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Abstract

We derive versal deformations of the Kronecker canonical form by deriving the tan-
gent space and orthogonal bases for the normal space to the orbits of strictly equivalent
matrix pencils. These deformations reveal the local perturbation theory of matrix pen-
cils related to the Kronecker canonical form. We also obtain a new singular value
bound for the distance to the orbits of less generic pencils. The concepts, results and
their derivations are mainly expressed in the language of numerical linear algebra. We
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1 Introduction and Examples

1.1 Introduction

Traditionally, canonical structure computations take as their input some mathematical ob-
ject, a matrix or a pencil say, and return an equivalent object that is perhaps simpler, or
makes clear the structure of the equivalence relation. Some example equivalence relations
and corresponding canonical forms are:

Structure Equivalence Relation Canonical Form

Square Matrices A~ X1AX Jordan Canonical Form
Rectangular Matrices A ~ UAV Singular Values
Rectangular Matrices A~ XA Reduced Echelon form
Matrix Pencils A—AB ~ P 1(A—-)\B)Q Kronecker Canonical Form
Analytic real functions  f(x) ~ f(¢(x)) +ak

In the first three examples the input is a matrix, in the next example, the input is
a pencil. In these cases, X, P, and () are presumed nonsingular, and U and V are pre-
sumed orthogonal. We presume the real functions f are analytic in a neighborhood of zero,
f(0) =0, ¢(0) = 0 and ¢(x) is monotonic and analytic near zero.

Canonical forms appear in every branch of mathematics. A few examples from control
theory may be found in [20, 19, 25, 18]. However, researchers in singularity theory have
asked the question what happens if you have not one object that you want to put into
a normal form, but rather a whole family of objects nearby some particular object and
you wish to put each member of the family into a canonical form in such a way that the
canonical form depends smoothly on the deformation parameters.

For example, one may have, a one parameter matrix deformation of Ay which is simply
an analytic function A(\) for which A(0) = Ay. An n parameter deformation is defined
the same way, except that A\ € R"™. Similarly, one may have n parameter deformations of
pencils or functions. Sticking with the matrix example, we say two deformations A(\) and
B()\) are equivalent if A(\) and B()\) have the same Jordan canonical form for each and
every A. A deformation of a matrix is said to be versal if, loosely speaking, it captures all
possible Jordan form behaviors, near the matrix. A deformation is said to be miniversal, if
it does so with as few parameters as possible. A more formal discussion of these definitions
may be found in Section 2.

Derivation of versal and miniversal deformations requires a detailed understanding of
the perturbation theory of the objects under study. In particular, one needs to understand
the tangent space of the equivalence relation, and how it is embedded in the entire space.
In Section 2, we explain the mechanics of this perturbation theory.

While we believe that versal deformations are interesting mathematical objects, this
work differs from other works on the subject in that our primary goal is not so much the
versal deformation or the miniversal deformation, but rather the perturbation theory and
how it influences the computation of the Kronecker canonical form. As such we tend to be
interested more in metrical information than topological information. Therefore, we obtain
new distance formulas to the space of less generic matrix pencils in Section 4. In Section 5,



we derive an explicit orthogonal basis for the normal space of a Kronecker canonical form.
For us a versal decomposition will be an explicit decomposition of a perturbation into its
tangential and normal components, and we will not derive any miniversal deformations that
may have simpler forms, but hide the metric information.

Versal deformations for function spaces are discussed in [17, 24, 4, 5]. The first appli-
cation of these ideas for the matrix Jordan canonical form is due to Arnold [1]. Further
references closely related to Arnold’s matrix approach are [28] and [6]. The latter refer-
ence, [6], also includes applications to differential equations. Applications of the matrix
idea towards an understanding of companion matrix eigenvalue calculations may be found
in [13]. The only other work that we are aware of that considers versal deformations of the
Kronecker canonical form is by Berg and Kwatny [3] who have independently derived some
of the normal forms considered in this paper.

Our Section 2 contains a thorough explanation of versal deformations from a linear al-
gebra perspective. Chapter 3 briefly reviews matrix pencils and canonical forms. Chapter
4 derives the geometry of the tangent and normal spaces to the orbits of matrix pencils.
Chapter 5 derives the versal deformations, while Chapter 6 gives applications and illustra-
tions.

1.2 Geometry of matrix space

Our guiding message is very simple: matrices should be seen in the mind’s eye geometrically
as points in n? dimensional space. A perfect vision of numerical computation would allow
us to picture computations as moving matrices from point to point or manifold to manifold.

Abstractly, it hardly matters whether a vector is a column of numbers or a geometric
point in space. However, without the interplay of these two representations, numerical linear
algebra would not be the same. Imagine explaining how Householder reflections transform
vectors without the geometric viewpoint.

By contrast, in numerical linear algebra we all know that matrices are geometric points
in n? dimensional space, but it is far rarer that we actually think about them this way.
Most often, matrices are thought of as either (sparse or dense) arrays of numbers, or they
are operators on vectors.

The Eckart—Young (or Schmidt—Mirsky theorem) [27, p.210] gives a feel for the geometric
approach. The theorem states that the smallest singular value of A is the Frobenius distance
of A to the set of singular matrices. One can not help but to see a blob representing the
set of singular matrices. This amorphous blob is most often thought of as an undesirable
part of town, so unfortunately numerical analysts hardly ever study the set itself.

Demmel has helped to pioneer the development of geometric techniques [7] for the
analysis of ill-conditioning of numerical analysis problems. Shub and Smale [26] are applying
geometrical approaches towards the solution of polynomial systems.

We believe that if only we could better understand the geometry of matrix space, our
knowledge of numerical algorithms and their failures would also improve. A general program
for numerical linear algebra, then, is to transfer from pure mathematicians the technology to
understand geometrically the high dimensional objects that arise in numerical linear algebra.
This program may not be easy to follow. A major difficulty is that pure mathematicians pay
a price for their beautiful abstractions — they do not always possess a deep understanding



of the individual objects that we wish to study. This makes technology transfer difficult.
Even when the understanding exists somewhere, it may be difficult to recognize or may be
buried under a heavy layer of notation. This makes technology transfer time consuming.
Finally, even after putting in the time for the excavation, the knowledge may still be difficult
to apply towards the understanding or the improving of practical algorithms. This makes
technology transfer from pure mathematics frustrating.

Nevertheless, our goal as researchers is the quest for understanding which we may then
apply. In this paper, we follow our program for the understanding of the Jordan and
Kronecker canonical forms of matrices and matrix pencils, respectively. Many of the ideas
to be found in this paper have been borrowed from the pure mathematics literature with
the goal of simplifying and applying to the needs of numerical linear algebraists.

While this is quite a general program for numerical linear algebra, this paper focuses
on a particular goal. We analyze wversal deformations from the numerical linear algebra
viewpoint, and then compute normal deformations for the Kronecker canonical form. We
consider both of these as stepping stones towards the far more difficult goal of truly under-
standing and improving upon staircase algorithms for the Jordan or Kronecker canonical
form. These are algorithms used in systems and control theory. The structures of these
matrices or pencils reflect important physical properties of the systems they model, such as
controllability [10, 30].

The user chooses a parameter 7 to measure any uncertainty in the data. The existence
of a matrix or pencil with a different structure within distance 1 of the input means that
the actual system may have a different structure than the approximation supplied as input.
These algorithms try to perturb their input by at most n so as to find a matrix or pencil
with as high a codimension as possible. The algorithm is said to fa:l if there is another
perturbation of size at most n which would raise the codimension even further. Therefore,
we need to understand the geometry of matrix space in order to begin to understand how
we can supply the correct information to the user. With this information, we believe that
we would then be able to not only correctly provide the least generic solutions, but also
understand how singularities hinder this process. Bad solutions may then be refined so as
to obtain better solutions. As the next subsection illustrates, the geometry directly affects
the perturbation theory.

1.3 Motivation: a singular value puzzle

Consider the following four nearly singular matrices:

0 1+e 0 1 e 1 e 1
Ml_(o 0 ) M2_<e 0)’ M3_<0 e>’ M4_<0 e>' (1.1)

Each of these matrices are distance O(e) from the Jordan block J5(0) = ( g [1] )

What is the smaller of the two singular values of each of My, My, M3 and M4? The answer
18

Umin(Ml) - 07 Umin(MZ) =€, Umin(M3) ~ 62 and Umin(M4) ~ 62-



A quick way to verify this algebraically is to notice that the larger singular value of each
matrix is approximately 1 so that the smaller is approximately the (absolute) determinant
of the matrix. Another approach that bounds the smallest singular value is the combination
of the Eckart—Young theorem and the observation that these matrices are singular:

01 € 1 e 1
M{:Mla Mé:<0 0>aMé:<62 6>’M4:<62 6)'

When € = 0 in (1.1) our four matrices become the singular 2 x 2 Jordan block .J;(0).
As e varies from 0 each of the four forms in (1.1) traces out a line in matrix space. The
geometric issue that is interesting here is that the line of matrices traced out as e varies is
{ L:In 2:Normal 3:Tangent 4:Tangent } to the set of singular matrices. Somehow, this feels
like the “right” explanation for why the smaller singular values are { 1:0, 2:¢, 3:~ €2, dir €2
}.

Let us take a closer look at the set of singular matrices. The four parameters found in
a 2 X 2 matrix M are best viewed in a transformed coordinate system:

M= ) 01, (oo0), (1 0}, 1 0
TSI g Y11 0 Lo -1 “lo 1
. w—+ z €
N y  w—z )’

In this coordinate system, the singular matrices fall on the surface described by the equation
w? = 2% 4+ xy. This is a three dimensional surface in four dimensional space. The traceless
singular matrices (w = 0) fall on the cone 22 + xy = 0 in three dimensional space.

Our matrix J5(0) may now be represented as (1,0,0,0) and the four lines of matrices

(32)(21))
(24)+(2 1))
(24)+(3 %)
o (31}

The lines [1,l2 and I3 are all traceless, i.e., the matrices on each of these lines may be
viewed in the three dimensional space of the cone. The line [y is not only tangent to the
cone, but in fact it lies in the cone. The line /3 is tangent to one of the circular cross-sections
of the cone.

Figure 1 illustrates l3 as a “stick” resting near the bottom of the cone. The line /5 is a
thin line on the cone through the same point.

The line Iy is normal to the cone but it is also tangent to the manifold of singular
matrices. One way to picture this in three dimensions is to take the three dimensional slice

Lh={ (142,00,0 :{

o o o o o o

)}
l :{ (17y7070) }
}

l3 :{ (17(]’2’0)



Figure 1: Cone of traceless singular matrices with “stick” representing a tangent

of {w? = 22 4+ xy} corresponding to x = 1, i.e., {w? — z? = y}. This is a hyperboloid with
the Jordan block as a saddle point. The line is the tangent to the parabola w? = y which
rests in the plane z = 0. Figure 2 illustrates this line with a cylindrical stick whose central
axis is the tangent. Lastly, the line [5 is normal to the set of singular matrices.

If we move a distance € away from a point on a surface along a tangent, our distance
to the surface remains O(€?). This is what the singular value corresponding to I3 and Iy
is telling us. Alternatively, if we move normal to the surface as in [y, the singular value
changes more rapidly: O(e).

The cone of singular matrices with w = 0 is not only a slice of a large dimensional
space, but it is also the (closure of) the set of matrices similar to J2(0) (which we denote
orbit(.J5(0)) in Section 2.4). The matrices similar to J5(0) are singular and traceless. In
fact, the only matrix that is singular and traceless that is not similar to J5(0) is the 0 matrix
which is the vertex of the cone. We further explore this case in Section 2.5 after we have
defined versal deformations.

We conclude that the geometry of the orbit and in particular the directions of the
tangents and normals to the orbit directly influence the eigenvalue perturbation theory.

2 Introduction to Versal Deformations

This introduction is designed to be readable for general audiences, but we particularly target
the numerical linear algebra community.

The ideas here may be thought of as a numerical analyst’s viewpoint on ideas that were
inspired by Arnold’s work [1] on versal deformations of matrices. Further elaboration upon
Arnold’s versal deformations of matrices may be found in [6, Chapter 2.9 and 2.10] and
[28]. These ideas fit into a larger context of differential topology and singularity theory.
Bruce and Giblin [5] have written a wonderfully readable introduction to singularity theory
emphasizing the elementary geometrical viewpoint. After reading this introduction, it is
easy to be lulled into the belief that one has mastered the subject, but a whole further more
advanced wealth of information may be found in [17, 24, 4]. Finally, what none of these



Figure 2: Manifold of singular matrices. The axis of the cylindrical stick is tangent to the
manifold.



references do very well is explain clearly that there is still much in this area that mankind
does not yet fully understand.

Singularity theory may be viewed as a branch of the study of curves and surfaces,
but its crowning application is towards the topological understanding of functions and
their behavior under perturbations. Of course, numerical analysts are very interested in
perturbations as well.

2.1 Characteristic polynomials give the “feel” of versal deformations

Let A(M) be a differentiable one parameter family of matrices through Ay = A(0). This is
just a curve in matrix space. If Ag has a complicated Jordan canonical form, then very
likely, the Jordan canonical form of A()\) is a discontinuous function of A\. (The Jordan
canonical form, you will remember, can have nasty ones popping up unexpectedly on the
superdiagonal.) It is even more desirable if that function can somehow describe the kinds
of matrices that are near Agp.

Discontinuities are as unpleasant for pure mathematicians as they are for computers.
Therefore Arnold [1] asks what kinds functions of A are differentiable? (or many times
differentiable, or analytic.)

One function that comes to mind is the characteristic polynomial py(t) = det(A(X\) —tI).
The coefficients of py are clearly differentiable functions of A no matter how complicated a
Jordan canonical form the matrix Ay might have. In numerical linear algebra, we never com-
pute the characteristic polynomial, because the eigenvalues are often very poorly determined
by the coefficients of the characteristic polynomial. Mathematically, the characteristic poly-
nomial is a nice function of a matrix because its coefficients, unlike the eigenvalues of the
matrix, are analytic functions of the entries of the matrix.

The characteristic polynomial is a reasonable representation for the Jordan canonical
form under the special circumstance that every matrix A(\) is non-derogatory (i.e., each
matrix has exactly one Jordan block for each distinct eigenvalue). By a reasonable represen-
tation, we mean here that it actually encodes the Jordan canonical form of Ay. Theoretically,
if you know the characteristic polynomial, then you know the eigenvalues with appropriate
multiplicities. It follows that there is a unique non-derogatory Jordan canonical form. (See
Wilkinson [33, pp.11-16 or Note 55, p.408]). To repeat, there is a one-to-one correspondence
among the n eigenvalues of a non-derogatory matrix, the characteristic polynomial of a non-
derogatory matrix, and the Jordan canonical form of a non-derogatory matrix, but only the
characteristic polynomial is a differentiable function of the perturbation parameter . (The
eigenvalues themselves can have first order perturbations with the non-differentiable form
/7 for example, for an n x n matrix Ag with only one Jordan block Jn(A). This is a well
known example.)

In the language of numerical linear algebra, we would say that a non-derogatory matrix
Ay may be written in companion matrix form KCK !, in such a way that differentiable
perturbations to the matrix Ay lead to differentiable perturbations to the companion matrix
C. Here the matrix K is a Krylov matrix. (See [16, p. 369]). Equivalently, first order
perturbations to the matrix Ag are manifested as first order perturbations to the companion
matrix C. When Ay is a companion matrix, this gives a first order perturbation theory for
the characteristic polynomials of nearby matrices. This perturbation theory is computed in



[13].

Our story would almost stop here if we were only interested in the Jordan form of non-
derogatory matrices. We use “almost” because it would be a shame to stop here without
explaining the ideas geometrically. Even if we did not discuss the geometry, we have reasons
to continue on, since matrix space is enriched with the derogatory matrices, and also we wish
to generalize these ideas about the Jordan canonical form to cover the more complicated
case of the Kronecker canonical form.

2.2 The rational canonical form is not enough for derogatory matrices

In the previous subsection we saw that n parameters were sufficient to specify the Jordan
canonical form of any matrix in a small neighborhood of a non-derogatory matrix. What
happens if the matrix is derogatory? One obvious guess turns out to be wrong. The
usual generalization of the companion matrix form for derogatory matrices is the rational
canonical form. If Ag is derogatory, it may be put in rational canonical form. This form may
be thought of as the direct sum of companion matrices C; with dimension mq > mgy > ... >
my. The characteristic polynomial of each C; divides the characteristic polynomial of all the
preceding C},j < i. Can any nearby matrix be expressed as the direct sum of companion
matrices with dimension my,mo,...,m; in a nice differentiable manner? The answer is
generally no; though good enough to specify the Jordan canonical form of a matrix, the
rational canonical form fails to be powerful enough to specify the Jordan canonical forms
of all matrices in a neighborhood. The reason is that there are just not enough parameters
in the rational canonical form to cover all the possibilities. To have enough parameters we

need a “versal deformation”.

2.3 Versal deformation: the linearized theory

The “linearized” picture of a versal deformation is easy to understand. We therefore explain
this picture before plunging into the global point of view. The general case may be nonlinear,
but the linearized theory is all that really matters. For simplicity we assume that we are in
real n dimensional Euclidean space, but this assumption is not so important.

We recall the elementary fact that if S and 7 are subspaces of R™ such that S+7 = R",
then there exist linear projections wgs and w7 that map onto & and 7T, respectively.

Consider a point x € S. We will investigate all possible perturbations y of x, but we will
not be concerned with perturbations that are within S itself. Psychologically, we consider
all the vectors in S to somehow be the same so there will be no need to distinguish them.
Let T be any linear subspace such that S +7 = R", i.e., any vector may be written as the
sum of an element of 7 and an element of S (not necessarily uniquely). Clearly if ¢y, ...,
span T, then our perturbed vector x + y may be written as

k
r+y=x+ Z Ait; + (something in S),
i=1

where the A\; may be chosen as linear functions of y. We see here what will turn out to be
the key idea of a versal deformation, every perturbation vector may be expressed in terms
of the \; and vectors that we are considering to all be equivalent.

10



We now formally introduce the local picture of versal deformations.
Definition 2.1 A linear deformation of the point x is a function defined on A € R':
AN) =z + T\,
where T = [tyty ...t are arbitrary directions.

The choice of the word “deformation” is meant to convey the idea that we are looking
at small values of the )\;, and these perturbations are small deformations of the starting
point x.

Definition 2.2 A linear deformation A(\) of the point x is versal if for all linear defor-
mations B(u) of the point x, it is possible to write

B(u) = A(p(p)) + 0(p),

where ¢(p) is a linear function from py, ..., fm to A\, ..., A\ with $(0) = 0, and 6 is a linear
function from p into S, with S(0) = 0.

We now explain why A(\) = z 4+ YL, \it; is versal if and only if S +7 = R™. Clearly
A(p(u)) +6(p) € S+ T and since B may be arbitrary, it is necessary that span({t;})+S =
R™. It is also sufficient, because we then obtain linear projections allowing us to write
B(u) = x + nsB(p) + 77 B(p). The functions ¢ and 6 may be obtained from 7g and 7.

Definition 2.3 A linear deformation A(\) of the point = is universal or miniversal if it is
versal, and has the fewest possible parameters needed for a versal deformation.

The number of parameters in a miniversal deformation is exactly the codimension of S.
Numerical analysts might prefer taking the ¢; to be an orthogonal basis for S, the subspace
perpendicular to S. This provides one natural miniversal deformation. Arnold [1] does not
insist on using S, any basis for any subspace of dimension n —dim S will do provided that
it intersects S at zero only. From the topological point of view, this is exactly the same,
though of course the numerical properties may be quite different.

2.4 Versal deformations the bigger picture

The previous subsection explained the linear or first order theory of versal deformations.
At this point, the reader might wonder whether this is just a whole lot of jargon to merely
extend a basis for a subspace to the entire space. At the risk of delaying the motivation
until now, we decided to make sure that the linear theory is well understood.

We are still in a finite dimensional Euclidean space R™, but § will no longer be a flat
subspace. Instead, we wish to consider any equivalence relation ~, such that the orbit of x
(orbit(z)= {y|ly ~ «}) is a smooth submanifold. As an example we might define = ~ y to
mean ||z|| = ||y||, in which case the orbits are spheres. In this context the word “orbit” is
quite natural. In n? dimensional space, points may be thought of as n x n matrices, and
the orbit is the set of matrices with the same Jordan canonical form.

11



One final example that we must mention (because it explains the origins and significance
of singularity theory) lives in an infinite dimensional space. The vector space is the set of
analytic functions f(x) for which f(0) = 0. We can define f ~ ¢, if f(x) and g(¢(x))
have the same Taylor expansion at & = 0, where ¢ is a monotonic analytic function with
®(0) = 0. The orbit of any function is some complicated infinite dimensional manifold, but
the codimension of the manifold happens to be finite.

Returning to R, we can now cast everything into a nonlinear context.

Definition 2.4 A deformation of the point x is any differentiable function
Al
satisfying A(0) = x.

Definition 2.5 A deformation A(N\) of the point x is versal if for all deformations B(u),
it 18 possible to write

B(p) ~ A(¢(n))

in an arbitrarily small neighborhood of 0, where ¢(u) is a differentiable function from
W1y ey fbm t0 A1y, Ny for which ¢(0) = 0.

The good news is that the inverse function theorem lets us express this nonlinear notion
in terms of the linear theory:

Theorem 2.1 A deformation A(N) of x is versal if and only if A«(\) is a linear deformation
at the point x on the subspace tan(orbit(x)), where Ay is the linearization of A near x (i.e.
only first derivatives matter), and tan denotes the subspace tangent to the orbit at x.

The rigorous proof may be found in [1], but the intuition should be clear: near the point
x, only linear deformations matter, and the curvature of the orbit becomes unimportant:
only the tangent plane matters. In other words y ~ x only if y is in the orbit of z, but to
first order, y ~ x if (roughly speaking) y = x + s, where s is a small tangent vector to the
orbit.

2.5 Versal deformations for the Jordan canonical form

We begin with deformations of the matrix Ag = J2(0). The perturbation theory and the
normal and tangent spaces were discussed in Section 1.3. We will use the same coordinate
system here.

Four parameters p = (uy, o, i3, p14) are sufficient to describe the most general defor-

mation of Ag:
_ (01 p1 o 2

The equivalence relation is that of similar matrices, and it is easy to see by checking the
trace and determinant, that for sufficiently small values of u, we have the equivalence,

A(p) ~ BO\) = ( v )

12



where A = ¢(u) is defined by Ay = pug(l + o) — prpg and Xg = py + pg. It is worth
emphasizing that the equivalence relation does not work if A(u) is derogatory, but this does
not happen for small parameters p.

We then see from Definition 2.5, that the two parameter deformation B(\) is versal. In
fact, it is miniversal, in that one needs the two parameters. From the local theory pictured
in Section 1.3, we saw that the orbit of J5(0) is the two dimensional cone, and therefore
the tangent and normal spaces are each two dimensional. The number of parameters in a
miniversal deformation is always the dimension of the normal space.

It is a worthwhile exercise to derive the similarity transformation C'(u) for which

A(p) = C ()~ B(g(1))C (),

and then linearize this map for small values of u to see which directions fall along the
tangent space to the cone, and which directions are normal to the cone.

Now consider deformations of Ay = Iy or Ag = 0. Both matrices are derogatory with 2
eigenvalues 1 and 0, respectively. The tangent space does not exist (i.e., it is zero dimen-
sional). Any possible behavior may be found near I (or 0) including a one dimensional
space of derogatory matrices. The miniversal deformation of I5 (or 0) is the full deformation
requiring four parameters.

The general case has been worked out by Arnold [1]. The tangent vectors to the orbit
of a matrix Ay are those matrices that may be expressed as X Ay — ApX. The normal space
is the adjoint of the centralizer, i.e., the set of matrices Z satisfying

Allz = zAll.

Let Ag has p distinct eigenvalues \;,i = 1 : p with p; Jordan blocks each. Let ¢1(\;) >
q2(Ni) > ... > gp;(N\i) denote the sizes of the Jordan blocks corresponding to the eigenvalue
Ai. Then the dimension of the normal space of Ag is

P P p

D325 D) =D (a1(Xe) + 3q2(N) + 5gs(Ni) +...).

i=1j=1 1=1

Notice that the values of the distint A; play no role in this formula. The dimension of the
normal space of Ag is determined only by the sizes of the Jordan blocks of A associated
with distinct eigenvalues. If the matrix is in Jordan canonical form, then the normal space
consists of matrices made up of Toeplitz blocks, whose block structure is completely de-
termined by the sizes of the Jordan blocks for different eigenvalues. The normal space is
the same for all matrices with the same Jordan structure independent of the values of the
distinct eigenvalues, so one may as well consider only Jordan blocks corresponding to a
0 eigenvalue. This form of the normal space for the zero eigenvalues is a special case in
Theorem 5.1.

3 The Algebra of Matrix Pencils — Canonical Forms

We saw in Section 2.4 that to consider versal deformations, one needs a finite or infinite
dimensional space, and an equivalence relation on this space. For the remainder of this

13



paper, we consider the finite dimensional Euclidean space of matrix pencils endowed with the
Euclidean metric (usually denoted the Frobenius metric in this context). The equivalence
relation is that of the strict equivalence of pencils.

We consider a matrix pencil A — A\B, where A and B are arbitrary m X n matrices with
real or complex entries. The pencil is said to be regular if m = n and det(A — AB) is not
identically zero. Indeed, the zeros of det(A — AB) = 0 are the (generalized) eigenvalues of a
regular pencil. Otherwise, i.e., if det(A — AB) is identically zero or m # n, A — AB is called
singular. Two m X n pencils Ay — ABy and As — ABy are strictly equivalent if there exist
constant (independent of A) invertible matrices P of size m x m and Q of size n x n such
that

P7'(A; —\B))Q = Ay — \Bs.

Kronecker has shown that any matrix pencil is strictly equivalent to a canonical diagonal
form that describes the structure elements of A — AB (including generalized eigenvalues
and eigenspaces) in full detail (e.g. see [15]). This form is a generalization of the Jordan
canonical form (JCF) to general matrix pencils.

3.1 Kronecker canonical form

The Kronecker canonical form (KCF) of A — AB exhibits the fine structure elements, in-
cluding elementary divisors (Jordan blocks) and minimal indices, and is defined as follows
[15]. Suppose A, B € C™*". Then there exist nonsingular P € C™*™ and @ € C"*" such
that

P Y(A-AB)Q =5\, (3.1)
where S = diag (S11,...,Sw) and T' = diag (T'1,...,Ty) are block diagonal. S;; — ATy; is

m; X n;. We can partition the columns of P and @ into blocks corresponding to the blocks
of S— \T': P=[Py,..., Py where P; is m x m;, and Q = [Q1, ..., Q] where Q; is n x n;.
Each block M; = S;; — AT};; must be of one of the following forms: J;(«), N;, L; or LjT.
First we consider
a—\ 1 1 =X
Ji(a) = ' and N; = )

a— A 1

(3.2)

J;(a) is simply a j x j Jordan block, and « is called a finite eigenvalue. Nj is a j x j block
corresponding to an infinite eigenvalue of multiplicity j. The J;(«) and N; blocks together
constitute the regqular structure of the pencil. All the S;; — \Tj; are regular blocks if and
only if A — AB is a regular pencil. 0(A — AB) denotes the eigenvalues of the regular part of
A — AB (with multiplicities), and is called the spectrum of A — A\B.

The other two types of diagonal blocks are

—A

1

L= S and L] = (3.3)
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The j x (j 4+ 1) block Lj; is called a singular block of right (or column) minimal index j. 1t
has a one dimensional right null space, [1, A, ..., M]”, for any A. The (j 4+ 1) x j block L]T is
a singular block of left (or row) minimal index j, and has a one dimensional left null space
for any A. The left and right singular blocks together constitute the singular structure of
the pencil, and appear in the KCF if and only if the pencil is singular. The regular and
singular structures define the Kronecker structure of a singular pencil.

We also have a real KCF associated with real matrix pencils. If A, B € R™*", there
exist nonsingular P € R™*™ and Q € R"*", where as before P~1(A — AB)Q = S — AT is
block diagonal. The only difference with (3.1) is the Jordan blocks associated with complex
conjugate pairs of eigenvalues. Let o« = py + iw, where u,w are real and w # 0. If « is an
eigenvalue of A — AB, then also @ is an eigenvalue. Let J;(«a, @) denote a Jordan block of
size 27 x 27 associated with a complex conjugate pair of eigenvalues, here illustrated with
the case j = 3:

(uf)\ w 1 0 0 0
—w = A 0 1 0 0
N 0 0 W= A w 1 0
J3(a, @) = 0 0 W p—2 0 1 (3.4)
0 0 0 0 n— A w
L 0 0 0 0 —w = A

The Jordan block J;(«, &) plays the same role in the real Jordan canonical form as diag(.J; (),
Jj(@)) does in the complex JCF. Notice that each pair of the 2j columns of the real P and
Q associated with a J;(a, @) block form the real and imaginary parts of the (generalized)
principal chains corresponding to the complex conjugate pair of eigenvalues.

3.2 Generalized Schur form and reducing subspaces

In most applications it is enough to transfer A — AB to a generalized Schur form (e.g. to
GUPTRI form [11, 12])

A, — A\B, * *
PH(A - \B)Q = 0 Areg — ABreg * , (3.5)
0 0 A, — \B;

where P (mxm) and Q (nxn) are unitary and * denotes arbitrary conforming submatrices.
Here the square upper triangular block A,.y — AB;¢4 is regular and has the same regular
structure as A — AB (i.e., contains all eigenvalues (finite and infinite) of A — AB). The
rectangular blocks A, — AB, and A; — AB; contain the singular structure (right and left
minimal indices) of the pencil and are block upper triangular.

A, — AB, has only right minimal indices in its Kronecker canonical form (KCF), indeed
the same L; blocks as A — AB. Similarly, A, — AB; has only left minimal indices in its
KCF, the same LjT blocks as A — AB. If A — AB is singular at least one of A, — AB, and
A; — AB; will be present in (3.5). The explicit structure of the diagonal blocks in staircase
form can be found in [12]. If A — AB is regular A, — AB, and A; — AB; are not present in
(3.5) and the GUPTRI form reduces to the upper triangular block Aoy — AB,¢4. Staircase
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forms that reveal the Jordan structure of the zero and infinite eigenvalues are contained in
Areg — ADBjeg.

Given A — AB in GUPTRI form we also know different pairs of reducing subspaces
(31, 11]. Suppose the eigenvalues on the diagonal of A,.; — AB,.4 are ordered so that the
first k, say, are in Ay (a subset of the spectrum) and the remainder are outside Ay. Let
A, — AB, be m; x n,. Then the left and right reducing subspaces corresponding to A, are
spanned by the leading m, + k columns of P and leading n, + k columns of @), respectively.
When A; is empty, the corresponding reducing subspaces are called minimal, and when Ay
contains the whole spectrum the reducing subspaces are called mazimal.

Several authors have proposed (staircase-type) algorithms for computing a generalized
Schur form (e.g. see [2, 21, 23, 22, 29, 34]). They are numerically stable in the sense that
they compute the exact Kronecker structure (generalized Schur form or something similar)
of a nearby pencil A’—AB'. § = ||[(A — A", B — B')||; is an upper bound on the distance to
the closest (A+ A, B+ dB) with the KCF of (A’, B"). Recently, robust software with error
bounds for computing the GUPTRI form of a singular A — AB has been published [11, 12].
Some computational experiments that use this software will be discussed later.

3.3 Generic and non-generic Kronecker structures

Although, the KCF looks quite complicated in the general case, most matrix pencils have a
quite simple Kronecker structure. If A—AB is m xn, where m # n, then for almost all A and
B it will have the same KCF, depending only on m and n. This corresponds to the generic
case when A — AB has full rank for any complex (or real) value of A. Accordingly, generic
rectangular pencils have no regular part. The generic Kronecker structure for A — AB with
d=n—-—m>01is

diag(La,...,La,La+1,...,La+1), (36)

where a = |m/d], the total number of blocks is d, and the number of L, 41 blocks is m mod d
(which is 0 when d divides m) [29, 8]. The same statement holds for d = m —n > 0
if we replace Lo, Lat1 in (3.3) by LI, LI, . Square pencils are generically regular, i.e.,
det(A — AB) = 0 if and only if A is an eigenvalue. The generic singular pencils of size
n-by-n have the Kronecker structures [32]:

diag(L;, L, ; 1), j=0,....n—1 (3.7)

Only if a singular A — AB is rank deficient (for some \) may the associated KCF be more
complicated and possibly include a regular part, as well as, right and left singular blocks.
This situation corresponds to the non-generic case, which of course is the real challenge
from a computational point of view.

The generic and non-generic cases can easily be couched in terms of reducing subspaces.
For example, generic rectangular pencils have only trivial reducing subspaces and no gen-
eralized eigenvalues at all. Generic square singular pencils have the same minimal and
maximal reducing subspaces. A non-generic case corresponds to that A — AB lies in a
particular manifold of the matrix pencil space and that the pencil has nontrivial reducing
subspaces. Moreover, only if it is perturbed so as to move continuously within that manifold
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do its reducing subspaces and generalized eigenvalues also move continuously and satisfy in-
teresting error bounds [9, 11]. These requirements are natural in many control and systems
theoretic problems such as computing controllable subspaces and uncontrollable modes.

4 The Geometry of Matrix Pencil Space

In this section we derive formulas for the tangent and normal spaces of the orbit of a matrix
pencil that we will make use of in order to compute the versal form in the next section. We
also derive new bounds for the distance to less generic pencils.

4.1 The orbit of a matrix pencil and its tangent and normal spaces

Any m X n matrix pair (A, B) (with real or complex entries) defines a manifold of strictly
equivalent matrix pencils in the 2mn dimensional space P of m-by-n pencils:

orbit(4 — AB) = {P"'(A — AB)Q : det(P)det(Q) # 0}. (4.1)

We may choose a special element of orbit(A — AB) that reveals the KCF of the pencil.

As usual the dimension of orbit(A — AB) is equal to the dimension of the tangent
space to the orbit at A — AB, here denoted tan(A — AB). By considering the deformation
(I, + 0X)(A — AB)(I, — 0Y) of A — AB to first order term in J, where § is a small scalar,
we obtain A — AB + 6(X(A — AB) — (A — AB)Y) + O(6?), from which it is evident that
tan(A — AB) consists of the pencils that can be represented in the form

Ta— AT = (XA—AY) = \NXB— BY), (4.2)

where X is an m X m matrix and Y is an n X n matrix.
Using Kronecker products we can represent the 2mn-vectors Ty — AT € tan(A — \B)

as

I, ®A

vec(X) — I B

[ vec(T') ] _ [ AT @ Iy, vec(Y).

vec(Tg) | — | BT @I,

In this notation, we may say that the tangent space is the range of the 2mn x (m? + n?)
matrix

. (4.3)

T Atel, -I,©A
| B"®I1, -I,®B

We may define the normal space, nor(A—AB), as the space perpendicular to tan(A—\B).
Orthogonality in P, the 2mn dimensional space of matrix pencils is defined with respect to
a Frobenius inner product

<A~ AB,C —\D > =tr(AC" + BD"), (4.4)

where tr(X) denotes the trace of a square matrix X. Remembering that the space orthog-
onal to the range of a matrix is the kernel of the Hermitian transpose, we have that

A® I, B® I,

—_ e H -
nor(A — AB) = ker(T") = ker I, A"l —1, @ BH
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In ordinary matrix notation, this states that Z, — AZp is in the normal space of A — AB if
and only if
ZAA" 4+ zpB" =0 and A"z, +B"Zzz=o. (4.5)

The conditions on Z4 and Zp can easily be verified and also be derived in terms of the
Frobenius inner product, i.e.,

<Tpy— N, Zs— N > =tr(X(AZ + BZH) — (ZA+ ZEB)Y). (4.6)

Verification: if the conditions (4.5) are satisfied, it follows from (4.6) that the inner product
is zero. Derivation: if < Ta — NI, Za — AZp > =0, then tr(X(AZ + BZH) — (Z1 A +
ZHB)Y) = 0 must hold for any X (of size m x m) and Y (of size n x n). By choosing
X =0, (4.6) reduces to tr((Z¥A + ZIB)Y) = 0, which holds for any Y if and only if
ZH A+ 7 B = 0. Similarly, we can chose Y = 0, which gives that AZY + BZH = 0.

If B = I, this reduces to Z4 € nor(A) if and only if Z{ € centralizer(A), which is a
well-known fact (e.g. see [1]). We will see in Section 5.3 that though the A-part of the
normal space is very simple when B = I, obtaining an orthonormal basis for the B-part is
particularly challenging. The requirement that Zp = —A”Z, when B = I destroys any
orthogonality one may have in a basis for the A-part.

We now collect our general statements and a few obvious consequences:

Theorem 4.1 Let the m x n pencil A — AB be given. Define the 2mn x (m? + n?) matriz
T as in (4.3). Then

tan(A — AB) = range(T) = {(XA — AY) — A\(XB — BY)},
where X and Y are compatible square matrices, and
nor(A — AB) = ker(T") = {Z4 — \Zp},

where ZyA" + ZgB" =0 and A"Z,+B"Zz=0.
The dimensions of these spaces are

dim(tan(A — AB)) = m? 4+ n? — dim(ker (7)), (4.7)

and
dim(nor(A — AB)) = dim(ker(T#)) = dim(ker(T)) — (m — n)?. (4.8)

Of course, the tangent and normal spaces are complementary and span the complete
2mn dimensional space, i.e., P = tan(4A — AB) @ nor(A — AB), so that the dimensions in
(4.7) and (4.8) add up to 2mn as they should.

Theorem 4.1 leads to one approach for computing a basis for nor(A — AB) from the
singular value decomposition (SVD) of T. Indeed, the left singular vectors corresponding
to the zero singular value form such a basis. The dimension of the normal space is also
known as the codimension of the orbit, here denoted cod(A — AB). Accordingly, we have
the following “compact” characterization of the codimension of orbit(A — AB).

Corollary 4.1 Let the m x n pencil A — \B be given. Then,

cod(A — AB) = the number of zero singular values of T. (4.9)
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The corresponding result for the (square) matrix case is
cod(A) = the number of zero singular values of I, @ A — AT @ I,,.

Although, the SVD-based method is simple and has nice numerical properties (backward
stability), it is rather costly in the number of operations. Computing the SVD of T is an
O(m3n?) operation.

Knowing the Kronecker structure of A — AB, it is also possible to compute the codimen-
sion of the orbit as the sum of separate codimensions [8]:

COd(A - AB) = CJor + CRight + Creft + CJor,Sing + CSing- (410)

The different contributions in (4.10) originate from the Jordan structure of all eigenvalues
(including any infinite eigenvalue), the right singular blocks (L; <> Ly), the left singular
blocks (L]T + L1), interactions of the Jordan structure with the singular blocks (Lj and
LJT) and interactions between the left and right singular structures (L; <> L1, respectively.
Explicit expressions for these codimensions are derived in [8]. Assume that the given A—AB
has p < min (m,n) distinct eigenvalues \;,i = 1 : p with p; Jordan blocks each. Let
@1 (Ni) > q2(Ni) > ... > qp;(Ni) denote the sizes of the Jordan blocks corresponding to the
eigenvalue )\;. Then the separate codimensions of (4.10) can be expressed as

P P p

Cror = Y (27 = Dg;(N) =D (g1 (M) + 3q2(Ni) + 5gs(Xi) +...),

i=1j=1 1=1

CRight = »_(J —k—1), cren =2 (G —k—1), csimg=p (j+k+2),

>k i>k gk
ClorSing = (size of complete regular part) - (number of singular blocks).

Notice that if we do not wish to specify the value of an eigenvalue \;, the codimension count
for this unspecified eigenvalue is one less, i.e.,

14+ q(Ni) +3q2(Ni) +5g3(Ni) + ...

This is sometimes done in algorithms for computing the Kronecker structure of a matrix
pencil, where usually only the eigenvalues 0 and oo are specified and the remaining ones
are unspecified.

It is possible to extract the Kronecker structure of A — AB from a generalized Schur
decomposition in O((max(m,n))?) operations. The most reliable SVD-approach for com-
puting a generalized Schur decomposition of A — AB requires at most O((max(m,n))*)
operations, which is still small compared to computing the SV D of T (4.3) for already
moderate values of m and n (e.g. when m = n).

For given m and n the generic pencil has codimension 0 (i.e., span the complete 2mn
dimensional space) while the most non-generic matrix pair (A, B) = (Oyxn,Omxn) has
codimension = 2mn (i.e., defines a “point” in 2mn dimensional space). Accordingly, any
m X n non-generic pencil different from the “zero pencil” has a codimension > 1 and < 2mn.
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4.2 A lower bound on the distance to a less generic pencil

The SVD characterization of the codimension of orbit(A — AB) in Corollary 4.1 leads to the
following theorem from which we present an interesting special case as a corollary.

Theorem 4.2 For a given m X n pencil A — \B with codimension c, a lower bound on the
distance to the closest pencil (A+ 0A) — X(B + 0B) with codimension ¢+ d, where d > 1 is
given by

vV +n i=2mn—c—d-+1

where o;(T) denotes the ith largest singular value of T (0;(T) > o,41(T) > 0).

2mn 1/2
1(0A.0B)||z = L ( > Uf(T)) : (4.11)

Proof It follows from Corollary 4.1 that T" has rank = 2mn — ¢ if and only if A — AB
has codimension ¢ and (A 4+ 0A) — A(B + §B) has codimension ¢+ d, (d > 1) if and only if
T + 6T, where §T is defined as

(4.12)

T _
6T5[M I, In®5A]7

BT w1, —I,® B

has rank 2mn — ¢ — d. From the construction, it follows that ||0T||g = /m + n|[(6A,dB)|| g
(each element da;; and db;; appears m + n times in 67"). The Eckart Young and Mirsky
theorem for finding the closest matrix of a given rank (e.g. see [16]), gives that the size of
the smallest perturbation in Frobenius norm that reduces the rank in 7" from 2mn — ¢ to

Y 1/2
( > o? (T)) : (4.13)

i=2mn—c—d+1

2mn — ¢ — d is

Moreover, A — AB has codimension ¢ implies that o9, —c1(T) = ... = 09, (1) = 0. Since
|07 || g must be larger than or equal to the quantity (4.13), the proof is complete. O

Corollary 4.2 For a given generic m X n pencil A — B, a lower bound on the distance to
the closest non-generic pencil (A + JA) — XN(B + dB) is given by
Umin(T)
vm+n'

where owmin(T) = o9mn(T') denotes the smallest singular value of T', which is non-zero for a
generic A — \B.

1(04,6B)[|p > (4.14)

We remark that the set of m xn matrix pencils does not include orbits of all codimensions
from 1 to 2mn.

One application of Corollary 4.2 is to characterize the distance to uncontrollability
for a multiple input multiple output linear system Ei(t) = Fux(t) + Gu(t), where E and
F are p-by-p matrices, G is p-by-¢ (p > ¢), and E is assumed to be nonsingular. If
A — AB = [G|F — AE] is generic, the linear system is controllable (i.e., the dimension
of the controllable subspace equals p) and a lower bound on the distance to the closest
uncontrollable system is given by (4.14).
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5 Versal Deformations for the Kronecker Canonical Form

In this section, we derive versal deformations which for us will mean the decomposition
of arbitrary perturbations into the tangent and normal spaces of the orbits of equivalent
pencils.

5.1 An introductory example

We start with a small example before considering the general case. Let A — AB = L1 & L4
with codimension = 2. (This means that the manifold orbit(A — AB) has codimension 2 or
dimension 68 in the 70 dimensional space of 5 x 7 pencils.) Since A — AB already is in KCF
we know its block structure:

—A 1] 0 0 0 0
0 0[-A 1 0 0 0
A-AB=] 0 00 —-x 1 0 0 (5.1)
0 00 0 —A 1 0
0 00 0 0 —Xx1

From (4.2) the matrices in the tangent space are given by Ty — \Tp = (XA — AX) —
AMXB — BX), where

( —Y21 T11 — Y22 —Y23 T12 — Y24 T13 — Y25 Ti4a — Y26 T15 — Y21 W
T21 — Ya2 —Ya3  X22 — Y44 X23 — Y45 L24 — Y46 L25 — Ya7
Ty = ‘ —Ys1 ‘ ‘9[331 — Ys2 ‘ —Ys3  X32 — Ys4 T33 — Ys5 T34 — Yse T35 — Ys7
—Ys1 T41 — Ye62 — Y63 L42 — Y4 T43 — Y5 L44 — Yee L4a5 — Y67

L —Yn Ts51 — Y12 Y13 Ts2 — Yra T3 — Y15 Ts4 — Y16 Tss Y7 J

(5.2)
and
11 — Y1 —Y12 T12 — Y13 T13 — Y14 Ti14a — Y15 T15 — Yie Y17
T21 — Y31 —Y32 T22 — Y33 T23 — Y34 T4 — Y35 T25 — Y36 Y37
T 31 — Ya1 —Ya2 X32 — Y43 T33 — Ya4a T34 — Y45 T35 — Ya6 —Yar
B p—

‘1?41 — Ys1 ‘ ‘ —Ys52 ‘ L42 — Y53 T43 — Y54 L44 — Ys5 T4s5 — Ys6  —Ys7
L Ts51 — Ys1 T52 — Y63 I3 — Yea Ts54 — Y65 Tss — Yee  —Yer

(5.3)
By inspection we find the following two relations between elements in T4 and Tg:
b b
= 91 + 135 = 31 + L4, (5.4)
and
[0 #51 + 14 = thy + 3, (5.5)

where ¢7; and t?j denote the (i, j)-th elements of Ty and Tz, respectively. These two relations
show clearly that the tangent space has codimension at least two. It may be verified that
the other parameters may be chosen arbitrarily so that the codimension is exactly two.
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We want to find Z4 — Zp that is orthogonal to T4 — AXTg with respect to the Frobenius
inner product, i.e.,

0= <Ta—ATp,Za—NZp>=t2(TuZl + TZy) =Y _t75 + 0,70 (5.6)
i

This inner product is most easily envisioned as the sum of the elementwise multiplication
of the two pencils. Using this point of view it is obvious that the normal space consists of
pencils of the form Z4, — AZp € nor(A — AB):

0 000000 0O 0 |000O0O0
pr 0]0 0 0 0 0 0O 0000 O0O0
Za—MZp = |py p1 |00 0 0 O0|—A|—=pr 0O [0 0O0O0O
0 p2[0 0 0 00 —p2 —p1 |0 0 0 0 0
0 000000 0 —p2|0 0 0 0 0
0 0 |0oo0o0o00
» 0 00000
= | p+Aip m 00000/, (5.7)
Ap2 p2+Apr [0 0O 0 0 O
0 Aps [0 0 0 0 0

where p; and p, are arbitrary. Roughly speaking the parameter p; corresponds to the
doubly boxed entries (@) and the parameter ps corresponds to the singly boxed entries.

D

Now, A—AB+Z4—AZp may be thought of as a versal deformation, or normal form, with
minimum number of parameters (equal to the codimension of the original pencil). It follows
that any (complex) pencil close to the given A — AB can be reduced to the 2-parameter
normal form A — A\B 4+ Z, — AZp, where A — AB is in Kronecker canonical form.

5.2 Notation: a glossary of Toeplitz and Hankel matrices

The example in the previous section shows that a non-zero block of Z4 — AZg has a struc-
tured form. Indeed, the (2,1) block has a Toeplitz-like form with j — i = 3 non-zero
diagonals starting from the (1, 1)-element of the (2,1) block. A closer look shows that the
A-part has i — j — 1 = 2 non-zero diagonals and the B-part is just the same matrix negated
and with the diagonals shifted one row downwards. In general, different non-zero blocks
with Toeplitz or Hankel properties will show up in Z4 — A\Zp € nor(A — AB). To simplify
the proof of the general case we introduce some Toeplitz and Hankel matrices. Arrows and
“stops” near the matrices make clear how the matrix is defined.

Let Sk , be a lower trapezoidal s-by-t Toeplitz matrix with the first non-zero diagonal
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starting at position (1,1):

qomoooo
B : o ' . 1 p.l 0 0 |
St = . if s >¢, and S, = R : |, otherwise,
Ps—t+1 : —lps--p1 0 ---0
N

and let Tsth be a lower trapezoidal s-by-t Toeplitz matrix with the first non-zero diagonal’s
last element at position (s, ?):

0---0
0 : Di—st1 " D1 0 0
TsLXt: it s > ¢, and TsLXt: : .. 0|, otherwise.
pl e pt P pt73+1 pl
S0 k- —
LPt - P1]
+ —

If s < t, the entries of the last ¢ — s columns of S%_, are zero. Similarly, if s > ¢, the entries
of the first s — ¢ rows of Tk, are zero.
Let SB,, be a banded lower trapezoidal s-by-t Toeplitz with last row 0:

[P 0 0
o 0
P
sB,= Ds 1t : if s >t and SE, =0, otherwise,
0
Ps—t
L 0 0 |

and let T2, be another banded lower trapezoidal s-by-t Toeplitz matrix, this time with last
column 0:

l'pts... P1 0 0"
0o . :
0 Optfs"' plO

T8, = if s <t, and T2, =0, otherwise.

Notice that the last row of SB, (if s > ¢) and the last column of T3, (if s < t) have all
entries equal to zero.
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Moreover, let HE , be a lower trapezoidal s-by-t Hankel matrix with the first non-zero
diagonal starting at position (1,1):

i 0 0 P1 -‘\L
0 .
H = p_l ' if s>t and HL, = |: - .- |, otherwise,
[ Ps—t+1 "' DPs J—

and let HY,, be a similar upper trapezoidal s-by-t Hankel matrix:

F —
(pt plw
: 0 = —
o Pt Dt—s+1 D1
H5U><t — | | if s>+, and ngt = : 0|, otherwise.
0 : Pt—s+1 "°° D1 0 0
0 0

If s < t, the entries of the first t — s columns of HE , are zero. Similarly, if s > ¢, the entries
of the last s — t rows of HY,, are zero.
Let Hgy; be a dense s-by-t Hankel matrix (with the first diagonal starting at position

(1,1)):

(pl P2 P3Pt W
P2 :
Hs><t = P3 )
Lps o ps+t71J
for both the cases s >t and s < t.
The nilpotent k-by-k matrix
|01

will be used as a shift operator. For a given k-by-n matrix X, the rows are shifted one
row upwards and downwards by the operations C X and Cg X, respectively. The columns
are shifted one column rightwards and one column leftwards in an n-by-k matrix X by the
operations XC} and X C,CT, respectively. The k-by-(k 4+ 1) matrices

Gk = [Ik 0] and Gk = [0 Ik],

will be used to pick all rows but one or all columns but one of a given matrix X in the
following way. The first k& and last k& rows in a (k + 1)-by-n matrix X are picked by G X
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and G X, respectively. The k first and k last columns in an n-by-(k 4+ 1) matrix X are
picked by XG{ and XG{, respectively.

Let I, denote the k-by-k matrix obtained by reversing the order of the columns in the
k-by-k identity matrix. It follows that for an n-by-k matrix X, the order of the columns is
reversed by the multiplication XI.

So far, the matrices introduced are rectangular Toeplitz and Hankel matrices with a
special structure, e.g. lower trapezoidal (S*, T*, H'), banded lower trapezoidal (S, T?),
upper trapezoidal (HY) or dense (H). The matrices C' and G, G that will be used as “shift”
and “pick” operators, respectively, are Toeplitz matrices with only one non-zero diagonal.
In the next section we will see that versal deformations for all combinations of different
blocks in the KCF, except Jordan blocks with non-zero, finite eigenvalues, can be expressed
in terms of these matrices. To cope with non-zero, finite Jordan blocks Ji(7),v # 0 we need
to introduce three more matrices. First, two lower triangular Toeplitz matrices DY and E*
which are involved in the case with two Ji(7) blocks. Finally, the “monstrous” matrix F”,
which captures the cases with a (left or right) singular block and a Ji () block.

Given v # {0, 0c}, define two infinite sequences of numbers d; and e; by the recursion

d; . 1 1 Wdifl
[ vei | [ 1 2—1/i €i_1 ] ’ (5.8)
starting with
d1 _ Y
€1 1 )

Given sizes s and ¢, for 1 < ¢ < min{s,t}, we define Dy.y[q] and Esy[q] as lower
triangular Toeplitz matrices with ¢ diagonals in terms of dy,...,d, and e1,...,e4—1 and a
boundary value e; = —7d,.

[0 01 ( 0 0]
dq €
Dyxilq] = dqil and  Eglg] = | ‘'
dsy €9 :
L d1 d2 "'dq,1 dq UJ L €1 €2 -~~eq,1 6; 0_

We take linear combinations with parameters p; to form the matrices

min{s,t} min{s,t}
Dfxt :Z ijth[i] 7[-(7;)7 and Efxt :Z ijth[i] 7T(i)7 (59)
=1 =1
where j = min{s,#} — i+ 1 and 7(i) = —[[}_, k7/(1 — 2k) is defined to be 1/y and —1
for i = 1 and i = 2, respectively. The parameter index j and the scaling function 7 (i) are
chosen to satisfy D, = S& , and EF,, = —~CTSE , for v = 0 in Theorem 5.1 (see tables 1

and 2). By simplifying (5.9) using i = j and 7 (i) = 1 this consistency will be lost, but we
will still have valid expressions for the versal deformations.
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The relations between the elements of DL , and EL , are most readily shown by an
example:
[ 0 0 0 W
4 2
m (Qg‘ + 40 +1) 0 0
Df; =
43 » ( 27\7\ ) (|w2+1) pl( al* 4 \ _|_1) 0 )
2 4 2
P2 pay+ps j2) ( calele f%) (M +1) pl( oy 4 +1)J
and
( ‘ ’ 1
— (4 —_ 2
P (,@,%77) 0
EL = 2 _ _ =4 Ziyl2
3 1 (—%—1) +p2 (—’YMQ—’Y) P1 (—%—%—7) 0
2 — 4 —_ 2
L g —pa—psY 2l (—%—Q +p2 (—7|’Y‘2—7) » (—%—%—7>J

Let FL, (D for dense) be defined as
FRi =Y peit1 Folil,
=1

where Fsy[q] has the ¢ last rows non-zero and defined as:

fsfq+17j = 7]‘71 for ] = 17 st
fij=7fij1+ ficijifori=s—q+2,...,s,

and f; fori=s5—-q+2,...,

i—a (5.10)

s is defined as the solution to

< Fo[q)GT | — AFyi[qlGT |, Fyu[s —i+1)GT | — AFyuuls — i+ 1]GT | > =0.

Notice that f;; is used as an unknown in the generation of elements in (5.10). In the
definition of Fy.[q]. the solutions for f;; for i =s—g¢+2....,s ensure that Fouilq)GT | —

AFyyt[q)GT | is orthogonal to Fiy[G]GL | — AFyuy[GGL | for G=1,...,q—1.
Also here we show a small example to facilitate the interpretation of the definition:

P Py

(v[+1)y

D _ — By 54 p 2
F3io = P2 = PA a2 P+ DAL R

p3

— ~ 1 — ol
s e R e i e e

5.3 Versal deformations — the general case

Without loss of generality assume that A — AB already is in Kronecker canonical form,
M = diag(My, My, ..., M), where each My is either a Jordan block associated with a finite
or infinite eigenvalue or a singular block corresponding to a left or right minimal index. A
pencil Ty — XIg = XM — MY in the tangent space can be partitioned conformally with
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the pencil M so that T} — XT}¥ = X;; My — M;Yyj, where My, is my-by-ng, Xij is m-by-m;
and Y;; is n;-by-n;:

X o Xpp My M,y Yiu -+ Y
L | _ Lo
Xp1 o X M, M, Yoo - Y

Since the blocks TZ‘;‘ — )\Tig",i,j = 1,...,b are mutually independent, we can study

the different blocks of T4 — X1’z separately. Let Z;;‘ — )\Zg be conformally sized blocks
of Zx — A\Zp. From (4.5) we know that Z4 — AZp is in the normal space if and only if
A" Z,+ B Zp =0 and Z4A" + ZgB" = 0. We obtain a simple result since A and B are

block diagonal.

Proposition 5.1 Assume that M = A—\B = diag(Ay, As, ..., Ap)—Adiag(By, By, ..., By)
1s tn Kronecker canonical form, where each block A; — AB; = M; represents one block in the
Kronecker structure. Then Zp — NZp € nor(A — AB) if and only if

H A _ H B A H _ BnpH s N

The mutual independency of the (i,j) blocks of Z4 and Zpg implies that we only have
to consider two M blocks at a time:

. X X [ M0 Mo | [Yavy] [T T8 TE
d
N idl - azeigl = | A4 2 A 2 2 (513
Zalijl — NZglifl = | 2% 2 | o a| T 2|, 5.13
Zii Zj; Zji  Zjj

Notably, by interchanging the blocks M; = A; —AB; and M; = A; — AB; in the KCF, we
only have to interchange the corresponding blocks in Z4 — AZp accordingly. For example,
if Zali,j] — AZgli, j] in (5.13) belongs to nor(diag(M;, M;)), then

z4 74 VA A ,
Z@J{ Z%, - ij-f’ Zjlf € nor(diag(M;, M;)).

This implies that given two blocks M; and Mj;, it is enough to consider the case
diag(M;, M;). In the following we will order the blocks in the KCF so that Z4 — AZp
is block lower triangular.

Theorem 5.1 Let A — AB = diag(Ay, As, ..., Ay) — Adiag(By, Ba, ..., By) be in KCF with
the structure blocks M; = A; — AB; ordered as follows: Ly, Jp(0), Ji(v) (for v # {0,00}),
N, and L%, where the ordering within each block-type is in increasing order of size, except
for the L{ blocks which are ordered by decreasing order of size.

For all i and j, let the (i,7),(j,1) and (i,1),(j,7) blocks of Z4 — \Zg corresponding to
diag(M;, M;) be built from Table 1 and Table 2, respectively.

Then Zx — NZp gives an orthogonal basis for nor(A — AB) with minimum number of
parameters.
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Table 1: Blocks in Z4 — AZp € nor(A — AB), where it for L, & Lg, Jo(0) & J3(0), Jo(v) &
Jg(7), and N, & Ng, is assumed that a < 3. For LY & LL, o > 3 is assumed. Also 1 # 79

is assumed.

KCF:M;&M; | Z{) zp Zi Zj
L,®Lg 0 0 S,(]igx(aﬂ) *CZS[?X(CVH)
Lo®J5(0) 0 0 Séx(aﬂ) *CZSIQX(CVH)
La®Js(v) 0 0 FZ(asnGan “FRarnGon
La®Np 0 0 O Hg (at1) —Hg, (o)
Lo®L 0 0 GoriH(grox(arn) | GorrH(grox(arr)
Ja(0)@J(0) | Sk | -CESk, Tfa ~C5Tsva
Ja(0)BLE 0 0 H(%+1)><a _H(%+1)><acg;
Jo(®JIs(7) | Diys Ely s Do Efva
Jo(v)®BL 0 0 Gpr1(aFD (510)" | =Gor1(IaFl 509)"
No® Ng CaSk.s| —Sk.s CETS, 4 ~Tfa
No®Lj 0 0 T+1yxaCa ~T11)xa
LieLj 0 0 T(gﬂ)m _T(Bg+1)xac"‘
Ja(0)& J5(7) 0 0 0 0
Jo(0)® Ny 0 0 0 0

Jo (1)@ J5(72) 0 0 0 0
Ja(7)®Ng 0 0 0 0

Table 2: The diagonal blocks in Z4 — A\Zp € nor(A — AB).

KCF:M; | Zj 7z

Laq 0 0
Ja(0) Saxa | ~CaSaxa
Ja(7) Dgxa | Faxa
No Ca Saxa | ~Saxa
LT 0 0
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The superscripts B, L, U, and D of the matrices in tables 1 and 2 are parts of the matrix
definitions in Section 5.2. The superscript 1" is matrix transpose. All subscripts, e.g. a x 3,
refer to the sizes of the matrices.

Notice that the diagonal blocks (i,i) and (j,j) of Z4 — AZp can also be obtained from
Table 1 by setting i = j. For clarity we also display the expressions for the (i,7) and (7, j)
blocks of Z4 — AZp corresponding to all kinds of structure blocks M; in Table 2. Of course,
the (j,7) blocks corresponding to M; are read from Table 2 by substituting « with £.

The proof of Theorem 5.1 consists of three parts:

1. The blocks of Z4 — AZp displayed in Table 1 fulfill the conditions in Proposition 5.1,
which imply that Z4 — AZp € nor(A — AB) is orthogonal to an arbitrary T4 — AT €
tan(A — AB).

2. The number of independent parameters in Z4 — AZp is equal to the codimension
of orbit(A — AB), which implies that the parameterized normal form has minimum
number of parameters.

3. Each block in Table 1 defines an orthogonal basis, i.e., the basis for each parameter
p; is orthogonal to the basis for each other parameter p;, i # j.

We start by proving part 3, followed by proving parts 1 and 2 for the 16 different cases
diag(M;, M;) corresponding to different combinations of structure blocks in the KCF. In
Table 3 we display the codimension for these 16 cases and the number of parameters in the
(,1), (i,7), (j,7) and (j, 7) blocks of Z4 —AZp. The codimensions are computed from (4.10),
which is the minimum number of parameters required to span the corresponding normal
space. For the ordering and the sizes of the blocks in A — AB we have made the same
assumptions in Table 3 as in Table 1. Notice that the codimension counts for L, & Lg and
LZEBL/% are 0 if &« = . The number of parameters required in each of the (i,1), (4,7), (j, 1)
and (7, j) blocks of Z4 — AZp follows from the proof given below.

Proof of part 3. We show that each matrix pencil block in Table 1 has all its param-
eters in orthogonal directions. This is trivial for blocks built from the structured Toeplitz
and Hankel matrices S*, SB, H, H* HY, T", or TP (possibly involving some kind of
shift). Remember that the Frobenius inner product can be expressed in terms of the sum of
all results from elementwise multiplications as shown in (5.6). For each of these matrices,
the elementwise multiplication of the basis for one parameter p; and the basis for another
parameter p;,j # i only results in multiplications where at least one of the two elements
is zero. Obviously, these bases are orthogonal. For the matrix pencil blocks built from
the F'P matrix, the orthogonality follows from construction, since some of the elements are
explicitly chosen so that the Frobenius inner product is zero.

For the proof for the blocks of type D — AE" we define 54 in terms of the d; and e; in
(5.8) to be

q g—1
Sq = Zi‘di|2 + Zi|e,~|2 — qﬁdqéq.
=1 i=1

Independent of s and ¢, the number s, is the inner product of the gth basis vector with the
rth, where ¢ < r.
We show by induction that s, = 0 for ¢ = 1,2,.... Clearly s; = |y|* — 5 = 0.
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Table 3: The number of parameters in the (i,i), (4,7), (4,), and (j, j) blocks of Z4—\Zp €
I’IOI“(Mi D Mj).

KCF:M;©M; [cod(M;@aM;) [ (i,0) | () | (i) | (G.))
La®Lg B—a—-1 0 0 [f—a—1] 0
Lo®J5(0) 21 0 0 3 3
La®J3(7) 2p3 0 0 B B
Lo®Npg 20 0 0 3 3
Lo® L a+[3+2 0 0 |a+8+2| 0
Jo(0)® J5(0) B+ 3a « a « 5]
Ja(0)® LY 20 o 0 o 0
Ja(7)®J5(7) B+ 3a a | «a o B
Ja(’y)GBL%; 20 a 0 « 0
No® Ng B+ 3a ! o a 6]
No® L 20 a 0 « 0
LloLy a—3-1 0 0 |a=p—1| 0
Jo(0)®J5(7) a+f o 0 0 3
Jo(0) & Ng a+ [ a 0 0 6]
Jo(m)®JI5(72) a+f o 0 0 B
Jo(7)®BNg a+f a 0 0 6]

We now show that s,y — s, = 0 from which the result follows.

qvdgeq + (q+ 1)|dq+1|2 + ‘J|eq‘2 —(q+ 1)7dq+1€q+1 =

qeq(Tdg +eq) + (q+ 1)dgr1(dgy1 — 7 €qy1) =

dgr1((q+1)(dgy1 — 7 €qy1) — q8g) =

— — €,
dq+1((q + 1)(_7dq —€q +vdg + 2€¢ — q—i——ql) - qEq) =
dq+1((q + 1)511 —€q — qéq) = 0.

Since Z4 — AZp is built from b?> mutually independent blocks in Table 1, each associated
with ¢; parameters, it follows that Z4, — AZp is an orthogonal basis for a ¢y +c¢9 4+ ... 4 ¢2
dimensional space, with one parameter for each dimension. O

Proof of parts 1 and 2. Now, it remains to show that Z, — AZp is orthogonal to
tan(A — AB) and that the number of parameters in Z4 — AZp is equal to cod(A — AB).
Since the number of parameters in orthogonal directions cannot exceed the codimension, it
is sufficient to show that we have found them all. The orthogonality between Z4 — AZp and
tan(A — AB) is shown by proving that each pair of blocks fulfills the conditions AfZ]‘-‘Z‘- =
fB]HZﬁ and ZﬁA{I = fZﬁBZH in Proposition 5.1. In the following we refer to these as
the first and second conditions, respectively.

We carry out the proofs for all 16 cases M; & M, in Table 1, starting with blocks where
M; and M; are of the same kind.
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Ja(0) @ J3(0): We note that J(0) = Cy, — Aly. First condition for the (j,7) block:
HopA _ ~ATopl Tl H 7B
Second condition for the (j,i) block:
ZHAl =Tg CF =T§, ,Cl1y = C5 T o do = — 2]} B,
where we used that TﬁXaC’T CgTﬂLXa, for § > a. Similarly for the (i, j) block:

Az = CLSE, 5 =1.CLSk s = —Bf' 2]},
and

ZHAN = Sk, 5Ch = Sk, sCh1s = CLSk 515 = 2[B!

Here we used that SL C’T C’gSéX , for B > a.
Since the (i,1), (z ]) and (7,1) blocks of Z4 — A\Zp, have a parameters each and the
(7,7) block has  parameters, the total number of parameters in Z4 — AZp is equal to

cod(J,(0) & J5(0)) = B8+ 3a.

N, @ Ng: Since there is a symmetry between J;(0) = Cy — Al and Ny = I, — ACj, and
there is a corresponding symmetry between blocks in Z4 — A\Zp for Ji(0) and Ny blocks,
the proof for N, @& Ny is similar to the case J,(0) & J3(0).

Ja(v) ®Js(7): Here the (j,i) block and the (i, j) block are defined similarly (see Table
1), and therefore it is sufficient to prove one of them with no constraints on « and 3. We
note that Jx(v) = vIx + Cx — M. We show that the first and second conditions hold for
Zﬁ = Dgxalg] and Zﬁ = Epxalq] for ¢ =1,... ,min{«, 8}. First condition:

AT 75 = (v + Cp)" Dgyala] = TDpxald] + C§ Dpxaldl.

Remember that Dgy,[g] has all elements zero, except for the ¢ lower left diagonals, where
all elements in each diagonal are identical and defined by the element in the first column.
For ¢ = 1 the proof is trivial. For ¢ > 1, A;IZ]‘-‘Z‘- gives the following matrix. All diagonals
starting at position (u,1) for 1 < u <  — g are zero. The elements in the diagonal
starting at position (8 —¢+1,1) are Jd, which by definition is equal to —ey, which in turn
defines the corresponding diagonal in —FEgy,[¢]. The elements in the diagonals starting at
positions (5 —u+ 1,1), where 1 < u < ¢ are equal to ¥d, + dy4+1. Since dy 41 is defined as
—~d,, — €4, the elements in these diagonals are equal to —e,, which defines the elements in
the corresponding diagonals in —Egyq[q]. Since —Egyalq] = fB Z]Z, we have proved the
first condition.

Second condition: Since Dgyo[¢] only has ¢ < min{s, ¢} non-zero diagonals in the lower left
corner of the matrix, a shift of rows downwards gives the same result as a shift of columns
leftwards, i.e., CgD/gxa[q] = Dgyxalq]CL. Using information from the first part we obtain

ZJAIAIH :Dﬂxa[Q](’VIa + Ca)H = WDﬂXa[Q] + Dﬂxa[‘]]cg = WD,BXQ[Q] + CgD,BXa[Q]
= A1 = Byl = 28!

since B; is the identity matrix.
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Also here, the number of parameters in Zj‘; — /\Zﬁ- is A and it is « parameters in each
of the other three blocks, giving 3 + 3« in total.

Even though the (i,4), (j,7), (¢,7), and (j,7) blocks look rather complicated, they reduce
for v = 0 to the corresponding blocks for .J,(0) & J3(0) in Table 1.

L, @ Lg: Here we use Lj, = Gr — AGy. First condition for the (7,1) block:

0 CTSB « T ~T goB H B
] [ g H)l = G303 Spx(at1) = —Bj Zji-

H A T

B
S,BX (a+1)

Second condition for the (j,i) block:

A H B T
ZHAT = S (a41) Gl = gB

Bx(a+1 0

0 C’TSB « T oB T B noH
)] = [ oo H)l = Cp Spx(atnGp = =25 Bi"

Since the contribution from L, @ Lg to the codimension is f —« —1 and the (j,4) block has
0 — a — 1 independent parameters we deduce that all other blocks in Z4, — A\Zp are zero.

LaT @ Lg: Since this case is just the transpose of L, @ Lg the proof is almost the same,
and therefore we omit the technical details here.

So far, we have proved all cases where both blocks are of the same type. Since the
diagonal blocks in Z4 — AZpg always correspond to such cases (see Table 3 for the number
of parameters in these blocks), we from now on only have to consider the (7,j) and (j,1)
blocks, where i # j for the remaining cases.

L, ® J3(0): First condition for the (j,¢) block:
H A T _ T gL _ H B
Second condition for the (j,i) block:
A H I AT TGl T BpH
ZjiAi = Sﬂx(a+1)Ga = C,B Sﬂx(a+1)Ga = _ZjiBi .

The (i,4) and (j,j) blocks contribute with zero and [ parameters, respectively. Since
the (j,1) block gives another (3 parameters, we have found all 23 parameters, and therefore
it. follows that Z;} = AZ[} = 0.

L, ® Jg(v): First condition for the (j,7) block:
H A T T T
Aj Zi = (vl + Cﬁ) ,6><(ﬂ+2)Ga+1 Fﬂx(,6+2)G 1t C,B ,6x(ﬂ+2)Ga+1-

By inspection we see that the (u,v)-element of this matrix is Wfiv + f;ffl’v if u>1 and
Jfd, if u =1 (where f, 6 denotes the (u,v)-element of F”). The right hand side of the
same condition is
H B D AT
—Bj Zji = 1sF 5 (512)Gatrs

which simply is the G leftmost columns of F,6><(ﬂ+2) The (u,v)-element of this matrix is
then f;ivﬂ, which is defined as ng,v + f{f,lm if u>1 and Wfiv ifu=1.
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Second condition for the (j,i) block:

0
A fHAT D T AT D D A T BnpH
ij'Ai Ga = F,6><(a+2)Ga+1Ga = Fﬂx(a+2) Io| = Fﬂx(a+2)Gﬂ+1Ga - _ZjiBz' .
0

As in the previous case, the (i,i) and (7, j) blocks contribute with zero and 3 parameters,
respectively. Since the (j,7) block gives the remaining 3 parameters, the (i, ;) block is the
zero pencil.

Notably, for v = 0, the “monstrous” (j,¢) block reduces to the (j,¢) block for L, @ Jg(0)
in Table 1.

L, @& Ng: First condition for the (j,) block:

H7A __ T r7L _ T gyL _ H B

X (a+1) X (a+1)

Second condition for the (j,i) block:

T _ B npH
HL ﬂx(a+1)Ga - _ij'Bi :

. 0
A HAT T 7L L
ZAALGE = CEHY (01 = [ ] —H
(B—1)xa

Also here, the (i,i) and (j, j) blocks contribute with zero and [ parameters, respectively.
Since the (j,i) block gives the remaining 3 parameters, the (i, j) block is the zero pencil.

L, ® LﬂT: For this case the (i,i) and (j,j) blocks are zero pencils. First condition for the
(7,1) block:

AP 78 = GpGai1H gy xarn) = 10 Is O1H g i)k (as1) = GsGairHiproyx(at1) = —BJ Z).

Second condition for the (j,i) block:

ZﬁAzH = G/5+1H(ﬁ+2)><(a+1)G£a

which is a matrix consisting of the §+ 1 first rows and « last columns of Hzy9)x(at1)-
This matrix is identical to the one given by the 3 + 1 last rows and « first columns of

Hg19)x(at1), 1€ )
Gpr1H(groyx(at)Ge = —Z5 BT
Since this block has all a + 3 + 2 parameters, it follows that the (i, j) block is the zero
pencil.

Jo(0) @ LF: First condition for the (j,i) block:

HrrA __ A U
Aj Zji - GﬂH(ﬂ+1)><a7

U
(B+1)xa”

one column leftwards and pick the [ first columns of that

which simply is the last 3 rows in H

shift the columns in H(%—H)Xa

matrix, which can be written as

Another way to construct this matrix is to

U T H B
G/BH(,B+1)><QCOL = *Bj Zji'
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Second condition for the (j,i) block:

Zle'AzH: (ﬂ+1)><aC£_H(,6+1)><aCZI ZﬁBz'H-

The (i,4) and (4, j) blocks contribute with o and zero parameters, respectively. Since
the (j,i) block gives another « parameters, we conclude that the (i,7) block is the zero
pencil.

Jo(y) ® LT' Since the proof for this case is similar to the one for the case L, & J3(7), we
omit the technlcal details here. It follows that for v = 0, the (j,7) block reduces to the (j,1)
block for J,(0) & LT in Table 1.

N, ® LT First condition for the (j,7) block:
AT 78 = GT s 1)waCl

which is the last 3 rows in T/ shifted one column leftwards. This matrix is identical

(B+1)xa
to the one given by the § first rows in T([Hl)m, which is
H,B
GoT(pxa = —B; 251
Second condition for the (j,4) block:
A H _ T T BpH
Zii Al = (ﬁ+1)XaCaI = T(,[i‘+1)><acoz = —Z;B;".

The (i,i) and (7, j) blocks in Z4 — AZp contribute with o and zero parameters, respec-
tively. Since the (j,7) block gives another o parameters, we conclude that the (i,7) block
is the zero pencil.

Ja(0) ®Js(7), Ja(0) & Ng, Jo(y1) ®JIg(y2). and Jo(v)ENg: In these four cases the (i, 1)
and (7, 7) blocks contribute with o and  parameters, respectively, and therefore the (7j,1)
and (7, j) blocks are zero pencils.

Since we have considered all possible cases of M; and M; blocks the proof is complete. O

6 Applications and Examples

6.1 Some examples of versal deformations of matrix pencils in KCF

In the following we show three examples of versal deformations of matrix pencils. For the
7 x 8 pencil A — AB = Ly & J5(0) & J5(0) with codimension 14, the 14-parameter versal
deformation A — AB 4+ Z4 — A\Zp, where Z4 — A\Zp € nor(A — AB) is given by

[0 0 0l0O 0]0 0 O |
0O 0 010 0O 0 0
p1 0 O0|ps O0|po 0O O
Za=|p2 p1 O0|p7 pe|pnn po 0 |,
ps 0 010 O |pi2 O 0
pe p3 0 |ps 0 |pi3 p12 O
L P5 P4 P3| P9 P8 |P14 P13 P12 |
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and

( 0 0 ol 0 o] o 0 0]
0O 0 0| 0 0] 0 0 0
0 0 0] o0 o] 0 0 0
Zp=|-p1 0 O0]-ps O|—pio 0 O
0 0 0] 0 o] 0O 0 0
—p3 0 0| 0 O|l—p12 O 0

L ~ps —p3 O|—ps O] —p13 —p12 0|

For the 3 x 4 pencil A — AB = Ly & Jy(v) with codimension 4, the 4-parameter versal
deformation A — AB + Z4 — AZp, where Z4 — AZp € nor(A — AB) is given by

0 0 \ 0 0
Za = P1 Py ) pa(y” +1) 0 ;
e =_ o =1 2
P2 =g P ey | Pay + e paT 1)
and
0 0 \ 0 0
Zp = T 7 37 +7) 0
e -1 =2 27y e — A — 245
PV Py TPT Py P3 — P47 p3(I*7 +7)

For the 11 x 11 pencil A — AB = L; @ J3(0) ® Ny & LI with codimension 26, the 26-
parameter versal deformation A — AB+ Z4 — \Zp, where Z4 — A\Zp € nor(A — AB) is given
by

0 0 0 0 0 0 0 0O 0(0 O
pr O |pis O O] 0 O 0 0|00
p2 pi|piap3 00 0O 0 0(]0O0
p3s D2 |p1s p1a P3| 0O 0 0 0|00
0 0 0 0 0 0 0 0O 0(0 O
= 0O ps| 0 0O O |py O O 0|0 O],
pa p5 | 0 0 0 |po po O 000
ps pe | 0 0 0 |par pao pr9g 0]0 O
ps P9 | P18 pir pislpes O 0 0]0 0
P9 pro|p17 P16 O [pag p23 0 010 O
| p1o p11|pie O O |pas paa pez 0|0 O ]

35



and

( 0 0 0 0 0 0 0 0 0 00 W
0 0 0 0 0 0 0 0 0 00
—m 0O |—-p13 0 0 O 0 0 0 |00
—p2  —p1 | —pa —p13z 0] 0O 0 0 0 |00
0 —Pa 0 0 O0|-piw O 0 0 (00
Zp=| —ps -ps5| O 0 Of|-p2 —-p9 O 0 (00
-ps —pe| O 0 Of-por —p20 —pP9 0 |00
-ps —pr| O 0 Of—p22 —p21 —p20 —p19|0 O
—p9 —pro|—pir —Ppie 0| —p2a —p23z 0O 0 100
=pro —pur| P 0 Of—=pas —paa —p2s 0 |00

L —pnn —piz| O 0 Of—p2w —p25s —p24a —p23|0 0 J

6.2 Versal deformations of the set of 2-by-3 matrix pencils

In [14], the algebraic and geometric characteristics of the set of 2-by-3 matrix pencils were
examined in full detail, including the complete closure hierarchy. There, all non-zero and
finite eigenvalues were considered as unspecified. Ry was used to denote a 2-by-2 block with
non-zero finite eigenvalues, i.e., any of the three structures Jy(a)® J; (3), Ji(a)® Ji («), and
Jy(ar), where a, 5 # {0,00}. However, in the context of versal deformations all these forms
are considered separately and with the eigenvalues specified (known). Consequently, we now
have 20 different Kronecker structures to investigate. For example, the versal deformation
of A—AB = Lo @& Jo(7), v # {0, 00}, is found by computing Z4, — A\Zp =

p1+/\7p1 ps([71* + 1) + ps(|7)*7 +7) 0

_ 2 2 _ 6.1
+ Mp27 + —p3y +pa + A(ps +pa7) p3(|v]” + 1) +ps(v]TT+7) (6.1)

p2 —

M +1 v]® +1)

In Table 4 we show the versal deformations for all different Kronecker structures for this set
of matrix pencils. The different structures are displayed in increasing codimension order.

6.2.1 Using GUPTRI in a random walk in tangent and normal directions of
non-generic pencils

In order to illustrate how perturbations in the tangent space and in the normal space affect
the Kronecker structure computed by a staircase algorithm, we have performed a set of tests
on non-generic 2-by-3 matrix pencils. Since the staircase algorithm considers all non-zero
finite eigenvalues as unspecified, we have not included these cases in the test.

For the remaining 12 non-generic cases a random perturbation £4 — AEp, with entries
e € ”, has been decomposed into two parts, T4 — Ng € tan(A — AB), and Z4 — \Zp €
nor(A — AB), such that

E,=T4+Z4, and FEp=1T1p+ Zp.

We illustrate the decomposition of E4 — AEp with A — AB = Lo ® J5(0). From Table 4 we
get

p1 ps O
P2 P4 P3

Za = Zp =

b

-p1 —p3 0O

0001
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Table 4: Versal deformations A — AB + Z4 — AZp of the set of 2-by-3 matrix pencils.

KCF A- B Za— Mg
5 [—Xx 1 0] [o 0 o}

0 A1 000
Li® Ji(v) [O/\ (1) ’ygz\} {Pl +(3\7P1 7P +0)\72P1 P2 —|—(1\7p2}
L& J1(0) _0/\ (1) _0,\ [1?1 8 1?2}
Lie N, [O/\(l)(lj} [8)\2?1 /\272}
Lo & Ji(m) @ Ji(72) {8 ’Y]O_)\ 720_,\} {Z;iiz;g p3+371p3 p4+;\)72p4}
Lo & Jo(7) {8 WBA 71,\} See (6.1)
mome)  [0750,0] [AnTn e ne]
Lo & J1(0) & Ji(v) [8 _0)\ 70,\} |:p2 +p/]\7p2 %3 2 +(/)Wp4}
Lo ® Ju(7) & N, {SWOAH [plf\szl p3+37p3 )\(;J
Lo ® J3(0) [8 _0)\ _1,\} {pQ fl/\p] 2 f3/\p3 ;3}
Lo ® N g (1) 71)\_ [p1/-\|-p/{]72 Psi\'p;m )‘2’3}
Lo® J,(0) & N, 8 _OA (1) {AP;Q ' AZJ
Lo Li &Ly g 70/\ (1) {Zh +0/\P2 D3 -|-0)\p4 Da +0)\p5}
Lo240) B )
[000] [ ]
B Fsvanevi]
2L0 © Ji(7) ® Lg {8 8 VEA} {”;fﬁﬂ’? p;5++Aij4 ZZ Kzﬂ
2Lo ® Ji(0) ® Ly 8 8 0)\: {Pz -II-h)\pa Ds f4}‘p6 i;}
2L & N, & LT {8 8 (1)} [in—p)l\pg psi\f-p;\pa ig;}
000 [mEam i ]
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Let T4 — \NTp = (E4 — AEB) — (Z4 — A\Zp). Now, the parameters p; are determined by
computing the component of E4 — AFEp in each of the four orthogonal (but not orthonormal)
directions that span the normal space:

a-y([boe] o[ 5]

We conclude that

a b
11— 2

2 3

a a b
els +e5: — e
a 12 23 22 a
P2 =€y, P3=——"—"- — , DPia= €y

pP1 = 3

It is easily verified that < Ty — NXI'g,Z4 — AZg > = 0.

GUPTRI [11, 12] has been used to compute the Kronecker structure of the perturbed
pencils A —AB + €(Eq4 — AEp), A= AB+¢€(Zs — AZp), and A — AB + ¢(Ta — \T'g), for
e=10"1610"1° ..., 10. We investigate how far we can move in the tangent and normal
directions before GUPTRI reports the generic Kronecker structure.

The procedure has been repeated for all cases and for 100 random perturbations (F 4, Fp),
where ||(Ea, Ep)||r =1 and ||Eallr = ||[Ep||r. The entries of (E4, Ep) are uniformly dis-
tributed in (—0.5,0.5). For each case and for each perturbation 4 — AEp we record the
size of € when GUPTRI reports the generic Kronecker structure. In Table 5 we display the
smallest, median, and maximum values of ¢ for the 100 random perturbations.

Entries marked + in Table 5, represent that the generic structure was not found for any
size of the perturbations. All these results were for perturbations in tan(A — AB), and they
indicate that for these Kronecker structures there are no or only small curvatures in the
orbit at this point (pencil). Here the tangent directions are very close to orbit(A — AB).

Notably, the results for the perturbations e(E4 — AEp) are, except for one case, similar
to the results for €(Z4 — AZp). This is natural since the perturbation 4 — AEp implies a
translation both in the tangent space as well as the normal space directions. The structure
changes appear more rapidly in the normal space, i.e., for smaller e. Our computational
results extend the cone example in Section 1.3 to 2-by-3 matrix pencils.

Why is the smallest perturbation 10716(Z4 — AZp) enough to find the generic structure
for the three cases Lo @ 2.J1(0), Lo & 2Ny and 3Ly & ng“? The explanation is connected to
the procedure for determining the numerical rank of matrices.

GUPTRI has two input parameters, EPSU and GAP, which are used to make rank decisions
in order to determine the Kronecker structure of an input pencil A — AB. Inside GUPTRI
the absolute tolerances EPSUA = || A|| g - EPSU and EPSUB = || B|| g - EPSU are used in all rank
decisions, where the matrices A and B, respectively, are involved. Suppose the singular
values of A are computed in increasing order, ie., 0 < 01 <09 < ... <0 < 041 < .3
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Table 5: How far we can move in tangent and normal directions before non-generic 2-by-3
matrix pencils turn generic.

E(ZA*)\ZB) E(TA*)\TB>
A—AB COd(A — AB) €min €median €max | €min  €median €max
Ly & J1(0) 2 0% 107* 103 [1072 107t 107!
Lo N 2 04 10* 107 {1072 100! 10°
Lo & J5(0) 4 10 107* 1073 (1072 107t 10°
Ly & Ny 4 05 107* 10?1002 100" 107!
Lo® Ji1(0) & Ny 4 10t 107* 1072 {1072 107t 10°
Loo Ly LY 5 0% 10* 10?2 1002 100" 10°
Lo & 2J1(0) 6 1071 10716 10716 + 4+ +
Ly & 2N, 6 10716 1071 10716 +  + +
2Lg & LT 6 10t 10t 10|+ + +
2Ly @ J1(0) & LY 8 0% 100 107t |+ + +
2Ly & Ny & LY 8 10-* 10* 107% | + + +
3Ly ®2L¢ 12 10716 10716 10716 | 4+ + +

then all singular values o}, < EPSUA are interpreted as zeros. The rank decision is made
more robust in practice: if o, < EPSUA but 041 > EPSUA, GUPTRI insists on a gap between
the two singular values such that oyy1/0r > GAP. If 0441/0 < GAP, 0p41 is also treated
as zero. This process is repeated until an appreciable gap between the zero and non zero
singular values is obtained. In all of our tests we have used EPSU = 10~® and GAP = 1000.0.
For the most non-generic case 3Lg & 2L{", both the A-part and the B-part are zero
matrices giving EPSUA = EPSUB = 0, which in turn lead to the decision that a full rank
perturbation £ 4 — AFp times a very small € is interpreted as a generic pencil. For the other
two cases, either the A-part or the B-part is full rank and the other part is a zero matrix,
which accordingly is interpreted to have full rank already for the smallest perturbation.

6.2.2 Versal deformations and minimal perturbations for changing a non-generic
structure

In the following we illustrate how versal deformations are useful in the understanding of
the relations between the different structures, by looking at requirements on perturbations
to (A, B) for changing the Kronecker structure. Assume that we have the following matrix
pencil with the Kronecker structure Ly & .J;(0):

*61)\ €9 0

0 0 —ezA (6.2)

A—)\B:[

] and ZA—AZB:[O 0 0]

1 0 po

It was shown in [14] that Ly & J;(0) with codimension 2 is in the closure of orbit(L; & .J1 (7))
(7 # {0,000} but otherwise unspecified) with codimension 1, which in turn is in the closure
of orbit(Ls) (the generic KCF) with codimension 0. Notice in Table 4, since v is assumed
specified, Ly & Jy(v) has two parameters (and codimension = 2). In the discussion that
follows we assume that - is finite, non-zero but unspecified.
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We will now, for this example, illustrate how perturbations in the normal space directions
can be used to find more generic Kronecker structures (going upwards in the Kronecker
structure hierarchy), and how we can perturb the elements in A — AB to find less generic
matrix pencils. Since the space spanned by Z4 — AZp is the normal space, we must always
first hit a more generic pencil when we move infinitesimally in normal space directions.

The KCF remains unchanged as long as p; = po = 0, but for p; = 0 and ps # 0, the
KCF is changed into Ly & .J; () (with v = py). That is, by adding a component in a normal
space direction, we find a more generic pencil in the closure hierarchy. Notably, the size of
the required perturbation is equal to the smallest size of an eigenvalue to be interpreted as
non-zero. By choosing p; non-zero (and po arbitrary), the resulting pencil will be generic
with the KCF Ly.

To find a less generic structure, we may proceed in one of the following ways:
1. Find a less generic structure in the closure of orbit(L; & J1(0)).

2. Go upwards in the closure hierarchy, to a more generic structure and then look in
that orbit’s closure for a less generic structure.

We know from the investigation in [14] that all structures with higher codimension than
A—AB = L1 @ J;1(0) include an Ly block in their Kronecker structures, which in turn imply
that A and B must have a common column nullspace of at least dimension 1. Therefore,
the smallest perturbation that turns Ly & J;(0) less generic is the smallest perturbation
that reduces the rank of

0620
Al o o0 o0
Bl |e 0 0

0063

The size of the smallest rank-reducing perturbation is equal to the smallest of the singular
values €1, €2, and €3. By just deleting one ¢;, the corresponding perturbed pencil is a less
generic pencil within the closure of orbit(L; & J;(0)). These three cases correspond to
approach 1 above. We summarize these perturbations and the perturbations in the normal
space in Table 6. Notice that approach 2 will always require a perturbation larger than
min{e; }.

Which of the non-generic structures displayed in Table 6 is obtained by the smallest
perturbation to L; & J1(0)? Mathematically, it is easy to see that the perturbations in the
normal space always can be made smaller than a rank-reducing perturbation ¢;, since p;
and py are parameters that can be chosen arbitrary small, e.g. smaller than min{e;}.

However, in finite precision arithmetic, it is not clear that the smallest perturbation
required to find another structure is in the normal direction. This can be illustrated by
using GUPTRI to compute the Kronecker structures for A — AB as in (6.2) and perturbed as
in Table 6. For EPSU = 1072, ¢, = 1 and €; = e3 = 107'%, GUPTRI uses different tolerances
EPSUA = 10® and EPSUB = 10~ '® for making rank decisions in A and B, respectively. It
follows that for p; and ps of order 107¢, GUPTRI still computes the Kronecker structure
Ly @ J1(0). However, if py = p; = 0 and the B-part of the pencil is perturbed by € or €3,
GUPTRI computes the less generic structures, just as shown in Table 6.
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Table 6: Perturbing A — AB (defined in 6.2) yields the pencil A — AB with more or less
generic structures. The codimension of the original orbit is 2.

[(AA, AB)||p A—-)\B KCF cod(4 — AB)
R I TN I )
0 —Bm 602 N —063/\ L1 & Ji(ps) 1(2)
& [—00 ; 33)\1 Lo @ 11 (0) & N, 4
3 [_BM IS 001 Lo® Ly & LT 5
€ [ —BM g _SBA ] Lo & 2J,(0) 6

7 Conclusions

In this paper, we have obtained not only versal deformations for deformations of Kronecker
canonical forms, but more importantly for our purposes, metrical information for the per-
turbation theory of matrix pencils relevant to the Kronecker canonical form. In Part II
of this paper, we will explore the stratification theory of matrix pencils with the goal of
making algorithmic use of the lattice of orbits under the closure relationship.
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