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We introduce a “broken-arrow” matrix model for the β-Wishart ensemble, which im-
proves on the traditional bidiagonal model by generalizing to non-identity covariance
parameters. We prove that its joint eigenvalue density involves the correct hyper-
geometric function of two matrix arguments, and a continuous parameter β > 0.
If we choose β = 1, 2, 4, we recover the classical Wishart ensembles of general
covariance over the reals, complexes, and quaternions. Jack polynomials are often
defined as the eigenfunctions of the Laplace-Beltrami operator. We prove that Jack
polynomials are in addition eigenfunctions of an integral operator defined as an aver-
age over a β-dependent measure on the sphere. When combined with an identity due
to Stanley, we derive a definition of Jack polynomials. An efficient numerical algo-
rithm is also presented for simulations. The algorithm makes use of secular equation
software for broken arrow matrices currently unavailable in the popular technical
computing languages. The simulations are matched against the cdfs for the extreme
eigenvalues. The techniques here suggest that arrow and broken arrow matrices can
play an important role in theoretical and computational random matrix theory includ-
ing the study of corners processes. We provide a number of simulations illustrating
the extreme eigenvalue distributions that are likely to be useful for applications.
We also compare the n → ∞ answer for all β with the free-probability prediction.
C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818304]

I. INTRODUCTION

A real m × n Wishart matrix W (D, m, n) is the random matrix ZtZ where Z consists of
n columns of length m, each of which is a multivariate normal with mean 0 and covariance
D. We can assume without loss of generality that D is a non-negative diagonal matrix. We
may write Z as randn(m,n)∗sqrt(D)using the notation of modern technical computing soft-
ware. Real Wishart matrices arise in such applications as likelihood-ratio tests (summarized in
Chapter 8 of Muirhead18), multidimensional Bayesian analysis,2, 8 and random matrix theory in
general.13

For the special case that D = I, the real Wishart matrix is also known as the β = 1 Laguerre
ensemble. The complex and quaternion versions correspond to β = 2 and β = 4, respectively. The
method of bidiagonalization has been very successful4 in creating matrix models that generalize the
Laguerre ensemble to arbitrary β. The key features of the Dumitriu and Edelman model4 appear in
the box below:
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Beta-Laguerre model

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

χmβ χ(n−1)β

χ(m−1)β χ(n−2)β

. . .
. . .

χ(m−n+2)β χβ

χ(m−n+1)β

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let n be a positive integer and m be a real greater than n − 1. eig(Bt B) has density :

C L
β

∏n
i=1 λ

m−n+1
2 β−1

i

∏
i< j |λi − λ j |β exp(− 1

2

∑n
i=1 λi )dλ

For general D, it is desirable to create a general β model as well. For β = 1, 2, 4, it is
obviously possible to bidiagonalize a full matrix of real, complex, or quaternionic normals and
obtain a real bidiagonal matrix. However, these bidiagonal models do not appear to generalize nicely
to arbitrary β. Therefore, we propose a new broken-arrow model that possesses a number of very
good mathematical (and computational) possibilities. These models connect to the mathematical
theory of Jack polynomials and the general-β hypergeometric functions of matrix arguments. The
key features of the broken arrow models appear in the box below:

Beta − Wishart (recursive) model, W(β)(D,m,n)

Z =

⎡
⎢⎢⎢⎢⎢⎢⎣

τ1 χβ D1/2
n,n

. . .
...

τn−1 χβ D1/2
n,n

χ(m−n+1)β D1/2
n,n

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where {τ1, . . . , τn−1} are the singular values of W (β)(D1:n−1,1:n−1, m, n − 1), base case
W (D, m, 1) is τ1 = χmβ D1/2

1,1 . Let n be a positive integer and m a real greater than n - 1.
Let � = diag(λ1, . . . , λn), eig(Zt Z ) has density:

CW
β det(D)−mβ/2 ∏n

i=1 λ
m−n+1

2 β−1
i �(λ)β · 0 F0

(β)
(− 1

2�, D−1
)

dλ.

Theorem 3 proves that eig(ZtZ) is distributed by the formula above. This generalizes the work
on the special cases (β = 1),13 (β = 2),23 and (β = 4),17 which found the eigenvalue distributions
for full-matrix Wishart ensembles for their respective β’s. This β-ensemble was discovered inde-
pendently by Forrester.11 Our proof is original, although some steps have analogs, in particular the
lemma concerning Jack polynomials in n variables. This paper connects ideas through the “ghost
and shadows” formalism. While the model appears straightforward, there are a number of hidden
mathematical and computational complexities. The proof of Theorem 3, that the broken arrow
model has the joint eigenvalue density in the box above, relies on a corollary about Jack polynomials
(Corollary 1 to Theorem 2), which we have since writing learned has analogies in Forrester10

(equation 12.210) and Okounkov and Olshanski19 (proposition on page 8) (we thank Alexei Borodin
and Peter Forrester for separate interesting discussions to help us see the connections). One ad-
vantage of our formulation is that the integral clearly takes place naturally on the unit sphere thus
connecting to the geometry of the problem.

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.65.11.72 On: Fri, 15 Nov 2013 18:58:02



083507-3 Dubbs et al. J. Math. Phys. 54, 083507 (2013)

Corollary 1. Let C (β)
κ (�) be the Jack polynomial under the C-normalization and dq be the

surface area element on the positive quadrant of the unit sphere. Then

C (β)
κ (�) = C (β)

κ (In)

C (β)
κ (In−1)

· 2n−1	(nβ/2)

	(β/2)n
·
∫ n∏

i=1

qβ−1
i C (β)

κ ((I − qqt )�)dq.

Equivalently,

C (β)
κ (�) ∝ Eq (C (β)

κ (Projq⊥�)),

where the expectation is taken over length n vectors of χβ’s renormalized to lie on the unit sphere.

Given a unit vector q, one can create a projected Jack polynomial of a symmetric matrix
by projecting out the direction q. One can reconstruct the Jack polynomial by averaging over all
directions q. This process is reminiscent of integral geometry24 or computerized tomography. For
β = 1, the measure on the sphere is the uniform measure, for other β’s the measure on the sphere
is proportional to

∏n
i=1 qβ−1

i . In addition, using the above formula with a fact from Stanley,25 we
derive a new definition of the Jack polynomials (see Corollary 2).

Inspiration for this broken arrow model came from the mathematical method of ghosts and
shadows7 and numerical techniques for the svd updating problem. Algorithms for updating the svd
one column at a time were first considered by Bunch and Nielson.3 Gu and Eisenstat12 present an
improvement using the fast multipole method. The random matrix context here is simpler than the
numerical situation in that orthogonal invariance replaces the need for singular vector updating.

Software for efficiently computing the svd of broken arrow matrices is unavailable in the
currently popular technical computing languages such as MATLAB, Mathematica, Maple, R, or
Python. The sophisticated secular equation solver, LAPACK’s dlasd4.f, efficiently computes the
singular values of a broken arrow matrix. Using this software, we can sample the eigenvalues of
W (β)(D, m, n) in O(n3) time and O(n) space.

In this paper we perform a number of numerical simulations as well to confirm the correctness
and illustrate applications of the model. Among these simulations are largest and smallest eigenvalue
densities. We also use free probability to histogram the eigenvalues of W (β)(D, m, n) for general
β, m, n and D drawn from a prior, and show that they match the analytical predictions of free
probability made by Olver and Nadakuditi.20

II. REAL, COMPLEX, QUATERNION, AND GHOST WISHART MATRICES

Let Gβ represent a Gaussian real, complex, or quaternion for β = 1, 2, 4, with mean zero and
variance one. Let χd be a χ -distributed real with d degrees of freedom. The following algorithm
computes the singular values, where all of the random variables in a given matrix are assumed
independent. We assume D = I for purposes of illustration, but this algorithm generalizes. We
proceed through a series of matrices related by orthogonal transformations on the left and the right:⎡

⎢⎣
Gβ Gβ Gβ

Gβ Gβ Gβ

Gβ Gβ Gβ

⎤
⎥⎦ −→

⎡
⎢⎣

χ3β Gβ Gβ

0 Gβ Gβ

0 Gβ Gβ

⎤
⎥⎦ −→

⎡
⎢⎣

χ3β χβ Gβ

0 χ2β Gβ

0 0 Gβ

⎤
⎥⎦ .

To create the real, positive (1, 2) entry, we multiply the second column by a real sign, or a complex
or quaternionic phase. We then use a Householder reflector on the bottom two rows to make the
(2, 2) entry a χ2β . Now we take the SVD of the 2 × 2 upper-left block:⎡

⎢⎣
τ1 0 Gβ

0 τ2 Gβ

0 0 Gβ

⎤
⎥⎦ −→

⎡
⎢⎣

τ1 0 χβ

0 τ2 χβ

0 0 χβ

⎤
⎥⎦ −→

⎡
⎢⎣

σ1 0 0

0 σ2 0

0 0 σ3

⎤
⎥⎦ .

We convert the third column to reals using a diagonal matrix of signs on both sides. The process can
be continued for a larger matrix, and can work with one that is taller than is wide. What it proves is
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that the second-to-last-matrix,

⎡
⎢⎣

τ1 0 χβ

0 τ2 χβ

0 0 χβ

⎤
⎥⎦ ,

has the same singular values as the first matrix, if β = 1, 2, 4. We call this new matrix a “broken-
arrow matrix.” It is reasonable to conjecture that such a procedure might work for all β > 0 in a
way not yet defined. This idea is the basis of the method of ghosts and shadows.7 We prove that for
a general broken arrow matrix model, the singular value distribution is what the method of ghosts
and shadows predicts for a β-dimensional algebra.

The following algorithm, which generalizes the one above for the 3 × 3 case, samples the
singular values of the Wishart ensemble for general β and general D.

Beta-Wishart (recursive) model pseudocode

Function � := Beta-Wishart(m, n, β, D)

if n = 1 then

� := χmβ D1/2
1,1

else

Z1:n=1,1:n−1 := BetaWishart(m, n − 1, β, D1:n−1,1:n−1),

Zn,1:n−1 := [0, . . . , 0],

Z1:n−1,n := [χβ D1/2
n,n ; . . . ; χβ D1/2

n,n ],

Zn, n := χ(m−n+1)β D1/2
n,n ,

� := diag(svd(Z )),

end if

The diagonal of � contains the singular values. Since we know the distribution of the singular
values of such a full matrix for (β = 1, 2, 4),13, 17, 23 we can state (using the normalization constant
in Corollary 3, originally from Forrester9):

Theorem 1. The distribution of the singular values diag(�) = (σ 1, . . . , σ n), σ 1 > σ 2 > · · ·
> σ n, generated by the above algorithm for β = 1, 2, 4, is equal to

2n det(D)−mβ/2

K(β)
m,n

n∏
i=1

σ
(m−n+1)β−1
i �2(σ )β0 F0

(β)

(
−1

2
�2, D−1

)
dσ,

where

K(β)
m,n = 2mnβ/2

πn(n−1)β/2
· 	

(β)
n (mβ/2)	(β)

n (nβ/2)

	(β/2)n
,

and the generalized gamma function 	
(β)
n is defined in Definition 6.

Theorem 3 generalizes Theorem 1 to the β > 0 case. Before we can prove Theorem 3, we need
some background.
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III. ARROW AND BROKEN-ARROW MATRIX JACOBIANS

Define the (symmetric) arrow matrix by

A =

⎡
⎢⎢⎢⎢⎢⎣

d1 c1

. . .
...

dn−1 cn−1

c1 · · · cn−1 cn

⎤
⎥⎥⎥⎥⎥⎦ .

Let its eigenvalues be λ1, . . . , λn. Let q be the last row of its eigenvector matrix, i.e., q contains the
nth element of each eigenvector. q is by convention in the positive quadrant.

Define the broken arrow matrix B by

B =

⎡
⎢⎢⎢⎢⎢⎣

b1 a1

. . .
...

bn−1 an−1

0 · · · 0 an

⎤
⎥⎥⎥⎥⎥⎦ .

Let its singular values be σ 1, . . . , σ n, and let q contain the bottom row of its right singular vector
matrix, i.e., A = BtB, BtB is an arrow matrix. q is by convention in the positive quadrant.

Define dq to be the surface-area element on the sphere in Rn .

Lemma 1. For an arrow matrix A, let f be the unique map f : (c, d) −→ (q, λ). The Jacobian
of f satisfies

dqdλ =
∏n

i=1 qi∏n−1
i=1 ci

· dcdd.

The proof is after Lemma 3.

Lemma 2. For a broken arrow matrix B, let g be the unique map g : (a, b) −→ (q, σ ). The
Jacobian of g satisfies

dqdσ =
∏n

i=1 qi∏n−1
i=1 ai

· dadb.

The proof is after Lemma 3.

Lemma 3. If all elements of a, b, q, σ are nonnegative, and b, d, λ, σ are ordered, then f and g
are bijections excepting sets of measure zero (if some bi = bj or some di = dj, for i �= j).

Proof. We only prove it for f; the g case is similar. We show that f is a bijection using results
from Dumitriu and Edelman,4 who in turn cite Parlett.21 Define the tridiagonal matrix by⎡

⎢⎢⎢⎢⎢⎣

η1 ε1 0 0

ε1 η2 ε2 0

. . .
. . .

. . .

0 0 εn−1 ηn−1

⎤
⎥⎥⎥⎥⎥⎦

to have eigenvalues d1, . . . , dn − 1 and bottom entries of the eigenvector matrix u = (c1, . . . , cn − 1)/γ ,

where γ =
√

c2
1 + · · · + c2

n−1. Let the whole eigenvector matrix be U. (d, u) ↔ (ε, η) is a bijection4, 21

excepting sets of measure 0. Now we extend the above tridiagonal matrix further and use ∼ to indicate
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similar matrices:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

η1 ε1 0 0 0

ε1 η2 ε2 0 0

. . .
. . .

. . .

0 0 εn−1 ηn−1 γ

0 0 0 γ cn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∼

⎡
⎢⎢⎢⎢⎢⎣

d1 u1γ

. . .
...

dn−1 un−1γ

u1γ · · · un−1γ cn

⎤
⎥⎥⎥⎥⎥⎦ = A,

(c1, . . . , cn − 1) ↔ (u, γ ) is a bijection, as is (cn) ↔ (cn), so we have constructed a bijection from
(c1, . . . , cn − 1, cn, d1, . . . , dn − 1) ↔ (cn, γ , η, ε), excepting sets of measure 0. (cn, γ , η, ε) defines a
tridiagonal matrix which is in bijection with (q, λ).4, 21 Hence, we have bijected (c, d) ↔ (q, λ). The
proof that f is a bijection is complete. �

Proof of Lemma 1. By Dumitriu and Edelman,4 Lemma 2.9,

dqdλ =
∏n

i=1 qi

γ
∏n−1

i=1 εi

dcndγ dεdη.

Also by Dumitriu and Edelman,4 Lemma 2.9,

dddu =
∏n−1

i=1 ui∏n−1
i=1 εi

dεdη.

Together,

dqdλ =
∏n

i=1 qi

γ
∏n−1

i=1 ui

dcndddudγ.

The full spherical element is, using γ as the radius,

dc1 · · · dcn−1 = γ n−2dudγ.

Hence,

dqdλ =
∏n

i=1 qi

γ n−1
∏n−1

i=1 ui

dcdd,

which by substitution is

dqdλ =
∏n

i=1 qi∏n−1
i=1 ci

dcdd.

Proof of Lemma 2. Let A = BtB. dλ = 2n
∏n

i=1 σi dσ , and since
∏n

i=1 σi
2 = det(Bt B) = det(B)2

= a2
n

∏n−1
i=1 b2

i , by Lemma 1,

dqdσ =
∏n

i=1 qi

2nan
∏n−1

i=1 (bi ci )
dcdd.

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.65.11.72 On: Fri, 15 Nov 2013 18:58:02



083507-7 Dubbs et al. J. Math. Phys. 54, 083507 (2013)

The full-matrix Jacobian ∂(c,d)
∂(a,b) is

∂(c, d)

∂(a, b)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 2a1

. . .
...

bn−1 2an−1

2an

a1 2b1

. . .
. . .

an−1 2bn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The determinant gives dcdd = 2nan
∏n−1

i=1 b2
i dadb. So,

dqdσ =
∏n

i=1 qi
∏n−1

i=1 bi∏n−1
i=1 ci

dadb =
∏n

i=1 qi∏n−1
i=1 ai

dadb.

IV. FURTHER ARROW AND BROKEN-ARROW MATRIX LEMMAS

Lemma 4

qk =
⎛
⎝1 +

n−1∑
j=1

c2
j

(λk − d j )2

⎞
⎠

−1/2

.

Proof. Let v be the eigenvector of A corresponding to λk. Temporarily fix vn = 1. Using
Av = λv, for j < n, v j = c j/(λk − d j ). Renormalizing v so that ‖v‖ = 1, we get the desired value for
vn = qk . �

Lemma 5. For a vector x of length l, define �(x) = ∏
i < j|xi − xj|. Then,

�(λ) = �(d)
n−1∏
k=1

|ck |
n∏

k=1

q−1
k .

Proof. Using a result in Wilkinson,26 the characteristic polynomial of A is

p(λ) =
n∏

i=1

(λi − λ) =
n−1∏
i=1

(di − λ)

⎛
⎝cn − λ −

n−1∑
j=1

c2
j

d j − λ

⎞
⎠ . (1)

Therefore, for k < n,

p(dk) =
n∏

i=1

(λi − dk) = −c2
k

n−1∏
i=1,i �=k

(di − dk). (2)

Taking a product on both sides,

n∏
i=1

n−1∏
k=1

(λi − dk) = (−1)n−1�(d)2
n−1∏
k=1

c2
k .

Also,

p′(λk) = −
n∏

i=1,i �=k

(λi − λk) = −
n−1∏
i=1

(di − λk)

⎛
⎝1 +

n−1∑
j=1

c2
j

(d j − λk)2

⎞
⎠ . (3)
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Taking a product on both sides,

n∏
i=1

n−1∏
k=1

(λi − dk) = (−1)n−1�(λ)2
n∏

i=1

⎛
⎝1 +

n−1∑
j=1

c2
j

(d j − λi )2

⎞
⎠

−1

.

Equating expressions equal to
∏n

i=1

∏n−1
k=1(λi − dk), we get

�(d)2
n−1∏
k=1

c2
k = �(λ)2

n∏
i=1

⎛
⎝1 +

n−1∑
j=1

c2
j

(d j − λi )2

⎞
⎠

−1

.

The desired result follows by the previous lemma. �
Lemma 6. For a vector x of length l, define �2(x) = ∏

i< j |x2
i − x2

j |. The singular values of B
satisfy

�2(σ ) = �2(b)
n−1∏
k=1

|akbk |
n∏

k=1

q−1
k .

Proof. Follows from A = BtB. �
V. JACK AND HERMITE POLYNOMIALS

As in Ref. 6, if κ�k, κ = (κ1, κ2, . . . ) is nonnegative, ordered non-increasingly, and it sums to k.
Let α = 2/β. Let ρα

κ = ∑l
i=1 κi (κi − 1 − (2/α)(i − 1)). We define l(κ) to be the number of nonzero

elements of κ . We say that μ ≤ κ in “lexicographic ordering” if for the largest integer j such that
μi = κ i for all i < j, we have μj ≤ κ j.

Definition 1. As in Dumitriu, Edelman and Shuman,6 we define the Jack polynomial of a
matrix argument, C (β)

κ (X ), as follows: Let x1, . . . , xn be the eigenvalues of X. C (β)
κ (X ) is the only

homogeneous polynomial eigenfunction of the Laplace-Beltrami-type operator:

D∗
n =

n∑
i=1

x2
i

∂2

∂x2
i

+ β ·
∑

1≤i �= j≤n

x2
i

xi − x j
· ∂

∂xi
,

with eigenvalue ρα
k + k(n − 1), having highest order monomial basis function in lexicographic

ordering (see Ref. 6, Section 2.4) corresponding to κ . In addition,∑
κ�k,l(κ)≤n

C (β)
κ (X ) = trace(X )k .

Lemma 7. If we write C (β)
κ (X ) in terms of the eigenvalues x1, . . . , xn, as C (β)

κ (x1, . . . , xn), then
C (β)

κ (x1, . . . , xn−1) = C (β)
κ (x1, . . . , xn−1, 0) if l(κ) < n. If l(κ) = n, C (β)

κ (x1, . . . , xn−1, 0) = 0.

Proof. The l(κ) = n case follows from a formula in Stanley,25 Propositions 5.1 and 5.5, that only
applies if κn > 0,

C (β)
κ (X ) ∝ det(X )C (β)

κ1−1,...,κn−1(X ).

If κn = 0, from (3.8) in Koev,14 C (β)
κ (x1, . . . , xn−1) = C (β)

κ (x1, . . . , xn−1, 0). �
Definition 2. The Hermite polynomials (of a matrix argument) are a basis for the space of

symmetric multivariate polynomials over eigenvalues x1, . . . , xn of X which are related to the Jack
polynomials by (Dumitriu, Edelman, and Shuman,6 page 17)

H (β)
κ (X ) =

∑
σ⊆κ

c(β)
κ,σ · C (β)

σ (X )

C (β)
σ (In)

,
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where σ ⊆ κ means for each i, σ i ≤ κ i, and the coefficients c(β)
κ,σ are given by (Dumitriu, Edelman,

and Shuman,6 page 17). Since Jack polynomials are homogeneous, that means

H (β)
κ (X ) ∝ C (β)

κ (X ) + L .O.T .

Furthermore, by (Dumitriu, Edelman, and Shuman,6 page 16), the Hermite polynomials are orthog-
onal with respect to the measure

exp

(
−1

2

n∑
i=1

x2
i

) ∏
i �= j

|xi − x j |β.

Lemma 8. Let

A(μ, c) =

⎡
⎢⎢⎢⎢⎢⎣

μ1 c1

. . .
...

μn−1 cn−1

c1 · · · cn−1 cn

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

c1

M
...

cn−1

c1 · · · cn−1 cn

⎤
⎥⎥⎥⎥⎥⎦ ,

and let for l(κ) < n,

Q(μ, cn) =
∫ n−1∏

i=1

cβ−1
i H (β)

κ (A(μ, c)) exp(−c2
1 − · · · − c2

n−1)dc1 · · · dcn−1.

Q is a symmetric polynomial in μ with leading term proportional to H (β)
κ (M) plus terms of order

strictly less than |κ|.

Proof. If we exchange two ci’s, i < n, and the corresponding μi’s, A(μ, c) has the same
eigenvalues, so H (β)

κ (A(μ, c)) is unchanged. So, we can prove Q(μ, cn) is symmetric in μ by
swapping two μi’s, and seeing that the integral is invariant over swapping the corresponding ci’s.

Now since H (β)
κ (A(μ, c)) is a symmetric polynomial in the eigenvalues of A(μ, c), we can write

it in the power-sum basis, i.e., it is in the ring generated by tp = λ
p
1 + · · · + λ

p
n , for p = 0, 1, 2, 3,

. . . , if λ1, . . . , λn are the eigenvalues of A(μ, c). But tp = trace(A(μ, c)p), so it is a polynomial in μ

and c,

H (β)
κ (A(μ, c)) =

∑
i≥0

∑
ε1,...,εn−1≥0

pi,ε(μ)ci
ncε1

1 · · · cεn−1
n−1.

Its order in μ and c must be |κ|, the same as its order in λ. Integrating, it follows that

Q(μ, cn) =
∑
i≥0

∑
ε1,...,εn−1≥0

pi,ε(μ)ci
n Mε,

for constants Mε . Since deg(H (β)
κ (A(μ, c))) = |κ|, deg(pi,ε(μ)) ≤ |κ| − |ε| − i . Writing

Q(μ, cn) = M�0 p0,�0(μ) +
∑

(i,ε)�=(0,�0)

pi,ε(μ)ci
n Mε,

we see that the summation has degree at most |κ| − 1 in μ only, treating cn as a constant. Now

p0,�0(μ) = H (β)
κ

([
M �0
�0 0

])
= H (β)

κ (μ) + r (μ),

where r(μ) has degree at most |κ| − 1. This follows from the expansion of H (β)
κ in Jack polynomials

in Definition 2 and the fact about Jack polynomials in Lemma 7. The new lemma follows. �
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Lemma 9. Let the arrow matrix below have eigenvalues in � = diag(λ1, . . . , λn) and have q be
the last row of its eigenvector matrix, i.e., q contains the nth element of each eigenvector,

A(�, q) =

⎡
⎢⎢⎢⎢⎢⎣

μ1 c1

. . .
...

μn−1 cn−1

c1 · · · cn−1 cn

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

c1

M
...

cn−1

c1 · · · cn−1 cn

⎤
⎥⎥⎥⎥⎥⎦ ,

by Lemma 3 this is a well-defined map except on a set of measure zero. Then, for U(X) a symmetric
homogeneous polynomial of degree k in the eigenvalues of X,

V (�) =
∫ n∏

i=1

qβ−1
i U (M)dq,

is a symmetric homogeneous polynomial of degree k in λ1, . . . , λn.

Proof. Let en be the column vector that is 0 everywhere except in the last entry, which is 1.
(I − enet

n)A(�, q)(I − enet
n) has eigenvalues {μ1, . . . , μn − 1, 0}. If the eigenvector matrix of

A(�, q) is Q, so must

Qt (I − enet
n)Q�Qt (I − enet

n)Q

have those eigenvalues. But this is

(I − qqt )�(I − qqt ).

So

U (M) = U (eig((I − qqt )�(I − qqt ))\{0}). (4)

It is well known that we can write U(M) in the power-sum ring, U(M) is made of sums and products
of functions of the form μ

p
1 + · · · + μ

p
n−1, where p is a positive integer. Therefore, the RHS is made

of functions of the form

μ
p
1 + · · · + μ

p
n−1 + 0p = trace(((I − qqt )�(I − qqt ))p),

which if U(M) is order k in the μi’s, must be order k in the λi’s. So V (�) is a polynomial of order k
in the λ′

i s. Switching λ1 and λ2 and also q1 and q2 leaves

∫ n∏
i=1

qβ−1
i U (eig((I − qqt )�(I − qqt ))\{0})dq

invariant, so V (�) is symmetric. �
Theorem 2 is a new theorem about Jack polynomials.

Theorem 2. Let the arrow matrix below have eigenvalues in � = diag(λ1, . . . , λn) and have q
be the last row of its eigenvector matrix, i.e., q contains the nth element of each eigenvector,

A(�, q) =

⎡
⎢⎢⎢⎢⎢⎣

μ1 c1

. . .
...

μn−1 cn−1

c1 · · · cn−1 cn

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

c1

M
...

cn−1

c1 · · · cn−1 cn

⎤
⎥⎥⎥⎥⎥⎦ ,
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by Lemma 3 this is a well-defined map except on a set of measure zero. Then, if for a partition κ ,
l(κ) < n, and q on the first quadrant of the unit sphere,

C (β)
κ (�) ∝

∫ n∏
i=1

qβ−1
i C (β)

κ (M)dq.

Proof. Define

η(β)
κ (�) =

∫ n∏
i=1

qβ−1
i H (β)

κ (M)dq.

This is a symmetric polynomial in n variables (Lemma 9). Thus, it can be expanded in Hermite
polynomials with max order |κ| (Lemma 9):

η(β)
κ (�) =

∑
|κ (0)|≤|κ|

c(κ (0), κ)H (β)
κ (0) (�),

where |κ| = κ1 + κ2 + · · · + κ l(κ). Using orthogonality, from the previous definition of Hermite
polynomials,

c(κ (0), κ) ∝
∫

�∈Rn

∫
q

n∏
i=1

qβ−1
i H (β)

κ (M)H (β)
κ (0) (�),

× exp(−1

2
trace(�2))

∏
i �= j

|λi − λ j |βdqdλ.

Using Lemmas 1 and 3,

c(κ (0), κ) ∝
∫ n∏

i=1

qβ−1
i H (β)

κ (M)H (β)
κ (0) (�)

× exp(−1

2
trace(�2))

∏
i �= j

|λi − λ j |β
∏n

i=1 qi∏n−1
i=1 ci

dμdc.

Using Lemma 6,

c(κ (0), κ) ∝
∫ n−1∏

i=1

cβ−1
i H (β)

κ (M)H (β)
κ (0) (�)

× exp(−1

2
trace(�2))

∏
i �= j

|μi − μ j |βdμdc,

and by substitution

c(κ (0), κ) ∝
∫ n−1∏

i=1

cβ−1
i H (β)

κ (M)H (β)
κ (0) (A(�, q))

× exp(−1

2
trace(A(�, q)2))

∏
i �= j

|μi − μ j |βdμdc.

Define

Q(μ, cn) =
∫ n−1∏

i=1

cβ−1
i Hβ

κ (0) (A(�, q)) exp(−c2
1 − · · · − c2

n−1)dc1 · · · dcn−1.
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Q(μ, cn) is a symmetric polynomial in μ (Lemma 8). Furthermore, by Lemma 8,

Q(μ, cn) ∝ H (β)
κ (0) (M) + L .O.T .,

where the Lower Order Terms are of lower order than |κ (0)| and are symmetric polynomials. Hence,
they can be written in a basis of lower order Hermite polynomials, and as

c(κ (0), κ) ∝
∫

H (β)
κ (M)Q(μ, cn)

×
∏
i �= j

|μi − μ j |β exp

(
−1

2
(c2

n + μ2
1 + · · · + μ2

n−1)

)
dμdcn,

we have by orthogonality

c(κ (0), κ) ∝ δ(κ (0), κ),

where δ is the Dirac delta. So

η(β)
κ (�) =

∫ n∏
i=1

qβ−1
i H (β)

κ (M)dq ∝ H (β)
κ (�).

By Lemma 9, coupled with Definition 2,

C (β)
κ (�) ∝

∫ n∏
i=1

qβ−1
i C (β)

κ (M)dq.

�
Corollary 1. Finding the proportionality constant: For l(κ) < n,

C (β)
κ (�) = C (β)

κ (In)

C (β)
κ (In−1)

· 2n−1	(nβ/2)

	(β/2)n
·
∫ n∏

i=1

qβ−1
i C (β)

κ ((I − qqt )�)dq.

Proof. By Theorem 2 with Eq. (4) (in the proof of Lemma 9),

C (β)
κ (�) ∝

∫ n∏
i=1

qβ−1
i C (β)

κ (eig((I − qqt )�(I − qqt )) − {0})dq,

which by Lemma 7 and properties of matrices is

C (β)
κ (�) ∝

∫ n∏
i=1

qβ−1
i C (β)

κ ((I − qqt )�)dq.

Now to find the proportionality constant. Let � = In, and let cp be the constant of proportionality:

C (β)
κ (In) = cp ·

∫ n∏
i=1

qβ−1
i C (β)

κ (I − qqt )dq.

Since I − qqt is a projection, we can replace the term in the integral by C (β)
κ (In−1), which can be

moved out. So

cp = C (β)
κ (In)

C (β)
κ (In−1)

(∫ n∏
i=1

qβ−1
i dq

)−1

.

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.65.11.72 On: Fri, 15 Nov 2013 18:58:02



083507-13 Dubbs et al. J. Math. Phys. 54, 083507 (2013)

Now ∫ n∏
i=1

qβ−1
i dq = 2

	(nβ/2)

∫ ∞

0
rnβ−1e−r2

dr
∫ n∏

i=1

qβ−1
i dq

= 2

	(nβ/2)

∫ ∫ ∞

0

n∏
i=1

(rqi )
β−1e−r2

(rn−1drdq)

= 2

	(nβ/2)

∫ n∏
i=1

xβ−1
i e−x2

1 −···−x2
n dx

= 2

	(nβ/2)

(∫ ∞

0
xβ−1

1 e−x2
1 dx1

)n

= 2

	(nβ/2)

(
	(β/2)

2

)n

= 	(β/2)n

2n−1	(nβ/2)
,

and the corollary follows. �
Corollary 2. The Jack polynomials can be defined recursively using Corollary 1 and two results

in the compilation.15

Proof. By Stanley,25 Proposition 4.2, the Jack polynomial of one variable under the J normal-
ization is

J (β)
κ1

(λ1) = λ
κ1
1 (1 + (2/β)) · · · (1 + (κ1 − 1)(2/β)).

There exists another recursion for Jack polynomials under the J normalization:

J (β)
κ (�) = det(�)J(κ1−1,...,κn−1)

n∏
i=1

(n − i + 1 + (2/β)(κi − 1)),

if κn > 0. Note that if κn > 0 we can use the above formula to reduce the size of κ in a recursive
expression for a Jack polynomial, and if κn = 0 we can use Corollary 1 to reduce the number
of variables in a recursive expression for a Jack polynomial. Using those facts together and the
conversion between C and J normalizations in Ref. 6, we can define all Jack polynomials. �

VI. HYPERGEOMETRIC FUNCTIONS

Definition 3. We define the hypergeometric function of two matrix arguments and parameter β,
0F0

β(X, Y), for n × n matrices X and Y, by

0 F0
β(X, Y ) =

∞∑
k=0

∑
κ�k,l(κ)≤n

C (β)
κ (X )C (β)

κ (Y )

k!C (β)
κ (I )

,

as in Koev and Edelman.14 It is efficiently calculated using the software described in Koev and
Edelman,14 mhg, which is available online.16 The C’s are Jack polynomials under the C normaliza-
tion, κ � k means that κ is a partition of the integer k, so κ1 ≥ κ2 ≥ · · · ≥ 0 have |κ| = k = κ1

+ κ2 + · · · = k.

Lemma 10

0 F0
(β)(X, Y ) = exp (s · trace(X )) 0 F0

(β)(X, Y − s I ).
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Proof. The claim holds for s = 1 by Baker and Forrester.1 Now, using that fact with the
homogeneity of Jack polynomials,

0 F0
(β)(X, Y − s I ) = 0 F0

(β)(X, s((1/s)Y − I )) = 0 F0
(β)(s X, (1/s)Y − I )

= exp (s · trace(X )) 0 F0
(β)(s X, (1/s)Y ) = exp (s · trace(X )) 0 F0

(β)(X, Y ).

�
Definition 4. We define the generalized Pochhammer symbol to be, for a partition κ =

(κ1, . . . , κ l),

(a)(β)
κ =

l∏
i=1

κi∏
j=1

(
a − i − 1

2
β + j − 1

)
.

Definition 5. As in Koev and Edelman,14 we define the hypergeometric function 1F1 to be

1 F (β)
1 (a; b; X, Y ) =

∞∑
k=0

∑
κ�k,l(κ)≤n

(a)βκ
(b)(β)

κ

· C (β)
κ (X )C (β)

κ (Y )

k!C (β)
κ (I )

.

The best software available to compute this function numerically is described in Koev and Edelman,14

mhg.

Definition 6. We define the generalized Gamma function to be

	(β)
n (c) = πn(n−1)β/4

n∏
i=1

	(c − (i − 1)β/2)

for R(c) > (n − 1)β/2.

VII. THE β-WISHART ENSEMBLE AND ITS SPECTRAL DISTRIBUTION

The β-Wishart ensemble for m × n matrices is defined iteratively; we derive the m × n case
from the m × (n − 1) case.

Definition 7. We assume n is a positive integer and m is a real greater than n − 1. Let D be a
positive-definite diagonal n × n matrix. For n = 1, the β-Wishart ensemble is

Z =

⎡
⎢⎢⎢⎢⎢⎢⎣

χmβ D1/2
1,1

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

with n − 1 zeros, where χmβ represents a random positive real that is χ -distributed with mβ degrees of
freedom. For n > 1, the β-Wishart ensemble with positive-definite diagonal n × n covariance matrix
D is defined as follows: Let τ 1, . . . , τ n − 1 be one draw of the singular values of the m × (n − 1)
β-Wishart ensemble with covariance D1: (n − 1), 1: (n − 1). Define the matrix Z by

Z =

⎡
⎢⎢⎢⎢⎢⎢⎣

τ1 χβ D1/2
n,n

. . .
...

τn−1 χβ D1/2
n,n

χ(m−n+1)β D1/2
n,n

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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All the χ -distributed random variables are independent. Let σ 1, . . . , σ n be the singular values of Z.
They are one draw of the singular values of the m × n β-Wishart ensemble, completing the recursion.
λi = σ 2

i are the eigenvalues of the β-Wishart ensemble.

Theorem 3. Let � = diag(σ 1, . . . , σ n), σ 1 > σ 2 > · · · > σ n. The singular values of the
β-Wishart ensemble with covariance D are distributed by a pdf proportional to

det(D)−mβ/2
n∏

i=1

σ
(m−n+1)β−1
i �2(σ )β0 F0

(β)

(
−1

2
�2, D−1

)
dσ.

It follows from a simple change of variables that the ordered λi’s are distributed as

CW
β det(D)−mβ/2

n∏
i=1

λ
m−n+1

2 β−1
i �(λ)β0 F0

(β)

(
−1

2
�, D−1

)
dλ.

Proof. First we need to check the n = 1 case: the one singular value σ 1 is distributed as
σ1 = χmβ D1/2

1,1 , which has pdf proportional to

D−mβ/2
1,1 σ

mβ−1
1 exp

(
− σ 2

1

2D1,1

)
dσ1.

We use the fact that

0 F0
(β)

(
−1

2
σ 2

1 , D−1
1,1

)
= 0 F0

(β)

(
− 1

2D1,1
σ 2

1 , 1

)
= exp

(
− σ 2

1

2D1,1

)
.

The first equality comes from the expansion of 0F0 in terms of Jack polynomials and the fact that
Jack polynomials are homogeneous, see the definition of Jack polynomials and 0F0 in this paper,
the second comes from (2.1) in Koev,15 or in Forrester.10 We use that 0F0

(β)(X, I) = 0F0
(β)(X), by

definition.14

Now we assume n > 1. Let

Z =

⎡
⎢⎢⎢⎢⎢⎢⎣

τ1 χβ D1/2
n,n

. . .
...

τn−1 χβ D1/2
n,n

χ(m−n+1)β D1/2
n,n

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

τ1 a1

. . .
...

τn−1 an−1

an

⎤
⎥⎥⎥⎥⎥⎦ ,

so the ai’s are χ -distributed with different parameters. By hypothesis, the τ i’s are a β-Wishart draw.
Therefore, the ai’s and the τ i’s are assumed to have joint distribution proportional to

det(D)−mβ/2
n−1∏
i=1

τ
(m−n+2)β−1
i �2(τ )β0 F0

(β)

(
−1

2
T 2, D−1

1:n−1,1:n−1

)

×
(

n−1∏
i=1

ai

)β−1

a(m−n+1)β−1
n exp

(
− 1

2Dn,n

n∑
i=1

a2
i

)
dadτ,

where T = diag(τ 1, . . . , τ n − 1). Using Lemmas 2 and 3, we can change variables to

det(D)−mβ/2
n−1∏
i=1

τ
(m−n+2)β−1
i �2(τ )β0 F0

(β)

(
−1

2
T 2, D−1

1:n−1,1:n−1

)

×
(

n−1∏
i=1

ai

)β

a(m−n+1)β−1
n exp

(
− 1

2Dn,n

n∑
i=1

a2
i

)
n∏

i=1

q−1
i · dσdq.
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Using Lemma 6 this becomes

det(D)−mβ/2
n−1∏
i=1

τ
(m−n+1)β−1
i �2(σ )β0 F (β)

0 (−1

2
T 2, D−1

1:n−1,1:n−1)

× exp

(
− 1

2Dn,n

n∑
i=1

a2
i

)
n∏

i=1

qβ−1
i dσdq.

Using properties of determinants this becomes

det(D)−mβ/2
n∏

i=1

σ
(m−n+1)β−1
i �2(σ )β0 F0

(β)

(
−1

2
T 2, D−1

1:n−1,1:n−1

)

× exp

(
− 1

2Dn,n

n∑
i=1

a2
i

)
n∏

i=1

qβ−1
i · dσdq.

To complete the induction, we need to prove

0 F0
(β)

(
−1

2
�2, D−1

)
∝

∫ n∏
i=1

qβ−1
i e−‖a‖2/(2Dn,n )

0 F0
(β)

(
−1

2
T 2, D−1

1:(n−1),1:(n−1)

)
dq.

We can reduce this expression using ‖a‖2 + ∑n−1
i=1 τ 2

i = ∑n
i=1 σ 2

i that it suffices to show

exp
(
trace(�2)/(2Dn,n)

)
0 F0

(β)

(
−1

2
�2, D−1

)

∝
∫ n∏

i=1

qβ−1
i exp

(
trace(T 2)/(2Dn,n)

)
0 F0

(β)

(
−1

2
T 2, D−1

1:(n−1),1:(n−1)

)
dq,

or moving some constants and signs around,

exp
(
(−1/Dn,n)trace(−�2/2)

)
0 F0

(β)

(
−1

2
�2, D−1

)

∝
∫ n∏

i=1

qβ−1
i exp

(
(−1/(Dn,n))trace(−T 2/2)

)
0 F0

(β)

(
−1

2
T 2, D−1

1:(n−1),1:(n−1)

)
dq,

or using Lemma 10,

0 F0
(β)

(
−1

2
�2, D−1 − 1

Dn,n
In

)

∝
∫ n∏

i=1

qβ−1
i 0 F0

(β)

(
−1

2
T 2, D−1

1:(n−1),1:(n−1) − 1

Dn,n
In−1

)
dq.

We will prove this expression termwise using the expansion of 0F0 into infinitely many Jack
polynomials. The (k, κ) term on the right-hand side is∫ n∏

i=1

qβ−1
i C (β)

κ

(
−1

2
T 2

)
C (β)

κ

(
D−1

1:(n−1),1:(n−1) − 1

Dn,n
In−1

)
dq,

where κ � k and l(κ) < n. The (k, κ) term on the left-hand side is

C (β)
κ

(
−1

2
�2

)
C (β)

κ

(
D−1 − 1

Dn,n
In−1

)
,
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where κ � k and l(κ) ≤ n. If l(κ) = n, the term is 0 by Lemma 7, so either it has a corresponding
term on the right-hand side or it is zero. Hence, using Lemma 7 again it suffices to show that for l(κ)
< n,

C (β)
κ (�2) ∝

∫ n∏
i=1

qβ−1
i C (β)

κ (T 2)dq.

This follows by Theorem 2, and the proof of Theorem 3 is complete. �
Corollary 3. The normalization constant, for λ1 > λ2 > · · · > λn:

CW
β = 1

K(β)
m,n

,

where

K(β)
m,n = 2mnβ/2

πn(n−1)β/2
· 	

(β)
n (mβ/2)	(β)

n (nβ/2)

	(β/2)n
,

Proof. We have used the convention that elements of D do not move through ∝, so we may
assume D is the identity. Using 0F0

(β)( − �/2, I) = exp ( − trace(�)/2) ((2.1) in Koev15), the model
becomes the β-Laguerre model studied in Forrester.9 �

Corollary 4. Using Definition 6 of the generalized gamma, the distribution of λmax for the
β-Wishart ensemble with general covariance in diagonal D, P(λmax < x), is

	
(β)
n (1 + (n − 1)β/2)

	
(β)
n (1 + (m + n − 1)β/2)

det
( x

2
D−1

)mβ/2

1 F (β)
1

(
m

2
β;

m + n − 1

2
β + 1; − x

2
D−1

)
.

Proof. See page 14 of Koev,15 Theorem 6.1. A factor of β is lost due to differences in nomen-
clature. The best software to calculate this is described in Koev and Edelman,14 mhg. Convergence
is improved using formula (2.6) in Koev.15 �
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FIG. 1. The line is the empirical cdf created from many draws of the maximum eigenvalue of the β-Wishart ensemble,
with m = 4, n = 4, β = 2.5, and D = diag(1.1, 1.2, 1.4, 1.8). The x’s are the analytically derived values of the cdf using
Corollary 4 and mhg.
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FIG. 2. The line is the empirical cdf created from many draws of the maximum eigenvalue of the β-Wishart ensemble,
with m = 6, n = 4, β = 0.75, and D = diag(1.1, 1.2, 1.4, 1.8). The x’s are the analytically derived values of the cdf using
Corollary 4 and mhg.

Corollary 5. The distribution of λmin for the β-Wishart ensemble with general covariance in
diagonal D, P(λmin < x), is

1 − exp
(
trace(−x D−1/2)

) nt∑
k=0

∑
κ�k,κ1≤t

C (β)
κ (x D−1/2)

k!
.

It is only valid when t = (m − n + 1)β/2 − 1 is a nonnegative integer.

Proof. See pages 14 and 15 of Koev,15 Theorem 6.1. A factor of β is lost due to differences in
nomenclature. The best software to calculate this is described in Koev and Edelman,14 mhg. �
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FIG. 3. The line is the empirical cdf created from many draws of the minimum eigenvalue of the β-Wishart ensemble, with
m = 4, n = 3, β = 5, and D = diag(1.1, 1.2, 1.4). The x’s are the analytically derived values of the cdf using Corollary 5
and mhg.
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FIG. 4. The line is the empirical cdf created from many draws of the minimum eigenvalue of the β-Wishart ensemble, with
m = 7, n = 4, β = 0.5, and D = diag(1, 2, 3, 4). The x’s are the analytically derived values of the cdf using Corollary 5
and mhg.

Theorem 6.2 in Ref. 15 gives a formula for the distribution of the trace of the β-Wishart
ensemble.

Figures 1–4 demonstrate the correctness of Corollaries 4 and 5, which are derived from
Theorem 3.

VIII. THE β-WISHART ENSEMBLE AND FREE PROBABILITY

Given the eigenvalue distributions of two large random matrices, free probability allows one to
analytically compute the eigenvalue distributions of the sum and product of those matrices (a good
summary is Nadakuditi and Edelman22). In particular, we would like to compute the eigenvalue
histogram for XtXD/(mβ), where X is a tall matrix of standard normal reals, complexes, quaternions,
or ghosts, and D is a positive definite diagonal matrix drawn from a prior. Dumitriu5 proves that for

FIG. 5. The analytical product of the semicircle and Marcenko-Pastur laws is the red line, the histogram is 1000 draws of
the β-Wishart (β = 3) with covariance drawn from the shifted semicircle distribution. They match perfectly.

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.65.11.72 On: Fri, 15 Nov 2013 18:58:02



083507-20 Dubbs et al. J. Math. Phys. 54, 083507 (2013)

the D = I and β = 1, 2, 4 case, the answer is the Marcenko-Pastur law, invariant over β. So it is
reasonable to assume that the value of β does not figure into hist(eig(XtXD)), where D is random.

We use the methods of Olver and Nadakuditi20 to analytically compute the product of the
Marcenko-Pastur distribution for m/n −→ 10 and variance 1 with the semicircle distribution of
width 2

√
2 centered at 3. Figure 5 demonstrates that the histogram of 1000 draws of XtXD/(mβ) for

m = 1000, n = 100, and β = 3, represented as a bar graph, is equal to the analytically computed red
line. The β-Wishart distribution allows us to draw the eigenvalues of XtXD/(mβ), even if we cannot
sample the entries of the matrix for β = 3.
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