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n growth13 13.0218 20.4520 24.2525 32.99These matrices were obtained computationally using sophisticated numerical op-timization techniques. The �rst author [4, 5] was only able to reproduce Gould'slarge growth in exact arithmetic upon perturbing Gould's matrices in a non-trivialmanner. This reminds us of the care needed when proving mathematical statementsusing rounded arithmetic.Trefethen and Schreiber [15] report on preliminary experiments that suggestthat if A is a random matrix with independent standard normal entries, then thegrowth factor for partial pivoting seems to behave like n2=3, though they do notclaim this behavior to be asymptotically valid. The �rst author has performed moreextensive experiments that suggest that partial pivoting grows more like n1=2 thann2=3. Proving such a result to be true is probably very di�cult.We now know that the conjecture that g(A) � n is false, but we believe a weakerversion of the conjecture formulated by Cryer: We believe that g(H) = n if H isa Hadamard matrix. A Hadamard matrix H has entries �1 and HHT = nI.(Cryer's original formulation was that g(A) � n with equality i� A is a Hadamardmatrix.) When performing Gaussian elimination with complete pivoting on aHadamard matrix, the �nal pivot always has magnitude n [2, Theorem 2.4].Here we take a small step towards proving the Hadamard portion of Cryer'sconjecture by settling a conjecture by Day and Peterson [3] that only one set ofpivot magnitudes is possible for a 12 by 12 Hadamard matrix. Unfortunately manypivot patterns can be observed by permuting the rows and columns of any 16 by 16Hadamard matrix, and it appears very di�cult to proof that g(H) = 16 when H isa 16 by 16 Hadamard matrix.Husain [12] showed that there is only one Hadamard matrix of order 12 upto Hadamard equivalence. (Two matrices are Hadamard equivalent if they canbe obtained from each other by row and column permutations and by row andcolumn sign changes.) However, the pivot pattern is not invariant under Hadamardequivalence.2 Preliminary Notation and LemmasHadamard matrices are highly structured. We collect here the important propertiesthat we will need for our proof. To begin, it is well known that an Hadamardmatrix of size n = 4t is equivalent to a symmetric block design with parametersv = 4t�1, k = 2t�1, and � = t�1 [9]. A symmetric block design with parametersv; k and � is a collection of v objects and v blocks such that� every block contains k objects,� every object is found in k blocks,� every pair of blocks share � objects in common,2



� every pair of objects can be found in � blocks.We can interpret an Hadamard matrix as a symmetric block design by �rst negatingrows and columns of H so that its leading row and column contains only positiveones. We then have a design on the objects 1 through n � 1 by saying that k is amember of block i i� Hi+1;k+1 = +1. When n = 12, t = 3, v = 11, k = 5, and� = 2. Therefore a 12 by 12 Hadamard matrix is equivalent to an arrangementof 11 objects into 11 blocks containing 5 objects such that each object appears inexactly 5 blocks, every pair of distinct objects appears together exactly twice, andevery pair of distinct blocks has exactly 2 elements in common.We say that a matrix A is completely pivoted, or CP, if the rows and columnshave been permuted so that Gaussian elimination with no pivoting satis�es therequirements for complete pivoting. Following [3], let A(k) denote the absolutevalue of the determinant of the upper left k by k principal submatrix of A, and A[k]denotes the absolute value of the determinant of the lower right k by k principalsubmatrix. The determinant of a 0 by 0 matrix is 1 by default.Let pk � A(k)=A(k � 1): (1)When A is CP, pk is the magnitude of Akk after k�1 steps of Gaussian elimination,i.e. the kth pivot. For the remainder of this paper, we will simply use the term\pivot" rathern than \pivot magnitude."Lemma 2.1 If H is an n by n Hadamard matrix, thennn=2H(k) = nkH[n� k]:Proof See [3], Proposition 5.2.Corollary 2.1 If H is an n by n Hadamard matrix, then the kth pivot from theend is pn+1�k = nH[k � 1]H[k] :Proof This follows immediately from the lemma and the de�nition of pk.Corollary 2.2 If a Hadamard matrix H is CP and k < n, then, for all (k � 1)�(k � 1) minors Mk�1 of the k � k lower right submatrix of H, we have H[k� 1] �j det(Mk�1) j.Proof This follows from Corollary 2.1 and the CP property of H, for otherwise wecould permute rows and columns of the lower right k � k minor of H to obtain alarger value for pn+1�k.This corollary is useful for telling us that H[k�1] is the magnitude of the largest(k�1)�(k�1) minor of the k�k lower right submatrix ofH. Thus H[k�1]=H[k] isthe largest magnitude of an element of the inverse of the k�k lower right submatrixof H. 3



Lemma 2.2 Let dn denote the largest possible value of a determinant of an n byn matrix consisting of entries �1. The �rst seven values of the sequence (di) are1; 2; 4; 16;48;160; 576: For n = 2; : : : ; 7 if the determinant of an n by n matrix of�1's is dn, then the matrix must have an n�1 by n�1 minor whose determinant'smagnitude is dn�1. This can not happen when n = 8.Proof The values of d1; : : : ; d7 were computed by Williamson [19] who furthershowed that up to Hadamard equivalence there is only one n by n matrix withdeterminant dn for n = 2; : : : ; 7. It is easy to verify that each of these matrices hasan n� 1 by n� 1 minor with absolute determinant dn�1. When n = 8, d8 = 4096,the matrix is Hadamard, so all 7 by 7 minors have determinant of magnitude 512.Lemma 2.3 If H is a CP Hadamard matrix, then H(4) = 16 so that the 4 � 4principal subminor of H is an Hadamard matrix of order 4.Proof See [3], Proposition 5.8. It follows that the �rst four pivots are 1,2,2,4respectively.3 Pivot Sequence for H12In this section we prove our main result: the pivots for a CP 12 � 12 Hadamardmatrix are (1,2,2,4,3,10/3,18/5,4,3,6,6,12). The �rst four pivots were determined byDay and Peterson [3] as given in Lemma 2.3. In Lemma 3.1 that follows, we showthat the �fth pivot must be 3 from which the remaining pivots will be determinedto be unique using Lemma 2.2.Lemma 3.1 If H is a 12� 12 CP Hadamard matrix then H(5) = 48.Proof The argument is simpli�ed if we consider the design interpretation of aHadamard matrix so (without loss of generality) we assume that the �rst row andcolumn of H are all +1, and also that the upper left 4 � 4 submatrix of H isthe 4 � 4 Hadamard matrix (Lemma 2.3) given by the block design with blocksB1 = f1g; B2 = f2g; B3 = f3g.We will show that some 5 � 5 minor of H with determinant 48 includes rowsand columns 1 through 4. Once we have done so, we can conclude that H(5) = 48.To see this, observe that Lemma 2.2 tells us that 48 is the maximum value of thedeterminant of a 5� 5 matrix of �1's. If there is a minor M5 with determinant ofmagnitude 48 then, because of complete pivoting, we must have 48 = j det(M5)j �H(5) � 48, implyingH(5) = 48.When we interpret H as a block design, each block has �ve objects, each pairof blocks has two objects in common, and the upper left 4 � 4 submatrix of H isHadamard.There are a number of arbitrary choices that lead to no loss of generality. Wealready mentioned a �xed choice for the objects 1; 2; and 3 as they appear in blocksB1; B2 and B3. Further, there is no loss in generality by lettingB1 = f1 4 5 6 7g; and B2 = f2 4 5 8 9g:4



This chooses 4 and 5 as the pair that appears in B1 and B2 and lets 6; 7; 8; and 9�ll in the remaining spots.Either B1\B2\B3 is empty or consists of one object which we can call 5 withoutloss of generality. (There could not be three blocks containing the same pair.) Thisleads to only two distinct possibilities for B1; B2 and B3. If B1 \B2\B3 is 5; thenB1 = f1 4 5 6 7g; B2 = f2 4 5 8 9g; B3 = f3 5 6 8 10g:We needed 6 and 8 so that B1 \B3 and B2\B3 contained two elements; the choiceof 10 rather than 11 was arbitrary.If B1 \B2 \B3 = ;, thenB1 = f1 4 5 6 7g; B2 = f2 4 5 8 9g; B3 = f3 6 7 8 9g:We needed to include 6; 7; 8 and 9 so that the intersections of B1 or B2 with B3contained two elements.Let B4 be a block that contains 1 and 2 but not 3. (There are two blocks thatcontain any pair such as 1 and 2, and they both could not contain 3 for otherwisethere would be too many elements in common.) The reader may verify that B4 cannot contain a 4 for if it did, it would not be possible to choose the last two elementsto be consistent with the either of the possibilities above. Thus B4 contains 1 and2 but not 3 and 4.The information from B1 through B4 about the objects 1 through 4 tells usthat we have a �ve by �ve minor that includes rows and columns 1 through 4 withentries 0BBBB@ 1 1 1 1 11 1 �1 �1 11 �1 1 �1 11 �1 �1 1 �11 1 1 �1 �1 1CCCCA :This matrix has determinant 48 and thus H(5) = 48.Corollary 3.1 If H is a 12� 12 CP Hadamard matrix thenp5 = H(5)=H(4) = 3:Theorem 3.1 No matter how the rows and columns of a CP 12 by 12 Hadamardmatrix H are ordered, the pivots must be 1, 2, 2, 4, 3, 10/3, 18/5, 4, 3, 6, 6, 12.Proof From Lemmas 3.1 and 2.1, it follows that H[7] = 576. Observe that, fromLemma 2.2, this is the maximum value attained by the absolute value of the deter-minant of a 7�7 matrix with entries �1. Lemma 2.2 also tell us that the 7�7 lowerright corner has a 6� 6 minor with maximal determinant 160. As a consequence ofCorollary 2.2, H[6] = 160. Similarly, we conclude H[5] = 48, H[4] = 16, H[3] = 4,H[2] = 2, and H[1] = 1. The last seven pivots now follow from Corollary 2.1.5



4 Hadamard matrices of order 16 and open prob-lemsIt is known [16] that there are �ve equivalence classes of Hadamard matrices of order16. Unfortunately, the pivot pattern is not an invariant of the equivalence class, andthus the number of equivalence classes may o�er little useful information. Extensiveexperiments revealed over 30 possible pivot patterns for Hadamardmatrices of order16, though not all patterns appeared for each equivalence class. However, we foundthe number of possible values for H(k) to be quite small. For example the onlyvalues that appeared for H(8) in our experiments were 1024, 1536, 2048, 2304,2560, 3072, and 4096. For H(7) the values that appeared were 256, 384, 512, and576. We suspect that the paucity of di�erent values for the determinants mightprovide cludes to prove that the growth factor for a 16 by 16 Hadamard matrix is16. An interesting conjecture by Day and Peterson [3] that the fourth from lastpivot must be n=4 remains unsolved. We performed extensive experiments beyondthose reported in [3] for a large variety of Hadamard matrices including some thatwere discovered as recently as the last seven years. We too believe their conjecture,though we have not attempted to prove it yet. Hadamard matrix problems soundtantalizingly easy, yet the existence of relatively small Hadamardmatrices (n = 428)is still not known.
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