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1 Introduction and statement of resultsIn [4], Demmel investigates the probability that numerical analysis prob-lems are di�cult by unifying the common algebraic and geometric structuresunderlying the notion of ill-conditioning. As an application of his theory,he constructs a probabilistic model to examine the probability that matrixinversion is di�cult. It is our goal in this note to work exclusively withinhis framework and derive exact distributions for the condition numbers thathe considers. This condition number is a measure of di�culty in that thelarger the value of the condition number, the more \di�cult" matrix inver-sion becomes. The limitations of the model are discussed in [4]. We con-sider it a rather remarkable accident of mathematics that these distributionscan be written down in a closed form at all. Although, as Demmel states,the assumption that matrices are uniformly distributed spherically is ratherstrong, the mathematics stands on its own, and indeed might have furtherapplications to the \tubular neighborhoods" that he uses and perhaps alsoin multivariate statistics.The objects of study are a scaled version �D(A) � kAkF � kA�1k of theusual condition number, and its distribution when considering random realand complex n by n matrices with elements distributed uniformly on thesphere 1 = kAk2F = P a2ij: Because of the scale invariance of the conditionnumber and special properties of the normal distribution, it is equivalent toassume that the random matrices are generated with independent elementsfrom a real or complex standard normal distribution. Demmel concludesthat for real matricesC(1� 1=x)n2�1x � Prob(�D(A) � x) � n2Xk=1 2 n2k !�2nx �k ;2



where C is a constant. For complex matrices, on the other hand, he con-cludes that(1� x�1)2n2�22n4x2 � Prob(�D(A) � x) � e2n5(1 + n2=x)2n2�2x2 ; (1.1)and that asymptoticallyProb(�D(A) � x) = n(n2 � 1)x2 + o( 1x2 );as x!1 for �xed n.In this note, we derive the exact probability distribution by combiningexact distribution expressions for the smallest singular values [5, 6] of theserandom matrices with equations from [3, 8] which relate to �D . Our resultsare: Probability Densities for �D(A):Real n by n matrices:�x1�n2(x2 � n)n(n+1)2 �22F1 �n2 � 12 ; n2 + 1; n22 + n2 � 1;�(x2 � n)�� = 2n�(n+12 )�(n22 )p��(n(n+1)2 �1)Complex n by n matrices:2n(n2 � 1)x1�2n2(x2 � n)n2�2Here 2F1 denotes the Gauss hypergeometric function. Since obviouslypn � �D(A), these formulas are valid only for x � pn.For real matrices, the formula is cumbersome. For large x and n > 20,say, the formula below is quite adequate:Prob(�D(A) � x) � n3=2=x; x� pn; n� 1:For complex matrices the exact distribution is a simple expression:Prob(�D(A) � x) = 1� (1� n=x2)n2�1; x > pn:3



For large n, the condition numbers of real and complex matrices scalelike n3=2. To be precise let �0 be the random variable 2�D=n3=2. Then asn!1, for real matrices,Prob(�0 < x)! e�2=x�2=x2: (1.2)For complex matrices, Prob(�0 < x)! e�4=x2 : (1.3)In fact, for large n the Demmel condition number �D of random uniformlydistributed matrices is roughly pn=2 times as big as the ordinary 2-normcondition number �2. To be precise, as n!1, 2pn�D=�2 converges almostsurely to 1. Thus for large n, �D truly deserves to be called a scaled conditionnumber, and the distribution of �0 is the same as the distribution of �2=nwhich we have presented in [5, 6].2 The distribution of �D (real case)Let A be a real random n � n matrix with independent and identicallydistributed (iid) elements from a standard normal distribution. The matrixW = AAT is said to be aWishart matrix or to have the Wishart distribution.Our goal is to study the random quantity�D(A) = sPni=1 �i�n ;where �1 � : : : � �n � 0 are the eigenvalues of AAT . Clearly �D(A) � pn.Let fn be the probability density function (pdf) of (�D(A))�2 = �n=Pni=1 �i,and let gn be the pdf of �n. The distribution function for �D(A) will be de-rived from two lemmas regarding fn and gn.4



Lemma 2.1 (Davis) The pdfs fn and gn are related byL�(1 + w) 12n2�2fn � 11 + w�� (s) = 2�(n2=2)ess� 12n2+1gn(2s);where L denotes the Laplace transform.This lemma was proved in [3], where the more general case of �j=Pni=1 �iis examined. These ratios arise in the multivariate analysis of variance(MANOVA) as described in multivariate analysis books such as [2].The density function gn is known exactly (see [5] or [6]):Lemma 2.2 The density of the smallest eigenvalue of a Wishart matrix isgn(x) = np2���n + 12 �x�1=2e�xn=2U(n� 12 ;�12 ; x=2):When a > 0 and b < 1, the Tricomi function, U(a; b; z); is the uniquesolution to Kummer's equationz d2wdz2 + (b� z)dwdz � aw = 0; (2.1)satisfying U(a; b; 0) = �(1� b)=�(1 + a� b) and U(a; b;1) = 0.Combining Lemma 2.1 and Lemma 2.2, we obtainTheorem 2.1 The density of (�D(A))�2 isfn(x) = �xn2=2�2(x�1�n)n(n+1)2 �22F1 �n2 � 12 ; n2 + 1; n22 + n2 � 1;�(x�1� n)� ;where � = n�(n+12 )�(n22 )p��(n(n+1)2 � 1)and 2F1 is the Gauss (hypergeometric) function.5



Proof According to [7] (formula 7.522.46, p. 850),1 if b > 0,L �wb�12F1(a; a� c+ 1; b;�w)�(s) = �(b)sa�bU(a; c; s); (2.2)where 2F1 is the Gauss (hypergeometric) function.With a = n2 � 12 , b = n22 + n2 � 1, c = �12 , and d = n2 + 1, we have fromLemmas 2.1 and 2.2 thatL�(1 + w) 12n2�2fn � 11 + w�� (s) = �es(1�n)�(b)sa�bU(a; c; s): (2.3)From 2.2 we haveL ��wb�12F1(a; d; b;�w)�(s) = ��(b)sa�bU(a; c; s):Using familiar results concerning the Laplace transform, we then obtainL ��(w� n+ 1)b�12F1(a; d; b;�(w� n+ 1))� (s) = �es(1�n)�(b)sa�bU(a; c; s):(2.4)Combining 2.3 and 2.4, we obtain(1 + w) 12n2�2fn� 11 + w� = �(w � n + 1)b�12F1(a; d; b;�(w� n+ 1))from which the theorem follows.Corollary 2.1 Let hn (x � pn) be the density of �D(A) for real matrices.Thenhn(x) = �x1�n2(x2�n)n(n+1)2 �22F1 �n2 � 12 ; n2 + 1; n22 + n2 � 1;�(x2� n)� ;where � = 2n�(n+12 )�(n22 )p��(n(n+1)2 � 1)and 2F1 is the Gauss (hypergeometric) function.1This formula is incorrect in older editions of [7]. We have veri�ed that the formula aslisted in our edition of [7] is indeed correct. 6



Proof This follows from Theorem 2.1 using the standard change of variableformula for probability densities.Corollary 2.2 For �xed n, as x!1;hn(x) � �nx�2;where �n = n�(n+12 )�(n22 )�(n2�12 )�(n+22 ) :For n > 20; �n � n3=2.Proof The asymptotic formula for hn follows from 15.3.4 and 15.1.20 of [1].3 The distribution of �D (complex case)The complex case is much easier than the real case, and the resultingformulas are considerably simpler. In [6], we gave a complete derivationof the exact density from �rst principles, but here we will proceed in ananalogous manner to the real case.Let A be a complex n � n matrix with independent and identically dis-tributed (iid) elements from a complex standard normal distribution. Acomplex standard normal distribution can be de�ned as u+vi; where u andv are independent standard normals.The matrix W = AAH is said to be a complex Wishart matrix or havethe complex Wishart distribution. Again our goal is to study the randomquantity �D(A) = sPni=1 �i�n ;7



where �1 � : : : � �n � 0 are the eigenvalues of the complex Wishart matrixAAH . As in the real case, �D(A) � pn.Using the same notation as in the real case, let fn be the probabilitydensity function (pdf) of (�D(A))�2 = �n=Pni=1 �i and let gn be the pdf of�n. The generalization of Lemma 2.1 for the complex case can be found in[8].Lemma 3.1 (Krishnaiah and Schuurmann) The pdfs fn and gn are relatedby L�(1 + w)n2�2fn � 11 + w�� (s) = �(n2)ess1�n2gn(s):Again, we have the density function gn exactly (see [5] or [6]):Lemma 3.2 The density of the smallest eigenvalue of a complex Wishartmatrix is gn(x) = ne�xn; i.e, n�min is exponentially distributed.Theorem 3.1 The density of (�D(A))�2 isfn(x) = n(n2 � 1)(1� nx)n2�2:Proof This formula can be derived from the two lemmas, and the integralformula for the gamma function.Corollary 3.1 Let hn(x) (x � pn) be the density of the condition number�D(A) for complex matrices. Thenhn(x) = 2n(n2 � 1)x1�2n2(x2 � n)n2�2:Corollary 3.2 The probability distribution of �D is given in the complexcase by P (�D � x) = 1� (1� n=x2)n2�1; x > pn:8



The above result allows us to verify that indeedCorollary 3.3 For �xed n, as x!1,P (�D � x) � n(n2 � 1)=x2:
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