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Abstract

This note covers two aspects of the state of the art
of large numerical linear algebra problems. Firstly, we
look at the current records for sparse and dense linear
systems and eigenvalue problems on a vartety of ma-
chines. Our second subject matter is perhaps more of
a question than an answer. Here we explore why net-
work topologies of a parallel machine are hardly ever
used in ways that perhaps a graph theorist might envi-
ston, especially giwen that linear algebra, particularly
dense linear algebra, consists of many very regular pre-
dictable operations.

1 Introduction

This work represents in part a continuation of pre-
vious linear algebra surveys [4, 5]. My hope is to
heighten awareness of relevant issues associated with
numerical linear algebra that might be lost in the rush
to write fast programs. Perhaps like the sports sec-
tions of any newspaper, I research the linear algebra
records, discuss important issues associated with mod-
ern computing, but do not use this space to teach you
how to play the game itself.

Section 2 of this note tabulates and discusses the
latest records for large linear algebra problems. Sec-
tion 3 asks why it is that some graph theorists would
not recognize how machine topologies are used. A
graph theorist who had never heard of a parallel ma-
chine would very likely devise a natural model of such
a machine that would not be very applicable in mod-
ern parallel computing.

2 Linear Algebra Records

I have often expressed the feeling that nature does
not seem to throw n? numbers at us haphazardly.
Therefore sparse methods should be considered even
for very large dense problems. Though this may seem
contradictory, colleagues, students, and I are never-
theless interested in knowing the latest records for
dense linear algebra problems. Though imperfect,
these records do measure some notion of progress.

Furthermore, dense methods even for large prob-
lems continue to be used. Their value is comfort-
able reliability and predictability. Sparse methods for
dense problems require research and expertise that
may seem a luxury when the speed of execution is
a lesser priority than having the code up and running.
Of course for intermediate or small sized problems, it
may well not be worth the trouble to switch to sparse
approaches.

2.1 Dense Linear Systems

Curiously, in an era when laptops are obsolete one
month after they are purchased, the record for the
largest linear system by dense methods has hardly
changed much in two years [5]. “Gigaflops” are now
common on supercomputers, “teraflops” seem close.
However, much to my surprise, I have no information
that the world has seen the solution of a dense linear
system of 100,000 equations in as many unknowns.

All of the systems below involve double precision
complex numbers. Out of core methods use disk space
as auxiliary memory. If your conception of a huge
matrix 1s what a supercomputer can hold in internal
memory, it may stretch your imagination to realize
that the out of core problems described below only
work on subblocks at a time.



Records for Various Machines

IBM (RS 6000) 20k x 20k out of core
Intel (Paragon) 71k x 71k out of core
Intel (iPSC/860) 75.2k x 75.2k  out of core
KSR 16k x 16k in core

MasPar 43k x 43k out of core
TMC (CMb) 76.8k x 76.8k out of core

The problem solved on the Intel iPSC/860 was the
record announced in [5]. That there is little improve-
ment since then may just be a small blip in the overall
trend, but this state of affairs begs to be explained.
One might ask whether the state of knowledge of iter-
ative methods is now so good that everyone has aban-
doned the dense approach for huge problems. This
would represent a true milestone in numerical linear
algebra, but I do not believe this has happened, and
perhaps never will. The two explanations most worthy
of consideration are the secrecy associated with why
large dense systems are being solved and the limited
disk memory available to those who responded to my
electronic and telephone queries.

Large dense linear systems are being solved in se-
cret. This secrecy might mean that larger problems
are being solved, but the success is not publicized.
The most predominant use has military applications.
Further words about these and other application are
discussed in [5]. The biggest consumers of large dense
linear system cycles solve an integral formulation of
Maxwell’s equations exterior to a domain for the pur-
pose of understanding radar cross sections. Alex Woo
of NASA Ames has pointed out that for the practi-
cal problems that people wish to solve, the relevant
equations are known as the Stratton-Chu equations.
This can reduce to the Helmholtz equation in special
cases that are useful for physical insight, but can rep-
resent an oversimplification that may not be correct.
The method itself is known as the method of moments.
Texts often refer to the EFIE and the MFIE, i.e. the
electric and magnetic field integral equations, and the
interest here is in solutions external to a region. Text-
book discussions may be found in [12], Chapter 4 of
[10] written by Poggio and Miller, and Chapters 5 and
6 of [13].

Those who did respond stated that the limitation
has been disk memory. They did not have access
to enough external memory to store bigger matrices.
Thus the bottleneck is certainly not the algorithm and
maybe it is not even the speed of the machine.

Regarding iterative methods for dense problems.
The biggest success story may be Alex Yeremin who
has solved 75k x 75k systems on a Cray Y-MP. He too
ran up against difficulties with external storage. Also

encouraging is work by Kane, Keyes, and Prasad [9]
comparing iterative approaches to dense approaches
for the boundary element problem. They report that
preconditioned iterative approaches outperform dense
approaches, but they did not test this result on huge
problems. Their application is solid mechanics.

Ronald Klees of the GeoForschungsZentrum in
Potsdam, Germany reported solving a 20,000 x 20,000
system in several minutes on a Fujitsu S600/20. He is
also solving a boundary integral equation, though his
field of application is Physical Geodesy.

Andrew Odlyzko has a record of his own. He will be
solving a dense system of size 200,000 x 200,000. Why
is this not the record? His matrices only have 0’s and
1’s, the system is solved modulo 2. When he is done
he will be able to factor the 129 digit cryptography
challenge integer.

Lastly, there are a number of users interested in
large dense problems with applications to scattering.
This is probably an imperfect understanding, but I
think that these problems are dense because theoret-
ically input from any direction may be scattered into
all other directions. Jussi Rahold from Espoo, Fin-
land mentioned the scattering of light by dust parti-
cles. The matrix was of size 412,128 using conjugate
gradient. Alfons Hoekstra from Amsterdam solved a
problem of size just over 100,000 in order to under-
stand elastic light scattering. He also used conjugate
gradient. Tim Kelley of North Carolina State sent
me a paper where the solution of a dense problem of
size up to 3,100,000 using GMRES and multilevel ap-
proaches. His paper concerns transport problems in
one space dimension. I believe that this also may be
thought of as a scattering problem, but I have not
verified this. An earlier dense scattering problem is
described in my previous survey [5].

2.2 Dense Eigenvalue Problems

I fear that I have less information on the dense
eigenvalue problem. So far as I am aware, the records
have not increased for the dense eigenvalue problem
either. The record for the symmetric dense problem
including eigenvectors must still be 27,000, while for
the unsymmetric problem it is 10,000.

The largest symmetric eigenvalue problem com-
puted on the CM-5 was performed by Jean-Philippe
Brunet of Thinking Machines Corporation on a 16k
x 16k matrix. Furthermore, he is interested in com-
puting the eigenvalues of a 3k x 3k double precision
complex non-Hermitian eigenvalue problem that arises
from the discretization of the Dirac equation. His near
term goal is to extend this to order 15k. The matrices



are actually sparse, but to his knowledge, sparse meth-
ods were only successful in extracting the extreme
eigenvalues. These eigenvalues will be used to con-
struct preconditioners for a large linear system that
arises in computational Quantum Chromodynamics.

Anna Tsao at the Supercomputing Research Center
in Bowie, Maryland is interested in symmetric dense
eigenvalue problems of size bigger than 10,000, but has
not yet performed any computations on problems of
that size.

2.3 Sparse Linear Systems

This is the first time I have begun asking about
sparse systems so the information included here is
probably less complete than for dense problems. Nev-
ertheless, I wanted to get some feeling for whether the
largest problems were being solved by direct methods,
iterative methods, or some kind of mixture.

2.3.1 Direct Methods

My information on the record holders for sparse di-
rect methods is mostly anecdotal evidence. The gen-
eral opinion among experts is that problems of size
300,000 are certainly being solved, and probably much
larger. As we will see in the next subsection, probably
the problems that people are solving using iterative
methods are at least three times larger. Given that
my information is incomplete, and also that different
problems require different solution methods, it would
be inappropriate to make too hasty judgment about
which methods are “better.”

Steve Zitney at Cray Research reported his inter-
est in plantwide dynamic simulations of a distillation
facility. He hopes to be solving simulation matrices
involving “hundreds of thousands of equations” very
soon.

2.3.2 Iterative Methods

Steve Ashby at Lawrence Livermore Laboratories re-
ports solving sparse systems with one million un-
knowns using preconditioned conjugate gradient. He
is currently working on using the multigrid algorithm
as the preconditioner. He claims that one million is
fairly routine. The application is three dimensional
modeling of groundwater flow through heterogeneous
porous media. His current goal is to solve problems
with 100,000,000 unknowns.

Though this is not the solution of a linear system,
Louis Howell at Lawrence Livermore told me about
Paul Woodward at the University of Minnesota who

demonstrated a showpiece fluids simulation on a clus-
ter of SGI workstations. What is impressive is that
the calculation was on a 1024 x 1024 x 1024 box, i.e.
over a billion variables. Howell concludes, correctly I
believe, that elliptic problems (i.e. solutions of linear
systems) can not be far behind.

2.4 Sparse Eigenvalue Problems

The ultimate record in this entire paper is the com-
putation of the smallest eigenvalue and the smallest
eigenvector of a billion by billion matrix performed by
Simons, Jorgensen, and Olson. This was reported to
me by Frank Jensen in Denmark. The method used
was a variant of the Davidson Method. The applica-
tion area was the Configuration Interaction Method
for electronic structure computations.

Ron Shepard also uses the Davidson Method to
solve problems of size up to 10,000,000 and has men-
tioned benchmark calculations of size 100,000,000 per-
formed by other researchers on an Intel Touchstone.

Tucker Carrington of the University of Montreal re-
ports that he has solved a one million by one million
problem using the Lanczos method in a chemistry ap-
plication.

Albert Galick of Computational Electronics has
solved a nonsymmetric eigenvalue problem for six
eigenvalues. His largest problem was of size around
500,000 using an iterative Chebyshev-preconditioned
Arnoldi method. This took several days on an Ardent
Titan.

Also noteworthy is the nice eigenvalue survey by
Bai [1] which concentrates more on sparse problems
and smaller dense problems than I have been consid-
ering in my surveys. His survey is worth reading, but
I have not been able to make use of it because he does
not explicitly mention that any dense applications re-
quire more than 10,000 variables or that the sparse
applications require significantly more than 100,000
variables.

3 The BLAS, the BLACS, and the out-
lawing of graph theory

I now turn to the issue of communication on the
networks of a multicomputer. The issue that I wish to
raise here is what constitutes an aesthetically elegant
use of network topologies, and by comparison what
are the realities of current supercomputing and their
implications for linear algebra and more general com-
putations. Perhaps it is best to say that I suffer from



an inner conflict between what the mathematician in-
side of me feels ought to be the way parallel machines
should be, and what my engineering colleagues tell me
how parallel machines must be, at least for now.

3.1 Mathematical elegance, couch potato
messages, and linear algebra libraries

My notion of what a parallel machine for numer-
ical linear algebra (and other disciplines) ought to
be is based on 1) mathematically natural notions, 2)
the history of the Basic Linear Algebra Subroutines,
and 3) experiences with the CM-2 supercomputer that
were never publicized. What each of these three as-
pects have in common is a reasonably clean abstract
world where the user who wishes to use his rational
faculties to directly improve the speed of algorithms
is allowed to do so with a reasonable ability to predict
the fruits of his/her labors. The real world of comput-
ing, by contrast, is not so tidy and many experts say
that it must not be.

What constitutes natural to a mathematician is
easy to explain:

Definition 3.1 The graph theorist’s natural model of
a supercomputer network allows you to tmagine that
every time you snap your fingers, a fized packet of
data s allowed to cross exactly one link, and all the
different links may be used simultaneously. What mat-
ters is the amount of data and the number of hops the
data must make.

This is the kind of network on which you can do
precise mathematics and prove exact theorems. In-
deed much very sophisticated work has gone on in this
area.

In addition to the graph theorist’s natural model,
I would also like the ability for the network to allow
couch potato messages:

Definition 3.2 A network allows for couch potato
messages if neither processor address information nor
any pointer to a program residing in memory need be
sent with the message.

Most current networks send destination addresses
along with messages. The active messages approach
devised by Dave Culler of UC Berkeley suggests send-
ing a pointer to a program location as well. The couch
potato messages proposed here differ in that they are
pushed around from point to point. Rather than ac-
tively knowing where they are going or what is going to
happen to them when they arrive at their destination,
handlers at intermediate nodes and destination nodes

are ready for them and tell them what to do. One im-
portant aspect of this approach, is that messages may
be scheduled aand communication costs need not be
increased by sending address bits.

What ought to seem natural for linear algebra li-
braries requires understanding how libraries are con-
structed. LAPACK and its precursors make use of a
set of Basic Linear Algebra Subroutines (BLAS) that
may be written in a machine specific manner at the as-
sembly language level though sample BLAS are writ-
ten in FORTRAN so that untuned programs may still
run on the various machines. It is well understood
that the operations in dense linear algebra are so reg-
ular and predictable, that it is not unreasonable to
sacrifice some people-hours to the task of fine tuning
these operations for everyone’s benefit. Indeed dense
linear algebra is about as regular and predictable as
programming can get; it is no wonder that the de-
velopers of LAPACK request that manufacturers fine
tune the BLAS. The management of registers, cache,
and floating point operations is often well enough un-
derstood by specialists that optimal or near-optimal
management of resources may be obtained.

On a multicomputer, memory is distributed so that
a communications network must pass messages among
the individual processors. Following the lesson from
the previous paragraph, it seems natural that there
ought to be a collection of Basic Linear Algebra Com-
munications Subroutines (BLACS). It might also seem
natural, unless you know too much about current mul-
ticomputers, that these BLACS would be very much
on the same level as the BLAS. They would be writ-
ten in assembler by the manufacturers of a number
of machines by carefully orchestrating the communi-
cation’s links. One would expect that the regularity
and predictability of dense linear algebra would almost
demand such approaches. This was my vision of the
BLACS in 1989. Yet the BLACS as they currently ex-
ist as part of the new scalable ScaLAPACK have never
been written in assembler and few clever mathematical
graph theory papers have proven appropriate for these
BLACS on any real parallel machines. The BLACS as
they exist are calls to a network that will do the work,
they do not explicitly manage the network in the sense
in which the BLAS manage the registers, cache, and
memory. If the BLACS were on the same level as the
BLAS, network resources would be carefully managed
inside the BLACS. Manufacturers would fine tune the
scheduling of messages according to fixed guidelines.

There are at least two ways to use the control pro-
vided by the graph theorist’s natural network and also
the couch potato approach to messages. There are



other possibilities not explicitly discussed in the pa-
per. One way is to orchestrate the messages yourself
through the network; a second way is to give compilers
the smarts to precompute a schedule.

To illustrate the first approach, orchestrating mes-
sages through the network, consider the following pic-
ture of so-called “all-to-all personalized communica-
tion” or “total-exchange” from [6] that was used by
Steve Heller as a kernel in the “twuffler” project at
Thinking Machines Corporation. The twuffler project
began when it was realized that software was sufficient
to accelerate IO communication, i.e. no new hardware
was needed. Indeed plans to build new hardware were
dropped. In the picture below, all the hypercube links
are used all of the time to obtain maximal use of band-

width.
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The second approach, automatic scheduling by a
compiler, was taken by Denny Dahl of Thinking Ma-
chines Corporation [2], Steve Hammond of NCAR
[7, 8], and Shukla and Agrawal [11]. There is an im-
portant distinction that should be emphasized. The
first approach described above, i.e. user orchestrated
patterns, is appropriate for very regular communica-
tion patterns. Such patterns arise in dense linear al-
gebra problems. By contrast, automatic scheduling
by a compiler is what is needed for unstructured grid
communication.

3.2 Misconceptions about the Connection
Machine CM-2

Engineers say that what I am envisioning can not
exist, or if it could exist it would not be useful. There

is actual historical evidence that careful control of a
machine’s network can lead to improvements. Unfor-
tunately, this evidence was never properly understood
by network designers. The historical evidence is based
on somewhat secret successes obtained by scheduling
messages on the Connection Machine CM-2 [3].

Unless you worked closely with a very small number
of people inside of Thinking Machines Corporation,
you might never have known that the graph theorist’s
natural model of the hypercube was not designed into
the CM-2, but we later discovered that hardware de-
signed to accelerate data paths to the floating point
units actually served remarkably well as handlers for
routing. Those familiar with the distinction between
the fieldwise model and the slicewise model of the CM-
2 will understand that the fieldwise model was not
quite as flexible for hypercube communication as was
accidentally true for the slicewise model.

This discovery began with work by Steve Vavasis
of Cornell University then further developed by Mark
Bromley, Steve Heller, and myself, who showed that
it was possible to apply the graph theory of the hy-
percube in the mathematically natural approach de-
scribed above by using hardware for purposes other
than that for which they were designed! This math-
ematical abstraction was very close to what the ma-
chines was really doing. Careful management of the
data often lead to 100% utilization of the hypercube
channels. While many people were promoting load
balancing of the processors, we were pushing “All the
wires, all of the time.” In our work, no address bits
were sent, and latency was not a big issue.

Unfortunately this lesson was lost, partially due to
secrecy, partially because Thinking Machines already
made the commitment to the CM-5 architecture in
which control of the communications network is more
limited and less tidy, and finally, maybe, it just was
impossible to keep it in an asynchronous environment.
Perhaps architects did not believe that some users
might sometimes want this control, even if most users
would not. Since I am not a computer architect, 1
could not tell you for sure.

The CM-5 as it currently exists contains a random
number generator that decides which of two directions
a path should take when going up the tree at each level
other than the lowest. Thus, any opportunity to con-
trol messages is mostly lost. There are some tricks
that provide some level of control, such as careful in-
jection of messages into the network. Perhaps this is
unfair, but sometimes this seems to me like control-
ling Boston traffic by putting traffic controls at the
city limits.



3.3 What computer architects say:

I admit that I am not a specialist in computer ar-
chitecture, so I asked some of my colleagues at MIT
who are. I also asked for comments from leading net-
work architects from outside of MIT, but I have yet
to receive a response.

Bill Dally at MIT believes that it is not a good
idea to give linear algebra library writers (or anyone
else) control of the communications network. Accord-
ing to Bill Dally, a good network provides throughput
for random traffic that is usually around 30% of peak
capacity. Adaptive routing can increase this to 50%
of peak capacity. The belief is that it 1s far better
to devote resources to making a good network faster
than it is to devote resources to specialize the control.

Arvind tends to agree, but he points out that expos-
ing the underlying hardware to hard core programmers
and compiler writers has often lead to better perfor-
mance. He is open to the possibility that perhaps a
day will come when specialized programmers would
have access to the underlying communications proto-
cols though this is not how most programmers would
use the machine.

Also at MIT, Steve Ward is explicitly looking at
scheduled routing in the NuMesh project.

4 Conclusions

The linear algebra records in this paper will of
course change with time, and as I receive new infor-
mation. Hunting down these records is not easy, but
the information benefits everybody.

I also presented the view that communications net-
works are neither what mathematicians might expect
nor what should be expected for linear algebra li-
braries since intrepid programmers who wish to work
at the lowest level are unable to fully control the net-
work.

At the current time the BLACS and BLAS are fun-
damentally different. The BLAS may be written in a
careful manner to take advantage of computer mem-
ory and orchestrate the data movement between main
memory, cache, and registers. The BLACS are cur-
rently requests for the network to do the work. Per-
haps this is as it must be in the complicated asyn-
chronous world of MIMD supercomputing, even in the
regular context of dense linear algebra. Perhaps it
must be this way but part of me wishes that it were
not so. We will see what the future brings.
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