
The Circular Law and the Probability that a Random Matrix Hask Real EigenvaluesAlan EdelmanDepartment of MathematicsUniversity of CaliforniaBerkeley, California 94720edelman@math.berkeley.eduMarch 23, 1993AbstractLet A be an n by n matrix whose elements are independent random variables with standard normaldistributions. Girko's controversial circular law states that the distribution of appropriately normalizedeigenvalues is asymptotically uniform in the unit disk in the complex plane. We derive the exact dis-tribution of the complex eigenvalues for �nite n, from which the circular law for normally distributedmatrices may be derived.Similar methodology allows us to derive a joint distribution formula for the real Schur decompositionof A. Integration of this distribution yields the probability that A has exactly k real eigenvalues. Forexample, we show that the probability that A has all real eigenvalues is exactly 2�n(n�1)=4.1 IntroductionThis paper investigates the eigenvalues of a real random n by n matrix of standard normals. We have twoquestions to explore:� What is the probability pn;k that exactly k eigenvalues are real?� Why do the complex eigenvalues when properly normalized roughly fall uniformly in the unit disk asin Figure 1?Both questions can be answered by �rst factoring the matrix into some form of the real Schur decompo-sition, then interpreting this decomposition as a change of variables, and �nally performing a wedge productderivation of the Jacobian of this change of variables. We demonstrate the power of these techniques byobtaining exact answers to these questions. Previous investigations of thse issues have lead to inconclusiveresults [10] and very cumbersome and probably erroneous results [12].This paper may be thought of as a sequel to [8], where we answered the questions� What is the expected number En =Pk kpn;k of real eigenvalues?� Why do the real eigenvalues when properly normalized roughly fall uniformly in the interval [�1; 1]?In fact, our investigation into pn;k preceded that of [12], but when we saw that P kpn;k, always had aparticularly simple form, we diverted our attention to understanding En and related issues. We felt that thederivation of En =P kpn;k must somehow be simpler than the derivation of the individual pn;k.Random eigenvalue experiments are irresistible given the availability of modern interactive computingpackages. Numerical experiments beckon us for theoretical explanation as surely as any experiment inmechanics did centuries ago. If understanding is not su�cient motivation, random matrix eigenvalues arise1
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Figure 1: 2500 dots representing normalized eigenvalues of �fty random matrices of size n = 50. Clearlyvisible are the points on the real axis.in models of nuclear physics [18], in multivariate statistics [20], and in other areas of pure and appliedmathematics including numerical analysis [12, 9].1Perhaps we are still at the tip of the iceberg in our understanding of eigenvalues of random matrices. Fewpapers contain exact distributional results for non-symmetric random matrices. Given an exact distributionformula for a normally distributed matrix, one expects such a formula to be asymptotically valid for matricesof elements of mean 0 and variance 1. This is a central limit e�ect. At the present time, however, there isno satisfying theory that seems to allow us to make the leap from normally distributed matrices to a widerclass.The contrast between the real and complex eigenvalues of a normally distributed matrix is illustratedin Figure 1. This �gure plots the 2500 values of �=pn where � is an eigenvalue of the random matrix ofdimension n = 50. Notice that the complex normalized eigenvalues may appear to be roughly uniformlydistributed in the unit disk. This is Girko's controversial circular law [11], which states that if the elements ofa random matrix are independent with mean 0 and variance 1, then the distribution of the normalized eigen-values is asymptotically uniformly distributed over the disk. Nobody doubts the overwhelming experimentalevidence; the controversy is over whether this law has yet been proved mathematically.Many have tried to understand Girko's \proofs," without success. This author has also not been able toverify Girko's proof, though we are not sure if the errors are in the translation from the original Russian.We have contacted Girko on this matter and eagerly await his response.In this paper we rigorously prove a result that is at the same time weaker and stronger than Girko's law.We derive the exact distribution of the complex eigenvalues of a real normally distributed matrix. The limitof the distribution of the normalized eigenvalues is indeed the uniform distribution on the circular disk. Thisis weaker than Girko's law in the sense that our results only apply for the normal distribution. Intuitively,the normal distribution models all distributions with elements of mean 0 and variance 1, by central limite�ects, but this sort of reasoning alone is not rigorous mathematics. Our result is stronger than Girko's lawin that it gives exact distributions for �nite n.1Most modern papers on numerical linear algorithms, rightly or wrongly, contain numerical experiments on randommatrices.2



A much simpler case occurs when the random matrix comes from a complex normal distribution, i.e.,the real and imaginary parts of each element are independent standard normals. In this case the exactdistribution for the eigenvalue, distribution and radius can be found in Ginibre [10] and reported by Mehta[18, p.300] and Hwang [15].Two recent books [18, 12] report on previous investigations concerning the eigenvalues of a randomGaussian matrix with no symmetry conditions imposed. Our approach improves on the work of Dyson [18,Appendix 35], Ginibre [10], and Girko[12, Theorem 3.5.1]. Ginibre and Girko compute expressions for thejoint distribution by diagonalizing A = X�X�1. Girko's form is in terms of the real eigenvalues and thereal and imaginary parts of the complex eigenvalues. Dyson computed an expression for the special casewhen A has all real eigenvalues using the real Schur decomposition [21] A = QRQT , where R is uppertriangular. Girko further expresses the probability ck that A has k real eigenvalues as the solution to an nby n linear system of equations, where the coe�cients are multivariate integrals. Girko's approach is rathercumbersome, and does not seem to be correct, at least in the English version.After preparation of this manuscript, we learned that Theorem 6.1 was independently discovered byLehmann and Sommers in [16] who consider the range of problems from the completely symmetric case tothe completely antisymmetric case. Our derivation follows a di�erent viewpoint.Our approach is simpli�ed by directly considering the real Schur decomposition [21] even when thematrix does not have all real eigenvalues. It is well known to researchers in matrix computations thatorthogonal decompositions are of great value [13]. It is perhaps not surprising that such decompositions arealso appropriate for random matrix theory.2 Main resultsProbability of exactly k real eigenvaluesThe probability pn;k that a random A has k real eigenvalues has the form r + sp2, where r and s arerational. In particular, the probability that a random matrix has all real eigenvalues ispn;n = 1=2n(n�1)=4: Cor 7.1 and 7.2In the tables below, we list the probabilities for n = 1; : : : ; 9 both exactly and to �ve decimal places.n k pn;k1 1 1 12 2 12p2 0.707110 1� 12p2 0.292893 3 14p2 0.353551 1� 14p2 0.646454 4 18 0.1252 �14 + 1116p2 0.722270 98 � 1116p2 0.152735 5 132 0.031253 � 116 + 1332p2 0.512021 3332 � 1332p2 0.456736 6 1256p2 0.005524 2711024 � 3256p2 0.248082 �271512 + 107128p2 0.652900 12951024 � 5364p2 0.09350
n k pn;k7 7 12048p2 0.000695 3554096 � 32048p2 0.084603 � 3552048 + 10872048p2 0.577271 44514096 � 10852048p2 0.337448 8 116384 0.000066 � 14096 + 3851262144p2 0.020534 53519131072 � 11553262144p2 0.345992 �5348765536 + 257185262144p2 0.571310 184551131072 � 249483262144p2 0.062109 9 1262144 0.000007 � 165536 + 52972097152p2 0.003565 82347524288 � 158912097152p2 0.146353 � 82339262144 + 13455552097152p2 0.593281 606625524288 � 13349612097152p2 0.256813



Joint Eigenvalue Density given k real eigenvaluesThe joint density of the ordered real eigenvalues �j and ordered complex eigenvalue pairs xj�iyj , yj > 0given that A has k real eigenvalues is2l�n(n+1)=4Qni=1 �(i=2)� exp �P(y2i � x2i ) �P�2i =2�Qerfc(yip2);where � is the magnitude of the product of the di�erences of the eigenvalues of A. Integrating thisformula over the �j , xj and yj > 0 gives pn;k. Theorem 6.1Density of Non-real EigenvaluesThe density of a random complex eigenvalue of a normally distributed matrix is�n(x; y) =p2=�yey2�x2erfc(yp2)en�2(x2 + y2);where en(z) =Pnk=0 zk=k!. Integrating this formula over the upper half plane gives half the expectednumber of non-real eigenvalues. Theorem 6.2Notice the factor y in the density indicating a low density near the real axis. Readers may notice thewhite space immediately above and below the real axis in Figure 1. We think of the real axis as attractingthese nearly real eigenvalues.The Circular LawLet z denote a non-real eigenvalue normalized by dividing by pn. As n!1, z is uniformly distributedin the disk jzj < 1. Furthermore, as n!1, each eigenvalue is almost surely non-real. Theorem 6.3It is tempting to believe that the eigenvalues are almost surely not real, because the real line is a set ofLebesgue measure zero in the plane. However this reasoning is not correct. Indeed it is not true for �nite n.When n = 2, we see that the probability of real eigenvalues is greater than non-real eigenvalues. The errorarises because of the false intuition that the density of the eigenvalues is absolutely continuous with respectto Lebesgue measure.3 Random Determinants, Permanents, Derangements, and Hy-pergeometric Functions of Matrix ArgumentThis section may be read independently from the rest of the paper. Here we relate random determinantswith the theory of permanents and hypergeometric functions of matrix argument. We have not seen thisconnection in the literature.We remind the reader that the permanent function of a matrix is similar to the usual de�nition of thedeterminant except that the sign of the permutation is replaced with a plus sign:per(A) =X� a1�(1)a2�(2) : : :an�(n):Generally the permanent is considerably more di�cult to compute than the determinant.Hypergeometric functions of a matrix argument are less familiar than permanents. They arise in multi-variate statistics and more recently in specialized �elds of harmonic analysis. Unlike the matrix exponential,for example, these functions take matrix arguments but yield scalar output. They are much more compli-cated than merely evaluating a scalar hypergeometric function at the eigenvalues of the matrix. Readersunfamiliar with the theory may safely browse or skip over allusions to this theory. Those wanting to knowmore should consult [20, Chapter 7]. 4



Theorem 3.1 If A is a random matrix with independent elements of mean 0 and variance 1, and if z isany scalar (even complex!) thenE det(A2 + z2I) = E det(A+ zI)2 = per(J + z2I) = n!en(z2) = n! 1F1(�1; 12n;�12z2I)where Edenotes the expectation operator, J is the matrix of all ones,en(x) = nXk=0 xkk!is the truncated Taylor series for exp(x), \per" refers to the permanent function of a matrix, and thehypergeometric function has a scalar multiple of the identity as argument.The alert reader might already detect our motivation for Theorem 3.1. It is the source of the termen�2(x2 + y2) in the density of the non-real eigenvalues that will appear again in Theorem 6.2.Before we prove this theorem from a set of lemmas to follow, we remark on two special elementarycases. Taking z = 0 is particularly simple. When z = 0, the theorem states that the expected value of thedeterminant of A2 is n!, and of course the permanent of a matrix of all ones is n!. Expanding and squaringthe determinant of A2, we see cross terms have expected value 0 and the other n! squares have expectedvalue 1.Now consider z2 = �1. The theorem states that E(det(A2 � I)) = n!Pnk=0(�1)k=k!, an expressionwhich we recognize as Dn, the number of derangements on n objects, i.e. the number of permutations onn objects that leave no object �xed in place. Many combinatorics books point out that per(J) = n! andper(J � I) = Dn ([22, p. 28], [2, p. 161], and [19, p. 44]), but we have not seen a general formula forper(�I � J), the permanental characteristic polynomial of J , in such books.Theorem 3.1 is a synthesis of the following lemmas:Lemma 3.1 Let A,B, and C be matrices whose elements are the indeterminants aij,bij and cij, respectively.Any term in the polynomial expansion of det(A2 +B + C) that contains a bij does not contain an aij:Proof Let Xij denote the matrix obtained from A2 +B + C by removing the ith row and the jth column.Then det(A2 +B + C) = �bij det(Xij) + terms independent of bij.Since aij only appears in the ith row or jth column of A2, the lemma is proved.Corollary 3.1 Let A be a matrix of independent random elements of mean 0, and let x and y be indeter-minants. Then E det((A + xI)2 + y2I)) = E det(A2 + (x2 + y2)I):= E det �A +px2 + y2I�2 :Proof We use Lemma 3.1 by letting B = 2xA and C = (x2 + y2)I. Since,E det((A+ xI)2 + y2I) = E det(A2 + 2xA+ (x2 + y2)I);it follows that any term multiplying bij = 2xaij in the expansion of the determinant is independent of aijand so has expected value 0. Therefore the term 2xA makes no contribution to the expected determinant,and may be deleted. The second equality may be veri�ed similarly.Lemma 3.2 If A is a random matrix of independent random elements of mean 0 and variance 1, thenE det(A+ zI)2 = per(J + z2I):5



Proof Expand the determinant of A + zI into its n! terms and square. The expected value of any crossterms must be 0. The expected value of the square of any term is (1 + z2)s(�), where � is the permutationassociated with the term and s(�) is the number of elements unmoved by �. The sum over all permutations isclearly equal to per(J+ z2I) because s(�) counts the number of elements from the diagonal in the expansionof the permanent.Lemma 3.3 If A is a random matrix with independent normally distributed elements thenE det(A+ zI)2 = n!1F1(�1; 12n;�12z2I):Proof Let M = A + zI and z a real scalar. Since the quantity of interest is clearly a polynomial in z theassumption that z is real can be later relaxed. The random matrix W = MMT has a non-central Wishartdistribution [20, p. 441] with n degrees of freedom, covariance matrix I, and noncentrality parameters
 = z2I. The moments of the noncentral Wishart distribution were computed in 1955 and 1963 by Herz andConstantine in terms of hypergeometric functions of matrix argument. (See [20, Theorem 10.3.7, p. 447]. )In general, E detW r = (det �)r2mr �m(12n+ r)�m(12n) 1F1(�r; 12n;�12
);where �m denotes the multivariate gamma function. In our case, we care interested in E detW whichsimpli�es to E detW = n!1F1(�1; 12n;�12z2I):We remark that the identity 1F1(�1; 12n;�12z2I) = en(z2)can be obtained directly from a zonal polynomial expansion of the hypergeometric function of matrix argu-ment using the homogeneity of zonal polynomials and the value of certain zonal polynomials at the identitymatrix. (The key expressions are Formula (18) on p. 237 and Formulas (1) and (2) on p. 258 of [20].) Theonly partitions that play any role in the sum are those of the form (1; 1; : : : ; 1; 0; : : :; 0) with at most n ones.We further remark that in light of Lemma 3.2, the assumption of normality may be relaxed to anydistribution with mean 0 and variance 1. Thus we see our �rst example where the assumption of normalityallows us to derive a formula which is correct in more general circumstances.4 Orthogonal Matrix DecompositionsThis section may also be read independently from the remainder of the paper. Here we review the real Schurdecomposition in various forms that we will need to perform our calculations. We begin by pointing out thatstandard numerical linear algebra calculations may be best looked at geometrically with a change of basis.4.1 Quaternions and Elementary Numerical Linear AlgebraWe wish to study orthogonal (unit determinant) similarity transformations of 2 by 2 matrices:M 0 = � c �ss c �M � c s�s c � ; (1)where c = cos � and s = sin �.Researchers familiar with numerical linear algebra know that 2 by 2 matrices are the foundation of manynumerical calculations.2 However, we are not aware that the elementary geometry hidden in (1) is everpointed out.2Developers of LAPACK and its precursors spent a disproportionate amount of time on the software for 2 by 2 and othersmall matrix calculations. 6



Consider the following orthogonal basis for 2 by 2 matrices:I = � 1 00 1 � J = � 0 1�1 0 � K = � 1 00 �1 � L = � 0 11 0 � :Any 2 by 2 matrix M can be written as M = �I + �J + K + �L. This basis is a variation of the usualquaternion basis. (The usual quaternion basis is I, J , iK, and iL, where i = p�1. It is well known thatreal linear combinations of these latter four matrices form a noncommutative division algebra.)In the I; J;K; L basis, it is readily calculated that the similarity in (1) may be expressed0BB@ �0�00�0 1CCA = 0BB@ 1 1 C �SS C 1CCA0BB@ ��� 1CCA ; (2)where C = cos 2� and S = sin 2�. In the language of numerical linear algebra,a 2 by 2 orthogonal similarity transformation is equivalent to a Givens rotation of twice the angleapplied to a vector in <4.The set of matrices for which � = 0 is exactly the three dimensional space of real 2 by 2 symmetricmatrices. Choosing an angle 2� in the Givens rotation to zero out �0 corresponds to a step of Jacobi'ssymmetric eigenvalue algorithm. This is one easy way to see the familiar fact that only one angle � 2 [0; �=2)will diagonalize a symmetric 2 by 2 matrix, so long as the matrix is not a constant multiple of the identity.A case of more concern to us is choosing an angle 2� in the Givens rotation to set 0 = 0, in the generalnonsymmetric case. Doing so we conclude:Lemma 4.1 Any 2 by 2 matrix M is orthogonally similar to a matrix with equal diagonals. If the matrix isnot equal to �I + �J , then there is only one angle � 2 [0; �=2) that transforms M into this form.Since the components in the I and J directions are invariant under the Givens rotation (2) we read righto� that the trace of the matrix and the di�erence of the o�-diagonal terms of the matrix is invariant underorthogonal similarities. We readily concludeLemma 4.2 Let M be a 2 by 2 matrix with the non-real eigenvalues x � yi. There is a unique matrixorthogonally similar to M of the formZ = � x b�c x � ; bc > 0; b � c:Given the matrix M and its eigenvalues x � yi, b and c may be computed from the equations bc = y2and b+ c = M12 �M21. If M is not of the form �I + �J , then the orthogonal matrix with determinant 1 isunique up to sign. Notice that adding � to � just changes the sign of the orthogonal matrix. Adding �=2 to� has the e�ect of interchanging the b and the c.4.2 Real Schur DecompositionThe real Shur decomposition expresses A as orthogonally similar to an upper quasi-triangular matrix R [13,p.362]. To be precise A = QRQT whereR = 0BBBBBBBBBB@ �1 � � � R1k R1;k+1 � � � R1m. . . ... � � � � � � ...�k Rk;k+1 � � � RkmZk+1 � � � Rk+1;m. . . ...Zm 1CCCCCCCCCCA : (3)7



R is an n� n matrix (m = (n + k)=2) with blocksRij of size 8>><>>: 1 by 1 if i � k; j � k1 by 2 if i � k; j > k2 by 1 if i > k; j � k2 by 2 if i > k; j > kHere Rjj is the real eigenvalue �j of A when j � k and Rjj is a 2 by 2 blockZj = � xj bj�cj xj � ; bc > 0; b � c;so that the complex eigenvalues of A are xj � yji, where yj =pbjcj; for j > k. Finally, as indicated in (3),Rij is a zero block if i > j.The block structure indicated in (3) is quite powerful in that it allows us to simultaneously handle allthe possibilities rather cleanly. All that one must remember is that an index i refers to a size of one or twodepending on whether i � k or i > k respectively.Since matrices with multiple eigenvalues form a set of Lebesgue measure 0, so long as our probabilitydistribution is absolutely continuous with respect to Lebesgue measure (such as the normal distribution) wemay disregard the possibility that A may have multiple eigenvalues. We can then take the Schur form tobe unique if we make some further (arbitrary) requirements on R such as �1 > � � � > �k, xk+1 > � � � > xm.Similarly the orthogonal matrix Q is generically unique if, for example, we assume the �rst row of Q ispositive. For j � k, it is easy to see by induction that the jth column of Q can be chosen to be of arbitrarysign. From Lemma 4.2, the next two columns of Q are unique up to sign, if the full matrix Q is to havedeterminant 1. Allowing Q to have determinant �1 allows us to simply specify that the �rst row of Q begenerically positive.4.3 Incomplete Schur DecompositionLet a matrix A have a non-real eigenvalue pair x � yi. A numerical algorithm to compute the eigenvaluesof A would deate out these eigenvalues with an appropriate orthogonal transformation. We wish to do thesame by performing an incomplete Schur decomposition.De�nition 4.1 We say that A = QMQT is an incomplete Schur decomposition for the matrix A withnon-real eigenvalue pair x� yi ifA = Q0BBB@ x b�c x W0 A1 1CCCAQT ; b � c; y = pbc;where A1 is an n� 2 by n� 2 matrix, and Q is an orthogonal matrix that is the product of two Householderreections as speci�ed below.The form of Q is important. We know that generically there is a unique n by 2 matrix H with positive�rst row for which HTAH = � x b�c x � b � c:Numerical linear algebra textbooks [13] describe how to construct Householder reections Q1 and Q2 suchthat Q2Q1H is the �rst two columns of the identity matrix. We take our Q in the de�nition above to be thematrix Q2Q1. Notice that H is the �rst two columns of QT .This decomposition will be used in the derivation of the circular law and complex eigenvalue density ofnormally distributed matrices. 8



5 Jacobian ComputationThe symmetries built into the orthogonal decompositions allow us to compute the Jacobians of the variousfactorizations that are of interest to us.We begin with a lemma that is familiar to numerical analysts who discuss the discrete Laplacian operatorin more than one dimension:Lemma 5.1 Let X be an m by n matrix. De�ne the linear operator
(X) = XA �BX;where A and B are �xed square matrices of dimension m and n respectively. If �A is an eigenvalue of Aand �B is an eigenvalue of B, then �A � �B is an eigenvalue of the operator 
.Proof We remark that the operator 
 can be represented in terms of the Kronecker product as
 = AT 
 I � I 
B:If vA is a left eigenvector of A, and vB is a right eigenvector of B, then vBvTA is an eigenvector of 
. So longas A and B have a full set of eigenvectors, we have accounted for all of the eigenvalues of 
. This restrictionis not needed by continuity.We proceed to compute the Jacobians. Matrices and vectors of di�erential quantities are in bold faceRoman letters so as to distinguish them from the notation for Lebesgue measure. Exterior products ofdi�erential quantities are expressed either in math italics or in wedge product notation. Math italics denotethe wedge product over the independent elements of dX without regard to sign. Therefore if X is arbitrary,dX denotes the matrix with elements dxij and dX denotes the natural element of integration in <n2 whichcould also be expressed as ^ijdxij or ^dX. (A wedge without range also means the exterior product over theindependent entries.) If X is diagonal, then dX = dx11 : : :dxnn while if X is symmetric or upper triangular(antisymmetric), dX is a wedge product over the n(n+ 1)=2 (n(n � 1)=2) independent elements.If Q is orthogonal, then the matrix dH = QTdQ is antisymmetric, sodH = î>j qTi dqjis the natural element of integration (for Haar measure) over the space of orthogonal matrices.5.1 Real Schur DecompositionThe Schur decomposition given in (3), indeed any matrix factorization, may be thought of as a change ofvariables. Let l = (n� k)=2 denote the number of complex conjugate eigenvalue pairs, and RU denotes thestrictly upper triangular part of R. (By this we mean R with the �i and Zi replaced with zeros.) The n2independent parameters of A are expressed in terms of Q; � = (�i)ki=1, Z = (Zi)mi=k+1 and RU . For a matrixwith k real eigenvalues and l = (n�k)=2 complex conjugate pairs, the n2 independent parameters are foundin the new variables as follows: parametersQ n(n� 1)=2� kZ 3lRU n(n� 1)=2� lA n2To obtain the Jacobian of this change of parameters, we express dA in terms of dHdRUd�dZ:9



Theorem 5.1 Let A be an n�n matrix written in real Schur form A = QRQT . The Jacobian of the changeof variables is dA = 2l�0Yi>k(bi � ci)(dH dRU d� dZ);where �0 =Yi>j j�(Rii) � �(Rjj)j:Here �0 denotes the absolute product of all the di�erences of an eigenvalue of Rii and an eigenvalue of Rjj,where i > j. Every distinct pair of eigenvalues of A appears as a term in �0 except for complex conjugatepairs. For reference, dRU = ĵ>idRijan exterior product over n(n� 1)=2� 2l di�erentials of the strictly upper triangular part of R;d� = d�1 : : :d�k;and dZ = m̂j=k+1dZj;a product over 3l di�erentials.Proof Since A = QRQT , we know thatdA = QdRQT + dQRQT +QRdQT= Q(dR+ QTdQR+RdQTQ)QT :Let dH = QTdQwhich is antisymmetric and let dM = dR+ dHR� RdH = QTdAQ:It is evident that dA = dM since the orthogonal matrices make no contribution to the Jacobian. Our goalis to compute dM = î>j dMij î=j dMij î<j dMij :We use the same block decomposition for H and M as we did for R. We begin with the most complicatedcase. If i > j, we have that dMij= dHijRjj �RiidHij +Xk<jdHikRkj �Xk>iRikdHkj: (4)The quantities in Equation (4) in bold face are matrices of di�erential quantities with either one or tworows and one or two columns. Following our notation convention, dMij denotes the exterior product of theone, two, or four independent di�erential quantities in dMij. Notice that the dHik and dHkj inside thesummations have �rst index greater than i or second index smaller than j. Therefore, if we order the blocksby decreasing i and then increasing j, we see thatî>j dMij = î>j^(dHijRjj � RiidHij); (5)the di�erentials in the summation play no role. 10



Lemma 5.1 states that ^(dHijRjj � RiidHij) =Y j�(Rii) � �(Rjj)jdHij:There are either one, two,or four multiplicands in the product. Since Rii and Rjj are either 1 by 1 or 2 by2 matrices, we can explicitly write the product asY j�(Rii)� �(Rjj)j = 8<: j�j � �ij if 1 � j < i � k(�j � xi)2 + y2i if 1 � j � k < i�(xj � xi)2 + (yj � yi)2� �(xj � xi)2 + (yj + yi)2� if k � j < i (6)Putting this all together we have that î>j dMij = �0 î>j dHij:We now consider i = j. In the following, we let an ellipsis (: : :) denote terms in dHij in which i 6= j.Such terms play no further role in the Jacobian. If i � k, thendMii = d�i + : : : :If i > k then dMii is a bit more complicated. It is easy to see that in this casedMii = ^(dZi + dHiiZi � ZidHii) + : : : :Notice that since dH is antisymmetric, then if i > k, dHii has the form� 0 dhi�dhi 0 � :It follows that (dZi + dHiiZi � ZidHii) = � dxi + (bi � ci)dhi dbi�dci dxi + (ci � bi)dhi � : (7)With dZi = dbidcidxi, we have the exterior product of the elements in (7) is 2(bi�ci)dZidhi:We thereforelearn that î=j dMij =Yi>k 2l(bi � ci)d�dZ ^mi=k+1 dhi + : : : :Finally, it is easy to verify that if i < j, dMij = dRij + : : : : Thereforeî<j dMij = dRU + : : :completing the proof.Given the 2 by 2 matrix � x b�c x � ; bc > 0; b � c;let � denote b� c. ThenLemma 5.2 The Jacobian of the change of variables from b and c to � and y isdb dc = 2yp�2 + 4y2 dy d�:ProofSince bc = y2 and b� c = � � 0;it follows that bdc+ cdb = 2ydy and db� dc = d�:Therefore (b+ c)dbdc = 2yd�dy. The conclusion is derived from the equation (b + c)2 = �2 + 4y2:11



5.2 Incomplete Schur DecompositionThe incomplete Schur decomposition is also a change of parameters with counts indicated in the table below.parametersQ 2n� 3x; b; c 3W 2n� 4A1 (n � 2)2A n2Let H denote the �rst two columns of QT as we did in Section 5.2. The set of all possible H is onequarter of the 2n � 3 dimensional Stiefel submanifold of <2n [20]. The one quarter arises from that factthat we are assuming that the �rst row of H contains positive elements. The matrix of di�erentials dH isantisymmetric in its �rst two rows. Thus there is one di�erential element in the �rst two rows and 2n � 4below the �rst two rows.The natural element of integration on this submanifold is dS = ^(QTdH). We use the notation dS toremind us that dS is a (higher dimensional) surface element of the Stiefel manifold.Theorem 5.2 Let A be an n � n matrix written in incomplete Schur form A = QMQT . The Jacobian ofthe change of variables isdA = 2(b� c) det �(A1 � xI)2 + y2I� (db dc dx dA1 dW dS):The proof of this theorem is very similar to that of Theorem 5.1, though simpler. The determinant comesfrom Lemma 5.1 with matrices of dimension 2 and n� 2.6 Applications to the Normal DistributionThe Jacobians computed in the previous section may be integrated to compute densities and probabilities.In the case of the real Schur decomposition we obtain the joint density of the eigenvalues conditioned on keigenvalues being real. We further obtain the probability that k eigenvalues are real. The incomplete Schurdecomposition gives us the density of a complex eigenvalue. Its integral is the expected number of complexeigenvalues.6.1 Applications of the Real Schur DecompositionIn this section, we calculate the joint density of the eigenvalues of A and the probability that A has exactlyk real eigenvalues If the elements aij of A are independent standard normals.Theorem 6.1 Let �k denote the set of matrices A with exactly k real eigenvalues. Let pn;k denote theprobability that A 2 �k. The ordered real eigenvalues of A are denoted �i; i = 1; : : : ; k, while the l = (n�k)=2ordered complex eigenvalue pairs are denoted xi � yip�1; i = k + 1; : : : ;m. Letcn;k = 22l�n(n+1)=4Qni=1 �(i=2) :The joint distribution of the real and complex eigenvalues given that A has k real eigenvalues isp�1n;kcn;k�0 exp �P(y2i � x2i )�P�2i =2�Q �yierfc(yip2)� ; (8)where �0 is as in Theorem 5.1. The probability that A 2 �k ispn;k = cn;kk!l! Z �0 exp �P�2i =2 +P(y2i � x2i )�Q �yierfc(yip2)� d�1 : : : d�kdx1 : : :dxldy1 : : :dyl: (9)xi 2 <yi 2 <+�i 2 < 12



Proof If the elements of A are independent standard normals then the joint probability density for A is(2�)�n2=2etr(�12AAT )dA;where etr(X) = exp(trace(X)):Theorem 5.1 states that(2�)�n22 etr(�12AAT )dA =(2�)�n22 2l�0Yi>k(bi � ci) (dH) �e�P r2ij2 dRU��e�P �2i2 d�� e�P�x2i+ b2i2 + c2i2 �dZ! : (10)The integral of (10) over Q;RU ;� and Z (with the restrictions on these variables speci�ed in Section 4.2to make the Schur factorization unique), counts every matrix in �k once generically. This integral ispn;k = (2�)�n2=2 ZA2�k etr(�12AAT )dA;To obtain the joint density of the eigenvalues, we must integrate out all the variables other than the �i,the xi and the yi. To obtain the probability pn;k, we must integrate over all the variables.(i)The integral over the orthogonal matrices with positive elements in the �rst row isZ dH = Vol(O(n))=2n: (11)The derivation of the volume of the orthogonal group may be found in [20] to beVol(O(n)) = 2n�n(n+1)=4Qni=1 �(i=2) : (12)The 2n in (11) represents the volume of that part of the orthogonal group which has positive �rst row.(ii) The integral over RU is (2�)n(n�1)=4�l=2: (13)(iii) We make the change of variables from bi and ci to �i and yi described in Lemma 5.2, and then weintegrate out �i. Since b2i + c2i = �2 + 2y2, we see that integrating out d�i amounts to computing2ye�y2i Z 1�i=0 �ie��2i =2(�2i + 4y2)1=2d�i:This integral can be obtained from [14, 3.362.2, p. 315] with a change of variables. It equals2p2�yiey2i erfc(yi21=2): (14)We use horizontal braces to indicate the source of each term in the combined expression for the jointdensity of the real and complex eigenvalues:p�1n;k z }| {(2�)�n2=22l�0 exp ��Px2i �P�2i =2�| {z }(10) z }| {�n(n+1)=4Qni=1 �(i=2)| {z }(11) and (12) z }| {(2�)n(n�1)=4�l=2| {z }(13) z }| {2l(2�)l=2Q[yiey2i erfc(yip2)]| {z }(14) (15)The p�1n;k is the normalization constant so that the joint density integrates to 1. Therefore (15) is a probabilitydensity which simpli�es to (8). 13



Equation (9) is an exact expression for pn;k. Notice that we removed the ordering of the variables, andcompensated for this by dividing by k! and l!. The integral in (9) would separate into univariate integrals ifit were not for the connecting term �0.3If we wish to compute pn;k explicitly we must integrate out the xi, the yi and the �i in (9). We nowdescribe the approach we took to integrate out the xi and yi. We postpone discussion of the integration ofthe �i to Section 7.From (6) we see that �0 is a polynomial in the variables xi and yi. We can use the integration formula[14, 3.461.2] Z 1�1 xne�x2dx = (n � 1)!!2n=2 p�; n even (16)and alsoLemma 6.1 Z 10 y2n+1erfc(y21=2)ey2dy = �(n+ 32)p�(2n+ 2)2n+1 2F1(n + 1; n+ 32;n+ 2; 12) (17)= n!(�1)n2  p2 nXk=0(�1)k (1=2)kk! � 1! ; (18)where the Pochhammer symbol (x)k denotes the product (x)k = x(x+ 1) : : : (x+ k � 1).Proof The expression in (17) for the integral as a hypergeometric function may be found in [14, 6.286.1].We did not �nd this form particularly enlightening so we attempted to �nd another expression.We outline our approach for obtaining the expression (18) leaving the details to the reader. Replacingthe erfc in the integrand with 2p� R1x=yp2 e�x2dx allows us to interchange the order of integration. A changeof variables and a careful application of [14, 2.321.2] and standard Gamma integrals completes the task.It is also possible, though tedious, to ignore the integral and directly show equality of the hypergeometricfunction expression and (18). The function 2F1(n; n+ 12 ;n+1;x) is obtained from 2F1(1; 3=2; 2;x) by takingn� 1 derivatives [1, 15.2.2]. We may also show that2F1(1; 3=2; 2;x) = 2x �(1� x)�1=2 � 1�from [1, 15.2.21 and 15.1.8].6.2 Applications of the Incomplete Schur FactorizationWe now turn to the distribution of the complex eigenvalues x+yi, y > 0 of the real matrixA. Let �n(x; y)dxdydenote the expected number of complex eigenvalues of a random matrix A in an in�nitesimal area dx dy ofthe upper half plane. More rigorously �n(x; y) is the Radon-Nickodym derivative of the measure�n(
) = Z
 �n(x; y)dxdy = EAf Number of eigenvalues of A contained in 
gde�ned on measurable subsets 
 of the upper half plane.Theorem 6.2 The complex eigenvalue density is�n(x; y) =r 2�yey2�x2erfc(yp2)en�2(x2 + y2);where en(z) =Pnk=0 zk=k!.3This reminds us of the electrostatic interactions in the Hamiltonian for a many electron system in quantum mechanics.Without these interactions Schr�odinger's equation could be solved exactly.14



Proof The techniques used in this proof are very similar to those used in Theorem 6.1. Theorem 5.2 statesthat(2�)�n22 etr(�12AAT )dA = (19)(2�)�n2=22(b� c) det �(A1 � x)2 + y2I� e�(x2+ b22 + c22 ) db dc dx etr(�12A1AT1 ) dA1 etr(�12WW T )dW dS:(i) The volume of the Stiefel manifold may be found in [20]. One quarter of the volume of the Stiefelmanifold (because of the sign choice on the �rst row of H) is(2�)n�12�(n� 1) : (20)(ii) The integral over W is (2�)n�2. (21)(iii) Exactly as before, the b and c components transform into (14).(iv) We recognize the integral of det �(A1 � x)2 + y2I� etr(�12A1AT1 ) dA1. It is(2�)(n�2)2=2EA1 det �(A1 � x)2 + y2I� :This explains our motivation for Section 3. From Theorem 3.1, we learn that the value of the integral of theterms containing A1 is (2�)(n�2)2=2�(n � 1)en�2(x2 + y2): (22)Combining terms we have that �n(x; y) =z }| {(2�)�n2=22e�x2| {z }(19) z }| {(2�)n�12�(n� 1)| {z }(20) z }| {(2�)n�2| {z }(21) z }| {2p2�yey2erfc(yp2)| {z }(14) z }| {(2�)(n�2)2=2�(n� 1)en�2(x2 + y2)| {z }(22) : (23)This completes the proof.Corollary 6.1 The expected number of non real eigenvalues of a random matrix A iscn =Xk (n� k)pn;k = 2 Zx 2 <y 2 <+�n(x; y)dx dy:The factor of 2 counts the complex conjugate pairs. We could proceed by integrating �n(x; y), to computecn, but this is not necessary because in [8] we computedcn = n� 12 �p22F1(1;�1=2;n; 12)B(n; 1=2) ;expressing cn in terms of a hypergeometric function and an Euler Beta function. Other equivalent expressionsfor n � cn may be found in [8]. 28 We now turn to understanding this density in the context of Girko'scircular law (or Figure 1) as n!1. It is interesting to normalize the eigenvalues by dividing by pn. Thuswe introducêx = x=pn; ŷ = y=pn; �̂n(x̂; ŷ) = nr2n� ŷen(ŷ2�x̂2)erfc(ŷp2n)en�2(n(x̂2 + ŷ2)):�̂(x̂; ŷ) is the density of the expected number of normalized eigenvalues in an in�nitesimal area around x̂+iŷ.15



Theorem 6.3 The density of the normalized eigenvalues converges pointwise to a very simple form asn!1: limn!1n�1�̂n(x̂; ŷ) = � ��1 x̂2 + ŷ2 < 10 x̂2 + ŷ2 > 1 (24)Asymptotically, a random eigenvalue is almost surely complex. When normalized by dividing by pn, theeigenvalue converges in distribution to a random variable that is uniformly distributed in the unit disk x̂2 +ŷ2 < 1.Proof The formulas [1, 6.5.34] and [1, 7.1.13] may be used to verify (24). The former states thatlimn!1 en(n(x̂2 + ŷ2))en(x̂2+ŷ2) = � 1 for x̂2 + ŷ2 < 10 for x̂2 + ŷ2 > 1 ;while the latter states that limn!1pnŷe2nŷ2erfc(ŷp2n) = (2�)�1=2:It is routine though tedious to show that the convergence is dominated by an integrable function on theplane. We need the inequalityen(nz)= exp(nz) = 1n! Z 1nz e�ttndt � nnn! zne�nz zz � 1and Stirling's inequality [1, 6.1.38] n! � p2�nnne�n:We leave the details to the reader. By the Lebesgue dominated convergence theorem, we achieve convergencein distribution.7 Relationship with Symmetric Random MatricesWe now turn to the task of integrating the �i variables in (9). The relevant part of the integrand containing�i has the form Y q(�i)Qj�i � �j je�P�2i=2; (25)where q(�i) is some polynomial function of �i originating in �0.This form is closely related to the joint density of the k real eigenvalues of a random k by k symmetricmatrix S = (A + AT )=2, where the elements of A are normally distributed. In the physics literature theprobability distribution for S is known as the Gaussian orthogonal ensemble. The joint probability densityfor the eigenvalues �1 � : : : � �k of S is well known [18, 4, 20]:2�k=2Qki=1 �(i=2)Y j�i � �j je�P�2i=2:Therefore the integral of (25) is essentially an expectation for the determinant of a polynomial in S. Tobe more precise:Lemma 7.1 1k! Z�i2<Qq(�i)Qj�i � �jje�P�2i=2 = n2k=2Qki=1�(i=2)oES det(q(S));where E denotes expectation with respect to the symmetric random matrices de�ned above.Dividing by k! allows us to symmetrize the integrand so that we need not assume the �i are ordered.If q is a polynomial with rational coe�cients, then E det(q(S)) must be rational since all the momentsof a standard normal are rational. We suspect that a better understanding of E det(q(S)) is possible, butwe are not even aware of an exact formula for E det S2. Such an understanding would help us simplify ourformula for pn;k. For now we are content with this application of Lemma 7.1.16



Theorem 7.1pn;k = d�1n;k Zxi 2 <yi 2 <+ES nQki=1 det �(S � xI)2 + y2I�o�xyeP(y2i�x2i )Qhyierfc(yip2)i dx1 : : :dxldy1 : : : dyl;where dn;k = 2n(n�3)4 +k=2l!Qni=k+1�(i=2)and �xy denotes the multiplicands in �0 that do not include a � term.Corollary 7.1 The probability of all real eigenvalues is pn;n = 2�n(n�1)=4.Proof When k = n and l = 0, dn;n = 2n(n�1)=4 and the integrand is simply 1.Corollary 7.2 The probability pn;k has the form r + sp2 where r and s are rational. Furthermore r and smay be expressed as an integer fractions with denominator equal to a power of 2.Proof The ES term in the integrand is a polynomial in x and y with integer coe�cients. Before takingexpectations, the determinant is a polynomial in x, y, and the Sij with integer coe�cients. We recall thatthe nth moment of the normal distribution is (n� 1)!! if n is even and 0 if n is odd. Integrating out the xiusing Equation (16) gives a factor of pil=2 which is canceled by the �l=2 in Qnk+1�(i=2). The integration ofthe yi using (18) leads only to rational numbers of the proper form.Theorem 7.1 is the basis of our earliest Mathematica program (Apendix A) for computing pn;k. We �rstevaluate ES Qki=1 det �(S � xI)2 + y2I� by explicity computing the determinant symbollically in terms ofthe elements of S and the xj and yj . Then we replace the various powers of the elements of S with theirexpectation. We then integrate out the xi and yi by replacing powers using formulas (16) and (18).We then modi�ed the program to save some arithmetic. It is readily shown that a certain tridiagonal ma-trix with � distributions on the three diagonals has the same eigenvalue distribution as that of S. Therefore,we may use T in place of S to compute the expectations of the determinants of polynomials in S. This is ourcurrent program in Appendix A. The program may be summarized by saying that a polynomial is computedin expanded form, then powers of variaous variables are symbolically replaced with the appropriate moments.8 Eigenvalue Roulette and Numerical SimulationsFifty �ve years ago Littlewood and O�ord [17] proposed a game on random polynomials that they hardlyhad the technology to play:Let the reader place himself at the point of view of A in the following situation. An equation ofdegree 30 with real coe�cients being selected by a referee, A lays B even odds that the equationhas not more than r real roots. : : : What smallest possible value of r will make A safe [frombeing ruined]?With the bene�t of easy to use interactive computer languages best exempli�ed by Matlab, it is trivialto play their game or our eigenvalue version of the game that we choose to call \eigenvalue roulette." As anexample, when n = 8, the \wheel" contains the numbers 0; 2; 4; 6 and 8 and the wheel may be spun simplyby executing >> rand('normal'); a=rand(8); sum(abs(imag(eig(a)))<.0001The .0001 is an arbitrary numerical tolerance that seems to be unimportant in practice.As a more substantial check of our results, we executed LAPACK simultaneously on each of 128 processorsof the CM-5 supercomputer. The experiments agreed perfectly with the theory.17



9 Open ProblemsThis section contains a number of conjectures that we strongly suspect to be true.Conjecture 9.1 Let fMng be a sequence of n by n random matrices. Let tn denote the number of realeigenvalues of Mn. Then limn!1 tn=n =p2=� almost surely.Intuitively this states that if we plot k=n against npn;k for k = 0; : : : ; n, the points \converge" to thedegenerate distribution �(x�p2=�).Conjecture 9.2 An explicit formula for pn;k that is easier to compute from than 7.1 may be obtained.Our formula allowed us to compute pn;k explicitly when either k = n or n < 10, but we have notyet succeeded in computing other probabilities due to the computational complexity of our Mathematicaprogram. We suspect the program can be rewritten so as to compute values for say n = 10 or n = 11, butultimately a better formulation will be needed.Conjecture 9.3 Girko's circular law for arbitrary random matrices of iid elements of mean 0 and variance1 may be derived as a corollary of Theorem 6.3 using some kind of central limit theorem.AcknowledgementsThe author would like to thank Eric Kostlan for many interesting discussions on these and related issues.
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A Mathematica Program to compute pn;k(* Mathematica program to compute the probability that an n x n random Gaussian matrix has k real eigenvalues.Alan Edelman -- UC Berkeley 12/92 *)n=Input["n? "]; k=Input["k? "]; l=(n-k)/2;(*A k x k Tridiagonal matrix with w on the diag and v off the diag *)W=DiagonalMatrix[Table[w[i],{i,k}]]; Do[ (W[[i+1,i]]=v[k-i]; W[[i,i+1]]=v[k-i]), {i,k-1}];(* Determinant involving x[i] and y[i] *)II=IdentityMatrix[k];z =If[ l==0 || k==0, 1, Det[(W-II*x).(W-II*x)+ II*y^2]];z = Expand[Product[z/.x:>x[i]/.y:>y[i],{i,l}]];z = z /. w[i_]^n_:>0 /; OddQ[n]; z = z /. w[i_]^n_:> (n-1)!!; z = z /. w[i_]->0;z = z /. v[i_]^n_ :> 0 /; OddQ[n]; z = z /. v[i_]^n_ :> Gamma[(i+n)/2]/Gamma[i/2]; z = z /. v[i_]-> 0;Do[( (*Only introduce those x[ii] and y[ii] that we need so far*)z = z*y[ii]* Product[ ((x[j]-x[ii])^2+(y[j]-y[ii])^2)((x[j]-x[ii])^2+(y[j]+y[ii])^2), {j,ii+1,l}] ;z=Expand[z];(* Integrate x[ii] *)z = z /. x[ii]^n_ :> 0 /; OddQ[n]; z = z /. x[ii]^n_ :> (n-1)!!/(2^(n/2)); z = z /. x[ii]->0;(* Integrate y[ii] *)iy[n_]:=n!(-1)^n/2(Sqrt[2] Sum[ (-1)^k Pochhammer[1/2,k]/k!,{k,0,n}]-1);z = z /. y[ii]^n_ :> iy[(n-1)/2]; z = z /. y[ii] :> iy[0];),{ii,1,l}]z=Simplify[ z Sqrt[Pi]^l /( 2^(n(n-3)/4+k/2) Product[Gamma[i/2],{i,k+1,n}] l!)];
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