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Abstract

Let A be an n X n matrix whose elements are independent random variables with standard normal
distributions. As n — oo, the expected number of real eigenvalues is asymptotic to y/2n/7. We obtain
a closed form expression for the expected number of real eigenvalues for finite n, and a formula for the
density of a real eigenvalue for finite n. Asymptotically, a real normalized eigenvalue A/ /n of such a
random matrix is uniformly distributed on the interval [—1,1]. Analogous, but strikingly different, results
are presented for the real generalized eigenvalues. We report on numerical experiments confirming these
results and suggesting that the assumption of normality is not important for the asymptotic results.

1 Statements of Results

Consider a random matrix whose elements are independent random variables from a standard (mean zero,
variance one) normal distribution. Unless otherwise stated, we omit the distribution and simply use the
term “random matrix” to denote a matrix with independent standard normally distributed elements. Other
distributions are considered in Section 8.

Here 1s one of our main results:

AsYMPTOTIC NUMBER OF REAL EIGENVALUES. If F, denotes the expected number of real eigenvalues
of an n by n random matrix, then

T E, 2
1m — = —.
n—00 \/ﬁ T

ASYMPTOTIC SERIES. As n — oo,

[2n 3 3 27 499 1
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Corollary 5.2

Let A be a 50 x 50 random matrix. Figure 1 above plots normalized eigenvalues A/v/50 in the complex
plane for fifty matrices. Thus there are 2500 dots in the figure. There are a number of striking features in
the diagram. Firstly, nearly all the normalized eigenvalues appear to fall in the interior of the unit disk. This
is Girko’s as yet unverified circular law [12], which states that as n gets large, A/y/n is uniformly distributed
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Figure 1: 2500 dots representing normalized eigenvalues of fifty random matrices of size n = 50. Clearly
visible are the points on the real axis.
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Figure 2: Histogram of normalized real eigenvalues for 2222 matrices of size 50



in the unit disk. Tt follows that the proportion of eigenvalues on the real line (also strikingly visible to the
eye) must tend to 0 as n — oo. Our results show how fast this converges.

A simpler version of this circular law occurs when the random matrix has elements from a complex
normal distribution, i.e. the real and imaginary parts of each element are independent standard normals.
In this case the exact distribution for the eigenvalue distribution and radius can be found in Ginibre [11]
and is reported by Mehta [24, p.300] and Hwang [17]. In this case, the squares of the absolute values of
the eigenvalues are independent random variables with distributions that are y? with 2,4, ..., 2n degrees of
freedom [20]. The spectral radius is then the maximum of such random variables.

Figure 2 takes a closer look at the real eigenvalues again taking n = 50, but this time we took over
2200 random matrices, and histogrammed the real normalized eigenvalues. Notice the data suggests that
the density is nearly uniform on [—1,1]. The plotted curve is the exact density for n = 50. This suggests
the form of the asymptotic density of real eigenvalues that we prove in Corollary 4.5: If A, denotes a real
eigenvalue of an n by n random matrix, then as n — oo, A,/y/n is uniformly distributed on the interval
[—1,1].

This result is the limit of the probability density for A, proven in Theorem 4.3: if A, denotes a real

eigenvalue of an n by n random matrix, then its probability density f,(}) is given by

n— 2 n—1),—x%/2 n— 2
W)_L(l [r< 1,A>]+|A | 3 WM/Q)D'

T B \Vzr | Tn— 1) T(n/2)277% | I((n—1)/2)

A related function that we study closely in Section 3 is the unnormalized density for A,. Given a fixed

matrix A we can define the empirical cumulative distribution function of its real eigenvalues:
#(=o00,2](A) = { number of real eigenvalues of A < x}.

Let

d
Pn(l‘) — %EA#(—oo,x](A)a

where E 4 denotes expectation for random A. Then

1

() = = (A).

In fact, if A is any Lebesgue measurable set of the real line,

/ prn(A)dX = Eg#4(A) = The expected number of real eigenvalues in A.
AEA

Most simply put, p,(A) is a true density; it is the “expected number of eigenvalues per unit length” in an
infinitesimal interval near A.

We provide a Mathematica expression for E,, below and list enough values of F,, to suggest a conjecture
which turns out to be true. Table 1 tabulates F,, for n from 1 to 10 and suggests a difference in the algebraic
form of E,, for n even or odd.

We see that a 10 by 10 random matrix can be expected to have fewer than 3 real eigenvalues. More
striking is the observation that if n is even, E, is a rational multiple of v/2, while if n is odd, E,, is one more
than a rational multiple of /2. We like to think of this as the “extra” real eigenvalue guaranteed to exist
since n is odd. Also notice that the denominators in the ratios are always powers of 2. The observations

above and many others may be derived from the exact formulas below.



n E,

1 1 1.00000
2 V2 1.41421
31 1+35vV2 | 170711
4 12 1.94454
51 1+ 12v2 | 2.14905
6 22 2.33124
7| 14+ 22V2 | 249708
8| LoV2 | 265027
9| 1+ 2252 | 2.79332
10 | SB8/2 | 2.92799

Table 1: Expected number of real eigenvalues

ExacT FORMULAS FOR FE,. (Some notation is defined below the box.)

If n 1s even,
n/2-1

n_fz ’“‘1 ,

while if n 1s odd,
(n-1)/2
(4k — 3
=

(4k —2)!
Alternatively, for both even and odd n,

! 2 T(n+1/2)
En—§+\/;W2F1( 1/277,1/2)

_ 1 2F1( 1/2 n; 1/2)
5+ B(n,1/2)

= # +V2 PUTRE), e > L

Perhaps nicer yet, we have the generating function

(1—z—|—z 2 —
E,
(1—=2)% 1—|—z Z &

Theorem 5.1 and corollaries.

In the formulas above we use the Euler Beta function, a Jacobi polynomial evaluated at three, and also the

familiar double factorial (also known as the semifactorial) notation defined by

"_ 1x3xbx...xn 1ifnisodd
"= 29x4x6x...xn ifniseven.

By convention, 0!l = (=1)!t = 1.



Mathematica users who may wish to compute ¥, may do so by typing
e[n]:=(1-(-1)"n)/2 + Sqrt[2] JacobiP[n-2, 1-n, 3/2, 3]

As an example, the above Mathematica expression effortlessly computed the expected number of real eigen-

values of a 100 by 100 random matrix:
E100 = 75002314698289190681410505950979137956286758500731773968829v/2/2193,
In Section 6, we consider the generalized eigenvalue problem
det(M; — AM>) = 0,

where M; and M are independent and random. One might guess that questions about generalized eigen-
values would be more difficult than corresponding questions about eigenvalues, but in fact they are simpler.
If ES denotes the expected number of real generalized eigenvalues of a pair of independent n by n random

matrices, then
o _ VALt 1/2)
n T'(n/2) ’

The asymptotic number of real generalized eigenvalues is
E¢ 7

lim

An asymptotic series for this expression as n — 0o, is

™ 1 1 5 21 1
ES =,/—(1-— — —) .
" 2 ( 4n + 32n? + 128n3  2048n? + O(n5 ))

We also compute the probability density for the real generalized eigenvalues in Theorem 6.2. If A denotes

a real generalized eigenvalue of a pair of independent random matrices, then its probability density f&()) is

given by
1
el
A= ——
UC) (14 A2)’
that is, A obeys the standard Cauchy distribution. Equivalently, atan(}) is uniformly distributed on [-%, Z].

Notice that the density function of a real generalized eigenvalue does not depend on n. We could also define

pS(A) in analogy to p,(A), but this will not be of use to us.

2 Motivation, History, Background

Eigenvalues of random matrices arise in many applications areas, perhaps the most well-known areas are
nuclear physics, multivariate statistics, and as test matrices for numerical algorithms. See [10] for references
to some of these numerous applications. We strongly suspect that random eigenvalue models have been
considered in any area where eigenvalues have been considered. The subject is also a favorite for pure
mathematicians because it touches on harmonic analysis, combinatorics, and integral geometry.

The first investigation of the eigenvalues of real non-symmetric matrices with normally distributed entries
began with Ginibre [11]. He attempted to calculate the probability distribution of the real eigenvalues under
the assumption that some fixed number k& of them are real, but only succeeded in the case when all of the

eigenvalues are real.! In Section 3.5 of [13], Girko derives formulas for the distribution of the eigenvalues

1This is an extremely rare event for n not too small. It occurs with probability 2_"("_1)/47 a fact that will be derived in
an upcoming paper.



under the same assumption that a fixed number are real. Unfortunately, derivations are tedious and the text,
at least in translation, contains sufficiently many typographical errors as to make the derivations difficult to
check.

Research into the analogous question for polynomials has been much more successful; as is well docu-
mented in [2]. For example, in the 1940s Kac [18, 19], considered an nth degree polynomial whose coefficients
are independent standard normals. He derived an integral formula for the expected number of real roots
and was able to show that there are, asymptotically as n — oo, (2/7)log(n) real roots. Kostlan [21] was
able to derive an integral formula for the expected number of real roots of a polynomial with any central
normal distribution using the Poincaré formula of integral geometry. Furthermore, Kostlan [21], and Shub
and Smale [27] were able to apply geometric methods to show that if the coefficients have independent central
normal distributions with variances equal to the binomial coefficients, then the expected number of real roots
is exactly the square root of the degree. That these geometric methods, unlike the purely analytic methods
of Kac and others, give results for (even underdetermined) systems of equations, demonstrates the power of
integral geometry.

Thus from the pure mathematics side, the problem of computing the expected number of real eigenvalues
grew out of an attempt to apply integral geometry to linear algebra. The ease with which integral geometry
gives the expected number of real generalized eigenvalues (Section 6) gave added hope that the problem of
the expected number of real eigenvalues could be solved.

From the applied mathematics side, we wished to respond to a question by Shiu-Hong Lui [23] who was
testing homotopy methods to find the eigenvalues and eigenvectors of a general real matrix using random
test matrices. Random matrices are often used to test algorithms because of the small effort involved in
producing them. As an example, the eigenvalues of random matrices are computed in the LAPACK test
suite [4] though LAPACK makes no effort to count the number of eigenvalues that are real.

The physics community has also addressed this problem. Experimental evidence is presented in [22] that

the expected number of real eigenvalues is O(y/n)

3 Eigenvalue Inflation

We begin by defining a process that might be called eigenvalue inflation because it inverts the usual numerical
process known as eigenvalue deflation. Let Ay be any real n — 1 by n — 1 matrix, v be any unit n-vector
such that v, > 0, and w = (w; ... wy,) be any n — 1 dimensional row vector. We can “inflate” the set of

eigenvalues of Ay by building the n by n matrix

A=H(v) Ao S| Hw). (1)
0
w1 e Wi A
Here H(v) is the linear operator that exchanges v and e, = (0 0 ...0 1)?. For definiteness, let H(v) denote
reflection across the angle bisector of v and e,. In numerical linear algebra, reflections of the sort that
exchange an arbitrary vector v with e, are usually called Householder reflections, they are orthogonal and
symmetric, see [14].

If we make a change of variables from A to v, A, w and Ay, the following lemma tells us how to integrate.

Lemma 3.1 Let A be a Lebesgue measurable subset of the real line, let #4(A) denote the number of real
eigenvalues of A in A, and let J(A, v, Ag, w) denote the Jacobian of the transformation defined in (1). Further



let T denote the density function (Radon-Nikodym derivative) of any measure that is absolutely continuous

with respect to Lebesque measure. We then have

/ #a(A)T(A)dA :/ J(v, A, w, Ag) T(A(A, w, Ag,v)) dS(v) dA dw dAqg, (2)
A v, AEA W, Ap

where dS(v) is the standard (Haar) measure on the unit sphere, and where dA, dX, dw and dAg are standard

Lebesgue measures. In particular, the expected number of real eigenvalues s

E, E/ #n(A)T(A)dA = / J(v, A, w, Ag) T(A(A, w, Ag,v)) dS(v) dA dw dAqg, (3)
A v,A,w,Aq

Proof It is easy to see that as Ay varies over all n — 1 by n — 1 matrices, w varies over ®7~ !, and v varies

over the unit hemisphere in R", every matrix A is covered exactly k times, where k is the number of real

eigenvalues of A in A, unless A falls on the set (of measure zero) of matrices with an eigenvector v where

vp, = 0 or the set (of measure zero) of matrices with multiple eigenvalues.
Lemma 3.2 The Jacobian of the transformation defined in (1) is
J(v, A, w, Ag) = | det(Ag — AT)|.

Proof The proof requires calculation of some differentials near fixed A, v, Ag, and w so that we omit the
dependence of H on v etc. In the following, matrices and vectors of differential quantities are in bold face
Roman letters so as to distinguish them from the notation for Lebesgue measure.

Notice that v dv= 0so that H¥ dv, which is also the last column of H¥dH, has the form (dy; ...dy,_1 0)T.
The element of surface area in this rotating coordinate system, dS = dy1dys . . . dy,—1, 1s the natural element
of surface area on the unit sphere. See Muirhead [25, p.63] for a slightly similar treatment in a more general
setting.

Let M denote HAH. Since H? = I, we have HdAH= —dHH. Therefore A = HMH and dA=dHM H +
HAMH + HMdH or HAAH =dM+(HdH)M — M (HdH). Tt follows that if we omit the last component

dy
of the last column of HAAH we obtain (Ag — Al) . The other elements of HdAH contaln
dyn-1
differential forms composed of the corresponding element of dM and the dy;. Taking exterior products of

the differential forms of the n? components using standard techniques, we see that

[\ dAi; = | det(Ag — M)| dS(v) dX dw dA,,
ij
completing the derivation.
This derivation in terms of differentials almost hides the action on the tangent spaces. Consider the
tangent space at e, and ask how does that map to the tangent space at A in directions orthogonal to A. A

perturbation theory argument would derive a relationship from
(121 + cwel)(en + ey) = (A4 A1) (en + €y),

with the assumption that efw = 0 and ey = 0. A quick calculation shows that the relationship between
the last n — 1 components of w as a function of those of y is given by Al — Ag. This 1s more informative than
saying the Jacobian is | det(A] — Ag)l, because it gives a clear interpretation to the matrix itself.

We now specialize to the case when the matrix A has independent standard normally distributed elements,

or, in other words, where 7(A) = (271')_”2/2 exp(—% Z?]’:l a?j).



Theorem 3.1

[ #a) |@m -5 3 atjaa

i,j=1

7Tl/2 1/ 1 ) Cn_112/0 1 n—1 ,
= [ s 0, G (o = AT [ exp (] | ey 3 (i
Ao =
and where dA, dX and dAy are standard Lebesqgue measures. For clarity, we have placed Gaussian measures

mn brackets.

Proof By Lemma 3.1 and Lemma 3.2, it i1s clear that the variables v and w are independent of A and
Ap and also they are independent of each other. Thus we can readily integrate out the v and w terms:
fv dS(v) = %Vol(Sn_l) = 7"/2/T(n/2) (where S~ denotes the unit sphere in #7), and fw exp(—% S w?) =
(271')(”_1)/2. From these equations and the previous two lemmas the theorem is immediate.

Taking A to be R, we have that

Corollary 3.1
7l/2

= 21727 (n/2)

where the E denotes expectation over the variables in the subscripts.

En EADV)\|det(A0—/\I)|,

Definition 3.1 Let D,,_1(A) = Eu, | det(Ag — AT)|, where the expected value is taken over alln—1 byn—1

matrices Ay with independent standard normally distributed elements. Also define

e~ /2 e 1

From the discussion above, all of these quantities are related statistically to expectations concerning the

real eigenvalues of a random matrix:

1
pn(A) = Alimo X (expected number of eigenvalues in [A — A/2, A+ A/2]).
Therefore,
[ movix (1)
AEA

represents the expected number of eigenvalues in A; F, is the expected number of real eigenvalues (i.e. the
expected number of eigenvalues in R); f,(A) is the derivative of the cumulative distribution function of the
real eigenvalues. Tt is sometimes called a condensed density function, in contrast to join densities [2]. Since we
consider all the real eigenvalues to be identical, f,(}) is nothing more than the marginal (probability) density

function of a single real eigenvalue. In the next two sections we obtain explicit closed-form expressions for

pn(A), En and fr(A).

4 Density Computation

The computation of the density of a real eigenvalue of an n by n random matrix proceeds by evaluating
Dy_1 = E4,(|det(Ag — AT)|) where Agis an n — 1 by n — 1 random matrix first in terms of objects known

as zonal polynomials?, and then in terms of more elementary functions.

?Zonal polynomials arise in group representation theory and the study of related hyergeometric functions [25].



For simplicity we calculate D, instead of D,_;. Let A be an n by n random matrix. From Theorem

10.3.7 of [25, p.447], we have that

n/2 n n 2
D, = Ba(lder(a - an) = UL 5 ),

The scalar valued hypergeometric function of a matrix argument that appears in the formula above arises in

multivariate statistics [25], and should not be confused with the matrix valued function obtained by applying
a Taylor series to the matrix. A useful expansion for this hypergeometric function which may be taken as
its definition may be found in the proof of Theorem 4.1. An alternative definition for a symmetric n by n
matrix X is that
1F1(a; ¢; X) = constant x / exp(tr(XY))(det Y)a_("+1)/2 det(I, — Y)c_a_("'l'l)dY,
0<Y <Iy,

where Re(a), Re(c), Re(c —a) > (n—1)/2. The integration is over the symmetric matrices ¥ for which ¥ and
I, =Y are positive definite matrices. The measure is Lebesgue measure on the upper triangular elements of
Y. Lastly, the constant is chosen so that 1 Fy(a;e;0) = 1.

We introduce the following abbreviation:
Definition 4.1
1 n A
39 )
It is not generally known when hypergeometric functions with a scalar matrix argument can be written

Fo(A) =111(=

as a finite sum of hypergeometric functions with scalar arguments. Gupta and Richards [16] have explored
when certain hypergeometric functions of a scalar matrix argument can be written as infinite sums of simpler

expressions. In our case, Fj,(A) can be written in terms of incomplete gamma functions.
Theorem 4.1
Fo()) =

e>‘2/2F(n,/\2) N gn—1 /\_2 n/2 (E /\_2)
T(n) Tmy\2/) 72927
We postpone the proof of this theorem until the end of this section.

Corollary 4.1 The generating function of the Fy(X) is given by

> F(A\):" =1+ T DNy 3279 ¢ N 2 enf[2/A2)2] + erf[(1 — 2)/A2/2]}.
—Z
n=0

Proof Rewrite the formula in Theorem 4.1 using

o0 n AZ )\2/2
[(n, %) = t"~te7t'dt and y(=, =)= 2=ty
A2 272 0
Switching the order of summation and integration, the generating function can be written as a sum of two

integrals. These integrals are easy to evaluate.

In the previous section we established that

e‘>‘2/2
pn(A) = WDn—l(A)~
Thus s
() = = Fu_1(V). (5)

V2w
Using the duplication formula [1, 6.1.18] to rewrite T'(n) in the second term of the formula in Theorem 4.1

and then combining with (4) and (5) proves the following two corollaries.



Corollary 4.2 The expected number of eigenvalues on the inlerval [a,b] is equal {o

L1 [T =1,02)] A e M2 [y((n — 1)/2,02/2)
/ (m[ fomt | * T | T2t DC“'

Corollary 4.3 If A, denotes a real eigenvalue of an n by n random matriz, then its marginal probability

density fo(X) is given by

) = ( 1 [F(n—l,/\z)]+|/\”_1|6_>‘2/2 [7((71_1)/2&2/2)]).

T E.\Vor | T(n—1) T(n/2)277% | T((n—1)/2)
The probability density for the normalized eigenvalue & = A/y/n is g,(x) = /nfn(x\/n). We wish to

understand the limiting behavior of this function as n becomes large.

Corollary 4.4 For all real values of x,

1/2 2] < 1
Jim gn(z) = ¢ (2+V2)/8 |o| =1
0 |z| > 1

Furthermore, the functions gn(x) converge in the LP norms for all 1 < p < co.

Proof First we analyze pointwise convergence. We will show in Corollary 5.2 that

E, 2
lim —= =4/=
Sy ©)
Furthermore [1, 6.5.34],
1 0<y<l
F —_=
lim (?+QJW):1—1m1ﬂ?ifﬂﬂﬁz /2 y=1 (7)
m—o00 (m =+ a) m—o00 (m =+ a) 0 y > 1

we can easily establish that

(Vae)rTle 1 )0m) | =1
B OYEIPRE ‘{ 0 fel# LT ©

Combining (6), (7) and (9), we establish the desired pointwise convergence. Using elementary calculus one
can show that for all y > 0 and m > 1/2,

y2m—1em—my2 S el—y. (10)

Furthermore, the Gaussian continued fraction for the incomplete gamma function [15, 8.358] shows that for
y>a—1,

e Yy®
y—a+1

Using (6), (8), (10) and (11), it is not hard to show that for all sufficiently large n,

[(a,y) <

(11)

gn(z) < et=lel,

Thus by the dominated convergence theorem, the sequence {g,} converges in the L? norm for all 1 < p < co.

Since L' convergence of densities implies convergence in distribution, we have at once another corollary.

10
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Figure 3: Density of normalized eigenvalues for n = 5,10,20,50,100,200. The bigger n is the closer it
resembles the uniform density on [—1,1].

Corollary 4.5 If A, denotes a real eigenvalue of an n by n random matriz, then as n — oo, the normalized

eigenvalue A, /\/n converges in distribution to a random variable uniformly distributed on the interval [—1,1].

Figure 3 illustrates the convergence to the uniform density.

Proof of Theorem 4.1: Following Muirhead, we begin by considering ordered partitions « of an integer k
k= (ki,ka,. .., kn), where ks + ...+ kp =k and ky > ka > ... >k, > 0.

The (confluent) hypergeometric function of a matrix argument is defined as

1F16lbl‘[ Zklzg

where

Ha— (i —1)/2),,

i=1
(a)y =ala+1)...(a+k—1)=T(a+ k)/T(a)
and the zonal polynomial [25, p.237] is

Hz<](2k Qk] _Z+-7)

Cio(I) = 2% k!(n/2), NN

Observe that

n

(—5)e = TT=i/2. (12

i=1
However, since (—1); = 0 unless £ = 0 or 1, (—%),.C =0unless 1 > ko > ks> ... > k, > 0. In other words,

we are only interested in partitions where possibly only the first component is not 0 or 1.

11



We now focus on F(A) — Fi,_1(A). Since Cy(Iy)/(n/2)y is independent of n, the only difference between
the expansion for Fj, and Fj,_; 1s the summation over partitions with exactly n non-zero components. To

be precise, we may restrict our attention to partitions of the form

k=(k-n+11,1,....1), k>n.

n—1

We see from (12) that
n!

(=1/2)x = (=1/2)p-nt1 W’

and that
Co(L) QZkk,H?ﬂ@(k —n41) =21+ ) [T}_s( — 2)!
(n/2)s, T2k —n+1)+n— D24+ n— )
_ iy A2k —n = 1)/ (2k — 20) ) T2
2k —n+ DI, !
o2 (2k —n—1)!
=2 kk'(?k —n+ D2k — 2n)inl(n — 1)1
Therefore,
o 2k
Fo(A) = Fusi(N) = (n—l i Z 1@’“_;1%}2% 1))'.2 (=A2/2)k. (13)

Letting [ = k — n and noting
(=1/2)1422% _ -1
(20! i

we can rewrite (13) as

o S (=A*/2)
Fo(A) = Fasa(A) = T(n) (7) Z 1!(21+n+1)(2l+”>

-5 (3 (S-S s
IO (O <‘3?<§ff);§"” S
) e e

2
To calculate Fj,(A), we sum the preceding formula over n. The first two terms of the formula telescope

and it is only the last term that must be summed. However

LA TR, JR (A eI )
Z<2) ORI

k=1 k=1

Thus we see that

A2 (. 22 n—1 a\"/2 )2
F,(\) = Fr(gl)’A )4 i(n) (A—) (5 A—),

as required.

12



5 Expected Number of Real Eigenvalues

To calculate the expected number of real eigenvalues, we need only perform the integration indicated in
Corollary 4.2, taking the interval to be [—00, o0]. The integrals involved may be found in classical references
(e.g. [15, 6.455]). This produces a closed-form expression for E, in terms of the Gaussian hypergeometric

function:

E, = %W [n 1+ % SFi(1n —1/2;(n+1)/2;1/2)] .
We wish to rewrite E, in various forms, each form having its own advantages. The above form was not
included in the first section of this paper, because we found it unenlightening. In principle, manipulations of
Gaussian hypergeometric functions should be able to prove the equality of any two formulas for E,,. However,
it is easier to check formulas for F, by computing their generating functions and then comparing them to

the result in the following theorem.

Theorem 5.1 The generating function of the E, ts given by

= w2l =24 2/2—2z)
HZ_%E"Z (=214

Proof Using the generating function for Fj, (Corollary 4.1), we can easily produce the generating function
for the p, and integrate it to produce the generating function appearing in this theorem.

The following corollary will be convenient for computing the asymptotic character of E,, for large n.
Corollary 5.1 In terms of Gaussian hypergeometric functions,

E, == ST Y R, =12 1/2) = = + V2
2-1— - T(n) 2 Iy ( /2;n;1/2) 2—1-\/_

(1’ —1/2;n; 1/2)
B(n,1/2)

Proof Observe that [15, 9.111]

V2 o Fi (1, -1/2;n;1/2) = (n — 1) /1(1 — )" 2/2 —t dt.

Interchanging summation and integration, we can therefore write the generating function for the postulated
E, as a single integral. This integral will evaluate to an algebraic function. We then compare this with the

generating function in Theorem 5.1.

Corollary 5.2 We have the asymptotic series
/2n 3 3 27 499 1
Ep=y/—[1——— —
T ( 8n  128n? + 1024n3 + 32768n4 + O(n5 )) +

Proof The standard series for the hypergeometric function serves as an asymptotic formula for large n since

N | —

as n — 0.

n appears in the denominator. An asymptotic formula for T'(n 4+ 1/2)/T'(n) can be found in [29, 43:6:10].

Corollary 5.3 If n is even,

M ey
En=V2 kz—o (4Rt
while if n 1s odd,
(n=1)/2
(4k — N
En =142 ; @k —2)1



Proof Using Corollary 5.1, the Gauss recursion formulas for Gaussian hypergeometric functions give

1 I(n—3/2) (2n— 5

E(En = En2) = Viln—1)  (2n— 4l

Thus it is elementary to establish this corollary by induction.

Corollary 5.4 Forn > 1,

1—-(=1)» _n 3
Ey = 7(2 P va R ),
Proof The Jacobi polynomials are Gaussian hypergeometric functions. To be precise [15, 8.962.1],
n B 4T 1/2
PP = B b /2524 1)2),

3/Al(n—1)

Rewrite the postulated F, using this formula, and then proceed as in Corollary 5.1, or as in Corollary 5.3.

6 Real Generalized Eigenvalues

A “generalized eigenvalue” of the pair of matrices (M1, M3) (or of the pencil My — AM3), is defined to be a
solution A to the equation

det(M1 - AMQ) =0.

In this section we show how symmetry can be used to obtain the expected number of real generalized

eigenvalues and their density.

Theorem 6.1 If ES denotes the expected number of real generalized eigenvalues of a pair of independent n
by n random matrices, then
o _ VALt 1/2)
! L(n/2)
Since the asymptotic series of the Euler Beta function is known [29, 43:6:10] we have an immediate

corollary.
Corollary 6.1 We have the asymptotic series
n ( 1 1 5 21

E¢ =,]=— — - O(—
" 2 4n + 32n? + 128n3  2048n? + (n5 ))

as n — 0.

Theorem 6.2 If A denotes a real generalized eigenvalue of a pair of independent random matrices, then its

probability density f()\) is given by
1
G
MNN= —
f ( ) 7T(1 +A2)’

that is, A obeys the standard Cauchy distribution. Equivalently, atan(X) is uniformly distributed on [—7, 5]

Since astandard Cauchy random variable can be defined as the ratio of two independent standard normals,
it seems appropriate to call the random matrix M = Mz_lMl a “(standard) Cauchy matrix.” Clearly the
eigenvalues of M are just the generalized eigenvalues of the pair (M7, M3). Thus the expected number of real

etgenvalues of an n by n Cauchy matriz s equal to

Val((n+1)/2)
L(n/2) 7
and a real eigenvalue of a Cauchy matriz is Cauchy.
We now prove these results. A straight forward calculation using Jacobians would be possible here, but

we prefer to use the more elegant tools of integral geometry.
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Definition 6.1 Let A,, denote the setl of all n by n singular matrices of Frobenius norm one.

Following standard notation, the Frobenius norm of a matrix A is defined as ||A||lr = /> a?j. In the

language of algebraic geometry, A, is a real algebraic subvariety of dimension n? — 2 of the unit sphere
S7°=1in ®7°. Now let (M, Ms) be a pair of matrices. The intersection in R1° of the plane spanned by
M; and My and the sphere 57°=1 s a great circle. Real generalized eigenvalues correspond to (pairs of
antipodal) intersections of A,, with this great circle.

Thus when we consider real generalized eigenvalues of the random pair (M, M2), we are considering
intersections of A, with random great circles in 57°=1_ From the choice of probability measure for the
pair (My, M), it is not hard to show that the random circles have the standard (Haar) measure. This is
a classical set up for integral geometry. We wish to know the expected number of intersections of a fixed

variety and a random variety.

Lemma 6.1 (Poincaré) Let V be a variety in S™ of dimension m—1. The expected number of intersections
of V and a random great circle (with the normalized Haar measure) is equal to twice the volume of V divided
by the volume of ST~ 1.

This formula and its generalizations appear in integral geometry books such as [26]. Poincaré’s formula
reduces the problem of calculating the expected number of real generalized eigenvalues to finding the volume
of A,,.

The set A, was studied by Demmel [3] and Edelman [8] in the context of studying the probability
that a numerical analysis problem is difficult. In particular, they investigated the probability distribution
of Demmel’s scaled condition number kp(M) = ||M||p||M ~||s. Computing the volume of A,, reduces to
computing the asymptotics of the probability that kp > @ as @ — oo

Let Ve(Ap) be the volume of an € neighborhood of A, in sne-1 Clearly,

Vol(A,) = l%(?e)‘lm(An).
By the definition of the Demmel condition number kp,
V.(Ay) = Prob[kp > 1/€]Vol(S" ~1).
Edelman [8, Corollary 2.2] has shown that

Y _ 20((n+1)/2)I'(n?/2)
lgl(l)E Prob[kp > 1/¢] = (/DT ((n2 = 1)/2)

We conclude that

277" /2] 1)/2
Vol(A,) = 22 T+ U/2)
L(n/2)T((n* = 1)/2)
Dividing this by the volume of gnt =2 gives the expected number of real generalized eigenvalues.

We now deduce the density function of a real generalized eigenvalue. Consider the pair (M7, M2) to be

a collection of n? bivariate normals. The generalized eigenvalue equation may be rewritten
det[cos(6) M1 — sin(6) M) = 0.

Since each of the bivariate normals is invariant under rotation, we can readily see that (cos(@),sin(f)) is

uniformly distributed on the unit circle. Since A = tan(@), we have immediately that A is Cauchy.
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7 Numerical Experiments

Fairly early into our investigation, we had some notion that the expected number of real eigenvalues must
be roughly 0.8/n from numerical simulations. We were later pleased to learn that this 0.8 was the number
Vo

With the investigation completed, we can now provide the numerical experiments alongside the exact
theoretical results. The numerical experiments were performed using the newly released LAPACK eigenvalue
algorithms which we ran on 64 processors of the CM-5 parallel supercomputer. We are pleased to report
that the LAPACK algorithm on the CM-5 computed results consistent with our theorems:

Expected number of real eigenvalues: CM-5 Experiments using LAPACK on 64 processors

n trials | experimental F, | theoretical F, | minutes
80 640 7.6 7.603 1
160 | 640 10.7 10.569 7
320 | 640 14.9 14.756 51
640 | 128 20.8 20.673 82
900 64 24.5 24.427 107

We used the CM-5 in what is sometimes called “embarrassingly parallel mode” because each individual
matrix never crossed any processor boundaries. Indeed, a 900 by 900 double precision real matrix is about
the largest that can fit on any one processor. The results of the computations were sent to the CM-5’s host
using the CM-5’s message passing language CMMD.

In order to save some computing time, rather than working with a dense matrix with normally distributed
elements, we defined random upper Hessenberg matrices A with exactly the same eigenvalue distribution as

a matrix with normally distributed elements. This upper Hessenberg matrix is defined by

normally distributed 1<y
az; is ¢ distributed like x,,—; t=j—-1
0 otherwise

To prove that this random matrix does indeed have the same eigenvalue distribution, merely consider the
standard reduction to upper Hessenberg form using Householder matrices as described in books such as [14].
The subdiagonal is the length of the column below 1t which is a y distribution, the appropriate elements are
zeroed out creating Hessenberg form, and the remainder of the matrix remains normally distributed because

of the orthogonal invariance.

8 Extensions to Other Distributions

Mehta [24, Conjectures 1.2.1 and 1.2.2] conjectures from extensive numerical experience that the statistical
properties of matrices with independent identically distributed entries behave as if they were normally
distributed as n — oco. Mehta focuses on the symmetric or Hermitian cases, but surely the idea is quite
general.

Through our own numerical experience, we believe that any eigenvalue property of most any well-behaved
distribution can be modeled by the normal distribution. Below are some numerical experiments performed
on matrices whose entries came from the uniform distribution on [—1,1] and also the discrete distribution
{—1,1}. Notice that both of these measures have mean zero and finite variance. Though we have not tested
this, we suspect that these are the crucial hypotheses. As indicated in the caption, our CM-5 was upgraded

to 128 processors before running these experiments.
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Expected number of real eigenvalues: CM-5 Experiments using LAPACK on 128 processors

uniform distribution [-1,1] discrete distribution {-1,1}
n | trials | experimental E,, | minutes || trials | experimental E,, | minutes
80 | 3200 7.6 3.5 || 3200 7.5 3.3
160 | 3200 10.6 24.5 || 3200 10.5 24.1
320 | 3200 14.9 191 || 3200 14.8 188
640 | 896 21.1 412 640 20.8 308
900 | 384 24.6 499 384 24.7 500
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