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Abstract

Let A be an n by n matrix whose elements are independent random variables with standard normal
distributions. Girko’s controversial circular law states that the distribution of appropriately normalized
eigenvalues is asymptotically uniform in the unit disk in the complex plane. We derive the exact dis-
tribution of the complex eigenvalues for finite n, from which the circular law for normally distributed
matrices may be derived.

Similar methodology allows us to derive a joint distribution formula for the real Schur decomposition
of A. Integration of this distribution yields the probability that A has exactly k real eigenvalues. For
example, we show that the probability that A has all real eigenvalues is exactly g—n(n—1)/4,

1 Introduction

This paper investigates the eigenvalues of a real random n by n matrix of standard normals. We have two
questions to explore:

e What is the probability p, i that exactly k eigenvalues are real?

e Why do the complex eigenvalues when properly normalized roughly fall uniformly in the unit disk as
in Figure 17

Both questions can be answered by first factoring the matrix into some form of the real Schur decompo-
sition, then interpreting this decomposition as a change of variables, and finally performing a wedge product
derivation of the Jacobian of this change of variables. We demonstrate the power of these techniques by
obtaining exact answers to these questions. Previous investigations of thse issues have lead to inconclusive
results [10] and very cumbersome and probably erroneous results [12].

This paper may be thought of as a sequel to [8], where we answered the questions

e What is the expected number E, =3, kp, ; of real eigenvalues?
e Why do the real eigenvalues when properly normalized roughly fall uniformly in the interval [—1,1]7

In fact, our investigation into p, j preceded that of [12], but when we saw that > kp, 5, always had a
particularly simple form, we diverted our attention to understanding E,, and related issues. We felt that the
derivation of E,, = 3 kp, r must somehow be simpler than the derivation of the individual p, .

Random eigenvalue experiments are irresistible given the availability of modern interactive computing
packages. Numerical experiments beckon us for theoretical explanation as surely as any experiment in
mechanics did centuries ago. If understanding is not sufficient motivation, random matrix eigenvalues arise



Figure 1: 2500 dots representing normalized eigenvalues of fifty random matrices of size n = 50. Clearly
visible are the points on the real axis.

in models of nuclear physics [18], in multivariate statistics [20], and in other areas of pure and applied
mathematics including numerical analysis [12, 9].1

Perhaps we are still at the tip of the iceberg in our understanding of eigenvalues of random matrices. Few
papers contain exact distributional results for non-symmetric random matrices. Given an exact distribution
formula for a normally distributed matrix, one expects such a formula to be asymptotically valid for matrices
of elements of mean 0 and variance 1. This is a central limit effect. At the present time, however, there is
no satisfying theory that seems to allow us to make the leap from normally distributed matrices to a wider
class.

The contrast between the real and complex eigenvalues of a normally distributed matrix is illustrated
in Figure 1. This figure plots the 2500 values of A/y/n where ) is an eigenvalue of the random matrix of
dimension n = 50. Notice that the complex normalized eigenvalues may appear to be roughly uniformly
distributed in the unit disk. This is Girko’s controversial circular law [11], which states that if the elements of
a random matrix are independent with mean 0 and variance 1, then the distribution of the normalized eigen-
values is asymptotically uniformly distributed over the disk. Nobody doubts the overwhelming experimental
evidence; the controversy is over whether this law has yet been proved mathematically.

Many have tried to understand Girko’s “proofs,” without success. This author has also not been able to
verify Girko’s proof, though we are not sure if the errors are in the translation from the original Russian.
We have contacted Girko on this matter and eagerly await his response.

In this paper we rigorously prove a result that is at the same time weaker and stronger than Girko’s law.
We derive the exact distribution of the complex eigenvalues of a real normally distributed matrix. The limit
of the distribution of the normalized eigenvalues is indeed the uniform distribution on the circular disk. This
is weaker than Girko’s law in the sense that our results only apply for the normal distribution. Intuitively,
the normal distribution models all distributions with elements of mean 0 and variance 1, by central limit
effects, but this sort of reasoning alone is not rigorous mathematics. Our result is stronger than Girko’s law
in that it gives exact distributions for finite n.

1 Most modern papers on numerical linear algorithms, rightly or wrongly, contain numerical experiments on random matrices.



A much simpler case occurs when the random matrix comes from a complex normal distribution, i.e.,
the real and imaginary parts of each element are independent standard normals. In this case the exact
distribution for the eigenvalue, distribution and radius can be found in Ginibre [10] and reported by Mehta
[18, p.300] and Hwang [15].

Two recent books [18, 12] report on previous investigations concerning the eigenvalues of a random
Gaussian matrix with no symmetry conditions imposed. Our approach improves on the work of Dyson [18,
Appendix 35], Ginibre [10], and Girko[12, Theorem 3.5.1]. Ginibre and Girko compute expressions for the
joint distribution by diagonalizing A = XAX~!. Girko’s form is in terms of the real eigenvalues and the
real and imaginary parts of the complex eigenvalues. Dyson computed an expression for the special case
when A has all real eigenvalues using the real Schur decomposition [21] A = QRQ”, where R is upper
triangular. Girko further expresses the probability ¢ that A has k real eigenvalues as the solution to an n
by n linear system of equations, where the coefficients are multivariate integrals. Girko’s approach is rather
cumbersome, and does not seem to be correct, at least in the English version.

After preparation of this manuscript, we learned that Theorem 6.1 was independently discovered by
Lehmann and Sommers in [16] who consider the range of problems from the completely symmetric case to
the completely antisymmetric case. Qur derivation follows a different viewpoint.

Our approach is simplified by directly considering the real Schur decomposition [21] even when the
matrix does not have all real eigenvalues. It is well known to researchers in matrix computations that
orthogonal decompositions are of great value [13]. Tt is perhaps not surprising that such decompositions are
also appropriate for random matrix theory.

2 Main results

PROBABILITY OF EXACTLY k REAL EIGENVALUES
The probability p,  that a random A has k real eigenvalues has the form r 4 5v/2, where r and s are
rational. In particular, the probability that a random matrix has all real eigenvalues is

Pnn = 1/277,(77,—1)/4

Cor 7.1 and 7.2

In the tables below, we list the probabilities for n = 1,...,9 both exactly and to five decimal places.
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JOINT EIGENVALUE DENSITY GIVEN k& REAL EIGENVALUES
The joint density of the ordered real eigenvalues A; and ordered complex eigenvalue pairs z; oy;, y; > 0
given that A has k real eigenvalues is

21—n(n+1)/4
[T, 7(/2)

where A 1s the magnitude of the product of the differences of the eigenvalues of A. Integrating this
formula over the A;, z; and y; > 0 gives py 1. Theorem 6.1

Aexp (Y (yf — 2]) — A7 /2) TTerfe(yi v2),

DENSITY OF NON-REAL EIGENVALUES
The density of a random complex eigenvalue of a normally distributed matrix is

pn(2,y) = /2] mye?” " erfe(yv/2)en_a(2? + y?),

where e, (2) = > h_, #*/k!. Integrating this formula over the upper half plane gives half the expected
number of non-real eigenvalues. Theorem 6.2

Notice the factor y in the density indicating a low density near the real axis. Readers may notice the
white space immediately above and below the real axis in Figure 1. We think of the real axis as attracting
these nearly real eigenvalues.

THE CIRCULAR LaAwW
Let z denote a non-real eigenvalue normalized by dividing by v/n. As n — co, 2z is uniformly distributed
in the disk |z| < 1. Furthermore, as n — oo, each eigenvalue is almost surely non-real. ~ Theorem 6.3

It is tempting to believe that the eigenvalues are almost surely not real, because the real line is a set of
Lebesgue measure zero in the plane. However this reasoning is not correct. Indeed it is not true for finite n.
When n = 2, we see that the probability of real eigenvalues is greater than non-real eigenvalues. The error
arises because of the false intuition that the density of the eigenvalues is absolutely continuous with respect
to Lebesgue measure.

3 Random Determinants, Permanents, Derangements, and Hy-
pergeometric Functions of Matrix Argument

This section may be read independently from the rest of the paper. Here we relate random determinants
with the theory of permanents and hypergeometric functions of matrix argument. We have not seen this
connection in the literature.

We remind the reader that the permanent function of a matrix is similar to the usual definition of the
determinant except that the sign of the permutation is replaced with a plus sign:

per(A) = Z A1r(1)A27(2) - - - Cnm(n)-

m

Generally the permanent is considerably more difficult to compute than the determinant.

Hypergeometric functions of a matrix argument are less familiar than permanents. They arise in multi-
variate statistics and more recently in specialized fields of harmonic analysis. Unlike the matrix exponential,
for example, these functions take matrix arguments but yield scalar output. They are much more compli-
cated than merely evaluating a scalar hypergeometric function at the eigenvalues of the matrix. Readers
unfamiliar with the theory may safely browse or skip over allusions to this theory. Those wanting to know
more should consult [20, Chapter 7].



Theorem 3.1 If A is a random matriz with independent elements of mean 0 and variance 1, and if z is
any scalar (even complex!) then

1 1
Edet(A? + 2°1) = Edet(A + 21)? = per(J 4 221) = nle, (%) = n! 1 Fi(—1; 3™ —5,22[)

where Edenotes the expectation operator, J is the matriz of all ones,

en() = Z o
k=0

is the truncated Taylor series for exp(x), “per” refers to the permanent function of a matriz, and the
hypergeometric function has a scalar multiple of the identity as argument.

The alert reader might already detect our motivation for Theorem 3.1. It is the source of the term
en—2(2? + y?) in the density of the non-real eigenvalues that will appear again in Theorem 6.2.

Before we prove this theorem from a set of lemmas to follow, we remark on two special elementary
cases. Taking z = 0 is particularly simple. When z = 0, the theorem states that the expected value of the
determinant of A? is n!, and of course the permanent of a matrix of all ones is n!. Expanding and squaring
the determinant of A%, we see cross terms have expected value 0 and the other n! squares have expected
value 1.

Now consider z?2 = —1. The theorem states that E(det(A? — I)) = n!>_;_,(=1)¥/k!, an expression
which we recognize as D,,, the number of derangements on n objects, 1.e. the number of permutations on
n objects that leave no object fixed in place. Many combinatorics books point out that per(J) = n! and
per(J — 1) = D, ([22, p. 28], [2, p. 161], and [19, p. 44]), but we have not seen a general formula for
per(Al — J), the permanental characteristic polynomial of J, in such books.

Theorem 3.1 is a synthesis of the following lemmas:

Lemma 3.1 Let A, B, and C be matrices whose elements are the indeterminants a;;,b;; and c;;, respectively.
Any term in the polynomial expansion of det(A* + B + C') that contains a b;; does not contain an a;;.

Proof Let X;; denote the matrix obtained from A? + B + C by removing the ith row and the jth column.
Then
det(A2 + B+ C) = +£b;; det(X;;) + terms independent of b;;.

Since a;; only appears in the ith row or jth column of A%, the lemma is proved. l

Corollary 3.1 Let A be a matriz of independent random elements of mean 0, and let x and y be indeter-
minants. Then

Edet((A+421)* + y*1)) = Edet(A% + (2? + y*)I).
= Edet (A+ x2+y21)2.
Proof We use Lemma 3.1 by letting B = 224 and C' = (2% + y*)I. Since,
Edet((A+ 21)* + y*I) = Edet(A? 4+ 224 + (2% + y*)1),
it follows that any term multiplying b;; = 2za;; in the expansion of the determinant is independent of a;;

and so has expected value 0. Therefore the term 2z A makes no contribution to the expected determinant,
and may be deleted. The second equality may be verified similarly. l

Lemma 3.2 If A is a random matriz of independent random elements of mean 0 and variance 1, then

Edet(A + 21)? = per(J + 2%1).



Proof Expand the determinant of A + zI into its n! terms and square. The expected value of any cross
terms must be 0. The expected value of the square of any term is (1 + zz)s(”), where 7 1s the permutation
associated with the term and s(7) is the number of elements unmoved by #. The sum over all permutations is
clearly equal to per(J 4+ 2*I) because s(7) counts the number of elements from the diagonal in the expansion
of the permanent. l

Lemma 3.3 If A is a random matriz with independent normally distributed elements then

1

Edet(A + 21)? =nl Fi(—1; 3" —5,22[).
Proof Let M = A+ zI and z a real scalar. Since the quantity of interest is clearly a polynomial in z the
assumption that z is real can be later relaxed. The random matrix W = M M7 has a non-central Wishart
distribution [20, p. 441] with n degrees of freedom, covariance matrix I, and noncentrality parameters
Q = 22I. The moments of the noncentral Wishart distribution were computed in 1955 and 1963 by Herz and
Constantine in terms of hypergeometric functions of matrix argument. (See [20, Theorem 10.3.7, p. 447]. )
In general,

?m(3 11
SELIC iR RPN .

2 2
where 7,, denotes the multivariate gamma function. In our case, we care interested in Edet W which
simplifies to

Edet W = (det X)"2™" Q),

1 1
Edet W = nly F1(—1; 3™ —izzf).

We remark that the identity
1 1
1F1(=1; 571; —5,22[) = en(zz)

can be obtained directly from a zonal polynomial expansion of the hypergeometric function of matrix argu-
ment using the homogeneity of zonal polynomials and the value of certain zonal polynomials at the identity
matrix. (The key expressions are Formula (18) on p. 237 and Formulas (1) and (2) on p. 258 of [20].) The
only partitions that play any role in the sum are those of the form (1,1,...,1,0,...,0) with at most n ones.

We further remark that in light of Lemma 3.2, the assumption of normality may be relaxed to any
distribution with mean 0 and variance 1. Thus we see our first example where the assumption of normality
allows us to derive a formula which is correct in more general circumstances.

4 Orthogonal Matrix Decompositions

This section may also be read independently from the remainder of the paper. Here we review the real Schur
decomposition in various forms that we will need to perform our calculations. We begin by pointing out that
standard numerical linear algebra calculations may be best looked at geometrically with a change of basis.

4.1 Quaternions and Elementary Numerical Linear Algebra

We wish to study orthogonal (unit determinant) similarity transformations of 2 by 2 matrices:

7‘[/:<C —5)7”< C 5)’ (1)
s c -5 ¢
where ¢ = cos 8 and s = sin 6.

Researchers familiar with numerical linear algebra know that 2 by 2 matrices are the foundation of many
numerical calculations.? However, we are not aware that the elementary geometry hidden in (1) is ever
pointed out.

2Developers of LAPACK and its precursors spent a disproportionate amount of time on the software for 2 by 2 and other
small matrix calculations.



Consider the following orthogonal basis for 2 by 2 matrices:

=(0) = (80) w=(h ) =)

Any 2 by 2 matrix M can be written as M = ol + 8J + vK + §L. This basis is a variation of the usual
quaternion basis. (The usual quaternion basis is I, J, iK, and iL, where i = \/—1. It is well known that
real linear combinations of these latter four matrices form a noncommutative division algebra.)

In the I, J, K, L basis, it is readily calculated that the similarity in (1) may be expressed

af 1

«
gl 1 g
,,y/ - C =S v ) (2)
&' s C ]

where C' = cos 26 and S = sin 26. In the language of numerical linear algebra,

a 2 by 2 orthogonal similarity transformation is equivalent to a Givens rotation of twice the angle
applied to a vector in R,

The set of matrices for which § = 0 is exactly the three dimensional space of real 2 by 2 symmetric
matrices. Choosing an angle 20 in the Givens rotation to zero out &' corresponds to a step of Jacobi’s
symmetric eigenvalue algorithm. This is one easy way to see the familiar fact that only one angle 6 € [0, 7/2)
will diagonalize a symmetric 2 by 2 matrix, so long as the matrix is not a constant multiple of the identity.

A case of more concern to us is choosing an angle 26 in the Givens rotation to set v/ = 0, in the general
nonsymmetric case. Doing so we conclude:

Lemma 4.1 Any 2 by 2 matriz M is orthogonally similar to a matriz with equal diagonals. If the matriz is
not equal to ol + BJ, then there is only one angle 0 € [0,%/2) that transforms M into this form.

Since the components in the I and J directions are invariant under the Givens rotation (2) we read right
off that the trace of the matrix and the difference of the off-diagonal terms of the matrix is invariant under
orthogonal similarities. We readily conclude

Lemma 4.2 Let M be a 2 by 2 matriz with the non-real eigenvalues x + yi. There is a unique matrix
orthogonally similar to M of the form

Z:( @ i) be>0, b>ec.

—C

Given the matrix M and its eigenvalues x £ yi, b and ¢ may be computed from the equations bec = 3?
and b+ ¢ = Myy — My1. If M is not of the form ol 4+ 3J, then the orthogonal matrix with determinant 1 is
unique up to sign. Notice that adding 7 to 8 just changes the sign of the orthogonal matrix. Adding /2 to
# has the effect of interchanging the b and the c.

4.2 Real Schur Decomposition

The real Shur decomposition expresses A as orthogonally similar to an upper quasi-triangular matrix R [13,

p.362]. To be precise A = QRQ™ where

At Ry Rigyr o0 Ram
A Rpgy1 -+ Rim

R= Zrgr o Ripim |- (3)
Zm




R is an n x n matrix (m = (n + k)/2) with blocks

byl ifi<k,j<k
lby?2 ifi<k,j>k
2by 1 ifi>k,j<k
2by2 ifi>k,j>k

R;; of size

Here R;; is the real eigenvalue A; of A when j < k and R;; is a 2 by 2 block

Z]»:< 5 b]’), be >0, b>c,

¢ T

so that the complex eigenvalues of A are x; & y;4, where y; = \/b;¢;, for j > k. Finally, as indicated in (3),
R;; 1s a zero block if 7 > j.

The block structure indicated in (3) is quite powerful in that it allows us to simultaneously handle all
the possibilities rather cleanly. All that one must remember is that an index ¢ refers to a size of one or two
depending on whether ¢ < k or ¢z > k respectively.

Since matrices with multiple eigenvalues form a set of Lebesgue measure 0, so long as our probability
distribution is absolutely continuous with respect to Lebesgue measure (such as the normal distribution) we
may disregard the possibility that A may have multiple eigenvalues. We can then take the Schur form to
be unique if we make some further (arbitrary) requirements on R such as Ay > -+ > Ap, Zp41 > -+ > &y
Similarly the orthogonal matrix ¢ 1s generically unique if, for example, we assume the first row of @ is
positive. For j < k, it is easy to see by induction that the jth column of ) can be chosen to be of arbitrary
sign. From Lemma 4.2, the next two columns of ) are unique up to sign, if the full matrix @ is to have
determinant 1. Allowing @) to have determinant 1 allows us to simply specify that the first row of @) be
generically positive.

4.3 Incomplete Schur Decomposition

Let a matrix A have a non-real eigenvalue pair &+ y. A numerical algorithm to compute the eigenvalues
of A would deflate out these eigenvalues with an appropriate orthogonal transformation. We wish to do the
same by performing an incomplete Schur decomposition.

Definition 4.1 We say that A = QM QT is an incomplete Schur decomposition for the matriz A with
non-real eigenvalue pair x + yi if

where Ay s an n— 2 by n — 2 matriz, and Q) is an orthogonal matriz that s the product of two Householder
reflections as specified below.

The form of @ is important. We know that generically there is a unique n by 2 matrix H with positive
first row for which

—C T

HTAH:< v b) b> e

Numerical linear algebra textbooks [13] describe how to construct Householder reflections @1 and @2 such
that Q2Q1 H is the first two columns of the identity matrix. We take our ) in the definition above to be the
matrix Q»Q1. Notice that H is the first two columns of Q7.

This decomposition will be used in the derivation of the circular law and complex eigenvalue density of
normally distributed matrices.



5 Jacobian Computation

The symmetries built into the orthogonal decompositions allow us to compute the Jacobians of the various
factorizations that are of interest to us.

We begin with a lemma that is familiar to numerical analysts who discuss the discrete Laplacian operator
in more than one dimension:

Lemma 5.1 Let X be an m by n matriz. Define the linear operator
Q(X)=XA - BX,

where A and B are fired square matrices of dimension m and n respectively. If As is an eigenvalue of A
and Ap is an eigenvalue of B, then Ay — Ap is an eigenvalue of the operator €.

Proof We remark that the operator {2 can be represented in terms of the Kronecker product as
Q=ATeI-1©B.

If v4 is a left eigenvector of A, and vg is a right eigenvector of B, then vgvY is an eigenvector of Q. So long
as A and B have a full set of eigenvectors, we have accounted for all of the eigenvalues of €2. This restriction
1s not needed by continuity. l

We proceed to compute the Jacobians. Matrices and vectors of differential quantities are in bold face
Roman letters so as to distinguish them from the notation for Lebesgue measure. Exterior products of
differential quantities are expressed either in math italics or in wedge product notation. Math italics denote
the wedge product over the independent elements of dX without regard to sign. Therefore if X is arbitrary,
dX denotes the matrix with elements dz;; and dX denotes the natural element of integration in " which
could also be expressed as A;jdz;; or AdX. (A wedge without range also means the exterior product over the
independent entries.) If X is diagonal, then dX = dxq; .. .dzyy, while if X is symmetric or upper triangular
(antisymmetric), dX is a wedge product over the n(n + 1)/2 (n(n — 1)/2) independent elements.

If @ is orthogonal, then the matrix dH = Q7 dQ is antisymmetric, so

di = N ¢f dg;
i>j

is the natural element of integration (for Haar measure) over the space of orthogonal matrices.

5.1 Real Schur Decomposition

The Schur decomposition given in (3), indeed any matrix factorization, may be thought of as a change of
variables. Let [ = (n — k)/2 denote the number of complex conjugate eigenvalue pairs, and RY denotes the
strictly upper triangular part of R. (By this we mean R with the A; and Z; replaced with zeros.) The n?
independent parameters of A are expressed in terms of Q, A = (\;)f_,, Z = (Zi)i%) 4, and RY. For a matrix
with k real eigenvalues and | = (n—k)/2 complex conjugate pairs, the n? independent parameters are found

in the new variables as follows:

parameters
Q n(n—1)/2
A k
A 31
RY | n(n—1)/2 -1
(A ] n’ |

To obtain the Jacobian of this change of parameters, we express dA in terms of dHdRYdAdZ:



Theorem 5.1 Let A be an n x n matriz written in real Schur form A = QRQT. The Jacobian of the change
of variables is
dA = 2'No [[ (b — ¢i)(dH dRY dA dZ),
i>k
where
Ag = JTIMR) = MRj))I.

i>j
Here Ay denotes the absolute product of all the differences of an eigenvalue of R;; and an eigenvalue of R;;,
where 1 > j. Fvery distinct pair of eigenvalues of A appears as a term in Ay except for complex conjugate
pairs. For reference,

dR" = \ dR;;

j>i

an exterior product over n(n — 1)/2 — 2 differentials of the strictly upper triangular part of R;
dA = dAy ... dXg;

and .
iz = )\ dz,
j=k+1

a product over 3l differentials.
Proof Since A = QRQT, we know that

dA = QdRQ” + dQRQT + QRAQT
= Q(dR+ QTdQR + RAQTQ)Q".
Let
dH = Q7dQ
which 1s antisymmetric and let

dM = dR + dHR — RdH = QTdAQ.

It is evident that dA = dM since the orthogonal matrices make no contribution to the Jacobian. Our goal
1s to compute

dM = N dMi; N\ di;; J\ dM;.
i>j i=j i<j

We use the same block decomposition for H and M as we did for . We begin with the most complicated
case. If ¢ > j, we have that

dMZ']'I dHZ']'R]']' - R“dH” +
> dHip Ry — Y RipdHy,;. (4)

k<j k>i

The quantities in Equation (4) in bold face are matrices of differential quantities with either one or two
rows and one or two columns. Following our notation convention, dM;; denotes the exterior product of the
one, two, or four independent differential quantities in dM,;. Notice that the dH;; and dHj; inside the
summations have first index greater than ¢ or second index smaller than j. Therefore, if we order the blocks
by decreasing ¢ and then increasing j, we see that

/\ dMZ']' = /\ /\(dHZ']'R]']' — R“’dHlj); (5)
i>j i>j

the differentials in the summation play no role.

10



Lemma 5.1 states that
ANAH; Ryj — RigdHyj) = [T IMRii) = A(Rj)[dH ;.
There are either one, two,or four multiplicands in the product. Since R;; and R;; are either 1 by 1 or 2 by
2 matrices, we can explicitly write the product as

[A; — A fl<j<i<k
[T AR = MR =4 (N — ) + 97 ifl1<j<k<i (6)
(g = 2)® + (7 — 90)?) (27 —2)* + (gy +9)°) ik <j<i
Putting this all together we have that
/\ dMi; = Ay )\ dHy;.
i>j i>j
We now consider ¢ = j. In the following, we let an ellipsis (...) denote terms in dH;; in which i # j.
Such terms play no further role in the Jacobian. If ¢ < &, then

If i > k then dM;; is a bit more complicated. It is easy to see that in this case

Notice that since dH is antisymmetric, then if ¢ > k, dH;; has the form
0 dh;
—dh; 0 ’

—de; dr; + (Ci — bl)dhz ’ ( )

With dZ; = db;de;dz;, we have the exterior product of the elements in (7) is 2(b; —¢;)dZ;dh;. We therefore
learn that

It follows that

(dZ; +dH;; Z; — Z;dH;;) = (

N\ dMi; =[] 26 — i) dAdZ ALy g dhi+ ...
i=] i>k
Finally, it is easy to verify that if ¢ < j, dM;; = dR;; + .. .. Therefore

/\dMZ']'IdRU—I—...

i<j
completing the proof. l
Given the 2 by 2 matrix
( _i i), be >0, b > c,

let 6 denote b — c. Then
Lemma 5.2 The Jacobian of the change of variables from b and ¢ to § and y 1is

dbde= — 2% 4y ds
/62 _|_4y2
Proof
Since

be=y? andb—c=6>0,

it follows that
bde + cdb = 2ydy and db — dc = dé.

Therefore (b + ¢)dbde = 2ydédy. The conclusion is derived from the equation (b + ¢)? = §% + 4y?. l

11



5.2 Incomplete Schur Decomposition

The incomplete Schur decomposition is also a change of parameters with counts indicated in the table below.

parameters
Q 2n—3
z,b e 3
w 2n—4
Al (77, — 2)2
(4 [ » |

Let H denote the first two columns of Q7 as we did in Section 5.2. The set of all possible H is one
quarter of the 2n — 3 dimensional Stiefel submanifold of 2" [20]. The one quarter arises from that fact
that we are assuming that the first row of H contains positive elements. The matrix of differentials dH is
antisymmetric in its first two rows. Thus there is one differential element in the first two rows and 2n — 4
below the first two rows.

The natural element of integration on this submanifold is dS = A(QTdH). We use the notation dS to
remind us that dS is a (higher dimensional) surface element of the Stiefel manifold.

Theorem 5.2 Let A be an n x n matriz writlen in incomplete Schur form A = QMQT. The Jacobian of
the change of variables is

dA =2(b—¢)det ((A1 — J:I)Z + yZI) (db de dx dA; AW dS).

The proof of this theorem is very similar to that of Theorem 5.1, though simpler. The determinant comes
from Lemma 5.1 with matrices of dimension 2 and n — 2.

6 Applications to the Normal Distribution

The Jacobians computed in the previous section may be integrated to compute densities and probabilities.
In the case of the real Schur decomposition we obtain the joint density of the eigenvalues conditioned on &
eigenvalues being real. We further obtain the probability that & eigenvalues are real. The incomplete Schur
decomposition gives us the density of a complex eigenvalue. Its integral is the expected number of complex
eigenvalues.

6.1 Applications of the Real Schur Decomposition

In this section, we calculate the joint density of the eigenvalues of A and the probability that A has exactly
k real eigenvalues If the elements a;; of A are independent standard normals.

Theorem 6.1 Let Oy denote the set of matrices A with exactly k real eigenvalues. Let py 1 denote the
probability that A € ©. The ordered real eigenvalues of A are denoted Aj;i=1,... k, while thel = (n—k)/2
ordered complex eigenvalue pairs are denoted x; + yin/—1, 0=k +1,...,m. Let

22]—n(n+1)/4
Cnk = 97 o7 7a%"
[T, 7(i/2)
The jownt distribution of the real and complex eigenvalues given that A has k real eigenvalues is
py enkDoexp (S(v7 — 27) = A7 /2) TT [weerfe(yiv2)] (8)
where Ag is as in Theorem 5.1. The probability that A € O 1s

Cn
Pnk = kTﬁ Agexp (Zx\f/? +3 (v — xf)) I1 [yierfc(yi\/i)] dAy ... dhgdxy .. . dedyr .. dy;. (9)
TN .

y,€%+
A ER
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Proof If the elements of A are independent standard normals then the joint probability density for A is
2 1
(2m)™" /2etr(—§AAT)dA,

where
etr(X) = exp(trace(X)).

Theorem 5.1 states that

n? 1
(27r)‘Tetr(—§AAT)dA =

2 b2 2
2 Tl A2 - l‘f-l— =+ 7’)
(2m) 2" A [ (b — i) (dH) (e‘ZTdRU) (e‘ZTdA) (e Z( dZ). (10)
i>k
The integral of (10) over @, RV, A and Z (with the restrictions on these variables specified in Section 4.2
to make the Schur factorization unique), counts every matrix in @ once generically. This integral is

> 1
Pk = (27)7" /2/ etr(—=AAT)dA,
A€Oy 2

To obtain the joint density of the eigenvalues, we must integrate out all the variables other than the A;,
the z; and the y;. To obtain the probability p, 1, we must integrate over all the variables.
(i)The integral over the orthogonal matrices with positive elements in the first row is

/dH = Vol(O(n))/2". (11)

The derivation of the volume of the orthogonal group may be found in [20] to be

2nﬂ.n(n+1)/4

Vol(O(n)) = m

The 2™ in (11) represents the volume of that part of the orthogonal group which has positive first row.

(ii) The integral over RV is (2m)r(n=1/4=1/2, (13)

(iii) We make the change of variables from b; and ¢; to 8; and y; described in Lemma 5.2, and then we
integrate out 6;. Since b7 + ¢ = 62 + 2y?, we see that integrating out dé; amounts to computing

2 [ b; —87/2
2ye” Y / - 77740
=0 (87 + 4y7)"/
This integral can be obtained from [14, 3.362.2, p. 315] with a change of variables. It equals
2v QWyiey?erfc(yﬂl/z). (14)

We use horizontal braces to indicate the source of each term in the combined expression for the joint
density of the real and complex eigenvalues:

2/2 2 2 gnn+i)/s n(n—1)/4-1/2 2 y?
Prk (2m) 7 P2 Agexp (= 3wf = 20N /2) T 7/ (2m)" (DA 9l o) 2 [yse¥ exfe(yiv/2)] (15)
(10) (11) and (12)  (13) (14)

The pgi is the normalization constant so that the joint density integrates to 1. Therefore (15) is a probability
density which simplifies to (8).
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Equation (9) is an exact expression for p, ;. Notice that we removed the ordering of the variables, and
compensated for this by dividing by k! and {!. The integral in (9) would separate into univariate integrals if
it were not for the connecting term Ag.3

If we wish to compute p, j explicitly we must integrate out the x;, the y; and the A; in (9). We now
describe the approach we took to integrate out the z; and y;. We postpone discussion of the integration of
the A; to Section 7.

From (6) we see that Ay is a polynomial in the variables #; and y;. We can use the integration formula

[14, 3.461.2]

0 2 -
/ e dx = (nQTz)ﬁ’ n even (16)

— 00

and also

Lemma 6.1

? 3 3 1
(n+3) Filn+1l,n4+ -;n+2;2) (17)

~ 2041 oy o (4212 y2d _
/ Yy erfe(y Je¥ dy 5 5

o Va(2n £ 2)2 17

_ nl(=1)” - k (L/2)k
=5 (ﬁkzﬂ(—m = —1), (18)

where the Pochhammer symbol (x), denotes the product () = x(x+1)...(x+k—1).

Proof The expression in (17) for the integral as a hypergeometric function may be found in [14, 6.286.1].
We did not find this form particularly enlightening so we attempted to find another expression.

We outline our approach for obtaining the expression (18) leaving the details to the reader. Replacing
the erfc in the integrand with % fx‘oiyﬁ e~ dz allows us to interchange the order of integration. A change

of variables and a careful application of [14, 2.321.2] and standard Gamma integrals completes the task.

It is also possible, though tedious, to ignore the integral and directly show equality of the hypergeometric
function expression and (18). The function o Fy(n, n+ %; n+1;2) is obtained from 2 F1(1,3/2;2; z) by taking
n — 1 derivatives [1, 15.2.2]. We may also show that

2F1(1,3/2;2;2) =

8|

((1—90)—1/2— 1)

from [1, 15.2.21 and 15.1.8]. |

6.2 Applications of the Incomplete Schur Factorization

We now turn to the distribution of the complex eigenvalues 4y, y > 0 of the real matrix A. Let p, (z, y)dzdy
denote the expected number of complex eigenvalues of a random matrix A in an infinitesimal area dz dy of
the upper half plane. More rigorously p, (z,y) is the Radon-Nickodym derivative of the measure

() = / oz, y)dedy = E4{ Number of eigenvalues of A contained in 2}
Q

defined on measurable subsets €2 of the upper half plane.

Theorem 6.2 The complex eigenvalue density is

2 2 2
pnl,y) = ﬁyey ~erfe(yv2)en_o(2? + y?),

where en(2) = > h_o 2 /L

3This reminds us of the electrostatic interactions in the Hamiltonian for a many electron system in quantum mechanics.
Without these interactions Schréodinger’s equation could be solved exactly.
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Proof The techniques used in this proof are very similar to those used in Theorem 6.1. Theorem 5.2 states
that

21
(27r)‘Tetr(—§AAT)dA = (19)
(2m)="/22(b — ) det (A1 — )2 + y21) e~ +5+5) db de du etr(—3 A1 AT) dAy ete(—LWWT)dW dS.

(i) The volume of the Stiefel manifold may be found in [20]. One quarter of the volume of the Stiefel
manifold (because of the sign choice on the first row of H) is

(2m)n—t

27(n—1) (20)

(ii) The integral over W is (27)"~2. (21)
(iii) Exactly as before, the b and ¢ components transform into (14).
(iv) We recognize the integral of det ((A1 —xz)? + yZI) etr(—%AlAf) dA;. It is

(271')("_2)2/2EA1 det ((A1 — x)z + yZI) .

This explains our motivation for Section 3. From Theorem 3.1, we learn that the value of the integral of the
terms containing A; is

(2m) 27127 (n = Dyen_o(2” + 7). (22)

Combining terms we have that p,(2,y) =

/_MTF/_M
(271')_"2/226_x2 % (2m)" 2 2\/ﬁyey2erfc(y\/§) (271')("_2)2/27 (n— Den_a(z? +47). (23)
——
(19) (20) (21) (14) (22)
This completes the proof. l

Corollary 6.1 The expected number of non real eigenvalues of a random matriz A 1is

Cn = Z(” — k)pn k= 2/ pn(z,y)dz dy.
k zeR
ye Rt

The factor of 2 counts the complex conjugate pairs. We could proceed by integrating py(z,y), to compute
¢n, but this is not necessary because in [8] we computed

1 o F1(1,—1/2;n; %)
n—N"N— 2 2
en=n—g V2 B(n,1/2)

expressing ¢, in terms of a hypergeometric function and an Euler Beta function. Other equivalent expressions
for n — ¢, may be found in [8]. 28 We now turn to understanding this density in the context of Girko’s
circular law (or Figure 1) as n — oo. It is interesting to normalize the eigenvalues by dividing by +/n. Thus
we introduce

t=z/\n, yg=y/vn, pn(2,9) =ny/ %ye"(g2_£2)erfc(y\/2n)en_2(n(i‘2 +9%)).

p(2,9) is the density of the expected number of normalized eigenvalues in an infinitesimal area around @ +4g.
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Theorem 6.3 The density of the normalized eigenvalues converges pointwise to a very simple form as
n— 0o:
{ b o #2gi<l

0 @4y >1 (24)

lim n~"po (2, 9) =

n—00
Asymptotically, a random eigenvalue is almost surely complex. When normalized by dividing by /n, the
eigenvalue converges in distribution to a random variable that is uniformly distributed in the unit disk £% +

v < 1.

Proof The formulas [1, 6.5.34] and [1, 7.1.13] may be used to verify (24). The former states that

fim T Ofor @242 >1

n—o00 e”(f?2+322)

en(n(2% + 9%)) { 1for 22 +9° <1

while the latter states that

lim \/ﬁy62"92erfc(y\/2n) = (271')_1/2.

n—oo
It is routine though tedious to show that the convergence is dominated by an integrable function on the
plane. We need the inequality

1 - —i4n n" n_—nz z
en(nz)/exp(nz) = E‘/M e "t"dt < PR
and Stirling’s inequality [1, 6.1.38]

n! > \2rnn"e™".

We leave the details to the reader. By the Lebesgue dominated convergence theorem, we achieve convergence
in distribution. U

7 Relationship with Symmetric Random Matrices

We now turn to the task of integrating the A; variables in (9). The relevant part of the integrand containing
A; has the form

[T aOnTTIA = Ajle™ 2272, (25)

where ¢(};) is some polynomial function of A; originating in Ag.
This form is closely related to the joint density of the k real eigenvalues of a random k by k symmetric
matrix S = (A + AT)/2, where the elements of A are normally distributed. In the physics literature the

probability distribution for .S is known as the Gaussian orthogonal ensemble. The joint probability density
for the eigenvalues Ay > ... > A of S is well known [18, 4, 20]:

2—k/2
12, 7(/2)

Therefore the integral of (25) is essentially an expectation for the determinant of a polynomial in S. To
be more precise:

T 1 = Agle 222072,

Lemma 7.1
B [ TaO0TI = yle D472 = {05 I1E 26/2)} B det(y(5).

where F/ denotes expectation with respect to the symmetric random matrices defined above.

Dividing by k! allows us to symmetrize the integrand so that we need not assume the A; are ordered.

If ¢ is a polynomial with rational coefficients, then E det(¢(S)) must be rational since all the moments
of a standard normal are rational. We suspect that a better understanding of E det(¢(.S)) is possible, but
we are not even aware of an exact formula for E det S?. Such an understanding would help us simplify our
formula for p, ;. For now we are content with this application of Lemma 7.1.
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Theorem 7.1

Pnk = d;,lk/ Es {Hle det ((S — J:I)Z + yZI)} AxyeZ(yf—xf)H yierfc(yiﬁ) dey ... .dedy ... dy,

x; ER
yi € RT

where I
dpj =277 TP, 7 (6/2)

)

and Agy denotes the multiplicands in Ag that do not include a A term.
Corollary 7.1 The probability of all real eigenvalues s pp n = g-n(n=1)/4,

Proof When k =n and (=0, d,, = 27(n=1/% and the integrand is simply 1. l

Corollary 7.2 The probability py, 1 has the form r + svV/'2 where v and s are rational. Furthermore r and s
may be expressed as an integer fractions with denominator equal to a power of 2.

Proof The Eg term in the integrand is a polynomial in # and y with integer coefficients. Before taking
expectations, the determinant is a polynomial in z, y, and the .S;; with integer coefficients. We recall that
the nth moment of the normal distribution is (n — 1)!1'if n is even and 0 if n is odd. Integrating out the z;
using Equation (16) gives a factor of pi'/? which is canceled by the 7'/2 in [T54+17 (i/2). The integration of
the y; using (18) leads only to rational numbers of the proper form. l

Theorem 7.1 is the basis of our earliest Mathematica program (Apendix A) for computing p,, . We first
evaluate Eg Hle det ((S —x)? + yZI) by explicity computing the determinant symbollically in terms of
the elements of S and the xz; and y;. Then we replace the various powers of the elements of S with their
expectation. We then integrate out the x; and y; by replacing powers using formulas (16) and (18).

We then modified the program to save some arithmetic. It is readily shown that a certain tridiagonal ma-
trix with x distributions on the three diagonals has the same eigenvalue distribution as that of S. Therefore,
we may use T in place of S to compute the expectations of the determinants of polynomialsin .S. This 1s our
current program in Appendix A. The program may be summarized by saying that a polynomial is computed
in expanded form, then powers of variaous variables are symbolically replaced with the appropriate moments.

8 Eigenvalue Roulette and Numerical Simulations

Fifty five years ago Littlewood and Offord [17] proposed a game on random polynomials that they hardly
had the technology to play:

Let the reader place himself at the point of view of A in the following situation. An equation of
degree 30 with real coefficients being selected by a referee, A lays B even odds that the equation
has not more than r real roots. ... What smallest possible value of r will make A safe [from
being ruined]?

With the benefit of easy to use interactive computer languages best exemplified by Matlab, 1t is trivial
to play their game or our eigenvalue version of the game that we choose to call “eigenvalue roulette.” As an
example, when n = 8, the “wheel” contains the numbers 0,2,4,6 and 8 and the wheel may be spun simply
by executing

>> rand(’normal’); a=rand(8); sum(abs(imag(eig(a)))<.0001

The .0001 is an arbitrary numerical tolerance that seems to be unimportant in practice.
As a more substantial check of our results, we executed LAPACK simultaneously on each of 128 processors
of the CM-5 supercomputer. The experiments agreed perfectly with the theory.
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9 Open Problems
This section contains a number of conjectures that we strongly suspect to be true.

Conjecture 9.1 Let {M,} be a sequence of n by n random matrices. Lel t, denote the number of real
eigenvalues of M,,. Then lim, .o t,/n = +/2/7 almosi surely.

Intuitively this states that if we plot k/n against np, for & = 0,...,n, the points “converge” to the
degenerate distribution é(x — \/2/7).

Conjecture 9.2 An explicit formula for p, i that is easier {o compute from than 7.1 may be obtained.

Our formula allowed us to compute p,; explicitly when either £ = n or n < 10, but we have not
vet succeeded in computing other probabilities due to the computational complexity of our Mathematica
program. We suspect the program can be rewritten so as to compute values for say n = 10 or n = 11, but
ultimately a better formulation will be needed.

Conjecture 9.3 Girko’s circular law for arbitrary random matrices of wtd elements of mean 0 and variance
1 may be derived as a corollary of Theorem 6.3 using some kind of central limit theorem.
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A Mathematica Program to compute p,

(* Mathematica program to compute the probability that an n x n random Gaussian matrix has k real eigenvalues.
Alan Edelman -- UC Berkeley 12/92 #*)

n=Input["n? "]; k=Input["k? "]; 1=(n-k)/2;

(*A k x k Tridiagonal matrix with w on the diag and v off the diag *)
W=DiagonalMatrix[Table[w[i],{i,k}]1]; Do[ (W[[i+1,ill=v[k-il; WL[i,i+1]1]=v[k-i1), {i,k-1}]1;

(* Determinant involving x[i] and y[i] *)

II=IdentityMatrix[k];

z =If[ 1==0 || k==0, 1, Det[(W-II*x).(W-II*x)+ II*y~2]];

z = Expand[Product[z/.x:>x[i]/.y:>y[i],{i,1}]1];

z=2z/.wli_ 1l n_:>0 /; 0ddQ[nl; z =z /. wli_l n_:> (m-1)''; z =2z /. wli_1->0;

Z z /. v[i_ ]l n_ :> 0 /; 0ddQ[nl; z =z /. v[i_l"n_ :> Gammal[(i+n)/2]/Gammali/2]; z = =z /. v[i_]-> 0;

Do[(  (#0nly introduce those x[ii] and y[ii] that we need so far*)
z = zxy[iil* Product[ ((x[j1-x[iil)~2+(y[j1-y[iil)"2) ((x[j1-x[iil)"~2+(y[jl+yl[iil)~2), {j,ii+1,1}] ;
z=Expand[z];
(* Integrate x[ii] *)
z =2z /. x[iil"n_ :> 0 /; 0ddQ[n]l; =z =z /. x[iil™n_ :> (-1)'"'/(2"(n/2)); =z =z /. x[ii]->0;
(* Integrate y[iil *)
iy[n_J:=n!'(-1)"n/2(8qrt[2] Sum[ (-1) "k Pochhammer[1/2,k]/k!,{k,0,n}]-1);
z =z /. yliil n_ > iy[(n-1)/2]; =z =z /. y[iil :> iy[0];
), {ii, 1,1}]
z=Simplify[ z Sqrt[Pil"1 /( 2" (n(n-3)/4+k/2) Product[Gammali/2],{i,k+1,n}] 1!)]1;
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