+ )W) (b) 2 () T e e pathiadriTy,

_ b*maﬂff) (a+ b)FEff) (r) map (53/) ma—1 < 5y> —(m-1)a—b-75

1+

O a+r) 2\ 2 20
(8) B By,
X o F} < 5" ,a+bya+r;— 2b ) (5.9)

Using the fact that
b= (a + b)

blglolQ I‘gﬁ)(b) =1, (5.10)
B
. ﬁy 7(m71)a7b7§ B sy
blggo (1 + % =e 7, (5.11)
T ) ( g,a+b;a+r;§g.’m_1> — . F® <a /;;Hr;iyjm_l)
g s )
we have
T () (maB\ (By\"™" ™" _mp s (mB By
li = == 2, F — +1; R [
Jim f(y) rﬁ,?>(a+r)(2)<2> e R <2+,a+r,2m1>,
(5.13)
and this is the density of the maximum eigenvalue of Laguerre ensemble with pa-
rameter a. Putting a = nf8/2, we prove (5.4). O

We now derive the scaling constant in the formula for the density of the Laguerre
ensemble, (4.5). The proportionality result is due to Dumitriu [9, Theorem 10.1.1,
p. 146].

Theorem 5.5. Whent = a — mTflﬂ — 1 is a nonnegative integer, the density of
the smallest eigenvalue of a Laguerre matriz is

DO gy
B TR

X o By (BB 41, =t = L) (5.14)

densy, . (a)(y) = 5B -

Proof. Let C be Jacobi distributed. From (4.9), (4.13), and the identity (3.11) we
have

densy,, () (z) =mb- DY (b,a) - (1 — z)m gt
< o F{P(b— 2, —t;b+ LB+ 15 (1 — 2) I 1)
=mb- DY (b,a) - (1 —x)mb Lot
X G PP (2B +1,—tb+ 2+ 1 -2, ).
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Substituting y = %b - =2 (with the Jacobian being %(1 —x)?) we get:

1-x
I‘(B)(Mﬂ + 1) T (a+0b)-b-m
d 1 =23. 2 : T
eDS)\min(% (I-0)- )( ) 25 F(ﬁ)( ) N (b+ mﬁ+1)
(15T )T
X oy (3B 41, —t;0+ PB4+ 10(— 2 ) 1)

We use Proposition 5.1, (3.17), and (3.35) to take the limit as b — oo and ob-
tain (5.14). O

6. Numerical experiments

All formulas for the distributions and densities in this paper can be approximated
(within the limits of the computational power of modern computers) using the
software mhg [24].

It returns the truncation

D () COX)COY)
ZZ k- (ﬁ) _.(bq);ﬁ) ’ C,(f)(l) :

k=0 sk

of (2.5) as well as the partial sums

s L @) () GROO0H )
k' bl (ﬁ) _.(bq)%ﬂ C,(f)(f)

kk

for k=0,1,..., M with the additional option to restrict the summation for k1 <t
(for, e.g., (4.2)). All expressions in this paper are trivially approximated then using
these partial sums.

We performed extensive numerical tests to verify the correctness of the formulas
in this paper and present four examples in Figure 1.

7. Open problems and future work

We finish with two open problems.

Several formulas in this paper, e.g., (4.2), (4.10), are only valid when certain
parameters are integers. It is an open problem to derive formulas that do not have
that restriction. The central problem there is to find an explicit expression (perhaps
in terms of ,F{”) for the integral

[ R XY+ XPau(x),

This is the multivariate version of the function W, the confluent hypergeometric
function of the second kind.

The second open problem we pose is to find explicit formulas for the extreme
eigenvalues of the Hermite ensemble, which are analogous to the ones for the other
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Laguerre, p=4/3, m=3, n=5

Wishart, p=4/3, £=diag(0.7,1,1.3), n=5

1 - 1
X *W
09 f 0.9f r
¥ 7
) x
08 | 08f 4
07f 4 ort !
: r
06 * 06 @
0.5f *’ 05?
Sl ’ A, theoretical CDF
0.4r % i 04 _ __\__empirical CDF
! « M, theoretical CDF xm'n theoretical PDF
F - __theoretical
03r, ___)_._empirical CDF 03 ©  “min
! min . _ \_._empirical PDF
0.2f + A theoretical CDF | 0.2 mn
§ maxe . A theoretical CDF
0.1k ___)__ empirical COF || 0.1 max-
T max ' ___\___empirical CDF
p max
0 ; ; ; 0 ;
0 5 10 15 20 25 0 5 10 15 20 25
X X
Trace of Wishart, p=4, £=diag(0.5,0.7,1,1.4), n=7 M nay Of Jacobi, =3, a=8, b=11, m=4
0.1 T T T T T 6 T T T
0.09 : i x theoretical PDF X‘\
« theoretical PDF 5|~ - - empirical PDF #’ i
0.08 — empirical PDF | - + theoretical CDF po
—— empirical CDF ‘ A
0.07 [ v
4+ ' \
0.06
0.05 3t
0.04
2,
0.03
.02
0.0 i
0.01
0 . . 0 . +
0 10 20 30 40 50 60 0 0.2 0.4

Fig. 1. Numerical experiments comparing the theoretical predictions of the eigenvalue distributions

for various ensembles vs. the empirical results.

ensembles. This problem boils down to evaluating the integral

tr(X2)
/ e” 2z du(X).
[x,oo)m

Bornemann [4] presents algorithms for numerical evaluation of distributions in
Random Matrix Theory that are expressible as Painlevé transcendents or Fredholm
determinants in the § = 1, 2, 4 cases. It is an open problem to devise good numerical
routines for the general 8 versions of some of these quantities, especially the bulk,

hard edge, and soft edge statistics.
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