
Large Numerical Linear Algebra in 1994: The Continuing In
uenceof Parallel ComputingAlan EdelmanDepartment of MathematicsRoom 2-380Massachusetts Institute of TechnologyCambridge, MA 02139edelman@math.mit.eduAbstractThis note covers two aspects of the state of the artof large numerical linear algebra problems. Firstly, welook at the current records for sparse and dense linearsystems and eigenvalue problems on a variety of ma-chines. Our second subject matter is perhaps more ofa question than an answer. Here we explore why net-work topologies of a parallel machine are hardly everused in ways that perhaps a graph theorist might envi-sion, especially given that linear algebra, particularlydense linear algebra, consists of many very regular pre-dictable operations.1 IntroductionThis work represents in part a continuation of pre-vious linear algebra surveys [4, 5]. My hope is toheighten awareness of relevant issues associated withnumerical linear algebra that might be lost in the rushto write fast programs. Perhaps like the sports sec-tions of any newspaper, I research the linear algebrarecords, discuss important issues associated with mod-ern computing, but do not use this space to teach youhow to play the game itself.Section 2 of this note tabulates and discusses thelatest records for large linear algebra problems. Sec-tion 3 asks why it is that some graph theorists wouldnot recognize how machine topologies are used. Agraph theorist who had never heard of a parallel ma-chine would very likely devise a natural model of sucha machine that would not be very applicable in mod-ern parallel computing.

2 Linear Algebra RecordsI have often expressed the feeling that nature doesnot seem to throw n2 numbers at us haphazardly.Therefore sparse methods should be considered evenfor very large dense problems. Though this may seemcontradictory, colleagues, students, and I are never-theless interested in knowing the latest records fordense linear algebra problems. Though imperfect,these records do measure some notion of progress.Furthermore, dense methods even for large prob-lems continue to be used. Their value is comfort-able reliability and predictability. Sparse methods fordense problems require research and expertise thatmay seem a luxury when the speed of execution isa lesser priority than having the code up and running.Of course for intermediate or small sized problems, itmay well not be worth the trouble to switch to sparseapproaches.2.1 Dense Linear SystemsCuriously, in an era when laptops are obsolete onemonth after they are purchased, the record for thelargest linear system by dense methods has hardlychanged much in two years [5]. \Giga
ops" are nowcommon on supercomputers, \tera
ops" seem close.However, much to my surprise, I have no informationthat the world has seen the solution of a dense linearsystem of 100,000 equations in as many unknowns.All of the systems below involve double precisioncomplex numbers. Out of core methods use disk spaceas auxiliary memory. If your conception of a hugematrix is what a supercomputer can hold in internalmemory, it may stretch your imagination to realizethat the out of core problems described below onlywork on subblocks at a time.



Records for Various MachinesIBM (RS 6000) 20k � 20k out of coreIntel (Paragon) 71k � 71k out of coreIntel (iPSC/860) 75.2k � 75.2k out of coreKSR 16k � 16k in coreMasPar 43k � 43k out of coreTMC (CM5) 76.8k � 76.8k out of coreThe problem solved on the Intel iPSC/860 was therecord announced in [5]. That there is little improve-ment since then may just be a small blip in the overalltrend, but this state of a�airs begs to be explained.One might ask whether the state of knowledge of iter-ative methods is now so good that everyone has aban-doned the dense approach for huge problems. Thiswould represent a true milestone in numerical linearalgebra, but I do not believe this has happened, andperhaps never will. The two explanations most worthyof consideration are the secrecy associated with whylarge dense systems are being solved and the limiteddisk memory available to those who responded to myelectronic and telephone queries.Large dense linear systems are being solved in se-cret. This secrecy might mean that larger problemsare being solved, but the success is not publicized.The most predominant use has military applications.Further words about these and other application arediscussed in [5]. The biggest consumers of large denselinear system cycles solve an integral formulation ofMaxwell's equations exterior to a domain for the pur-pose of understanding radar cross sections. Alex Wooof NASA Ames has pointed out that for the practi-cal problems that people wish to solve, the relevantequations are known as the Stratton-Chu equations.This can reduce to the Helmholtz equation in specialcases that are useful for physical insight, but can rep-resent an oversimpli�cation that may not be correct.The method itself is known as the method of moments.Texts often refer to the EFIE and the MFIE, i.e. theelectric and magnetic �eld integral equations, and theinterest here is in solutions external to a region. Text-book discussions may be found in [12], Chapter 4 of[10] written by Poggio and Miller, and Chapters 5 and6 of [13].Those who did respond stated that the limitationhas been disk memory. They did not have accessto enough external memory to store bigger matrices.Thus the bottleneck is certainly not the algorithm andmaybe it is not even the speed of the machine.Regarding iterative methods for dense problems.The biggest success story may be Alex Yeremin whohas solved 75k � 75k systems on a Cray Y-MP. He tooran up against di�culties with external storage. Also

encouraging is work by Kane, Keyes, and Prasad [9]comparing iterative approaches to dense approachesfor the boundary element problem. They report thatpreconditioned iterative approaches outperform denseapproaches, but they did not test this result on hugeproblems. Their application is solid mechanics.Ronald Klees of the GeoForschungsZentrum inPotsdam, Germany reported solving a 20,000� 20,000system in several minutes on a Fujitsu S600/20. He isalso solving a boundary integral equation, though his�eld of application is Physical Geodesy.Andrew Odlyzko has a record of his own. He will besolving a dense system of size 200,000� 200,000. Whyis this not the record? His matrices only have 0's and1's, the system is solved modulo 2. When he is donehe will be able to factor the 129 digit cryptographychallenge integer.Lastly, there are a number of users interested inlarge dense problems with applications to scattering.This is probably an imperfect understanding, but Ithink that these problems are dense because theoret-ically input from any direction may be scattered intoall other directions. Jussi Rahold from Espoo, Fin-land mentioned the scattering of light by dust parti-cles. The matrix was of size 412; 128 using conjugategradient. Alfons Hoekstra from Amsterdam solved aproblem of size just over 100,000 in order to under-stand elastic light scattering. He also used conjugategradient. Tim Kelley of North Carolina State sentme a paper where the solution of a dense problem ofsize up to 3,100,000 using GMRES and multilevel ap-proaches. His paper concerns transport problems inone space dimension. I believe that this also may bethought of as a scattering problem, but I have notveri�ed this. An earlier dense scattering problem isdescribed in my previous survey [5].2.2 Dense Eigenvalue ProblemsI fear that I have less information on the denseeigenvalue problem. So far as I am aware, the recordshave not increased for the dense eigenvalue problemeither. The record for the symmetric dense problemincluding eigenvectors must still be 27,000, while forthe unsymmetric problem it is 10,000.The largest symmetric eigenvalue problem com-puted on the CM-5 was performed by Jean-PhilippeBrunet of Thinking Machines Corporation on a 16k� 16k matrix. Furthermore, he is interested in com-puting the eigenvalues of a 3k � 3k double precisioncomplex non-Hermitian eigenvalue problem that arisesfrom the discretization of the Dirac equation. His nearterm goal is to extend this to order 15k. The matrices



are actually sparse, but to his knowledge, sparse meth-ods were only successful in extracting the extremeeigenvalues. These eigenvalues will be used to con-struct preconditioners for a large linear system thatarises in computational Quantum Chromodynamics.Anna Tsao at the Supercomputing Research Centerin Bowie, Maryland is interested in symmetric denseeigenvalue problems of size bigger than 10,000, but hasnot yet performed any computations on problems ofthat size.2.3 Sparse Linear SystemsThis is the �rst time I have begun asking aboutsparse systems so the information included here isprobably less complete than for dense problems. Nev-ertheless, I wanted to get some feeling for whether thelargest problems were being solved by direct methods,iterative methods, or some kind of mixture.2.3.1 Direct MethodsMy information on the record holders for sparse di-rect methods is mostly anecdotal evidence. The gen-eral opinion among experts is that problems of size300,000 are certainly being solved, and probably muchlarger. As we will see in the next subsection, probablythe problems that people are solving using iterativemethods are at least three times larger. Given thatmy information is incomplete, and also that di�erentproblems require di�erent solution methods, it wouldbe inappropriate to make too hasty judgment aboutwhich methods are \better."Steve Zitney at Cray Research reported his inter-est in plantwide dynamic simulations of a distillationfacility. He hopes to be solving simulation matricesinvolving \hundreds of thousands of equations" verysoon.2.3.2 Iterative MethodsSteve Ashby at Lawrence Livermore Laboratories re-ports solving sparse systems with one million un-knowns using preconditioned conjugate gradient. Heis currently working on using the multigrid algorithmas the preconditioner. He claims that one million isfairly routine. The application is three dimensionalmodeling of groundwater 
ow through heterogeneousporous media. His current goal is to solve problemswith 100,000,000 unknowns.Though this is not the solution of a linear system,Louis Howell at Lawrence Livermore told me aboutPaul Woodward at the University of Minnesota who

demonstrated a showpiece 
uids simulation on a clus-ter of SGI workstations. What is impressive is thatthe calculation was on a 1024 � 1024 � 1024 box, i.e.over a billion variables. Howell concludes, correctly Ibelieve, that elliptic problems (i.e. solutions of linearsystems) can not be far behind.2.4 Sparse Eigenvalue ProblemsThe ultimate record in this entire paper is the com-putation of the smallest eigenvalue and the smallesteigenvector of a billion by billion matrix performed bySimons, Jorgensen, and Olson. This was reported tome by Frank Jensen in Denmark. The method usedwas a variant of the Davidson Method. The applica-tion area was the Con�guration Interaction Methodfor electronic structure computations.Ron Shepard also uses the Davidson Method tosolve problems of size up to 10,000,000 and has men-tioned benchmark calculations of size 100,000,000 per-formed by other researchers on an Intel Touchstone.Tucker Carrington of the University of Montreal re-ports that he has solved a one million by one millionproblem using the Lanczos method in a chemistry ap-plication.Albert Galick of Computational Electronics hassolved a nonsymmetric eigenvalue problem for sixeigenvalues. His largest problem was of size around500,000 using an iterative Chebyshev-preconditionedArnoldi method. This took several days on an ArdentTitan.Also noteworthy is the nice eigenvalue survey byBai [1] which concentrates more on sparse problemsand smaller dense problems than I have been consid-ering in my surveys. His survey is worth reading, butI have not been able to make use of it because he doesnot explicitly mention that any dense applications re-quire more than 10,000 variables or that the sparseapplications require signi�cantly more than 100,000variables.3 The BLAS, the BLACS, and the out-lawing of graph theoryI now turn to the issue of communication on thenetworks of a multicomputer. The issue that I wish toraise here is what constitutes an aesthetically elegantuse of network topologies, and by comparison whatare the realities of current supercomputing and theirimplications for linear algebra and more general com-putations. Perhaps it is best to say that I su�er from



an inner con
ict between what the mathematician in-side of me feels ought to be the way parallel machinesshould be, and what my engineering colleagues tell mehow parallel machines must be, at least for now.3.1 Mathematical elegance, couch potatomessages, and linear algebra librariesMy notion of what a parallel machine for numer-ical linear algebra (and other disciplines) ought tobe is based on 1) mathematically natural notions, 2)the history of the Basic Linear Algebra Subroutines,and 3) experiences with the CM-2 supercomputer thatwere never publicized. What each of these three as-pects have in common is a reasonably clean abstractworld where the user who wishes to use his rationalfaculties to directly improve the speed of algorithmsis allowed to do so with a reasonable ability to predictthe fruits of his/her labors. The real world of comput-ing, by contrast, is not so tidy and many experts saythat it must not be.What constitutes natural to a mathematician iseasy to explain:De�nition 3.1 The graph theorist's natural model ofa supercomputer network allows you to imagine thatevery time you snap your �ngers, a �xed packet ofdata is allowed to cross exactly one link, and all thedi�erent links may be used simultaneously. What mat-ters is the amount of data and the number of hops thedata must make.This is the kind of network on which you can doprecise mathematics and prove exact theorems. In-deed much very sophisticated work has gone on in thisarea.In addition to the graph theorist's natural model,I would also like the ability for the network to allowcouch potato messages:De�nition 3.2 A network allows for couch potatomessages if neither processor address information norany pointer to a program residing in memory need besent with the message.Most current networks send destination addressesalong with messages. The active messages approachdevised by Dave Culler of UC Berkeley suggests send-ing a pointer to a program location as well. The couchpotato messages proposed here di�er in that they arepushed around from point to point. Rather than ac-tively knowing where they are going or what is going tohappen to them when they arrive at their destination,handlers at intermediate nodes and destination nodes

are ready for them and tell them what to do. One im-portant aspect of this approach, is that messages maybe scheduled aand communication costs need not beincreased by sending address bits.What ought to seem natural for linear algebra li-braries requires understanding how libraries are con-structed. LAPACK and its precursors make use of aset of Basic Linear Algebra Subroutines (BLAS) thatmay be written in a machine speci�c manner at the as-sembly language level though sample BLAS are writ-ten in FORTRAN so that untuned programs may stillrun on the various machines. It is well understoodthat the operations in dense linear algebra are so reg-ular and predictable, that it is not unreasonable tosacri�ce some people-hours to the task of �ne tuningthese operations for everyone's bene�t. Indeed denselinear algebra is about as regular and predictable asprogramming can get; it is no wonder that the de-velopers of LAPACK request that manufacturers �netune the BLAS. The management of registers, cache,and 
oating point operations is often well enough un-derstood by specialists that optimal or near-optimalmanagement of resources may be obtained.On a multicomputer, memory is distributed so thata communications network must pass messages amongthe individual processors. Following the lesson fromthe previous paragraph, it seems natural that thereought to be a collection of Basic Linear Algebra Com-munications Subroutines (BLACS). It might also seemnatural, unless you know too much about current mul-ticomputers, that these BLACS would be very muchon the same level as the BLAS. They would be writ-ten in assembler by the manufacturers of a numberof machines by carefully orchestrating the communi-cation's links. One would expect that the regularityand predictability of dense linear algebra would almostdemand such approaches. This was my vision of theBLACS in 1989. Yet the BLACS as they currently ex-ist as part of the new scalable ScaLAPACK have neverbeen written in assembler and few clever mathematicalgraph theory papers have proven appropriate for theseBLACS on any real parallel machines. The BLACS asthey exist are calls to a network that will do the work,they do not explicitly manage the network in the sensein which the BLAS manage the registers, cache, andmemory. If the BLACS were on the same level as theBLAS, network resources would be carefully managedinside the BLACS. Manufacturers would �ne tune thescheduling of messages according to �xed guidelines.There are at least two ways to use the control pro-vided by the graph theorist's natural network and alsothe couch potato approach to messages. There are



other possibilities not explicitly discussed in the pa-per. One way is to orchestrate the messages yourselfthrough the network; a second way is to give compilersthe smarts to precompute a schedule.To illustrate the �rst approach, orchestrating mes-sages through the network, consider the following pic-ture of so-called \all-to-all personalized communica-tion" or \total-exchange" from [6] that was used bySteve Heller as a kernel in the \twu�er" project atThinking Machines Corporation. The twu�er projectbegan when it was realized that software was su�cientto accelerate IO communication, i.e. no new hardwarewas needed. Indeed plans to build new hardware weredropped. In the picture below, all the hypercube linksare used all of the time to obtain maximal use of band-width. @@ @@@@@@4041424344454647606162636465666750515253545556577071727374757677�0�1�2�3�4�5�6�7202122232425262710111213141516173031323334353637Start@@ @@@@@@�441604344454656426126636474666750155271545547577053723765757677�0�1�21240�524�720302223�62562271011�313145116352131323334173673Step 1 @@ @@@@@@�441246144544656�64326636474667650157035455547575217723765756777�010�21240�560252030223242�76227�111�313145134712131233316533673Step 2@@ @@@@@@�4�5247044546456�65226274674667614156135455547754317363765576777�010201240416034�230223242166263�111�3315051257121132333�7537273Step 3 @@ @@@@@@�414243444546474�616263646566676�515253545556575�717273747576777�010203040506070�212223242526272�111213141516171�313233343536373Step 4The second approach, automatic scheduling by acompiler, was taken by Denny Dahl of Thinking Ma-chines Corporation [2], Steve Hammond of NCAR[7, 8], and Shukla and Agrawal [11]. There is an im-portant distinction that should be emphasized. The�rst approach described above, i.e. user orchestratedpatterns, is appropriate for very regular communica-tion patterns. Such patterns arise in dense linear al-gebra problems. By contrast, automatic schedulingby a compiler is what is needed for unstructured gridcommunication.3.2 Misconceptions about the ConnectionMachine CM-2Engineers say that what I am envisioning can notexist, or if it could exist it would not be useful. There

is actual historical evidence that careful control of amachine's network can lead to improvements. Unfor-tunately, this evidence was never properly understoodby network designers. The historical evidence is basedon somewhat secret successes obtained by schedulingmessages on the Connection Machine CM-2 [3].Unless you worked closely with a very small numberof people inside of Thinking Machines Corporation,you might never have known that the graph theorist'snatural model of the hypercube was not designed intothe CM-2, but we later discovered that hardware de-signed to accelerate data paths to the 
oating pointunits actually served remarkably well as handlers forrouting. Those familiar with the distinction betweenthe �eldwise model and the slicewise model of the CM-2 will understand that the �eldwise model was notquite as 
exible for hypercube communication as wasaccidentally true for the slicewise model.This discovery began with work by Steve Vavasisof Cornell University then further developed by MarkBromley, Steve Heller, and myself, who showed thatit was possible to apply the graph theory of the hy-percube in the mathematically natural approach de-scribed above by using hardware for purposes otherthan that for which they were designed! This math-ematical abstraction was very close to what the ma-chines was really doing. Careful management of thedata often lead to 100% utilization of the hypercubechannels. While many people were promoting loadbalancing of the processors, we were pushing \All thewires, all of the time." In our work, no address bitswere sent, and latency was not a big issue.Unfortunately this lesson was lost, partially due tosecrecy, partially because Thinking Machines alreadymade the commitment to the CM-5 architecture inwhich control of the communications network is morelimited and less tidy, and �nally, maybe, it just wasimpossible to keep it in an asynchronous environment.Perhaps architects did not believe that some usersmight sometimes want this control, even if most userswould not. Since I am not a computer architect, Icould not tell you for sure.The CM-5 as it currently exists contains a randomnumber generator that decides which of two directionsa path should take when going up the tree at each levelother than the lowest. Thus, any opportunity to con-trol messages is mostly lost. There are some tricksthat provide some level of control, such as careful in-jection of messages into the network. Perhaps this isunfair, but sometimes this seems to me like control-ling Boston tra�c by putting tra�c controls at thecity limits.



3.3 What computer architects say:I admit that I am not a specialist in computer ar-chitecture, so I asked some of my colleagues at MITwho are. I also asked for comments from leading net-work architects from outside of MIT, but I have yetto receive a response.Bill Dally at MIT believes that it is not a goodidea to give linear algebra library writers (or anyoneelse) control of the communications network. Accord-ing to Bill Dally, a good network provides throughputfor random tra�c that is usually around 30% of peakcapacity. Adaptive routing can increase this to 50%of peak capacity. The belief is that it is far betterto devote resources to making a good network fasterthan it is to devote resources to specialize the control.Arvind tends to agree, but he points out that expos-ing the underlying hardware to hard core programmersand compiler writers has often lead to better perfor-mance. He is open to the possibility that perhaps aday will come when specialized programmers wouldhave access to the underlying communications proto-cols though this is not how most programmers woulduse the machine.Also at MIT, Steve Ward is explicitly looking atscheduled routing in the NuMesh project.4 ConclusionsThe linear algebra records in this paper will ofcourse change with time, and as I receive new infor-mation. Hunting down these records is not easy, butthe information bene�ts everybody.I also presented the view that communications net-works are neither what mathematicians might expectnor what should be expected for linear algebra li-braries since intrepid programmers who wish to workat the lowest level are unable to fully control the net-work.At the current time the BLACS and BLAS are fun-damentally di�erent. The BLAS may be written in acareful manner to take advantage of computer mem-ory and orchestrate the data movement between mainmemory, cache, and registers. The BLACS are cur-rently requests for the network to do the work. Per-haps this is as it must be in the complicated asyn-chronous world of MIMD supercomputing, even in theregular context of dense linear algebra. Perhaps itmust be this way but part of me wishes that it werenot so. We will see what the future brings.
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