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1 Introduction and Examples1.1 IntroductionTraditionally, canonical structure computations take as their input some mathematical ob-ject, a matrix or a pencil say, and return an equivalent object that is perhaps simpler, ormakes clear the structure of the equivalence relation. Some example equivalence relationsand corresponding canonical forms are:Structure Equivalence Relation Canonical FormSquare Matrices A � X�1AX Jordan Canonical FormRectangular Matrices A � UAV Singular ValuesRectangular Matrices A � XA Reduced Echelon formMatrix Pencils A� �B � P�1(A� �B)Q Kronecker Canonical FormAnalytic real functions f(x) � f(�(x)) �xkIn the �rst three examples the input is a matrix, in the next example, the input isa pencil. In these cases, X;P; and Q are presumed nonsingular, and U and V are pre-sumed orthogonal. We presume the real functions f are analytic in a neighborhood of zero,f(0) = 0, �(0) = 0 and �(x) is monotonic and analytic near zero.Canonical forms appear in every branch of mathematics. A few examples from controltheory may be found in [20, 19, 25, 18]. However, researchers in singularity theory haveasked the question what happens if you have not one object that you want to put intoa normal form, but rather a whole family of objects nearby some particular object andyou wish to put each member of the family into a canonical form in such a way that thecanonical form depends smoothly on the deformation parameters.For example, one may have, a one parameter matrix deformation of A0 which is simplyan analytic function A(�) for which A(0) = A0. An n parameter deformation is de�nedthe same way, except that � 2 Rn. Similarly, one may have n parameter deformations ofpencils or functions. Sticking with the matrix example, we say two deformations A(�) andB(�) are equivalent if A(�) and B(�) have the same Jordan canonical form for each andevery �. A deformation of a matrix is said to be versal if, loosely speaking, it captures allpossible Jordan form behaviors, near the matrix. A deformation is said to be miniversal, ifit does so with as few parameters as possible. A more formal discussion of these de�nitionsmay be found in Section 2.Derivation of versal and miniversal deformations requires a detailed understanding ofthe perturbation theory of the objects under study. In particular, one needs to understandthe tangent space of the equivalence relation, and how it is embedded in the entire space.In Section 2, we explain the mechanics of this perturbation theory.While we believe that versal deformations are interesting mathematical objects, thiswork di�ers from other works on the subject in that our primary goal is not so much theversal deformation or the miniversal deformation, but rather the perturbation theory andhow it inuences the computation of the Kronecker canonical form. As such we tend to beinterested more in metrical information than topological information. Therefore, we obtainnew distance formulas to the space of less generic matrix pencils in Section 4. In Section 5,3



we derive an explicit orthogonal basis for the normal space of a Kronecker canonical form.For us a versal decomposition will be an explicit decomposition of a perturbation into itstangential and normal components, and we will not derive any miniversal deformations thatmay have simpler forms, but hide the metric information.Versal deformations for function spaces are discussed in [17, 24, 4, 5]. The �rst appli-cation of these ideas for the matrix Jordan canonical form is due to Arnold [1]. Furtherreferences closely related to Arnold's matrix approach are [28] and [6]. The latter refer-ence, [6], also includes applications to di�erential equations. Applications of the matrixidea towards an understanding of companion matrix eigenvalue calculations may be foundin [13]. The only other work that we are aware of that considers versal deformations of theKronecker canonical form is by Berg and Kwatny [3] who have independently derived someof the normal forms considered in this paper.Our Section 2 contains a thorough explanation of versal deformations from a linear al-gebra perspective. Chapter 3 briey reviews matrix pencils and canonical forms. Chapter4 derives the geometry of the tangent and normal spaces to the orbits of matrix pencils.Chapter 5 derives the versal deformations, while Chapter 6 gives applications and illustra-tions.1.2 Geometry of matrix spaceOur guiding message is very simple: matrices should be seen in the mind's eye geometricallyas points in n2 dimensional space. A perfect vision of numerical computation would allowus to picture computations as moving matrices from point to point or manifold to manifold.Abstractly, it hardly matters whether a vector is a column of numbers or a geometricpoint in space. However, without the interplay of these two representations, numerical linearalgebra would not be the same. Imagine explaining how Householder reections transformvectors without the geometric viewpoint.By contrast, in numerical linear algebra we all know that matrices are geometric pointsin n2 dimensional space, but it is far rarer that we actually think about them this way.Most often, matrices are thought of as either (sparse or dense) arrays of numbers, or theyare operators on vectors.The Eckart{Young (or Schmidt{Mirsky theorem) [27, p.210] gives a feel for the geometricapproach. The theorem states that the smallest singular value of A is the Frobenius distanceof A to the set of singular matrices. One can not help but to see a blob representing theset of singular matrices. This amorphous blob is most often thought of as an undesirablepart of town, so unfortunately numerical analysts hardly ever study the set itself.Demmel has helped to pioneer the development of geometric techniques [7] for theanalysis of ill-conditioning of numerical analysis problems. Shub and Smale [26] are applyinggeometrical approaches towards the solution of polynomial systems.We believe that if only we could better understand the geometry of matrix space, ourknowledge of numerical algorithms and their failures would also improve. A general programfor numerical linear algebra, then, is to transfer from pure mathematicians the technology tounderstand geometrically the high dimensional objects that arise in numerical linear algebra.This program may not be easy to follow. A major di�culty is that pure mathematicians paya price for their beautiful abstractions { they do not always possess a deep understanding4



of the individual objects that we wish to study. This makes technology transfer di�cult.Even when the understanding exists somewhere, it may be di�cult to recognize or may beburied under a heavy layer of notation. This makes technology transfer time consuming.Finally, even after putting in the time for the excavation, the knowledge may still be di�cultto apply towards the understanding or the improving of practical algorithms. This makestechnology transfer from pure mathematics frustrating.Nevertheless, our goal as researchers is the quest for understanding which we may thenapply. In this paper, we follow our program for the understanding of the Jordan andKronecker canonical forms of matrices and matrix pencils, respectively. Many of the ideasto be found in this paper have been borrowed from the pure mathematics literature withthe goal of simplifying and applying to the needs of numerical linear algebraists.While this is quite a general program for numerical linear algebra, this paper focuseson a particular goal. We analyze versal deformations from the numerical linear algebraviewpoint, and then compute normal deformations for the Kronecker canonical form. Weconsider both of these as stepping stones towards the far more di�cult goal of truly under-standing and improving upon staircase algorithms for the Jordan or Kronecker canonicalform. These are algorithms used in systems and control theory. The structures of thesematrices or pencils reect important physical properties of the systems they model, such ascontrollability [10, 30].The user chooses a parameter � to measure any uncertainty in the data. The existenceof a matrix or pencil with a di�erent structure within distance � of the input means thatthe actual system may have a di�erent structure than the approximation supplied as input.These algorithms try to perturb their input by at most � so as to �nd a matrix or pencilwith as high a codimension as possible. The algorithm is said to fail if there is anotherperturbation of size at most � which would raise the codimension even further. Therefore,we need to understand the geometry of matrix space in order to begin to understand howwe can supply the correct information to the user. With this information, we believe thatwe would then be able to not only correctly provide the least generic solutions, but alsounderstand how singularities hinder this process. Bad solutions may then be re�ned so asto obtain better solutions. As the next subsection illustrates, the geometry directly a�ectsthe perturbation theory.1.3 Motivation: a singular value puzzleConsider the following four nearly singular matrices:M1 =  0 1 + �0 0 !, M2 =  0 1� 0 !, M3 =  � 10 �� !, M4 =  � 10 � !. (1.1)Each of these matrices are distance O(�) from the Jordan block J2(0) =  0 10 0 !.What is the smaller of the two singular values of each of M1;M2;M3 and M4? The answeris �min(M1) = 0; �min(M2) = �; �min(M3) � �2 and �min(M4) � �2:5



A quick way to verify this algebraically is to notice that the larger singular value of eachmatrix is approximately 1 so that the smaller is approximately the (absolute) determinantof the matrix. Another approach that bounds the smallest singular value is the combinationof the Eckart{Young theorem and the observation that these matrices are singular:M 01 =M1; M 02 =  0 10 0 ! ; M 03 =  � 1��2 �� ! ; M 04 =  � 1�2 � ! :When � = 0 in (1.1) our four matrices become the singular 2 � 2 Jordan block J2(0).As � varies from 0 each of the four forms in (1.1) traces out a line in matrix space. Thegeometric issue that is interesting here is that the line of matrices traced out as � varies isf 1:In 2:Normal 3:Tangent 4:Tangent g to the set of singular matrices. Somehow, this feelslike the \right" explanation for why the smaller singular values are f 1:0, 2:�, 3:� �2, 4:� �2g. Let us take a closer look at the set of singular matrices. The four parameters found ina 2� 2 matrix M are best viewed in a transformed coordinate system:M = (x; y; z; w) = x 0 10 0 !+ y 0 01 0 !+ z  1 00 �1 !+ w 1 00 1 !=  w + z xy w � z ! :In this coordinate system, the singular matrices fall on the surface described by the equationw2 = z2 + xy. This is a three dimensional surface in four dimensional space. The tracelesssingular matrices (w = 0) fall on the cone z2 + xy = 0 in three dimensional space.Our matrix J2(0) may now be represented as (1; 0; 0; 0) and the four lines of matricesmentioned above arel1 = f (1 + x; 0; 0; 0) g = ( 0 10 0 !+ � 0 10 0 !) ;l2 = f (1; y; 0; 0) g = ( 0 10 0 !+ � 0 01 0 !) ;l3 = f (1; 0; z; 0) g = ( 0 10 0 !+ � 1 00 �1 !) ;l4 = f (1; 0; 0; w) g = ( 0 10 0 !+ � 1 00 1 !) :The lines l1; l2 and l3 are all traceless, i.e., the matrices on each of these lines may beviewed in the three dimensional space of the cone. The line l1 is not only tangent to thecone, but in fact it lies in the cone. The line l3 is tangent to one of the circular cross-sectionsof the cone.Figure 1 illustrates l3 as a \stick" resting near the bottom of the cone. The line l1 is athin line on the cone through the same point.The line l4 is normal to the cone but it is also tangent to the manifold of singularmatrices. One way to picture this in three dimensions is to take the three dimensional slice6



Figure 1: Cone of traceless singular matrices with \stick" representing a tangentof fw2 = z2 + xyg corresponding to x = 1, i.e., fw2 � z2 = yg. This is a hyperboloid withthe Jordan block as a saddle point. The line is the tangent to the parabola w2 = y whichrests in the plane z = 0. Figure 2 illustrates this line with a cylindrical stick whose centralaxis is the tangent. Lastly, the line l2 is normal to the set of singular matrices.If we move a distance � away from a point on a surface along a tangent, our distanceto the surface remains O(�2). This is what the singular value corresponding to l3 and l4is telling us. Alternatively, if we move normal to the surface as in l2, the singular valuechanges more rapidly: O(�).The cone of singular matrices with w = 0 is not only a slice of a large dimensionalspace, but it is also the (closure of) the set of matrices similar to J2(0) (which we denoteorbit(J2(0)) in Section 2.4). The matrices similar to J2(0) are singular and traceless. Infact, the only matrix that is singular and traceless that is not similar to J2(0) is the 0 matrixwhich is the vertex of the cone. We further explore this case in Section 2.5 after we havede�ned versal deformations.We conclude that the geometry of the orbit and in particular the directions of thetangents and normals to the orbit directly inuence the eigenvalue perturbation theory.2 Introduction to Versal DeformationsThis introduction is designed to be readable for general audiences, but we particularly targetthe numerical linear algebra community.The ideas here may be thought of as a numerical analyst's viewpoint on ideas that wereinspired by Arnold's work [1] on versal deformations of matrices. Further elaboration uponArnold's versal deformations of matrices may be found in [6, Chapter 2.9 and 2.10] and[28]. These ideas �t into a larger context of di�erential topology and singularity theory.Bruce and Giblin [5] have written a wonderfully readable introduction to singularity theoryemphasizing the elementary geometrical viewpoint. After reading this introduction, it iseasy to be lulled into the belief that one has mastered the subject, but a whole further moreadvanced wealth of information may be found in [17, 24, 4]. Finally, what none of these7
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Figure 2: Manifold of singular matrices. The axis of the cylindrical stick is tangent to themanifold.
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references do very well is explain clearly that there is still much in this area that mankinddoes not yet fully understand.Singularity theory may be viewed as a branch of the study of curves and surfaces,but its crowning application is towards the topological understanding of functions andtheir behavior under perturbations. Of course, numerical analysts are very interested inperturbations as well.2.1 Characteristic polynomials give the \feel" of versal deformationsLet A(�) be a di�erentiable one parameter family of matrices through A0 � A(0): This isjust a curve in matrix space. If A0 has a complicated Jordan canonical form, then verylikely, the Jordan canonical form of A(�) is a discontinuous function of �. (The Jordancanonical form, you will remember, can have nasty ones popping up unexpectedly on thesuperdiagonal.) It is even more desirable if that function can somehow describe the kindsof matrices that are near A0.Discontinuities are as unpleasant for pure mathematicians as they are for computers.Therefore Arnold [1] asks what kinds functions of � are di�erentiable? (or many timesdi�erentiable, or analytic.)One function that comes to mind is the characteristic polynomial p�(t) � det(A(�)�tI).The coe�cients of p� are clearly di�erentiable functions of � no matter how complicated aJordan canonical form the matrix A0 might have. In numerical linear algebra, we never com-pute the characteristic polynomial, because the eigenvalues are often very poorly determinedby the coe�cients of the characteristic polynomial. Mathematically, the characteristic poly-nomial is a nice function of a matrix because its coe�cients, unlike the eigenvalues of thematrix, are analytic functions of the entries of the matrix.The characteristic polynomial is a reasonable representation for the Jordan canonicalform under the special circumstance that every matrix A(�) is non-derogatory (i.e., eachmatrix has exactly one Jordan block for each distinct eigenvalue). By a reasonable represen-tation, we mean here that it actually encodes the Jordan canonical form ofA0. Theoretically,if you know the characteristic polynomial, then you know the eigenvalues with appropriatemultiplicities. It follows that there is a unique non-derogatory Jordan canonical form. (SeeWilkinson [33, pp.11{16 or Note 55, p.408]). To repeat, there is a one-to-one correspondenceamong the n eigenvalues of a non-derogatory matrix, the characteristic polynomial of a non-derogatory matrix, and the Jordan canonical form of a non-derogatory matrix, but only thecharacteristic polynomial is a di�erentiable function of the perturbation parameter �. (Theeigenvalues themselves can have �rst order perturbations with the non-di�erentiable form�1=n, for example, for an n� n matrix A0 with only one Jordan block Jn(�). This is a wellknown example.)In the language of numerical linear algebra, we would say that a non-derogatory matrixA0 may be written in companion matrix form KCK�1, in such a way that di�erentiableperturbations to the matrix A0 lead to di�erentiable perturbations to the companion matrixC. Here the matrix K is a Krylov matrix. (See [16, p. 369]). Equivalently, �rst orderperturbations to the matrix A0 are manifested as �rst order perturbations to the companionmatrix C. When A0 is a companion matrix, this gives a �rst order perturbation theory forthe characteristic polynomials of nearby matrices. This perturbation theory is computed in9



[13].Our story would almost stop here if we were only interested in the Jordan form of non-derogatory matrices. We use \almost" because it would be a shame to stop here withoutexplaining the ideas geometrically. Even if we did not discuss the geometry, we have reasonsto continue on, since matrix space is enriched with the derogatory matrices, and also we wishto generalize these ideas about the Jordan canonical form to cover the more complicatedcase of the Kronecker canonical form.2.2 The rational canonical form is not enough for derogatory matricesIn the previous subsection we saw that n parameters were su�cient to specify the Jordancanonical form of any matrix in a small neighborhood of a non-derogatory matrix. Whathappens if the matrix is derogatory? One obvious guess turns out to be wrong. Theusual generalization of the companion matrix form for derogatory matrices is the rationalcanonical form. If A0 is derogatory, it may be put in rational canonical form. This form maybe thought of as the direct sum of companion matrices Ci with dimension m1 � m2 � : : : �mk. The characteristic polynomial of each Ci divides the characteristic polynomial of all thepreceding Cj; j < i. Can any nearby matrix be expressed as the direct sum of companionmatrices with dimension m1;m2; : : : ;mk in a nice di�erentiable manner? The answer isgenerally no; though good enough to specify the Jordan canonical form of a matrix, therational canonical form fails to be powerful enough to specify the Jordan canonical formsof all matrices in a neighborhood. The reason is that there are just not enough parametersin the rational canonical form to cover all the possibilities. To have enough parameters weneed a \versal deformation".2.3 Versal deformation: the linearized theoryThe \linearized" picture of a versal deformation is easy to understand. We therefore explainthis picture before plunging into the global point of view. The general case may be nonlinear,but the linearized theory is all that really matters. For simplicity we assume that we are inreal n dimensional Euclidean space, but this assumption is not so important.We recall the elementary fact that if S and T are subspaces of Rn such that S+T = Rn,then there exist linear projections �S and �T that map onto S and T , respectively.Consider a point x 2 S. We will investigate all possible perturbations y of x, but we willnot be concerned with perturbations that are within S itself. Psychologically, we considerall the vectors in S to somehow be the same so there will be no need to distinguish them.Let T be any linear subspace such that S + T = Rn, i.e., any vector may be written as thesum of an element of T and an element of S (not necessarily uniquely). Clearly if t1; : : : ; tkspan T , then our perturbed vector x+ y may be written asx+ y = x+ kXi=1 �iti + (something in S);where the �i may be chosen as linear functions of y. We see here what will turn out to bethe key idea of a versal deformation, every perturbation vector may be expressed in termsof the �i and vectors that we are considering to all be equivalent.10



We now formally introduce the local picture of versal deformations.De�nition 2.1 A linear deformation of the point x is a function de�ned on � 2 Rl:A(�) = x+ T�;where T = [t1t2 : : : tl] are arbitrary directions.The choice of the word \deformation" is meant to convey the idea that we are lookingat small values of the �i, and these perturbations are small deformations of the startingpoint x.De�nition 2.2 A linear deformation A(�) of the point x is versal if for all linear defor-mations B(�) of the point x, it is possible to writeB(�) = A(�(�)) + �(�);where �(�) is a linear function from �1; : : : ; �m to �1; : : : ; �l with �(0) = 0, and � is a linearfunction from � into S, with S(0) = 0.We now explain why A(�) = x+Pli=1 �iti is versal if and only if S + T = Rn. ClearlyA(�(�)) + �(�) 2 S + T and since B may be arbitrary, it is necessary that span(ftig)+S =Rn. It is also su�cient, because we then obtain linear projections allowing us to writeB(�) = x+ �SB(�) + �T B(�). The functions � and � may be obtained from �S and �T .De�nition 2.3 A linear deformation A(�) of the point x is universal or miniversal if it isversal, and has the fewest possible parameters needed for a versal deformation.The number of parameters in a miniversal deformation is exactly the codimension of S.Numerical analysts might prefer taking the ti to be an orthogonal basis for S?, the subspaceperpendicular to S. This provides one natural miniversal deformation. Arnold [1] does notinsist on using S?, any basis for any subspace of dimension n�dimS will do provided thatit intersects S at zero only. From the topological point of view, this is exactly the same,though of course the numerical properties may be quite di�erent.2.4 Versal deformations the bigger pictureThe previous subsection explained the linear or �rst order theory of versal deformations.At this point, the reader might wonder whether this is just a whole lot of jargon to merelyextend a basis for a subspace to the entire space. At the risk of delaying the motivationuntil now, we decided to make sure that the linear theory is well understood.We are still in a �nite dimensional Euclidean space Rn, but S will no longer be a atsubspace. Instead, we wish to consider any equivalence relation �, such that the orbit of x(orbit(x)� fyjy � xg) is a smooth submanifold. As an example we might de�ne x � y tomean kxk = kyk, in which case the orbits are spheres. In this context the word \orbit" isquite natural. In n2 dimensional space, points may be thought of as n � n matrices, andthe orbit is the set of matrices with the same Jordan canonical form.11



One �nal example that we must mention (because it explains the origins and signi�canceof singularity theory) lives in an in�nite dimensional space. The vector space is the set ofanalytic functions f(x) for which f(0) = 0. We can de�ne f � g, if f(x) and g(�(x))have the same Taylor expansion at x = 0, where � is a monotonic analytic function with�(0) = 0. The orbit of any function is some complicated in�nite dimensional manifold, butthe codimension of the manifold happens to be �nite.Returning to Rn, we can now cast everything into a nonlinear context.De�nition 2.4 A deformation of the point x is any di�erentiable functionA(�1; : : : ; �l)satisfying A(0) = x.De�nition 2.5 A deformation A(�) of the point x is versal if for all deformations B(�),it is possible to write B(�) � A(�(�))in an arbitrarily small neighborhood of 0, where �(�) is a di�erentiable function from�1; : : : ; �m to �1; : : : ; �l for which �(0) = 0.The good news is that the inverse function theorem lets us express this nonlinear notionin terms of the linear theory:Theorem 2.1 A deformation A(�) of x is versal if and only if A�(�) is a linear deformationat the point x on the subspace tan(orbit(x)), where A� is the linearization of A near x (i.e.only �rst derivatives matter), and tan denotes the subspace tangent to the orbit at x.The rigorous proof may be found in [1], but the intuition should be clear: near the pointx, only linear deformations matter, and the curvature of the orbit becomes unimportant:only the tangent plane matters. In other words y � x only if y is in the orbit of x, but to�rst order, y � x if (roughly speaking) y = x+ s, where s is a small tangent vector to theorbit.2.5 Versal deformations for the Jordan canonical formWe begin with deformations of the matrix A0 = J2(0). The perturbation theory and thenormal and tangent spaces were discussed in Section 1.3. We will use the same coordinatesystem here.Four parameters � = (�1; �2; �3; �4) are su�cient to describe the most general defor-mation of A0: A(�) =  0 10 0 !+  �1 �2�3 �4 ! :The equivalence relation is that of similar matrices, and it is easy to see by checking thetrace and determinant, that for su�ciently small values of �, we have the equivalence,A(�) � B(�) �  0 1�1 �2 ! ;12



where � = �(�) is de�ned by �1 = �3(1 + �2) � �1�4 and �2 = �1 + �4: It is worthemphasizing that the equivalence relation does not work if A(�) is derogatory, but this doesnot happen for small parameters �.We then see from De�nition 2.5, that the two parameter deformation B(�) is versal. Infact, it is miniversal, in that one needs the two parameters. From the local theory picturedin Section 1.3, we saw that the orbit of J2(0) is the two dimensional cone, and thereforethe tangent and normal spaces are each two dimensional. The number of parameters in aminiversal deformation is always the dimension of the normal space.It is a worthwhile exercise to derive the similarity transformation C(�) for whichA(�) = C(�)�1B(�(�))C(�);and then linearize this map for small values of � to see which directions fall along thetangent space to the cone, and which directions are normal to the cone.Now consider deformations of A0 = I2 or A0 = 0. Both matrices are derogatory with 2eigenvalues 1 and 0, respectively. The tangent space does not exist (i.e., it is zero dimen-sional). Any possible behavior may be found near I2 (or 0) including a one dimensionalspace of derogatory matrices. The miniversal deformation of I2 (or 0) is the full deformationrequiring four parameters.The general case has been worked out by Arnold [1]. The tangent vectors to the orbitof a matrix A0 are those matrices that may be expressed as XA0�A0X. The normal spaceis the adjoint of the centralizer, i.e., the set of matrices Z satisfyingAH0 Z = ZAH0 :Let A0 has p distinct eigenvalues �i; i = 1 : p with pi Jordan blocks each. Let q1(�i) �q2(�i) � : : : � qpi(�i) denote the sizes of the Jordan blocks corresponding to the eigenvalue�i. Then the dimension of the normal space of A0 ispXi=1 piXj=1(2j � 1)qj(�i) = pXi=1(q1(�i) + 3q2(�i) + 5q3(�i) + : : :):Notice that the values of the distint �i play no role in this formula. The dimension of thenormal space of A0 is determined only by the sizes of the Jordan blocks of A0 associatedwith distinct eigenvalues. If the matrix is in Jordan canonical form, then the normal spaceconsists of matrices made up of Toeplitz blocks, whose block structure is completely de-termined by the sizes of the Jordan blocks for di�erent eigenvalues. The normal space isthe same for all matrices with the same Jordan structure independent of the values of thedistinct eigenvalues, so one may as well consider only Jordan blocks corresponding to a0 eigenvalue. This form of the normal space for the zero eigenvalues is a special case inTheorem 5.1.3 The Algebra of Matrix Pencils { Canonical FormsWe saw in Section 2.4 that to consider versal deformations, one needs a �nite or in�nitedimensional space, and an equivalence relation on this space. For the remainder of this13



paper, we consider the �nite dimensional Euclidean space of matrix pencils endowed with theEuclidean metric (usually denoted the Frobenius metric in this context). The equivalencerelation is that of the strict equivalence of pencils.We consider a matrix pencil A��B, where A and B are arbitrary m�n matrices withreal or complex entries. The pencil is said to be regular if m = n and det(A � �B) is notidentically zero. Indeed, the zeros of det(A��B) = 0 are the (generalized) eigenvalues of aregular pencil. Otherwise, i.e., if det(A��B) is identically zero or m 6= n, A��B is calledsingular. Two m � n pencils A1 � �B1 and A2 � �B2 are strictly equivalent if there existconstant (independent of �) invertible matrices P of size m �m and Q of size n� n suchthat P�1(A1 � �B1)Q = A2 � �B2:Kronecker has shown that any matrix pencil is strictly equivalent to a canonical diagonalform that describes the structure elements of A � �B (including generalized eigenvaluesand eigenspaces) in full detail (e.g. see [15]). This form is a generalization of the Jordancanonical form (JCF) to general matrix pencils.3.1 Kronecker canonical formThe Kronecker canonical form (KCF) of A � �B exhibits the �ne structure elements, in-cluding elementary divisors (Jordan blocks) and minimal indices, and is de�ned as follows[15]. Suppose A;B 2 Cm�n. Then there exist nonsingular P 2 Cm�m and Q 2 Cn�n suchthat P�1(A� �B)Q = S � �T; (3.1)where S = diag (S11; : : : ; Sbb) and T = diag (T11; : : : ; Tbb) are block diagonal. Sii � �Tii ismi � ni. We can partition the columns of P and Q into blocks corresponding to the blocksof S � �T : P = [P1; : : : ; Pb] where Pi is m�mi, and Q = [Q1; : : : ; Qb] where Qi is n� ni.Each block Mi � Sii � �Tii must be of one of the following forms: Jj(�), Nj , Lj or LTj .First we considerJj(�) � 26664 �� � 1� �� 1�� � 37775 and Nj � 26664 1 ��� �� ��1 37775 (3.2)Jj(�) is simply a j � j Jordan block, and � is called a �nite eigenvalue. Nj is a j � j blockcorresponding to an in�nite eigenvalue of multiplicity j. The Jj(�) and Nj blocks togetherconstitute the regular structure of the pencil. All the Sii � �Tii are regular blocks if andonly if A��B is a regular pencil. �(A� �B) denotes the eigenvalues of the regular part ofA� �B (with multiplicities), and is called the spectrum of A� �B.The other two types of diagonal blocks areLj � 264 �� 1� ��� 1 375 and LTj � 26664 ��1 �� ��1 37775 (3.3)14



The j � (j + 1) block Lj is called a singular block of right (or column) minimal index j. Ithas a one dimensional right null space, [1; �; : : : ; �j ]T , for any �. The (j+1)� j block LTj isa singular block of left (or row) minimal index j, and has a one dimensional left null spacefor any �. The left and right singular blocks together constitute the singular structure ofthe pencil, and appear in the KCF if and only if the pencil is singular. The regular andsingular structures de�ne the Kronecker structure of a singular pencil.We also have a real KCF associated with real matrix pencils. If A;B 2 Rm�n, thereexist nonsingular P 2 Rm�m and Q 2 Rn�n, where as before P�1(A� �B)Q = S � �T isblock diagonal. The only di�erence with (3.1) is the Jordan blocks associated with complexconjugate pairs of eigenvalues. Let � = � + i!, where �; ! are real and ! 6= 0. If � is aneigenvalue of A � �B, then also �� is an eigenvalue. Let Jj(�; ��) denote a Jordan block ofsize 2j � 2j associated with a complex conjugate pair of eigenvalues, here illustrated withthe case j = 3: J3(�; ��) � 266666664 �� � ! 1 0 0 0�! �� � 0 1 0 00 0 �� � ! 1 00 0 �! �� � 0 10 0 0 0 �� � !0 0 0 0 �! �� �
377777775 : (3.4)The Jordan block Jj(�; ��) plays the same role in the real Jordan canonical form as diag(Jj(�);Jj(��)) does in the complex JCF. Notice that each pair of the 2j columns of the real P andQ associated with a Jj(�; ��) block form the real and imaginary parts of the (generalized)principal chains corresponding to the complex conjugate pair of eigenvalues.3.2 Generalized Schur form and reducing subspacesIn most applications it is enough to transfer A � �B to a generalized Schur form (e.g. toGUPTRI form [11, 12])PH(A� �B)Q = 264 Ar � �Br � �0 Areg � �Breg �0 0 Al � �Bl 375 ; (3.5)where P (m�m) and Q (n�n) are unitary and � denotes arbitrary conforming submatrices.Here the square upper triangular block Areg � �Breg is regular and has the same regularstructure as A � �B (i.e., contains all eigenvalues (�nite and in�nite) of A � �B). Therectangular blocks Ar � �Br and Al � �Bl contain the singular structure (right and leftminimal indices) of the pencil and are block upper triangular.Ar ��Br has only right minimal indices in its Kronecker canonical form (KCF), indeedthe same Lj blocks as A � �B. Similarly, Al � �Bl has only left minimal indices in itsKCF, the same LTj blocks as A � �B. If A � �B is singular at least one of Ar � �Br andAl � �Bl will be present in (3.5). The explicit structure of the diagonal blocks in staircaseform can be found in [12]. If A� �B is regular Ar � �Br and Al � �Bl are not present in(3.5) and the GUPTRI form reduces to the upper triangular block Areg � �Breg. Staircase15



forms that reveal the Jordan structure of the zero and in�nite eigenvalues are contained inAreg � �Breg.Given A � �B in GUPTRI form we also know di�erent pairs of reducing subspaces[31, 11]. Suppose the eigenvalues on the diagonal of Areg � �Breg are ordered so that the�rst k, say, are in �1 (a subset of the spectrum) and the remainder are outside �1. LetAr � �Br be mr � nr. Then the left and right reducing subspaces corresponding to �1 arespanned by the leading mr+ k columns of P and leading nr+ k columns of Q, respectively.When �1 is empty, the corresponding reducing subspaces are called minimal, and when �1contains the whole spectrum the reducing subspaces are called maximal.Several authors have proposed (staircase-type) algorithms for computing a generalizedSchur form (e.g. see [2, 21, 23, 22, 29, 34]). They are numerically stable in the sense thatthey compute the exact Kronecker structure (generalized Schur form or something similar)of a nearby pencil A0��B0. � � k(A �A0; B �B0)kE is an upper bound on the distance tothe closest (A+ �A;B+ �B) with the KCF of (A0; B0). Recently, robust software with errorbounds for computing the GUPTRI form of a singular A� �B has been published [11, 12].Some computational experiments that use this software will be discussed later.3.3 Generic and non-generic Kronecker structuresAlthough, the KCF looks quite complicated in the general case, most matrix pencils have aquite simple Kronecker structure. If A��B ism�n, wherem 6= n, then for almost all A andB it will have the same KCF, depending only on m and n. This corresponds to the genericcase when A� �B has full rank for any complex (or real) value of �. Accordingly, genericrectangular pencils have no regular part. The generic Kronecker structure for A� �B withd = n�m > 0 is diag(L�; : : : ; L�; L�+1; : : : ; L�+1); (3.6)where � = bm=dc, the total number of blocks is d, and the number of L�+1 blocks ismmod d(which is 0 when d divides m) [29, 8]. The same statement holds for d = m � n > 0if we replace L�; L�+1 in (3.3) by LT� ; LT�+1. Square pencils are generically regular, i.e.,det(A � �B) = 0 if and only if � is an eigenvalue. The generic singular pencils of sizen-by-n have the Kronecker structures [32]:diag(Lj; LTn�j�1); j = 0; : : : ; n� 1: (3.7)Only if a singular A� �B is rank de�cient (for some �) may the associated KCF be morecomplicated and possibly include a regular part, as well as, right and left singular blocks.This situation corresponds to the non-generic case, which of course is the real challengefrom a computational point of view.The generic and non-generic cases can easily be couched in terms of reducing subspaces.For example, generic rectangular pencils have only trivial reducing subspaces and no gen-eralized eigenvalues at all. Generic square singular pencils have the same minimal andmaximal reducing subspaces. A non-generic case corresponds to that A � �B lies in aparticular manifold of the matrix pencil space and that the pencil has nontrivial reducingsubspaces. Moreover, only if it is perturbed so as to move continuously within that manifold16



do its reducing subspaces and generalized eigenvalues also move continuously and satisfy in-teresting error bounds [9, 11]. These requirements are natural in many control and systemstheoretic problems such as computing controllable subspaces and uncontrollable modes.4 The Geometry of Matrix Pencil SpaceIn this section we derive formulas for the tangent and normal spaces of the orbit of a matrixpencil that we will make use of in order to compute the versal form in the next section. Wealso derive new bounds for the distance to less generic pencils.4.1 The orbit of a matrix pencil and its tangent and normal spacesAny m� n matrix pair (A;B) (with real or complex entries) de�nes a manifold of strictlyequivalent matrix pencils in the 2mn dimensional space P of m-by-n pencils:orbit(A� �B) = fP�1(A� �B)Q : det(P )det(Q) 6= 0g: (4.1)We may choose a special element of orbit(A� �B) that reveals the KCF of the pencil.As usual the dimension of orbit(A � �B) is equal to the dimension of the tangentspace to the orbit at A � �B, here denoted tan(A � �B). By considering the deformation(Im + �X)(A � �B)(In � �Y ) of A� �B to �rst order term in �, where � is a small scalar,we obtain A � �B + �(X(A � �B) � (A � �B)Y ) + O(�2), from which it is evident thattan(A� �B) consists of the pencils that can be represented in the formTA � �TB = (XA�AY )� �(XB �BY ); (4.2)where X is an m�m matrix and Y is an n� n matrix.Using Kronecker products we can represent the 2mn-vectors TA � �TB 2 tan(A� �B)as " vec(TA)vec(TB) # = " AT 
 ImBT 
 Im # vec(X)� " In 
AIn 
B # vec(Y ):In this notation, we may say that the tangent space is the range of the 2mn � (m2 + n2)matrix T � " AT 
 Im �In 
ABT 
 Im �In 
B # : (4.3)We may de�ne the normal space, nor(A��B), as the space perpendicular to tan(A��B).Orthogonality in P, the 2mn dimensional space of matrix pencils is de�ned with respect toa Frobenius inner product< A� �B;C � �D > � tr(ACH +BDH); (4.4)where tr(X) denotes the trace of a square matrix X. Remembering that the space orthog-onal to the range of a matrix is the kernel of the Hermitian transpose, we have thatnor(A� �B) = ker(TH) = ker " �A
 Im �B 
 Im�In 
AH �In 
BH # :17



In ordinary matrix notation, this states that ZA � �ZB is in the normal space of A� �B ifand only if ZAAH + ZBBH = 0 and AHZA +BHZB = 0: (4.5)The conditions on ZA and ZB can easily be veri�ed and also be derived in terms of theFrobenius inner product, i.e.,< TA � �TB ; ZA � �ZB > = tr(X(AZHA +BZHB )� (ZHA A+ ZHB B)Y ): (4.6)Veri�cation: if the conditions (4.5) are satis�ed, it follows from (4.6) that the inner productis zero. Derivation: if < TA � �TB ; ZA � �ZB > = 0, then tr(X(AZHA + BZHB ) � (ZHA A+ZHB B)Y ) = 0 must hold for any X (of size m � m) and Y (of size n � n). By choosingX � 0, (4.6) reduces to tr((ZHA A + ZHB B)Y ) = 0, which holds for any Y if and only ifZHA A+ ZHB B = 0. Similarly, we can chose Y � 0, which gives that AZHA +BZHB = 0.If B = I, this reduces to ZA 2 nor(A) if and only if ZHA 2 centralizer(A), which is awell-known fact (e.g. see [1]). We will see in Section 5.3 that though the A-part of thenormal space is very simple when B = I, obtaining an orthonormal basis for the B-part isparticularly challenging. The requirement that ZB = �AHZA when B = I destroys anyorthogonality one may have in a basis for the A-part.We now collect our general statements and a few obvious consequences:Theorem 4.1 Let the m� n pencil A� �B be given. De�ne the 2mn� (m2 + n2) matrixT as in (4.3). Thentan(A� �B) = range(T ) = f(XA �AY )� �(XB �BY )g;where X and Y are compatible square matrices, andnor(A� �B) = ker(TH) = fZA � �ZBg;where ZAAH + ZBBH = 0 and AHZA +BHZB = 0:The dimensions of these spaces aredim(tan(A� �B)) = m2 + n2 � dim(ker(T )); (4.7)and dim(nor(A� �B)) = dim(ker(TH)) = dim(ker(T ))� (m� n)2: (4.8)Of course, the tangent and normal spaces are complementary and span the complete2mn dimensional space, i.e., P = tan(A � �B) � nor(A � �B), so that the dimensions in(4.7) and (4.8) add up to 2mn as they should.Theorem 4.1 leads to one approach for computing a basis for nor(A � �B) from thesingular value decomposition (SVD) of T . Indeed, the left singular vectors correspondingto the zero singular value form such a basis. The dimension of the normal space is alsoknown as the codimension of the orbit, here denoted cod(A � �B). Accordingly, we havethe following \compact" characterization of the codimension of orbit(A� �B).Corollary 4.1 Let the m� n pencil A� �B be given. Then,cod(A� �B) = the number of zero singular values of T: (4.9)18



The corresponding result for the (square) matrix case iscod(A) = the number of zero singular values of In 
A�AT 
 In:Although, the SVD-based method is simple and has nice numerical properties (backwardstability), it is rather costly in the number of operations. Computing the SVD of T is anO(m3n3) operation.Knowing the Kronecker structure of A��B, it is also possible to compute the codimen-sion of the orbit as the sum of separate codimensions [8]:cod(A� �B) = cJor + cRight + cLeft + cJor;Sing + cSing: (4.10)The di�erent contributions in (4.10) originate from the Jordan structure of all eigenvalues(including any in�nite eigenvalue), the right singular blocks (Lj $ Lk), the left singularblocks (LTj $ LTk ), interactions of the Jordan structure with the singular blocks (Lk andLTj ) and interactions between the left and right singular structures (Lj $ LTk ), respectively.Explicit expressions for these codimensions are derived in [8]. Assume that the given A��Bhas p � min (m;n) distinct eigenvalues �i; i = 1 : p with pi Jordan blocks each. Letq1(�i) � q2(�i) � : : : � qpi(�i) denote the sizes of the Jordan blocks corresponding to theeigenvalue �i. Then the separate codimensions of (4.10) can be expressed ascJor = pXi=1 piXj=1(2j � 1)qj(�i) = pXi=1(q1(�i) + 3q2(�i) + 5q3(�i) + : : :);cRight =Xj>k(j � k � 1); cLeft =Xj>k(j � k � 1); cSing =Xj;k (j + k + 2);cJor;Sing = (size of complete regular part) � (number of singular blocks):Notice that if we do not wish to specify the value of an eigenvalue �i, the codimension countfor this unspeci�ed eigenvalue is one less, i.e.,�1 + q1(�i) + 3q2(�i) + 5q3(�i) + : : :This is sometimes done in algorithms for computing the Kronecker structure of a matrixpencil, where usually only the eigenvalues 0 and 1 are speci�ed and the remaining onesare unspeci�ed.It is possible to extract the Kronecker structure of A � �B from a generalized Schurdecomposition in O((max(m;n))3) operations. The most reliable SVD-approach for com-puting a generalized Schur decomposition of A � �B requires at most O((max(m;n))4)operations, which is still small compared to computing the SV D of T (4.3) for alreadymoderate values of m and n (e.g. when m = n).For given m and n the generic pencil has codimension 0 (i.e., span the complete 2mndimensional space) while the most non-generic matrix pair (A;B) = (0m�n; 0m�n) hascodimension = 2mn (i.e., de�nes a \point" in 2mn dimensional space). Accordingly, anym�n non-generic pencil di�erent from the \zero pencil" has a codimension � 1 and < 2mn.19



4.2 A lower bound on the distance to a less generic pencilThe SVD characterization of the codimension of orbit(A��B) in Corollary 4.1 leads to thefollowing theorem from which we present an interesting special case as a corollary.Theorem 4.2 For a given m� n pencil A� �B with codimension c, a lower bound on thedistance to the closest pencil (A+ �A)� �(B + �B) with codimension c+ d, where d � 1 isgiven by k(�A; �B)kE � 1pm+ n 0@ 2mnXi=2mn�c�d+1�2i (T )1A1=2 ; (4.11)where �i(T ) denotes the ith largest singular value of T (�i(T ) � �i+1(T ) � 0).Proof It follows from Corollary 4.1 that T has rank = 2mn � c if and only if A � �Bhas codimension c and (A+ �A)� �(B + �B) has codimension c+ d, (d � 1) if and only ifT + �T , where �T is de�ned as�T � " �AT 
 Im �In 
 �A�BT 
 Im �In 
 �B # ; (4.12)has rank 2mn� c�d. From the construction, it follows that k�TkE = pm+ nk(�A; �B)kE(each element �aij and �bij appears m + n times in �T ). The Eckart{Young and Mirskytheorem for �nding the closest matrix of a given rank (e.g. see [16]), gives that the size ofthe smallest perturbation in Frobenius norm that reduces the rank in T from 2mn � c to2mn� c� d is 0@ 2mn�cXi=2mn�c�d+1 �2i (T )1A1=2 : (4.13)Moreover, A��B has codimension c implies that �2mn�c+1(T ) = : : : = �2mn(T ) = 0. Sincek�TkE must be larger than or equal to the quantity (4.13), the proof is complete. 2Corollary 4.2 For a given generic m�n pencil A��B, a lower bound on the distance tothe closest non-generic pencil (A+ �A)� �(B + �B) is given byk(�A; �B)kE � �min(T )pm+ n; (4.14)where �min(T ) = �2mn(T ) denotes the smallest singular value of T , which is non-zero for ageneric A� �B.We remark that the set ofm�nmatrix pencils does not include orbits of all codimensionsfrom 1 to 2mn.One application of Corollary 4.2 is to characterize the distance to uncontrollabilityfor a multiple input multiple output linear system E _x(t) = Fx(t) + Gu(t), where E andF are p-by-p matrices, G is p-by-q (p � q), and E is assumed to be nonsingular. IfA � �B � [GjF � �E] is generic, the linear system is controllable (i.e., the dimensionof the controllable subspace equals p) and a lower bound on the distance to the closestuncontrollable system is given by (4.14). 20



5 Versal Deformations for the Kronecker Canonical FormIn this section, we derive versal deformations which for us will mean the decompositionof arbitrary perturbations into the tangent and normal spaces of the orbits of equivalentpencils.5.1 An introductory exampleWe start with a small example before considering the general case. Let A� �B = L1 � L4with codimension = 2. (This means that the manifold orbit(A� �B) has codimension 2 ordimension 68 in the 70 dimensional space of 5� 7 pencils.) Since A��B already is in KCFwe know its block structure:A� �B = 2666664 �� 1 0 0 0 0 00 0 �� 1 0 0 00 0 0 �� 1 0 00 0 0 0 �� 1 00 0 0 0 0 �� 1
3777775 : (5.1)From (4.2) the matrices in the tangent space are given by TA � �TB = (XA � AX) ��(XB �BX), whereTA = 26666666664

�y21 x11 � y22 �y23 x12 � y24 x13 � y25 x14 � y26 x15 � y27�y41 x21 � y42 �y43 x22 � y44 x23 � y45 x24 � y46 x25 � y47�y51 x31 � y52 �y53 x32 � y54 x33 � y55 x34 � y56 x35 � y57�y61 x41 � y62 � y63 x42 � y64 x43 � y65 x44 � y66 x45 � y67�y71 x51 � y72 �y73 x52 � y74 x53 � y75 x54 � y76 x55 � y77
37777777775(5.2)andTB = 26666666664

x11 � y11 �y12 x12 � y13 x13 � y14 x14 � y15 x15 � y16 �y17x21 � y31 �y32 x22 � y33 x23 � y34 x24 � y35 x25 � y36 �y37x31 � y41 �y42 x32 � y43 x33 � y44 x34 � y45 x35 � y46 �y47x41 � y51 �y52 x42 � y53 x43 � y54 x44 � y55 x45 � y56 �y57x51 � y61 �y62 x52 � y63 x53 � y64 x54 � y65 x55 � y66 �y67
37777777775 :(5.3)By inspection we �nd the following two relations between elements in TA and TB :: ta21 + ta32 = tb31 + tb42; (5.4)and : ta31 + ta42 = tb41 + tb52 (5.5)where taij and tbij denote the (i; j)-th elements of TA and TB , respectively. These two relationsshow clearly that the tangent space has codimension at least two. It may be veri�ed thatthe other parameters may be chosen arbitrarily so that the codimension is exactly two.21



We want to �nd ZA�ZB that is orthogonal to TA� �TB with respect to the Frobeniusinner product, i.e.,0 � < TA � �TB ; ZA � �ZB > � tr(TAZHA + TBZHB ) �Xi;j taijzaij + tbijzbij: (5.6)This inner product is most easily envisioned as the sum of the elementwise multiplicationof the two pencils. Using this point of view it is obvious that the normal space consists ofpencils of the form ZA � �ZB 2 nor(A� �B):
ZA � �ZB = 2666664 0 0 0 0 0 0 0p1 0 0 0 0 0 0p2 p1 0 0 0 0 00 p2 0 0 0 0 00 0 0 0 0 0 0

3777775� �2666664 0 0 0 0 0 0 00 0 0 0 0 0 0�p1 0 0 0 0 0 0�p2 �p1 0 0 0 0 00 �p2 0 0 0 0 0
3777775= 2666664 0 0 0 0 0 0 0p1 0 0 0 0 0 0p2 + � p1 p1 0 0 0 0 0� p2 p2 + � p1 0 0 0 0 00 � p2 0 0 0 0 0

3777775 ; (5.7)
where p1 and p2 are arbitrary. Roughly speaking the parameter p1 corresponds to thedoubly boxed entries ( ) and the parameter p2 corresponds to the singly boxed entries.( ).Now, A��B+ZA��ZB may be thought of as a versal deformation, or normal form, withminimum number of parameters (equal to the codimension of the original pencil). It followsthat any (complex) pencil close to the given A � �B can be reduced to the 2-parameternormal form A� �B + ZA � �ZB , where A� �B is in Kronecker canonical form.5.2 Notation: a glossary of Toeplitz and Hankel matricesThe example in the previous section shows that a non-zero block of ZA � �ZB has a struc-tured form. Indeed, the (2; 1) block has a Toeplitz-like form with j � i = 3 non-zerodiagonals starting from the (1; 1)-element of the (2; 1) block. A closer look shows that theA-part has i� j� 1 = 2 non-zero diagonals and the B-part is just the same matrix negatedand with the diagonals shifted one row downwards. In general, di�erent non-zero blockswith Toeplitz or Hankel properties will show up in ZA � �ZB 2 nor(A � �B). To simplifythe proof of the general case we introduce some Toeplitz and Hankel matrices. Arrows and\stops" near the matrices make clear how the matrix is de�ned.Let SLs�t be a lower trapezoidal s-by-t Toeplitz matrix with the �rst non-zero diagonal22



starting at position (1; 1):
SLs�t = #?

2666666666664
p1 0 0... . . . 0... p1ps�t+1 ...... . . . ...ps � � � ps�t+1

3777777777775 if s � t; and SLs�t = #?264p1 0 � � � 0... . . . . . . ...ps � � � p1 0 � � � 0375 ; otherwise;and let TLs�t be a lower trapezoidal s-by-t Toeplitz matrix with the �rst non-zero diagonal'slast element at position (s; t):
TLs�t = 2666666666664

0 � � � 0... ...0 ...p1 . . . ...... . . . 0pt � � � p1
3777777777775 if s � t; and TLs�t = 264pt�s+1 � � � p1 0 0... . . . . . . 0pt � � � pt�s+1 � � � p1375 ; otherwise:`  `  If s < t, the entries of the last t� s columns of SLs�t are zero. Similarly, if s � t, the entriesof the �rst s� t rows of TLs�t are zero.Let SBs�t be a banded lower trapezoidal s-by-t Toeplitz with last row 0:

SBs�t = #?
2666666666666664
p1 0 0... . . . 0... p1ps�t ...0 . . . ...... . . . ps�t0 � � � 0

3777777777777775 if s > t; and SBs�t = 0; otherwise;
and let TBs�t be another banded lower trapezoidal s-by-t Toeplitz matrix, this time with lastcolumn 0: `  TBs�t = 264pt�s � � � p1 0 � � � 00 . . . . . . . . . ...0 0 pt�s � � � p1 0375 if s < t; and TBs�t = 0; otherwise:Notice that the last row of SBs�t (if s > t) and the last column of TBs�t (if s < t) have allentries equal to zero. 23



Moreover, let HLs�t be a lower trapezoidal s-by-t Hankel matrix with the �rst non-zerodiagonal starting at position (1; t):
HLs�t = 2666666666664

0 0 p10 :�. ...p1 ...... ps�t+1... :�. ...ps�t+1 � � � ps
3777777777775
#
? if s � t; and HLs�t = 2640 � � � 0 p1... :�. :�. ...0 � � � 0 p1 � � � ps375#?; otherwise;and let HUs�t be a similar upper trapezoidal s-by-t Hankel matrix:`  `  HUs�t = 2666666666664

pt � � � p1... :�. 0p1 :�. ...0 ...... ...0 � � � 0
3777777777775 if s � t; and HUs�t = 264 pt � � � pt�s+1 � � � p1... :�. :�. 0pt�s+1 � � � p1 0 0 375 ; otherwise:If s < t, the entries of the �rst t� s columns of HLs�t are zero. Similarly, if s � t, the entriesof the last s� t rows of HUs�t are zero.Let Hs�t be a dense s-by-t Hankel matrix (with the �rst diagonal starting at position(1; 1)): Hs�t = 2666666664p1 p2 p3 � � � ptp2 :�. ...p3 ...... ...ps � � � ps+t�1

3777777775 ;for both the cases s � t and s < t.The nilpotent k-by-k matrix Ck = "0 Ik�10 0 # ;will be used as a shift operator. For a given k-by-n matrix X, the rows are shifted onerow upwards and downwards by the operations CkX and CTk X, respectively. The columnsare shifted one column rightwards and one column leftwards in an n-by-k matrix X by theoperations XCk and XCTk , respectively. The k-by-(k + 1) matricesGk = [Ik 0] and Ĝk = [0 Ik];will be used to pick all rows but one or all columns but one of a given matrix X in thefollowing way. The �rst k and last k rows in a (k + 1)-by-n matrix X are picked by GkX24



and ĜkX, respectively. The k �rst and k last columns in an n-by-(k + 1) matrix X arepicked by XGTk and XĜTk, respectively.Let Îk denote the k-by-k matrix obtained by reversing the order of the columns in thek-by-k identity matrix. It follows that for an n-by-k matrix X, the order of the columns isreversed by the multiplication XÎk.So far, the matrices introduced are rectangular Toeplitz and Hankel matrices with aspecial structure, e.g. lower trapezoidal (SL; TL;HL), banded lower trapezoidal (SB ; TB),upper trapezoidal (HU ) or dense (H). The matrices C and G; Ĝ that will be used as \shift"and \pick" operators, respectively, are Toeplitz matrices with only one non-zero diagonal.In the next section we will see that versal deformations for all combinations of di�erentblocks in the KCF, except Jordan blocks with non-zero, �nite eigenvalues, can be expressedin terms of these matrices. To cope with non-zero, �nite Jordan blocks Jk();  6= 0 we needto introduce three more matrices. First, two lower triangular Toeplitz matrices DL and ELwhich are involved in the case with two Jk() blocks. Finally, the \monstrous" matrix FD,which captures the cases with a (left or right) singular block and a Jk() block.Given  6= f0;1g, de�ne two in�nite sequences of numbers di and ei by the recursion" diei # = � " 1 11 2� 1=i # " di�1ei�1 # ; (5.8)starting with " d1e1 # = " 1 # :Given sizes s and t, for 1 � q � minfs; tg, we de�ne Ds�t[q] and Es�t[q] as lowertriangular Toeplitz matrices with q diagonals in terms of d1; : : : ; dq and e1; : : : ; eq�1 and aboundary value e�q = �dq.Ds�t[q] = 2666666664 0 � � � 0dqdq�1 . . .... . . . . . . ...d2 . . . . . .d1 d2 � � � dq�1 dq 0
3777777775 and Es�t[q] = 2666666664 0 � � � 0e�qeq�1 . . .... . . . . . . ...e2 . . . . . .e1 e2 � � � eq�1 e�q 0

3777777775 :We take linear combinations with parameters pj to form the matricesDLs�t =minfs;tgXi=1 pjDs�t[i]�(i); and ELs�t =minfs;tgXi=1 pjEs�t[i]�(i); (5.9)where j = minfs; tg � i + 1 and �(i) = �Qi�1k=2 k=(1 � 2k) is de�ned to be 1= and �1for i = 1 and i = 2, respectively. The parameter index j and the scaling function �(i) arechosen to satisfy DLs�t = SLs�t and ELs�t = �CTs SLs�t for  = 0 in Theorem 5.1 (see tables 1and 2). By simplifying (5.9) using i = j and �(i) = 1 this consistency will be lost, but wewill still have valid expressions for the versal deformations.25



The relations between the elements of DLs�t and ELs�t are most readily shown by anexample:DL4;3 = 266666664 0 0 0p1 � 2jj43 + 4jj23 +1� 0 0p1 ��2jj23 � 23 �+p2 �jj2+1� p1 � 2jj43 + 4jj23 +1� 0p1 223 �p2+p3 p1 ��2jj23 � 23 �+p2 �jj2+1� p1 �2jj43 + 4jj23 +1�
377777775 ;andEL4;3 = 266666664 0 0 0p1 ��2jj43 � 4jj23 �� 0 0p1 ��2jj23 �1�+p2 ��jj2�� p1 ��2jj43 � 4jj23 �� 0p1 23 �p2�p3 p1 ��2jj23 �1�+p2 ��jj2�� p1 ��2jj43 � 4jj23 ��
377777775 :Let FDs�t (D for dense) be de�ned asFDs�t = sXi=1 ps�i+1 Fs�t[i];where Fs�t[q] has the q last rows non-zero and de�ned as:fs�q+1;j = j�1 for j = 1; : : : ; t;fi;j = fi;j�1 + fi�1;j�1 for i = s� q + 2; : : : ; s; j = 2; : : : ; t; (5.10)and fi;1 for i = s� q + 2; : : : ; s is de�ned as the solution to< Fs�t[q]GTt�1 � �Fs�t[q]ĜTt�1; Fs�t[s� i+ 1]GTt�1 � �Fs�t[s� i+ 1]ĜTt�1 > � 0:Notice that fi;1 is used as an unknown in the generation of elements in (5.10). In thede�nition of Fs�t[q], the solutions for fi;1 for i = s� q+ 2; : : : ; s ensure that Fs�t[q]GTt�1 ��Fs�t[q]ĜTt�1 is orthogonal to Fs�t[q̂]GTt�1 � �Fs�t[q̂]ĜTt�1 for q̂ = 1; : : : ; q � 1.Also here we show a small example to facilitate the interpretation of the de�nition:FD3�2 = 26664 p1 p1p2 � p1 (jj2+1)jj4+2jj2+2 p2 + p1 jj2+2jj4+2jj2+2p3 � p2 jj2+1 + p1 2jj4+2jj2+2 p3 + p2 1jj2+1 � p1 jj4+2jj2+2 377755.3 Versal deformations { the general caseWithout loss of generality assume that A � �B already is in Kronecker canonical form,M = diag(M1;M2; : : : ;Mb), where each Mk is either a Jordan block associated with a �niteor in�nite eigenvalue or a singular block corresponding to a left or right minimal index. Apencil TA � �TB = XM �MY in the tangent space can be partitioned conformally with26



the pencil M so that TAij � �TBij = XijMj �MiYij , where Mk is mk-by-nk, Xij is mi-by-mjand Yij is ni-by-nj:264 X11 � � � X1b... . . . ...Xb1 � � � Xbb 375264 M1 . . . Mb 375� 264 M1 . . . Mb 375264 Y11 � � � Y1b... . . . ...Yb1 � � � Ybb 375 : (5.11)Since the blocks TAij � �TBij ; i; j = 1; : : : ; b are mutually independent, we can studythe di�erent blocks of TA � �TB separately. Let ZAij � �ZBij be conformally sized blocksof ZA � �ZB . From (4.5) we know that ZA � �ZB is in the normal space if and only ifAHZA+BHZB = 0 and ZAAH +ZBBH = 0. We obtain a simple result since A and B areblock diagonal.Proposition 5.1 Assume that M = A��B = diag(A1; A2; : : : ; Ab)��diag(B1; B2; : : : ; Bb)is in Kronecker canonical form, where each block Ai��Bi �Mi represents one block in theKronecker structure. Then ZA � �ZB 2 nor(A� �B) if and only ifAHj ZAji = �BHj ZBji and ZAjiAHi = �ZBjiBHi ; for i = 1; : : : ; b and j = 1; : : : ; b: (5.12)The mutual independency of the (i; j) blocks of ZA and ZB implies that we only haveto consider two Mk blocks at a time:TA[i; j] � �TB [i; j] = "Xii XijXjiXjj # "Mi 00 Mj #� "Mi 00 Mj # "Yii YijYji Yjj # = "TAii TAijTAji TAjj #� � "TBii TBijTBji TBjj # ;and ZA[i; j] � �ZB[i; j] = " ZAii ZAijZAji ZAjj #� � " ZBii ZBijZBji ZBjj # : (5.13)Notably, by interchanging the blocksMi = Ai��Bi andMj = Aj��Bj in the KCF, weonly have to interchange the corresponding blocks in ZA � �ZB accordingly. For example,if ZA[i; j] � �ZB [i; j] in (5.13) belongs to nor(diag(Mi;Mj)), then" ZAjj ZAjiZAij ZAii #� � " ZBjj ZBjiZBij ZBii # 2 nor(diag(Mj ;Mi)):This implies that given two blocks Mi and Mj , it is enough to consider the casediag(Mi;Mj). In the following we will order the blocks in the KCF so that ZA � �ZBis block lower triangular.Theorem 5.1 Let A� �B = diag(A1; A2; : : : ; Ab)� �diag(B1; B2; : : : ; Bb) be in KCF withthe structure blocks Mi = Ai � �Bi ordered as follows: Lk, Jk(0), Jk() (for  6= f0;1g),Nk, and LTk , where the ordering within each block-type is in increasing order of size, exceptfor the LTk blocks which are ordered by decreasing order of size.For all i and j, let the (i; j); (j; i) and (i; i); (j; j) blocks of ZA � �ZB corresponding todiag(Mi;Mj) be built from Table 1 and Table 2, respectively.Then ZA � �ZB gives an orthogonal basis for nor(A � �B) with minimum number ofparameters. 27



Table 1: Blocks in ZA � �ZB 2 nor(A� �B), where it for L� �L�, J�(0)� J�(0), J�()�J�(), and N��N�, is assumed that � � �. For LT� �LT� , � � � is assumed. Also 1 6= 2is assumed.KCF:Mi�Mj ZAij ZBij ZAji ZBjiL��L� 0 0 SB��(�+1) �CT� SB��(�+1)L��J�(0) 0 0 SL��(�+1) �CT� SL��(�+1)L��J�() 0 0 FD��(�+2)GT�+1 �FD��(�+2)ĜT�+1L��N� 0 0 CT�HL��(�+1) �HL��(�+1)L��LT� 0 0 G�+1H(�+2)�(�+1) Ĝ�+1H(�+2)�(�+1)J�(0)�J�(0) SL��� �CT�SL��� TL��� �CT� TL���J�(0)�LT� 0 0 HU(�+1)�� �HU(�+1)��CT�J�()�J�() DL��� EL��� DL��� EL���J�()�LT� 0 0 G�+1(Î�FD��(�+2))T �Ĝ�+1(Î�FD��(�+2))TN��N� CT� SL��� �SL��� CT� TL��� �TL���N��LT� 0 0 TL(�+1)��CT� �TL(�+1)��LT��LT� 0 0 TB(�+1)�� �TB(�+1)��C�J�(0)�J�() 0 0 0 0J�(0)�N� 0 0 0 0J�(1)�J�(2) 0 0 0 0J�()�N� 0 0 0 0Table 2: The diagonal blocks in ZA � �ZB 2 nor(A� �B).KCF:Mi ZAii ZBiiL� 0 0J�(0) SL��� �CT�SL���J�() DL��� EL���N� CT� SL��� �SL���LT� 0 028



The superscripts B;L;U , and D of the matrices in tables 1 and 2 are parts of the matrixde�nitions in Section 5.2. The superscript T is matrix transpose. All subscripts, e.g. ���,refer to the sizes of the matrices.Notice that the diagonal blocks (i; i) and (j; j) of ZA � �ZB can also be obtained fromTable 1 by setting i = j. For clarity we also display the expressions for the (i; i) and (j; j)blocks of ZA��ZB corresponding to all kinds of structure blocks Mi in Table 2. Of course,the (j; j) blocks corresponding to Mj are read from Table 2 by substituting � with �.The proof of Theorem 5.1 consists of three parts:1. The blocks of ZA� �ZB displayed in Table 1 ful�ll the conditions in Proposition 5.1,which imply that ZA� �ZB 2 nor(A� �B) is orthogonal to an arbitrary TA� �TB 2tan(A� �B).2. The number of independent parameters in ZA � �ZB is equal to the codimensionof orbit(A � �B), which implies that the parameterized normal form has minimumnumber of parameters.3. Each block in Table 1 de�nes an orthogonal basis, i.e., the basis for each parameterpi is orthogonal to the basis for each other parameter pj, i 6= j.We start by proving part 3, followed by proving parts 1 and 2 for the 16 di�erent casesdiag(Mi;Mj) corresponding to di�erent combinations of structure blocks in the KCF. InTable 3 we display the codimension for these 16 cases and the number of parameters in the(i; i); (i; j); (j; i) and (j; j) blocks of ZA��ZB. The codimensions are computed from (4.10),which is the minimum number of parameters required to span the corresponding normalspace. For the ordering and the sizes of the blocks in A � �B we have made the sameassumptions in Table 3 as in Table 1. Notice that the codimension counts for L� �L� andLT��LT� are 0 if � = �. The number of parameters required in each of the (i; i); (i; j); (j; i)and (j; j) blocks of ZA � �ZB follows from the proof given below.Proof of part 3. We show that each matrix pencil block in Table 1 has all its param-eters in orthogonal directions. This is trivial for blocks built from the structured Toeplitzand Hankel matrices SL, SB, H, HL, HU , TL, or TB (possibly involving some kind ofshift). Remember that the Frobenius inner product can be expressed in terms of the sum ofall results from elementwise multiplications as shown in (5.6). For each of these matrices,the elementwise multiplication of the basis for one parameter pi and the basis for anotherparameter pj; j 6= i only results in multiplications where at least one of the two elementsis zero. Obviously, these bases are orthogonal. For the matrix pencil blocks built fromthe FD matrix, the orthogonality follows from construction, since some of the elements areexplicitly chosen so that the Frobenius inner product is zero.For the proof for the blocks of type DL � �EL we de�ne sq in terms of the di and ei in(5.8) to be sq = qXi=1 ijdij2 + q�1Xi=1 ijeij2 � qdqeq:Independent of s and t, the number sq is the inner product of the qth basis vector with therth, where q < r.We show by induction that sq = 0 for q = 1; 2; : : : : Clearly s1 = jj2 �  = 0.29



Table 3: The number of parameters in the (i; i), (i; j), (j; i), and (j; j) blocks of ZA��ZB 2nor(Mi �Mj).KCF:Mi�Mj cod(Mi�Mj) (i; i) (i; j) (j; i) (j; j)L��L� � � �� 1 0 0 � � �� 1 0L��J�(0) 2� 0 0 � �L��J�() 2� 0 0 � �L��N� 2� 0 0 � �L��LT� �+ � + 2 0 0 �+ � + 2 0J�(0)�J�(0) � + 3� � � � �J�(0)�LT� 2� � 0 � 0J�()�J�() � + 3� � � � �J�()�LT� 2� � 0 � 0N��N� � + 3� � � � �N��LT� 2� � 0 � 0LT��LT� �� � � 1 0 0 �� � � 1 0J�(0)�J�() �+ � � 0 0 �J�(0)�N� �+ � � 0 0 �J�(1)�J�(2) �+ � � 0 0 �J�()�N� �+ � � 0 0 �We now show that sq+1 � sq = 0 from which the result follows.qdqeq + (q + 1)jdq+1j2 + qjeqj2 � (q + 1)dq+1eq+1 =qeq(dq + eq) + (q + 1)dq+1(dq+1 �  eq+1) =dq+1((q + 1)(dq+1 �  eq+1)� qeq) =dq+1((q + 1)(�dq � eq + dq + 2eq � eqq + 1)� qeq) =dq+1((q + 1)eq � eq � qeq) = 0:Since ZA��ZB is built from b2 mutually independent blocks in Table 1, each associatedwith ci parameters, it follows that ZA � �ZB is an orthogonal basis for a c1 + c2 + : : :+ cb2dimensional space, with one parameter for each dimension. 2Proof of parts 1 and 2. Now, it remains to show that ZA � �ZB is orthogonal totan(A � �B) and that the number of parameters in ZA � �ZB is equal to cod(A � �B).Since the number of parameters in orthogonal directions cannot exceed the codimension, itis su�cient to show that we have found them all. The orthogonality between ZA��ZB andtan(A � �B) is shown by proving that each pair of blocks ful�lls the conditions AHj ZAji =�BHj ZBji and ZAjiAHi = �ZBjiBHi in Proposition 5.1. In the following we refer to these asthe �rst and second conditions, respectively.We carry out the proofs for all 16 cases Mi�Mj in Table 1, starting with blocks whereMi and Mj are of the same kind. 30



J�(0)� J�(0): We note that Jk(0) = Ck � �Ik. First condition for the (j; i) block:AHj ZAji = CT� TL��� = I�CT� TL��� = �BHj ZBji :Second condition for the (j; i) block:ZAjiAHi = TL���CT� = TL���CT� I� = CT� TL���I� = �ZBjiBHi ;where we used that TL���CT� = CT� TL���, for � � �. Similarly for the (i; j) block:AHi ZAij = CT�SL��� = I�CT�SL��� = �BHi ZBij ;and ZAijAHj = SL���CT� = SL���CT� I� = CT�SL���I� = �ZBijBHj :Here we used that SL���CT� = CT� SL���, for � � �.Since the (i; i), (i; j), and (j; i) blocks of ZA � �ZB , have � parameters each and the(j; j) block has � parameters, the total number of parameters in ZA � �ZB is equal tocod(J�(0)� J�(0)) = � + 3�.N� �N�: Since there is a symmetry between Jk(0) = Ck � �Ik and Nk = Ik � �Ck andthere is a corresponding symmetry between blocks in ZA � �ZB for Jk(0) and Nk blocks,the proof for N� �N� is similar to the case J�(0)� J�(0).J�()� J�(): Here the (j; i) block and the (i; j) block are de�ned similarly (see Table1), and therefore it is su�cient to prove one of them with no constraints on � and �. Wenote that Jk() = Ik + Ck � �Ik. We show that the �rst and second conditions hold forZAji = D���[q] and ZBji = E���[q] for q = 1; : : : ;minf�; �g. First condition:AHj ZAji = (I� + C�)HD���[q] = D���[q] + CT�D���[q]:Remember that D���[q] has all elements zero, except for the q lower left diagonals, whereall elements in each diagonal are identical and de�ned by the element in the �rst column.For q = 1 the proof is trivial. For q > 1, AHj ZAji gives the following matrix. All diagonalsstarting at position (u; 1) for 1 � u � � � q are zero. The elements in the diagonalstarting at position (� � q+1; 1) are dq which by de�nition is equal to �e�q, which in turnde�nes the corresponding diagonal in �E���[q]. The elements in the diagonals starting atpositions (� � u+ 1; 1), where 1 � u < q are equal to du + du+1. Since du+1 is de�ned as�du � eu, the elements in these diagonals are equal to �eu, which de�nes the elements inthe corresponding diagonals in �E���[q]. Since �E���[q] = �BHj ZBji , we have proved the�rst condition.Second condition: Since D���[q] only has q � minfs; tg non-zero diagonals in the lower leftcorner of the matrix, a shift of rows downwards gives the same result as a shift of columnsleftwards, i.e., CT�D���[q] = D���[q]CT� . Using information from the �rst part we obtainZAjiAHi =D���[q](I� + C�)H = D���[q] +D���[q]CT� = D���[q] + CT�D���[q]=AHj ZAji = �E���[q] = �ZBjiBHi ;since Bi is the identity matrix. 31



Also here, the number of parameters in ZAjj � �ZBjj is � and it is � parameters in eachof the other three blocks, giving � + 3� in total.Even though the (i; i), (j; i), (i; j), and (j; j) blocks look rather complicated, they reducefor  = 0 to the corresponding blocks for J�(0)� J�(0) in Table 1.L� � L� : Here we use Lk = Ĝk � �Gk. First condition for the (j; i) block:AHj ZAji = ĜT�SB��(�+1) = " 0SB��(�+1)# = "CT� SB��(�+1)0 # = GT�CT� SB��(�+1) = �BHj ZBji :Second condition for the (j; i) block:ZAjiAHi = SB��(�+1)ĜT� = " 0SB��(�+1)# = "CT� SB��(�+1)0 # = CT� SB��(�+1)GT� = �ZBjiBHi :Since the contribution from L��L� to the codimension is ����1 and the (j; i) block has� � �� 1 independent parameters we deduce that all other blocks in ZA � �ZB are zero.LT� � LT� : Since this case is just the transpose of L� � L� the proof is almost the same,and therefore we omit the technical details here.So far, we have proved all cases where both blocks are of the same type. Since thediagonal blocks in ZA � �ZB always correspond to such cases (see Table 3 for the numberof parameters in these blocks), we from now on only have to consider the (i; j) and (j; i)blocks, where i 6= j for the remaining cases.L� � J�(0): First condition for the (j; i) block:AHj ZAji = CT� SL��(�+1) = I�CT� SL��(�+1) = �BHj ZBji :Second condition for the (j; i) block:ZAjiAHi = SL��(�+1)ĜT� = CT� SL��(�+1)GT� = �ZBjiBHi :The (i; i) and (j; j) blocks contribute with zero and � parameters, respectively. Sincethe (j; i) block gives another � parameters, we have found all 2� parameters, and thereforeit follows that ZAij = �ZBij = 0.L� � J�(): First condition for the (j; i) block:AHj ZAji = (I� + C�)HFD��(�+2)GT�+1 = FD��(�+2)GT�+1 + CT� FD��(�+2)GT�+1:By inspection we see that the (u; v)-element of this matrix is fdu;v + fdu�1;v if u > 1 andfdu;v if u = 1 (where fdu;v denotes the (u; v)-element of FD). The right hand side of thesame condition is �BHj ZBji = I�FD��(�+2)ĜT�+1;which simply is the � leftmost columns of FD��(�+2). The (u; v)-element of this matrix isthen fdu;v+1, which is de�ned as fdu;v + fdu�1;v if u > 1 and fdu;v if u = 1.32



Second condition for the (j; i) block:ZAjiAHi ĜT� = FD��(�+2)GT�+1ĜT� = FD��(�+2) 264 0I�0 375 = FD��(�+2)Ĝ�+1GT� = �ZBjiBHi :As in the previous case, the (i; i) and (j; j) blocks contribute with zero and � parameters,respectively. Since the (j; i) block gives the remaining � parameters, the (i; j) block is thezero pencil.Notably, for  = 0, the \monstrous" (j; i) block reduces to the (j; i) block for L��J�(0)in Table 1.L� �N�: First condition for the (j; i) block:AHj ZAji = I�CT�HL��(�+1) = CT�HL��(�+1) = �BHj ZBji :Second condition for the (j; i) block:ZAjiAHi ĜT� = CT�HL��(�+1) = " 0HL(��1)��# = HL��(�+1)GT� = �ZBjiBHi :Also here, the (i; i) and (j; j) blocks contribute with zero and � parameters, respectively.Since the (j; i) block gives the remaining � parameters, the (i; j) block is the zero pencil.L� � LT� : For this case the (i; i) and (j; j) blocks are zero pencils. First condition for the(j; i) block:AHj ZAji = Ĝ�G�+1H(�+2)�(�+1) = [0 I� 0]H(�+2)�(�+1) = G�Ĝ�+1H(�+2)�(�+1) = �BHj ZBji :Second condition for the (j; i) block:ZAjiAHi = G�+1H(�+2)�(�+1)ĜT� ;which is a matrix consisting of the � + 1 �rst rows and � last columns of H(�+2)�(�+1).This matrix is identical to the one given by the � + 1 last rows and � �rst columns ofH(�+2)�(�+1), i.e., Ĝ�+1H(�+2)�(�+1)GT� = �ZBjiBHi :Since this block has all �+ � + 2 parameters, it follows that the (i; j) block is the zeropencil.J�(0)� LT� : First condition for the (j; i) block:AHj ZAji = Ĝ�HU(�+1)��;which simply is the last � rows in HU(�+1)��. Another way to construct this matrix is toshift the columns in HU(�+1)�� one column leftwards and pick the � �rst columns of thatmatrix, which can be written asG�HU(�+1)��CT� = �BHj ZBji :33



Second condition for the (j; i) block:ZAjiAHi = HU(�+1)��CT� = HU(�+1)��CT� I� = �ZBjiBHi :The (i; i) and (j; j) blocks contribute with � and zero parameters, respectively. Sincethe (j; i) block gives another � parameters, we conclude that the (i; j) block is the zeropencil.J�()� LT� : Since the proof for this case is similar to the one for the case L� � J�(), weomit the technical details here. It follows that for  = 0, the (j; i) block reduces to the (j; i)block for J�(0)� LT� in Table 1.N� � LT� : First condition for the (j; i) block:AHj ZAji = Ĝ�TL(�+1)��CT� ;which is the last � rows in TL(�+1)�� shifted one column leftwards. This matrix is identicalto the one given by the � �rst rows in TL(�+1)��, which isG�TL(�+1)�� = �BHj ZBji :Second condition for the (j; i) block:ZAjiAHi = TL(�+1)��CT� I� = TL(�+1)��CT� = �ZBjiBHi :The (i; i) and (j; j) blocks in ZA � �ZB contribute with � and zero parameters, respec-tively. Since the (j; i) block gives another � parameters, we conclude that the (i; j) blockis the zero pencil.J�(0)� J�(); J�(0) �N�; J�(1)� J�(2); and J�()�N� : In these four cases the (i; i)and (j; j) blocks contribute with � and � parameters, respectively, and therefore the (j; i)and (i; j) blocks are zero pencils.Since we have considered all possible cases of Mi and Mj blocks the proof is complete. 26 Applications and Examples6.1 Some examples of versal deformations of matrix pencils in KCFIn the following we show three examples of versal deformations of matrix pencils. For the7 � 8 pencil A � �B = L2 � J2(0) � J3(0) with codimension 14, the 14-parameter versaldeformation A� �B + ZA � �ZB , where ZA � �ZB 2 nor(A� �B) is given by
ZA = 266666666664

0 0 0 0 0 0 0 00 0 0 0 0 0 0 0p1 0 0 p6 0 p10 0 0p2 p1 0 p7 p6 p11 p10 0p3 0 0 0 0 p12 0 0p4 p3 0 p8 0 p13 p12 0p5 p4 p3 p9 p8 p14 p13 p12
377777777775 ;34



and
ZB = 266666666664

0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0�p1 0 0 �p6 0 �p10 0 00 0 0 0 0 0 0 0�p3 0 0 0 0 �p12 0 0�p4 �p3 0 �p8 0 �p13 �p12 0
377777777775 :For the 3 � 4 pencil A � �B = L1 � J2() with codimension 4, the 4-parameter versaldeformation A� �B + ZA � �ZB , where ZA � �ZB 2 nor(A� �B) is given byZA = 2664 0 0 0 0p1 p1 p3(jj2 + 1) 0p2 � p1 2jj2+1 p2 � p1 jj2�1jj2+1 �p3 + p4 p3(jj2 + 1) 3775 ;and ZB = 2664 0 0 0 0�p1 �p12 �p3(jj2 + ) 0�p2 + p1 jj2�1jj2+1 �p22 � p1 2jj2+1 �p3 � p4 �p3(jj2 + ) 3775 :For the 11 � 11 pencil A � �B = L1 � J3(0) � N4 � LT2 with codimension 26, the 26-parameter versal deformation A��B+ZA��ZB, where ZA��ZB 2 nor(A��B) is givenby

ZA =
266666666666666666664

0 0 0 0 0 0 0 0 0 0 0p1 0 p13 0 0 0 0 0 0 0 0p2 p1 p14 p13 0 0 0 0 0 0 0p3 p2 p15 p14 p13 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 00 p4 0 0 0 p19 0 0 0 0 0p4 p5 0 0 0 p20 p19 0 0 0 0p5 p6 0 0 0 p21 p20 p19 0 0 0p8 p9 p18 p17 p16 p23 0 0 0 0 0p9 p10 p17 p16 0 p24 p23 0 0 0 0p10 p11 p16 0 0 p25 p24 p23 0 0 0
377777777777777777775 ;35



and
ZB =

266666666666666666664
0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0�p1 0 �p13 0 0 0 0 0 0 0 0�p2 �p1 �p14 �p13 0 0 0 0 0 0 00 �p4 0 0 0 �p19 0 0 0 0 0�p4 �p5 0 0 0 �p20 �p19 0 0 0 0�p5 �p6 0 0 0 �p21 �p20 �p19 0 0 0�p6 �p7 0 0 0 �p22 �p21 �p20 �p19 0 0�p9 �p10 �p17 �p16 0 �p24 �p23 0 0 0 0�p10 �p11 �p16 0 0 �p25 �p24 �p23 0 0 0�p11 �p12 0 0 0 �p26 �p25 �p24 �p23 0 0

377777777777777777775 :6.2 Versal deformations of the set of 2-by-3 matrix pencilsIn [14], the algebraic and geometric characteristics of the set of 2-by-3 matrix pencils wereexamined in full detail, including the complete closure hierarchy. There, all non-zero and�nite eigenvalues were considered as unspeci�ed. R2 was used to denote a 2-by-2 block withnon-zero �nite eigenvalues, i.e., any of the three structures J1(�)�J1(�), J1(�)�J1(�), andJ2(�), where �; � 6= f0;1g. However, in the context of versal deformations all these formsare considered separately and with the eigenvalues speci�ed (known). Consequently, we nowhave 20 di�erent Kronecker structures to investigate. For example, the versal deformationof A� �B = L0 � J2(),  6= f0;1g, is found by computing ZA � �ZB =" p1 + �  p1 p3(jj2 + 1) + p3(jj2 + ) 0p2 � p1jj2+1 + �(p2 + p1jj2+1 ) �p3 + p4 + �(p3 + p4) p3(jj2 + 1) + p3(jj2 + ) # : (6.1)In Table 4 we show the versal deformations for all di�erent Kronecker structures for this setof matrix pencils. The di�erent structures are displayed in increasing codimension order.6.2.1 Using GUPTRI in a random walk in tangent and normal directions ofnon-generic pencilsIn order to illustrate how perturbations in the tangent space and in the normal space a�ectthe Kronecker structure computed by a staircase algorithm, we have performed a set of testson non-generic 2-by-3 matrix pencils. Since the staircase algorithm considers all non-zero�nite eigenvalues as unspeci�ed, we have not included these cases in the test.For the remaining 12 non-generic cases a random perturbation EA � �EB , with entrieseaij ; ebij , has been decomposed into two parts, TA � �TB 2 tan(A � �B), and ZA � �ZB 2nor(A� �B), such that EA = TA + ZA and EB = TB + ZB :We illustrate the decomposition of EA� �EB with A� �B = L0� J2(0). From Table 4 weget ZA = " p1 p3 0p2 p4 p3 # ; ZB = " 0 0 0�p1 �p3 0 # :36



Table 4: Versal deformations A� �B + ZA � �ZB of the set of 2-by-3 matrix pencils.KCF A� �B ZA � �ZBL2 � �� 1 00 �� 1 � � 0 0 00 0 0 �L1 � J1() � �� 1 00 0  � � � � 0 0 0p1 + �  p1  p1 + � 2p1 p2 + �  p2 �L1 � J1(0) � �� 1 00 0 �� � � 0 0 0p1 0 p2 �L1 �N1 � �� 1 00 0 1 � � 0 0 00 � p1 � p2 �L0 � J1(1)� J1(2) � 0 1 � � 00 0 2 � � � � p1 + � 1 p1 p3 + � 1 p3 0p2 + � 2 p2 0 p4 + � 2 p4 �L0 � J2() � 0  � � 10 0  � � � See (6:1)L0 � 2J1() � 0  � � 00 0  � � � � p1 + �  p1 p3 + �  p3 p5 + �  p5p2 + �  p2 p4 + �  p4 p6 + �  p6 �L0 � J1(0)� J1() � 0 �� 00 0  � � � � p1 p3 0p2 + �  p2 0 p4 + �  p4 �L0 � J1()�N1 � 0  � � 00 0 1 � � p1 + �  p1 p3 + �  p3 0� p2 0 � p4 �L0 � J2(0) � 0 �� 10 0 �� � � p1 p3 0p2 + � p1 p4 + � p3 p3 �L0 �N2 � 0 1 ��0 0 1 � � � p1 � p3 0p1 + � p2 p3 + � p4 � p3 �L0 � J1(0)�N1 � 0 �� 00 0 1 � � p1 p3 0� p2 0 � p4 �L0 � L1 � LT0 � 0 �� 10 0 0 � � 0 0 0p1 + � p2 p3 + � p4 p4 + � p5 �L0 � 2J1(0) � 0 �� 00 0 �� � � p1 p3 p5p2 p4 p6 �L0 � 2N1 � 0 1 00 0 1 � � � p1 � p3 � p5� p2 � p4 � p6 �2L0 � LT1 � 0 0 ��0 0 1 � � p1 + � p2 p4 + � p5 0p2 + � p3 p5 + � p6 0 �2L0 � J1()� LT0 � 0 0  � �0 0 0 � � p1 + �  p1 p4 + �  p4 p7 + �  p7p2 + � p3 p5 + � p6 p8 + �  p8 �2L0 � J1(0)� LT0 � 0 0 ��0 0 0 � � p1 p4 p7p2 + � p3 p5 + � p6 p8 �2L0 �N1 � LT0 � 0 0 10 0 0 � � � p1 � p4 � p7p2 + � p3 p5 + � p6 � p8 �3L0 � 2LT0 � 0 0 00 0 0 � � p1 + � p2 p5 + � p6 p9 + � p10p3 + � p4 p7 + � p8 p11 + � p12 �37



Let TA � �TB = (EA � �EB) � (ZA � �ZB). Now, the parameters pi are determined bycomputing the component of EA��EB in each of the four orthogonal (but not orthonormal)directions that span the normal space:Z1 = 12  " 1 0 00 0 0 #� � " 0 0 0�1 0 0 #!Z2 = 1 " 0 0 01 0 0 #� � " 0 0 00 0 0 #!Z3 = 13  " 0 1 00 0 1 #� � " 0 0 00 �1 0 #!Z4 = 1 " 0 0 00 1 0 #� � " 0 0 00 0 0 #! :We conclude thatp1 = ea11 � eb212 ; p2 = ea21; p3 = ea12 + ea23 � eb223 ; p4 = ea22:It is easily veri�ed that < TA � �TB ; ZA � �ZB > = 0.GUPTRI [11, 12] has been used to compute the Kronecker structure of the perturbedpencils A � �B + �(EA � �EB), A � �B + �(ZA � �ZB), and A � �B + �(TA � �TB), for� = 10�16; 10�15; : : : ; 100. We investigate how far we can move in the tangent and normaldirections before GUPTRI reports the generic Kronecker structure.The procedure has been repeated for all cases and for 100 random perturbations (EA; EB),where k(EA; EB)kF = 1 and kEAkF = kEBkF . The entries of (EA; EB) are uniformly dis-tributed in (�0:5; 0:5). For each case and for each perturbation EA � �EB we record thesize of � when GUPTRI reports the generic Kronecker structure. In Table 5 we display thesmallest, median, and maximum values of � for the 100 random perturbations.Entries marked + in Table 5, represent that the generic structure was not found for anysize of the perturbations. All these results were for perturbations in tan(A��B), and theyindicate that for these Kronecker structures there are no or only small curvatures in theorbit at this point (pencil). Here the tangent directions are very close to orbit(A� �B).Notably, the results for the perturbations �(EA� �EB) are, except for one case, similarto the results for �(ZA � �ZB). This is natural since the perturbation EA � �EB implies atranslation both in the tangent space as well as the normal space directions. The structurechanges appear more rapidly in the normal space, i.e., for smaller �. Our computationalresults extend the cone example in Section 1.3 to 2-by-3 matrix pencils.Why is the smallest perturbation 10�16(ZA��ZB) enough to �nd the generic structurefor the three cases L0 � 2J1(0); L0 � 2N1 and 3L0 � 2LT0 ? The explanation is connected tothe procedure for determining the numerical rank of matrices.GUPTRI has two input parameters, EPSU and GAP, which are used to make rank decisionsin order to determine the Kronecker structure of an input pencil A � �B. Inside GUPTRIthe absolute tolerances EPSUA = kAkE � EPSU and EPSUB = kBkE � EPSU are used in all rankdecisions, where the matrices A and B, respectively, are involved. Suppose the singularvalues of A are computed in increasing order, i.e., 0 � �1 � �2 � : : : � �k � �k+1 � : : :;38



Table 5: How far we can move in tangent and normal directions before non-generic 2-by-3matrix pencils turn generic. �(ZA � �ZB) �(TA � �TB)A� �B cod(A� �B) �min �median �max �min �median �maxL1 � J1(0) 2 10�4 10�4 10�3 10�2 10�1 10�1L1 �N1 2 10�4 10�4 10�3 10�2 10�1 100L0 � J2(0) 4 10�4 10�4 10�3 10�2 10�1 100L0 �N2 4 10�5 10�4 10�3 10�2 10�1 10�1L0 � J1(0)�N1 4 10�4 10�4 10�2 10�2 10�1 100L0 � L1 � LT0 5 10�4 10�4 10�2 10�2 10�1 100L0 � 2J1(0) 6 10�16 10�16 10�16 + + +L0 � 2N1 6 10�16 10�16 10�16 + + +2L0 � LT1 6 10�4 10�4 10�2 + + +2L0 � J1(0) � LT0 8 10�5 10�4 10�1 + + +2L0 �N1 � LT0 8 10�4 10�4 10�3 + + +3L0 � 2LT0 12 10�16 10�16 10�16 + + +then all singular values �k < EPSUA are interpreted as zeros. The rank decision is mademore robust in practice: if �k < EPSUA but �k+1 � EPSUA, GUPTRI insists on a gap betweenthe two singular values such that �k+1=�k � GAP. If �k+1=�k < GAP, �k+1 is also treatedas zero. This process is repeated until an appreciable gap between the zero and non{zerosingular values is obtained. In all of our tests we have used EPSU = 10�8 and GAP = 1000:0.For the most non-generic case 3L0 � 2LT0 , both the A-part and the B-part are zeromatrices giving EPSUA = EPSUB = 0, which in turn lead to the decision that a full rankperturbation EA��EB times a very small � is interpreted as a generic pencil. For the othertwo cases, either the A-part or the B-part is full rank and the other part is a zero matrix,which accordingly is interpreted to have full rank already for the smallest perturbation.6.2.2 Versal deformations and minimal perturbations for changing a non-genericstructureIn the following we illustrate how versal deformations are useful in the understanding ofthe relations between the di�erent structures, by looking at requirements on perturbationsto (A;B) for changing the Kronecker structure. Assume that we have the following matrixpencil with the Kronecker structure L1 � J1(0):A� �B = " ��1� �2 00 0 ��3� # and ZA � �ZB = " 0 0 0p1 0 p2 # : (6.2)It was shown in [14] that L1�J1(0) with codimension 2 is in the closure of orbit(L1�J1())( 6= f0;1g but otherwise unspeci�ed) with codimension 1, which in turn is in the closureof orbit(L2) (the generic KCF) with codimension 0. Notice in Table 4, since  is assumedspeci�ed, L1 � J1() has two parameters (and codimension = 2). In the discussion thatfollows we assume that  is �nite, non-zero but unspeci�ed.39



We will now, for this example, illustrate how perturbations in the normal space directionscan be used to �nd more generic Kronecker structures (going upwards in the Kroneckerstructure hierarchy), and how we can perturb the elements in A � �B to �nd less genericmatrix pencils. Since the space spanned by ZA� �ZB is the normal space, we must always�rst hit a more generic pencil when we move in�nitesimally in normal space directions.The KCF remains unchanged as long as p1 = p2 = 0, but for p1 = 0 and p2 6= 0, theKCF is changed into L1�J1() (with  = p2). That is, by adding a component in a normalspace direction, we �nd a more generic pencil in the closure hierarchy. Notably, the size ofthe required perturbation is equal to the smallest size of an eigenvalue to be interpreted asnon-zero. By choosing p1 non-zero (and p2 arbitrary), the resulting pencil will be genericwith the KCF L2.To �nd a less generic structure, we may proceed in one of the following ways:1. Find a less generic structure in the closure of orbit(L1 � J1(0)).2. Go upwards in the closure hierarchy, to a more generic structure and then look inthat orbit's closure for a less generic structure.We know from the investigation in [14] that all structures with higher codimension thanA��B = L1�J1(0) include an L0 block in their Kronecker structures, which in turn implythat A and B must have a common column nullspace of at least dimension 1. Therefore,the smallest perturbation that turns L1 � J1(0) less generic is the smallest perturbationthat reduces the rank of " AB # = 26664 0 �2 00 0 0�1 0 00 0 �3 37775 :The size of the smallest rank-reducing perturbation is equal to the smallest of the singularvalues �1; �2, and �3. By just deleting one �i, the corresponding perturbed pencil is a lessgeneric pencil within the closure of orbit(L1 � J1(0)). These three cases correspond toapproach 1 above. We summarize these perturbations and the perturbations in the normalspace in Table 6. Notice that approach 2 will always require a perturbation larger thanminf�ig.Which of the non-generic structures displayed in Table 6 is obtained by the smallestperturbation to L1 � J1(0)? Mathematically, it is easy to see that the perturbations in thenormal space always can be made smaller than a rank-reducing perturbation �i, since p1and p2 are parameters that can be chosen arbitrary small, e.g. smaller than minf�ig.However, in �nite precision arithmetic, it is not clear that the smallest perturbationrequired to �nd another structure is in the normal direction. This can be illustrated byusing GUPTRI to compute the Kronecker structures for A��B as in (6.2) and perturbed asin Table 6. For EPSU = 10�8, �2 = 1 and �1 = �3 = 10�10, GUPTRI uses di�erent tolerancesEPSUA = 10�8 and EPSUB = 10�18 for making rank decisions in A and B, respectively. Itfollows that for p1 and p2 of order 10�6, GUPTRI still computes the Kronecker structureL1 � J1(0). However, if p1 = p2 = 0 and the B-part of the pencil is perturbed by �1 or �3,GUPTRI computes the less generic structures, just as shown in Table 6.40



Table 6: Perturbing A � �B (de�ned in 6.2) yields the pencil ~A � � ~B with more or lessgeneric structures. The codimension of the original orbit is 2.k(�A;�B)kF ~A� � ~B KCF cod( ~A� � ~B)p1 " ��1� �2 0p1 0 ��3� # L2 0p2 " ��1� �2 00 0 p2 � �3� # L1 � J1(p2) 1 (2)�1 " �0 �2 00 0 ��3� # L0 � J1(0)�N1 4�3 " ��1� �2 00 0 �0 # L0 � L1 � LT0 5�2 " ��1� 0 00 0 ��3� # L0 � 2J1(0) 67 ConclusionsIn this paper, we have obtained not only versal deformations for deformations of Kroneckercanonical forms, but more importantly for our purposes, metrical information for the per-turbation theory of matrix pencils relevant to the Kronecker canonical form. In Part IIof this paper, we will explore the strati�cation theory of matrix pencils with the goal ofmaking algorithmic use of the lattice of orbits under the closure relationship.AcknowledgementsWe would like to thank Jim Demmel for conveying the message that the geometry of matrixand matrix pencil space inuences perturbation theory and numerical algorithms. Wefurther thank him for many helpful discussions. In addition, the �rst author would like tothank the second two authors for their kind hospitality and support at Ume�a Universitywhere this work and fruitful collaboration began.
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