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Summary. In many applications, interpolation of experimental data exhibit-
ing some geometric property such as nonnegativity, monotonicity or con-
vexity is unacceptable unless the interpolant reflects these characteristics.
This paper identifies admissible slopes at data points of various C' in-
terpolants which ensure a desirable shape. We discuss this question, in turn
for the following function classes commonly used for shape preserving
interpolations: monotone polynomials, C' monotone piecewise poly-
nomials, convex polynomials, parametric cubic curves and rational func-
tions.

Subject Classifications: AMS(MOS): 65D05; CR: G1.1.

Section 1. Introduction

In many applications, interpolation of experimental data exhibiting some geo-
metric property such as nonnegativity, monotonicity or convexity is unaccept-
able unless the interpolant reflects these characteristics. This has led to many
proposals for generating shape preserving interpolants. Some examples of such
algorithms appear in Fritsch and Carlson [1], Hyman [3], and Schumaker [5].

Frequently, the design of these algorithms can be conveniently separated
into two stages. First, some function class G is specified which exhibits a
desirable geometric property on a given interval. The interpolant is then
obtained by “stitching” together, on intervals between successive data points,
scaled representatives from G. Parameters corresponding to each subinterval
are then chosen to yield an acceptable global interpolant to the data.

For C' interpolation, it is convenient to adjust the local shape by altering
the derivatives at the endpoints of intervals between consecutive data points. In
this way left and right derivatives can be easily matched. For this purpose, it is
important to know the range of values of the derivatives which admit an
acceptable function from G. This question has received only cursory treatment
in the literature. Cubic polynomials are considered in [1], the ratio of quadrat-

———

B



442 A. Edelman and C.A. Micchelli

ic polynomials appears in [2] and quadratic splines with one knot in [3].
Although for algorithmic concerns only a few parameters are needed in each
interval between data points, a general analysis of this question leads to results
of some independent interest which provide insight into the intrinsic limi-
tations of any algorithm based on a given class G.

We will discuss this question, in turn for the following function classes
commonly used for shape preserving interpolation: monotone polynomials, C*
monotone piecewise polynomials, convex polynomials, parametric cubic curves
and rational functions. In the latter case, we leave unsettled the region of the
admissible slopes for rational functions with one pole and an odd degree
polynomial in its numerator. We conjecture that it is an L-shaped region.

Section 2. Monotonic Polynomials

Let G be any subset of C'(—1,1) with g(1)=1 and g(—1)= —1 for any geG.
In general, the interpolation problem described above has the form: given
xXo<x,{...{x,{x,,, find an feC'(x,,x,, ;) such that

f.{‘x'i.)=y:'7 ff(x];)=y;-, iZO.l_,...,?’T‘{’l (21)
and the linear rescaling of segments of f given by

L=t 1+
2.f(( D) )xi+( 2r)xi'+1)_yi_yi+l
fi(t) = ,  te[—=1,17,
MW

is in G for all i=0.1,...,n. In what follows G is used to control the shape of
the interpolant between the data points,

It is possible to give a useful condition for the solvability of (2.1) in terms
of the derivative data. To this end, we define

D(G)={(g'(—1),g'(1)): geG}. (2.2)

From the definition of f;, (2.1) has a solution if and only if for i=0,1,...,n

Ax, . - dx, ;
(e 1 )eD@,  if Ay 0 (23)

where Ax;=x; | —x;, dy,=y,,, —y, (when Ay,=0,f; is undefined but interpo-
lation on [x;,x,,,] with a constant is appropriate). Slopes satisfying (2.3)
provide acceptable interpolants and we can assess the flexibility of a function
class G by how easy it is to fulfill this condition. It should be pointed out that
DM)=R2 ={(x,y): x,y =0} and  D(CM)={(x,y):0=x<1,y>1}u{(1,1)}
where M and CM refer to the totality of C' monotone and convex monotone
functions mapping [ —1, 1] onto itself, respectively.

Our main goal in this section is to determine D(G) for G the class of
monotonic polynomials mapping [ —1, 1] onto itself. We denote this set by

M, ={p:pen,,p' ()20 for [t|=1, p(£1)=+1}



Admissible Slopes for Monotone and Convex Interpolation 443

and so forn=2

1 1
D(Mn)={(1’(—1),P(1]):PETE,,_UE | P(f)drzl,n(t)z(),lrlél},

(trivially, D(M ) ={(1, 1)}).
Our first result is

Theorem 2.1. For n=3, D(M,) is the convex hull of (0,0) and an ellipse for n odd
or a line segment for n even. If n=2m—1, the equation of the ellipse is

E:—i{x+y—mﬂ2+———L——{x—yF=l (2.4)
" m? m*(m?* —1)

while for n=2m the line segment is given by

L : x+y=mm+1), x,y=0. (2.5)

m

These ellipses and line segments appear in an interesting arrangement. The
line segment L, separates the ellipses E, and E, ., (the latter being above L,)
which are all mutually tangent at $m(m+1)(1,1). In Fig. | below we display
these curves for n=2,...,D(M,) is exactly the line segment L,. The case n=3
appears in [1].

For the proof of this theorem we will use the following elementary lemma.

Lemma 2.1. Let a,b be linearly independent vectors in R", n=3. The set
E,.={(@ax)%®B-x)%: |x|=1}, |*| =Euclidean norm,
is the convex hull of (0,0) with the line segment
Ciix+Cyy=1, xy2z0, (2.6)
when a-b=0 or the convex hull of (0,0) with the ellipse

(Ci x+Cyy—1)2—4C2,xy=0. 2.7)
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The constants are given by the matrix

(b ) e

Forn=2, E, , is just the curve (2.6) when a-b=0 or (2.7) otherwise.

Proof. For n=3, the linear transformation Tv=(a-v,b-v) takes the unit sphere
{v: vl =1} in R” to the interior of the ellipse

Cy %*+2C,,xy+C,, y* =1 (2.8)

where C=(C,)) is a symmetric matrix chosen so that

(2.9)

G—d=1, Az(a-a a-b)

a-b b-b/

When n=2, the unit ball is mapped onto the ellipse (2.8). Furthermore every
point on (2.8) has a unique preimage in the unit sphere.
Rearranging and then squaring both sides of (2.8) yields after simplifying

Cix*+2(Cy, C22*2Cf2)x2y2+C§2y472C11x2—2C22y2+1:0 (2.10)

which is an equation in x?, y? for the ellipse (C,, x*+ Cny —1)2—4C},x%y?
=1 with discriminant 16 CZZ(C —C,, C,,) so that it is degenerate only when
C,,=0, i.e,, when the axes of (2.8) align with the coordinate axes.

It is casy to see that the ellipse given by (2.7) is tangent to the coordinate
axes and lies in the first quadrant. When C,,+0 every point on (2.7) corre-
sponds uniquely to two antipodal vectors on the unit sphere in R". When n= 3,
we see by the same analysis, the family of ellipses

C11x2+2C12xy+C22y2:r, 0=r=i,

is mapped by the transformation (x,y)—(x%y? onto (Ci x+Cyhyy—r)?
=4C?,xy whose union over re[0,1] covers the convex set described in
Lemma2.1.

We are now ready to prove Theorem 2.1.

Proof. Casel: n—2m—1 m=2 First we will look at D(MS,) where MS,
={p:peM,, p'=q* qenm,_,}, that is, the set of nondecreasing polynomlals
whose derivatives are squares. It will turn out that D(M,)=D(MS,).

Let F, be the Legendre polynomials normalized so that P(1)=1. Then

m

-1
Twt)= Y V2k+1uB@). u=(u,...,u, )eR™

k:

is an isometry between R™ and =, _, equipped with the inner product

I\JI»—-

1
J f(0)g()de
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[6]. Thus by introducing the vectors
ay=(—1}Y2k+1, b=12k+1, k=0,..,m—1

we have D(MS,)=E, ,. Since |al=|b||=m and a-b=m(—1)""! we conclude
in this case
1 m (=1
Gailbedl )
mm*—1) \(=1)™ m

Using this equation we can derive the equation of the ellipse determining E, ,
from Lemma 2.1. The result of this calculation leads to (2.4).

To conclude the proof it is necessary to show D(M,)=D(MS,). From
Lukacs' lemma [6], if peM, then q(t1)=p'(t)=A*(t)+(1—t*)B*(t) where
Aem, ,,Bemn, ,.Thus for

1
] [ (1= B*(r)dt

i e
at—EJIA (t) dt, ﬂ—a__l_

4,(O)=A%(t)a,  q(0)=(1—1*) B*(1)/p

we have o, =0, a+f=1 and g=ugq,+fq,. Since (g(—1),q(1)=alq,(—1),
q,(1)+ £(0,0)eD(MS,) we have D(M,)= D(MS,) which proves this part of the
theorem.

Case 2: n=2m. This case proceeds similarly. By Lukics’ lemma, every peM,
can be written as gq(1)=p'(t)=(1—1t) A*(1)+(1+1)B*(t), A,Bem,_,. This time
we expand A,B in Jacobi polynomials B''-%(t) and B "(¢) again normalized
so that B9(1)=PR Y (1)=1, (here we use the notation of [6]). Hence for
SOme U=/(g, ..., Uy, _{)ER*"

g=0-0[ T w/kr1ro0] +a+0[ Y wyFFT-mRe 0]

k=0 k=m
which gives L
— [ g dt=|u|?
2 | Odi=]ul
2k+2 0sksm—1
d-N=-l, @il T NDEEE
0, ms<k<2m-—1
and

0, 0gksm—1
a_ . m=k=Z2m—1

q([):(bu)2! bk_{

Thus, as before, D(M,)=E,, but now a-b=0 and so Lemma3.l gives (2.5)
I

Cmm+ 1)

In the diagram below we labeled some special points on ellipse E,,.

From this diagram it is easy to see that L, is tangent to E, and E_,_, at

because in this case C,,=0C,,

s e
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(m(m+|) m(m+l))

(1,m2) 2/ o
(0, m2-1)
(2.9)
o TRATY
/ (m2,1)
/ (m2-1,0)
(m(m—l) m{m-—l})
2 ' 2
Fig. 2

We mention that it is a consequence of our discussion in the proof of
Lemma 2.1 that there is only one peM, such that (p'(—1), p'(1))=(x, f) when
(o, )EE,,, n=2m—1 or (o f)eL,, n=2m. It also may be useful to point out
that

(m+1)(m+2)73
[(), f] cD(M,,, . )

This result has been used in designing algorithms for shape preserving in-
terpolation when m=1.

From the above analysis, it is possible to obtain the polynomials corre-
sponding to the boundary curves £, and L,,. The polynomials in case 1 that
are on the boundary are simply those h of the form yP{"P+5P"1) that

i
satisfy | h*(t)dt=1. We note
-1

1! 2 L

5 T EBEPOP A== and | BP0 RLP(0)di=0
. | -1

so the condition on h becomes

2m y2+2(m—1)52=1.
m+1 m

It is of interest to display h* explicitly for the special points labeled on
Fig.2. The intersection of K, with the line y=x corresponds to the two
polynomials

m+1
2m

-P1(x)?  and P D(x)2,

"
2(m—1)
The polynomial

1
i P2 (x)2 (1 +x)?

h)=gm—1) ™
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corresponds to the place E, intersects the y-axis and we have h(—x) for the
corresponding x-axis intersection. To see that h has the form specified above,

note (L+x) P12 (x)=P"D(x H— P‘1 }(x). Finally, P*9(x)®> and its re-

m—1

flection about [ —1,1] correspond to the topmost and rightmost points on the
ellipse respectively. To see the proper form, in this case note that

Bl P(x)= B,Eif’(x) B2 ().

The positive polynomials (i.e. derivatives of the monotone polynomials) for
the line segment L, are

(Lo meper: -1s0s1)
m

Taking =0 we get the polynomial corresponding to the midpoint of L, that
is, the point on L, which is tangent to the ellipse E,,. The choice 0= +1 yields
the endpoints of the line segment that lie on the x and y axes.

Section 3. Monotonic Piecewise Polynomials

It is easy to see that whenever m, is replaced by any f[inite dimensional
subspace V,=C'[—1,1], then for G,={g:g'=0,geV,} D(G,) is a compact
subset of R . Thus to exhaust R? we must use nonlinear families G. For this
reason, we consider some examples of such in the remainder of the paper.

In this section, we study m,,, the class of C' piecewise polynomials of
degree n with at most k knots in (—1,1). The corresponding set of nondecreas-
ing elements of =, are denoted by M. We now consider the set D(M,,) which
was determined for k=0 in Sect. 2.

As a first observation we have

Lemma 3.1. For n,k=2, D(M,,)=R?.

Proof. The proof is elementary. Let «, f, 7, 6eR | and suppose & is the piecewise
linear function connecting the points

(—Lia) (%),  (%3,0), (1,5, — Lk <xg &l

By adjusting these parameters it is easy to determine h so that

B =

| h(tyde=1.
-4

t
Thus the function G(f)= —1+ | h(s)do shows that («, f)eD(M, )= D(M,).
Tig)
The main result of this section is the exact description of D(M,,). To this
end, we define
_{mz, for n=2m—1

m(m+1), for n=2m
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Note that according to Theorem 2.1,

T,=max{x:(x, y)eD(M,)} =max {y: (x,)eD(M,)}.
Also, we introduce

S, ={(x,y): 0=min(x,y)<z,} u{(z,,,)}.

Tn,Tn)

=

Sn

Fig. 3

Theorem 3.1. For n=23D(M,,)=S,.

Proof. First we show D(M,,)=S,. Let heM,,. Il her, as well then by the
definition of 7, (h'(—1),h'(1))eS, (see also Fig. 2, when nodd). When h¢n, there
is a knot at some ae(—1,1). If we set h(e)=p and rescale h to the intervals
[—1,o], [ 1] then by (2.3) we have

| I
(h( 1)112 h(a) I;)ED(M,,) (3.1)
and
(h( )—Z, (1) 7)513(;\4) (3.2)

1 | —
Thus by the definition of 7, 0§h'(71)£—;g~cn, and 0§h’(1)f%§rn. Since
1
either «=f in which case h'(—1), h'(1)<t, or else one of the numbers i e
1—
l*ﬁ
h'(1)<t, which proves that (h'(—1), h'(1))eS
Next we show S,=D(M, )

and

but not both exceed one in which case we conclude either h'(—1)<z, or

Case1: n even. For any (a,f), —l<a<l, —1<f<1 and T=1, there is an
heM, ., (h'(—1), K'(1)eD(M,,) satisfying

H(@)=0, h(z)=p h’(—“:”ﬂnliﬁ= "’(”z“'li;ﬁ'

1 4o —a
This is the case by Theorem 2.1 since such an h satisfies (3.1) and (3.2). Hence

( 148 I~

B
n1+ ‘T’.nl ) D(Mnl)
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which says that for all ae(—1,1) the closed triangle

A =1(x,9): 0=x,p,(L+o)x+(1—0) y=21,}
is also in D(M,). Since | ) 4,=S5, the result is proved.
la] <1

Case2: nodd, n=2m—1.

First observe that the choice h'(0)=1, h(o)=f=0o, h'(—1)=h'(1)=1, satisfies
(3.1) and (3.2) so that (r,,7,)eD(M, ).

Next assume x= f and 1 =t =<7, then taking

Lo

1 1=
IR weep WLDie -, ;lf(1):(T,1)£

h' (o) =
(=) 1+a’ 1

we see that (3.1) and (3.2) are satisfied since

: L+a 0 l=aY
(-0 W= ) = Do)
and
g L= T=aly © fl=mlff
("(“)r_[;”””l_g) (ml_g’“ 1)epoy)

See Fig. 4 below.
(0,—3—0(1—"-” )0‘\

(Tn ,Tn)

3 b (Th, Tn—1)
|—_ﬂ ﬂ -1
I+a 1-B' q

P(Tn,l)

©,00 (1,0
Fig. 4

: 1 1-p i et

Thus for all «=p, (T +B,(r—1)—'{)eD(M“) which implies that the
. l+o 1-—0d

triangle

Ayi={(x,y):(1+0)x+(1—a) y<27,—1+a}

is in D(M ;) for |a|<1. Using the fact that D(M_,) is symmetric about the line
x =) we also have that the triangle

42:={(x,):(1 =) x +(1 +02) y <27, —(1 — )}
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is in D(M,,,). Since {(z,, 1)} v | ) 4Lud2=S, the result is proved.
la| <1

For the sake of completeness we record the easily verified facts: D(M,,)
=D(M,)={(1,1)} and D(M,,)={(x,y):x20,y20,x+y=2}.

Section 4. Convex Polynomials

We now determine D(C,), n= 3, where C, is the class of convex polynomials on
[ —1,1] normalized as follows:

C,={p:pem,,p"()=0,te[ —1,1],p(+1)= +1}.

An important subset of C, is CM, which we define as the set of monotone
convex polynomials mapping [ —1,1] onto itself.

The following lemma is all that it takes to describe D(C,) and D(CM ).
Lemma 4.1. Define

‘E xp(x)dx
jl” p(x)dx

-1

a,=max

where the maximum is taken over all pen,, p=0,p=0. Then

D, i u=2m
"B D if n=2m+1

m+1 2

where p denotes the largest zero of p. Obviously, the corresponding minimum
value of the expression above is —a,.

Proof. See [6].

1t
Define r,=2(1 —a,_,)~" and s,=2(1 +a,_,)~'. Note that +——l and we
have T S

Theorem 4.1. D(C,) is a wedge shaped region

D(Cn)—{(x,y]: ;f:—i’e[én, rlx<l y>1}u{(1 ).

with vertex (1,1) and intersecting the y-axis at [s
Fig, 5.

r]. The wedge is illustrated in

n*'n

Proof. First consider those ge C, for which g'(—1)=0. Integrating by parts we
have
1

| gnde=

-1

f =

M| =

J" —1)g"(nd

o I

and
1

g()= | g"(ndt

-1
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Fig. 5

Using Lemma 4.1 we can conclude that r, is the maximum value of g'(1) over
such g. Similarly ¢, the minimum value of g'(1) over such g.

To complete the proof we reduce all elements of C, to the above form by
noting that

xP'(—1)—P(x)
PeC —eC
ST TR(C) =1 o
as long as P(x)=£x.
Corollary 4.1. D(CM ) is the triangular region joining (0,0), (0,s,), (1,1).

Proof. For the proof we use the fact that the polynomial which achieves the
maximum in Lemma 4.1 is given (up to a constant multiple) by

p ()= { LB D0 = B2 1T, if n=2m
i (x+ D[RO D) (x =292 17%, if n=2m+1

X

and thereby is non-negative. Thus, if we take g,(x)= —1+¢ | (x—1)p,_,(0)dt
=
where the constant is chosen so that g,(1)=1 then

g.(—1)=0, g ()=r,
and we conclude that (0,r,)e D(CM,). Similarly, if we define

§(x=t)p,_,(1)dt
h(x)=1+4+2-=%

| (1+1)p,_,(t)dt
=1

then h,eC, and h;(—1)=0, h/(1)=s,. This proves the corollary.
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Section 5. Parametric Cubics

Frequently, in computer graphics applications parametric cubic curves are used
to connect points in the plane. Specifically, suppose p.gen, and that the curve
{(p(t), g(£): te[0,1]} connects (0,0) to (1,1). If p is monotonic then we can
reparametrize the curve as (x,f(x)) for xe[0,1] by setting f(p(t))=gq(t) for
te[0,1]. It is easy to see that f 1s monotonic il and only if g is monotonic. Let
us now consider the possible choices for the derivatives at the endpoints of [0,
1]. For this purpose, choose any a,b,a’,b'eR and define polynomials

pty=at(l—02+(3—b)t* (1 —1)+13
and
g)=a’t(l —t)* +(3 -3 (1 —1)+13

expressed in their Bernstein-Bézier representation. Then

v )dja, atx=0,
1 (x)_{b’/b, atx=1,

and f(x) is monotonic, if (a,b) and (a’,h")e D(M ). Recalling that [0,3]* =D(M ;)
we conclude that

! bn‘
{(‘;b) (@, b'),(a, b)eD(Ma)}=Ri_

Thus the monotonicity region in this case is the whole first quadrant.

Section 6. Rational Functions

Admissible slopes for monotone rational functions present some interesting
possibilities along with several difficulties. The set of functions we now consid-
er is
f(r):@: PEM,, g™, f(L1)=*1,
R,,= q(t) (6.1)
F(=0 and g(1)=0 for te[ —1,1]

i.e. well-defined monotone rationals mapping [ —1,1] onto itsell. In this sec-
tion, we determine D(R,,,) for every pair (m,n) except for the case that m is
odd, m=5 and n=1.

In [2] it is shown that D(R,,)=R> for m, nz2. The following is an
improvement of this result.

Proposition 6.1. D(R,,,) is the entire monotonicity region R” for m=1 and n=2.

Proof. Let (o, f)elR% . Define p(t)=(a+f+2)t+(x—f) and g(t)=(1—a f)t* +(
—p)t+(x+1)(f+1). We proceed to show thatj‘(r)z%eRlz.

Firstly, that f(£1)= +1, is readily verified. Next, since g(t)=xf(l —t?)
+a(l+6)+B(1 —1)+(1+¢*) we have g(t)=1 on [—1,1]. To check f(¢) is mo-
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notone we observe that after some calculation

S (OLa®)] =(a+p+2)(1 —t*)+2a(1 =) +2B(1 +1)
+ o Bla(t +1)* + Bt —1)* +2¢% +6)

which plainly exhibits f*(1)=0, for te[ —1,1], f'(—1)=x, and f'(1)=§.
Now we turn to the difficult case of evaluating D(R,,,). To this end, it is
convenient to define for Ja|>1

: p(x)
R =<5 feR,: flx)=——,pen,,
ml {f ml f( ) X0 P }
ie. R*, consists of those members of R,,; with a pole at «. Observe that o= o0
makes sense in this context and R}, =M .
As in Sect. 2, we try to characterize derivatives of functions in R},;. As a
first observation, let p(x)=(x —)f(x) for some [ in R%,. It then follows that

; 13 p(x)
pen,, px)=0, xe[—1,1], p'(0)=0, and = [ sdx=1. (6.2)
2% (x—w)
e ; i p(x) : .
Conversely, if p'(z)=0 then the indefinite integral I( ) dx is a rational
X —¢

function with a simple pole at o Thus (6.2) also gives sufficient conditions that
p(x)=(x—a)?f'(x) for some f in R%,. This leads us to the class of polynomials
p that are non-negative on [ —1,1] and that satisfy the additional equation
p'(2)=0. The following proposition is the analogue of Lukacs’ lemma (use in
the proof of Theorem 2.1) for such polynomials.

Proposition 6.2. Let S*={pen,: p'()=0, p(x)=0 for xe[ —1,1]}. Every peS;
has the representation p(t)=p,(t)+p,(t) for some p,,p,€Ss of the form

p(t)=(a—et) A% (1), p.()=(1—t})(b—et)B*(1), if n=2m+1
p(O)=(1+0)(c—et) C¥1), p,(t)=(1—1)(d—et)D*(1), if n=2m.

where e=sign(a), a,b,c¢,d <|u|, and all the roots of the polynomials A, B, C, and D
are in the interval [ —1,1].

Proposition 6.2 is a special case of a general theorem from [4] concern-
ing Tchebycheff systems. A Tchebycheff system of order n—1 (T-system) is an
n-dimensional vector space of continuous functions defined on a real interval
[a,b] with the property that every finite real linear combination of these
functions has at most n—1 zeros in [a,b].

The following lemma gives a representation theorem for non-negative func-
tions in a T-system.

Lemma 6.1. Let V be a T-system of order n—1 defined on [ —1,1]. If feV and
f()=0 for te[ —1,1] then f has the representation f(t)=p,(t)+p,(t) where
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Py P2€V, pi(1)20, p, ()20, for te[ —1,1], p,(1)=0, and p,,p, have n—1 zeros
in[—=1,1].

Proof. [See 4].

We now prove Proposition 6.2 by first checking S* is a T-system of order n
—1. Indeed, by Rolle’s theorem if some peS? has n zeros in [ —1,1] then p’ has
all n—1 zeros in [ —1,1] contradicting p’(2)=0. Thus Lemma 6.1 applies and
we conclude if p(1)=0 on [ —1, 1] then p(t)=p,(t)+p,(t) where p,,p,eS?, non-
negative on [ —1,1], have n—1 zeros in [ —1,1] and p,(1)=0. Since p, and p,
do not change sign on [ —1,17] all their roots inside (—1,1) have even multi-
plicity. The root not in [ —1,1] must be real and by Rolle’s theorem must be
on the far side of o from [ —1,1]. Now, if p(£1)>0 then taking all this into
consideration (6.3) is the only way to account for the zeros. If p(1) or p(—1)
vanishes, (6.3) still follows by continuity.

Proposition 6.2 gives useful information about D(RY,).

Lemma 6.2. If n is even, n=4, then D(R%,) is a triangle T, with vertices (0,0),
(0, {(e), and ({(—w),0) where

{(o)=max{y: (0,y)eD(R%,)}.

Proof. Since D(RZ)) is a compact convex set ((x) is well defined and
(0,{(x))eD(R;,). By observing that (x, y)eD(RZ,) if and only if (y,x)eD(R?,) we
can check that g( o) =max{x:(x,0)e D(RZ))}. Also, since My<RZ, for n=4 we
have (0,0)eD(RZ,) and so D(R?,)=T,.

To show D(R*))=T,, let f’(x)=( p(x))2 where feR?, . Then from (6.2), peS®
X—a
and so from Proposition 6.2 p(x)=p,(x)+p,(x) where p,(—1)=0 and p,(1)=0,

14 . 1
P1=p2€Si- Let C.=— J p'(x) dx, 5:1,2_ Then (0,1191( ) 2) and
¢ (1—ua)

P20 (x—w)?

-1
( Pal )2!0) lie on the edges of T, and (f(—1),f(1)) is a convex combination
cy(14a) *

of these two points.
One general fact about D(R?;) when n odd (n=3) is that its extreme points
arise from polynomials of the form p,(7) in (6.3), ie. D(RZ,) is the convex hull

of (0,0) and
pi(—1) py(1) ) Pl(\)
- (6.3), = dx=1}.
{((Ha)z’(l—) BB f —a
To see this consider as before f"(x):( p(x)) €R?,. Then we get from (6.3) that
—
. 1 *
p(x)=p;(x)+p,(x). Let c—z j Pi( —"__dx, then

=1 pid) \_ p(=1) p(1)
S=DSW) ((H—ot] (lfoc)z)—c((]-i-a)z(l—oc)z)

¥
where pi(x):%x—), i=1.2,
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We now explicitly describe D(R, ;) for n=1,2,3. The results are tabulated
below:

(@) D(R,y)={(x,y): xy=1,xy>0},

(b) D(R,,)={(x,y): 0=min(x, y) <1 <max(x,y)} v {(1, 1)},

(¢) D(R;,;)=the convex hull of (0,0) with {(x, y)eR2 :(x—2)(y—2)=1}.

We consider each case in turn. The first two are easiest. In particular, all
members of R, have the form

P o . AR W
Xm0l

(Including «=oc0, giving f,(x)=x). The derivatives (f,(—1),f,(+1))
=1 w1
] (0!-‘r- a—1

For D(R,,), we use Proposition 6.2 to conclude that any feR$; has the
form

) give a branch of the hyperpola x y =1 which explains (a).

(—xP ) =e, (“Zil) Ca—(L D) =% e, (“—;1) @e—lx— D152

for some constants ¢,,c,,¢, +c¢,=1. Thus for any particular o we have that
; ; , 20 20 ;
D(R?,) is the line segment connecting (?0) to (Oﬁl) The equation of
o o—

the corresponding line is (¢+1)x+(¢—1) y=20. All these lines have negative
slope and pass through the point (1, 1), taking their union we get (b).

The case of D(R;,) is much more interesting. Considering the remark after
Lemma (6.2), to obtain D(R%,) we only need consider polynomials of the form
g(x)=0(x+a)*(c —x) where ae(—1,1). To satisfy the equation g'(¢)=0, we

+3 . L A

must have c:a+2 = while g(x)=0, |x| =1 requires that sign(d)=sign(x). Lastly
1! 202 —1 ;

to insure that 3 __[1 (xgix;)z dx=1 we get 5:a3+3$a+;a+a. Thus it follows

that D(R%,) is the convex hull of (0,0) and the curve (x(a), y(a)), |a| =1 given by

x=2@—1) ({1_1)( a+3o0+2 )

1 34342 3
o+ a’+3a“oa+3a+ao (6.4)
_2(a+1)? (tx—l—l)( a+30—2 )
y= og—1) \a®+ 3t a+-3a+o)

The parameter a can be eliminated to show that this is a third degree algebraic
curve. To see this we introduce the change of variables

2u=(@a+1)x+(x—1)y—4o
20=—(a+1)x+(x—1)y—4

from which we obtain

v} +9av?u+27 aud+27utv—108(a2 —1)u?=0. (6.5)
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Furthermore, observe that the curve given by (6.4) meets the coordinate axes
when a= +1.

Now consider the expression (x —2)(y—2)—1 as a function of a. With some
laborious computation we get that

4Q2a*+4aa+3a* —)(a®>+2aa+1)?

L e (@®+3a+3a*a+0)?(a*—1)

It is not difficult to check that this quantity is negative for any o such that
|| >1. Also, for a given «,|x|>1, there is a unique ae(—1,1) for which a>
+2a0+1=0. Denoting H,={(x,y)eR7 :(x—2)(y—2)=1} these facts tell us
D(R% ,) is below H, and tangent to it at exactly one point. We illustrate these
facts below in Fig. 6.

(X-2)(Y-2)=1

Fig. 6

1
As — varies continuously from —1 to 1 the point of tangency smoothly
o

moves across the entire hyperbola H,. Thus D(R;,)= | ) D(R%,)=the convex
Ja| > 1

hull of H, with (0,0). Lastly, as a— 1, the left hand side of (6.5) tends to 64(x
—2)° while as a— —1 we get 64(y—2)°. These are the boundaries of the slabs
0=x=2 and 0=y <2 respectively. Taking o= a0, we get the ellipse E,.

We now give an exact description of D(R,,) for n even. It is of interest to
compare this result with Theorem 3.1. In fact, Fig. 3 is appropriate if we now
take t,=m? when n=2m,m=2.

Theorem 6.1. For n=2m,m=2 we have
D(Rnl):{{xay):ogmjn{x’y)<m2}_

Proof. First observe that for any o, |¢|>1, M, _, =R%*. Thus D(M, )= D(R},).
Let p, and p, be elements of 5% corresponding to the endpoints of the
hypotenuse of the triangle D(RZ,) described in Lemma 6.2. From (6.3), we see
p1(2) po(x) <0 and so some convex combination p of p; and p, satisfies p(a)=0.
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Since peS?%, p'(z)=0 which insures that p(x)/(x —a)? is a positive polynomial of
degree n—2. Thus the hypotenuse of D(R},) is tangent to D(M, ;). D(M,_,) is

. . 1
the ellipse E,, and these tangents continuously roll along an arc of E, as -
o

varies through (—1,1). Using the description of D(Ry,), given earlier, we
conclude as % — 1 that this tangent is the vertical tangent to E, which is the
line x =m?2. Similarly, when x— —1 we get the horizontal tangent y=m?>. The
union of all the regions in between gives {(x,y): 0<min(x, y) <m?}.

For the odd degree case we can only prove

Theorem 6.2. For n=2m+ 125 we have
D(R, ;)2 {(x,1): 0 <min(x, y) <m(m+1)}.

1+ 1
Proof. Let Qm(x):m?

(1 —x)* (P P(x))? and introduce

Q,,(x) +Q;,()(1 —x)

(x —)?
m(x)= - .
I L 0,0+ 0,01 =1)
2 (t—a)?
Clearly (fX(—1), f2(1))eD(RZ,) and f;}(1)=0. Since lim Q;, (x)=0 and
a—1
1 1
L0 (x) 1! m+1
| M dx=— Rl S (L1 ()2 fx =
QIHH}Z;‘, (x —)? * 2_[1 2m (1=x)(F, > (x)"dx=1
- ‘ : o _ 3% Qm(wl)_ 4 & i
we have limf7(—1)=Ilim me(m—kl). Since D(R},)=D(R%,) we know
z— 1 a1 \O
lim D(R?)) 2 {(x,y): 0=x <m(m+1),y=0}. Similarly,

ox—+ 1

lim D(R%))2{(x,y): 0=y <m(m+1),x=0}.
a— —1
Furthermore, D(R)=D(M,) is an ellipse which is entirely contained within
{(x,): 0= min(x,y)<m(m+1)} except for the special case n=>5 when we also
need include the point (6,6). On this basis we conjecture the following:

Conjecture 6.1. Let T, ={(x,y): 0=min(x,y)<m(m+1)}. We conjecture
DR, 1 1)=T, for m=3,... and DR, )=85,.
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