
Large Dense Numerical Linear Algebra in 1993:The Parallel Computing In
uenceAlan EdelmanDepartment of Mathematicsand Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeley, California 94720December 3, 1994AbstractThis article surveys the current state of applications of large dense numerical linear algebraand the in
uence of parallel computing. Furthermore, it attempts to crystallize many importantideas that are sometimes misunderstood in the rush to write fast programs.1 IntroductionThis article represents my continuing e�orts to track the status of large dense linear algebra prob-lems. The goal is to shatter the barriers that separate the various interested communities whilecommenting on the in
uence of parallel computing. A secondary goal is to crystallize the mostimportant ideas that have all too often been obscured by the details of machines and algorithms.Parallel supercomputing is in the spotlight. In the race toward the proliferation of paperson person X's experiences with machine Y (and why X's algorithm runs faster than person Z's),sometimes we have lost sight of the applications for which these algorithms are meant to be useful.This article concentrates on large dense numerical linear algebra. I do not tell you how to writean LU decomposition { there are more than enough people doing this. (By all means consult[14, 19, 12, 32].) What I propose is to give a bird's eye perspective on dense numerical linearalgebra and how it is currently used on very large systems.Some caveats are in order. The most obvious is that what is true in 1993 may or may notbe true �ve years from now. Five years ago, only a few of the world's leading numerical linearalgebra experts were actively working on distributed-memory parallel supercomputers. (In fact,�ve years ago few of the world's experts in any �eld were actively working on distributed-memory1



supercomputers.) At that time, some linear algebra experts felt that highly parallel machines (suchas the Connection Machine) would never be very useful for large dense linear algebra computations.Perceptions changed when Intel and Thinking Machines began a heated race for the top of theLinpack benchmarks. The early mistake serves as an instructive lesson in the sociology of science:experts may not always fully understand the potential of a new technology. This is the past. Thependulum has swung the other way now, and we begin to ask ourselves whether we are expectingtoo much too soon from this technology. As Cybenko and Kuck [10] point out,Scientists and engineers now expect tera
ops machines by 1996 { and in a climate ofheightened expectations, four years is a long time. : : : [If experience with newer machinesresembles that of earlier machines] the �eld of massively parallel computing risks takinga spot on the technical community's back burner, much as arti�cial intelligence did afteroverextending itself in the 1980's.I will discuss all the applications of large dense linear equation solving and eigenvalue compu-tation that I have been able to obtain. It would be folly to conclude that this is exactly the setof applications that will be important in the future. When I discuss large problems, I am onlyconsidering a small segment of the user community with access to fast machines. Therefore, I amcovering only those applications areas in which some proper mix of necessity, money, or computingculture has allowed for entrance into the world of dense numerical linear algebra.My data consist of the results of my second annual dense numerical linear algebra survey posedin the electronic newsletter NA Digest and a variety of electronic bulletin boards. I do not claim tounderstand all of the applications, but I hope that my general descriptions are accurate. Indeed, Irely on my colleagues and friends to correct inaccuracies when I am on shaky ground. Of course, Ihave not reached everybody. My continuing hope is to gather more information in years to come.2 Approaches towards large problem solvingI would like to examine three points of view that illustrate very di�erent approaches toward thesolving of large problems. Each approach serves important, though di�erent purposes. It would bea mistake to construe that any of these activities are somehow a waste of time, but I suspect mybiases are clear.The �rst approach is the most common, I believe, because it is has been the most exciting andrequires a minimum of training. Mainly what is needed is determination and hard labor.1. \How many machoflops can we get?"Here the style is to try to get the highest possible performance out of some machine, usually on amatrix multiply problem or on a linear solver.2



The race for macho
ops has been run by both supercomputing manufacturers and computerscience researchers. Those with the best access to the true machine characteristics have often hadthe advantage. As an exercise for students, getting macho
ops may be the best way to really getto know an architecture.Another tradition represented by LAPACK and its predecessors is the following:2. \Provide a black box routine for the masses"Here performance is important, but more important is to make sure that state-of-the-art numericaltechniques are used to insure the best possible accuracy is obtained by users who want to trust thesoftware. Since it is for the masses, the code must be portable.LAPACK software is like an automobile built for public use that has been designed to meetsafety regulations. Such a car should drive e�ciently, but certainly would need to be rebuilt formore dangerous racing purposes. LAPACK is written in Fortran 77 plus calls to the basic linearalgebra subroutines (BLAS) to perform kernels such as matrix-matrix multiplication in a mannerthat may be optimized for each machine. If high performance Fortran lives up to its promises, onecan imagine successors to LAPACK being written in it. At the moment, it seems unlikely thatany such software will be able to support the full functionality of, say, the Connection MachineScienti�c Software Library.There is another viewpoint regarding large dense linear algebra problems popular among spe-cialists, but probably not so widely considered among other circles:3. The \All large dense matrices are structured" hypothesis.This point of view states that nature is not so perverse as to throw n2 numbers at us haphazardly.Therefore when faced with large n by n matrices, we ought to try our hardest to take advantageof the structure that is surely there.In terms of numerical linear algebra algorithms, what is needed are specialized approaches forindividual problems that use more information about the matrix other than the fact that it is ann by n array of numbers. This idea is familiar when the dense matrix has obvious structure suchas Vandermonde matrices, Toeplitz matrices, and more simply, orthogonal matrices.At �rst, using \sparse matrix" techniques for dense matrices may seem counterintuitive. Nev-ertheless, we outline a basic recipe that is highly appropriate when considering large problems:3



\sparse" approaches to dense problems1. Replace a traditional \dense" approach with a method that accesses the matrix only throughmatrix vector multiply.2. Look for good preconditioners.3. Replace the O(n2) vanilla matrix-vector multiply with an approximation such as multipole ormultigrid-style methods or any other cheaper method.This recipe forces the software developer to access the structure in the matrix, both in thesearch for a good preconditioner and in the matrix-vector multiply. For sparse matrices this hasalways been obvious; great e�orts have gone into the study of preconditioners for sparse matricesand the computational organization of matrix-vector multiplies. E�orts in the dense case are rarer,I think, mainly because of the division of labor (and understanding) between computing scientists(i.e., physicists, chemists, and engineers) and computer scientists. See [20] for one success story.Perhaps some tradeo�s between traditional dense approaches and sparse approaches are appar-ent. Everything about using LU is predictable, from its error analysis to its time of execution.Nearly everything one needs to know can be found in undergraduate textbooks. In contrast, �nd-ing the right \sparse" approach can be a tricky business requiring time and expertise. There aremany iterative methods to choose from, many of which have not yet found their way into under-graduate (or even graduate) texts [18]. If one stumbles on an approach that seems to work wellfor one problem, there is little guarantee that it will work for another problem. Also, replacing amatrix-vector multiply with a fancier approach requires a fairly serious software e�ort, and �ndinggood preconditioners may require considerable expertise. There are many problems for which goodpreconditioners have yet to be discovered.Nevertheless, trying a few basic iterative methods is not so di�cult. A modest e�ort is requiredto merely play with a few ideas, and under the right circumstances the payo� can be enormous.The idea that general dense methods might be less appropriate than application-speci�c ideaswas eloquently expressed fourteen years ago in a prediction by ParlettRather than solving more and more general problems, the development of the �eld[of numerical analysis] will lie in more and more specialized applications ... chemistswill not be well advised to borrow the \best" method for ... general ... problems, butwill be well advised to consult with the experts on how to build their own codes. ([28])There is a subtler reason to shun dense approaches to large dense linear algebra problems, whichwill be discussed below.3 Records 4



RecordsLargest Gaussian elimination (LU): 75,264 (complex unsymmetric)Largest symmetric eigenproblem: 27,000 (all eigenvalues and all eigenvectors)Largest unsymmetric eigenproblem: 10,000The record holder for the dense (unstructured) linear solve problem is n = 75; 264 performed byIntel Corporation on a 128 processor iPSC/860. The problem ran for 64 hours in double precision.(Perhaps another interesting question might be what is the longest any dense linear problem hasever run?) The real and imaginary parts of the elements of the matrix were generated independentlyand uniformly on [�1; 1], and then 1,000 was added to the diagonal so that the matrix was virtuallydiagonally dominant. In some ways this matrix resembles the matrices that arise in radar cross-section calculations. The matrix factorization routine performed partial pivoting. The solution xto Ax = b was found where b is the vector of all ones. The residual vector was found to haveelements of order 10�13 or smaller.A back-of-the-envelope random matrix calculation (see [15]), convinces me that such a matrixmost certainly has a two norm condition number smaller than 3, and probably it is quite close to1. In any event, this is a highly well-conditioned problem. If stability and conditioning are notconcerns, then the only concern is the possibility of round-o�. Notice that every matrix element istouched at most 3n times. A simple random-walk model predicts an error of order �p3n, takingn = 75; 264 and � = 2�52 predicts 10�13.4 What is LARGE?As is well known by anyone who discusses \large" sums of money, the word is highly subjective. Myapproach is to seek out the record holders for linear algebra problems. I am using n = 10; 000 asan arbitrary cuto�. Therefore, what I consider \large" would be out of the range of most scientistsaccustomed to desktop workstations. Perhaps another point of view is that \large" is bigger thanthe range of LAPACK. LAPACK, one goal of which has been to target a wide audience of users onworkstations to vector architectures, could not support those who are trying to push machines totheir limits. (Currently, the largest problems seem to be out-of-core solvers on distributed-memorymachines, while the released version of LAPACK includes in-core routines for shared-memory ormoderately parallel machines.) Yet others may de�ne large by what can be handled by Matlab onthe most popular workstations. We fear that perhaps some consider what Mathematica can handlein a reasonable amount of time as the limit.It is curious to consider the di�erences between the largest linear system that has been solvedas compared with the symmetric or unsymmetric eigenvalue problem. The di�erence, I think,5



says more about the state of the art of algorithmic development than the perceived need of theseroutines, though both play a role. LU is simply easier than eigenvalue calculations.5 The Role of Ill-Conditioning and Condition EstimatorsThe condition number of a problem is often thought of as a measure of the sensitivity of theunderlying problem to perturbations. Consider, however, a condition number paradox:A Condition Number ParadoxDiscretizations of Laplace's equation or the biharmonic equation have condition numbers thatgrow as large as you like with the number of grid points. However, a boundary integral equationapproach (see below) to the same problem often leads to matrices whose condition numbers areasymptotically �nite. If both approaches are solving the same problem, how can one approach beunboundedly sensitive, while the other approach is not?For those less familiar with boundary integral equations, consider more simply the questionof preconditioning. If a problem is fundamentally sensitive to perturbations, how can it be pre-conditioned? Is it not true that the rounding errors in the preconditioning perturb the solutiongreatly?The resolution of the paradox is really quite simple, but I will delay an explanation by someparagraphs so that the reader may think about the problem. The reader may also wish to considerwhether one can precondition an ill-conditioned dense matrix that is stored as an n-by-n array ofelements.To understand the resolution of this paradox, it is necessary to remember that the conditionnumber of a matrix measures the worst case sensitivity of x in the equation Ax = b to perturbationsin A or in b, or in both. Traditional condition numbers �(A) = kAkkA�1k measure the worst-caseperturbation of x when Ax = b is replaced by (A+E)x = b+ f . Usually the spectral norm (\twonorm") or the sup norm (\1 norm") are used.Is the condition number realistic? It is not unusual that the condition number is pessimisticfor perturbations to b ([36, p.190]) but realistic for general perturbations to A. That is part of theparadox described above. Even though the matrix A is ill-conditioned, the right hand side is notsensitive to perturbations in b.The traditional error analysis of Gaussian elimination gives the false impression that Gaussianelimination is the best one can do. The backward error analysis argument goes as follows: Gaussianelimination solves a nearby problem that is not much worse than the backward error in storing thematrix in �nite precision. This is correct, but who ever said that each of the n2 elements must bestored in �nite precision? Let me express this as a corollary to the \all large dense matrices arestructured" hypothesis: 6



Corollary: If all large dense matrices are structured, then representing the matrix with fewerthan n2 parameters may not only provide us with faster algorithms, but they may also be moreaccurate since the space of perturbations attributable to roundo� is much smaller.If a matrix is well-conditioned, it hardly matters what computation method is chosen from thepoint of view of accuracy considerations. If a matrix is ill-conditioned, however, it does not implythat one does not deserve an accurate solution. In practice there are many so-called ill-conditionedproblems whose solutions are well determined by the right-hand side. In such a case, specializedalgorithms can compute residuals that are small compared with b, giving highly accurate solutions.Ill-conditioned matrix problems are not the same as problems that are not well determined by theirdata once one includes the structure.The resolution of the paradox is that the condition number of the Laplace equation matrix hastoo many parameters allowing unnecessary perturbations in \non-physical" directions.Condition estimators are heuristic algorithms that attempt to approximate the condition num-ber of a matrix at a small cost in terms of execution time. In 1991, I learned that many peoplesolving large problems using Gaussian elimination were not using condition estimators [17]. Thisseems to be changing. R. Craig Baucke at GE Aircraft Engines writes that all codes that he de-velops have condition estimators built in, and he encourages all users to exercise this option. Thelargest linear systems right now are generated from moment methods. These matrices are quitewell-conditioned.6 How to View a Matrix for Parallel ComputationLet us assume that the decision has been made to work directly with the elements of a matrix.Should this matrix be thought of as a two-dimensional array of numbers? From one point of view,it is natural to express a linear operator in a basis as a two-dimensional array because an operatoris the link between two spaces { the domain and the range. The matrix element aij represents thecomponent of the image of the ith domain basis vector in the direction of the jth range basis vector.Another reason that a matrix is naturally expressed as a two-dimensional array, I believe, is that weare three-dimensional creatures in the habit of communicating on two-dimensional surfaces, mostcommonly paper.The following idea is trivial, yet I feel compelled to call it the most important concept in parallelmatrix computations.The lesson of parallel computing: Matrix indices need not be linearly ordered. Indices arebetter thought of as a set (hence unordered) rather than a sequence.7



The nicest illustration of the idea that matrix indices need not be linearly ordered can be found inthe Lichtenstein and Johnsson [26] implementation of LU on the CM-2. Probably the most commonassumption on distributed memory machines is that the data layout is block consecutive. Thematrix is divided into neat rectangles just as land in the \Old West" was parceled out. Traditionalalgorithms require that elimination begin with column 1 and proceed in consecutive order, leadingto a hopelessly unbalanced workload. By a (psychological) relabeling of indices, the problem goesaway. This is referred to fancifully as interchanging the space and time dimensions of the algorithmin [26], but the idea is much simpler: do not think of the matrix as linearly ordered; think of theindices as a set, not a sequence.Another application of this lesson is the high-bandwidth hypercube matrix multiply discoveredby Johnson and Ho and later rediscovered independently by myself after working on direct N-bodysolvers (Ho, Johnsson and Edelman [24]).I digress to mention that the hypercube with fully progrmmable concurrent communication toevery node's nearest neighbors is the only mathematically elegant ouse of the hypercube topology.Roughly speaking, every time you snap your �ngers you may send words that you choose simulta-neously to all of your neighbors. The CM-2 had this feature, though it was not widely publicized.I consider it a minor tragedy to mankind that the architecture was rarely properly appreciated[16]. Many researchers purporting to use the hypercube architecture really did not. The hyper-cube architecture, at least for now, has been set aside by most hardware designers. The abilityto self-direct the communications in a deterministic manner has also been set aside by hardwaredesigners. Despite asking for three years now, I have yet to hear a convincing argument of whythe fearless individuals who wish to program at the assembly level are denied full access to thecommunications system as a matter of hardware policy, even though communication is a majorbottleneck on modern distributed-memory machines.The full-bandwidth algorithm rejects the notion that any block local to a processor would beunhappy if it were ripped to shreds and dealt in pieces to nearest neighbors. At the same time, theprocessor's neighbors send pieces of blocks to be glued together locally. A local, highly vectorizedmatrix multiply runs at high speed, and the operation continues in systolic fashion. Further detailsmay be found in [24] or [12].A popular misconception is that the following is the most important lesson of parallel computingon dense matrices:A non-lesson of parallel computing:Operations must be blocked and data reused so as to maximize bandwidth to memory.I refer to this as a nonlesson of parallel computing because it is not new, it is already the lessonof vector (and earlier forms of) computing. Some of these ideas date back to the earliest out-of-coresolvers. The LAPACK BLAS neatly incorporate this lesson into high-quality software. If computer8



science really is a science rather than a sequence of case histories and experiments, we should notthink of this observation as new and special for parallel computing, but merely refer readers to theprevious literature.The critical defect of the early CM-2 compilers and the Paris \assembly language" was theinability to perform multiple arithmetic operations on data for each memory reference. This defectwas mistakenly considered a problem with the machine architecture when indeed it was a problemwith the software model and underlying system software that was later corrected in newer CM-Fortran compilers.7 Applications of Large Dense Linear Systems SolversIn 1991 I pointed out that all large dense linear systems (n > 10; 000) arose from the solutionof boundary integral equations [17]. This continues to be the major source of large dense linearsystems, but another important case arises in quantum scattering.7.1 Boundary Integral EquationsBoundary integral equations are mostly coming from two distinct communities. Nevertheless, thetechniques these communities are using come from the same basic framework.There are a variety of ways to enter the enormous literature on boundary integral equations.There are the excellent recent surveys by Atkinson [2] and Sloan [34]. I have used Chapter 10 of([25]) in a graduate course for the numerical solutions of PDE. A simple exposition with examplecan be found on pages 321{327 of ([1]). Other examples can be found in Bendali, 1984; Brebbia,1984; Canning, 1990a, 1990b 1993; Harrington, 1990; Hess, 1990; and Wang, 1991.The chart below indicates the major two communities involved with large boundary integralequation applicationsCommunity Electromagnetics Fluid MechanicsNomenclature Moment methods Panel methodsEquation solved Helmholtz Laplacer2ui + k2ui = 0 r2u = 0First kind Charge distribution � Single layer potential �Second kind Current distribution j Double layer potential �Mathematically, a di�erential equation in three-dimensional space is replaced with one of avariety of equivalent equations on a two-dimensional boundary surface. One can proceed to recoverthe solution in space by an appropriate integration of the solution on the surface. The price ofgoing from three dimensions to two is the creation of a dense linear system that needs to be solved.The electromagnetics community is by far the leader for large dense linear systems solving. Theirgoal is to solve the so-called radar cross section problem: a signal of �xed frequency bounces o� anobject, and it is of interest to know the intensity of the re
ected signal in all possible directions.9



They call their methods \moment methods" because of the inner products characteristic of Galerkintechniques.Fluid mechanics, unlike electromagnetics, uses boundary integral methods only as a simplifyingapproximation for the equations they wish to solve. The goal is to understand the 
ow of air (forexample) past an object using an idealized model of the 
ow. They call their methods \panelmethods" because the most vanilla approach is to discretize the boundary into quadrilaterals.In electromagnetics, we are interested in constant frequency solutions to the wave equation�� @2@t2� = r2� ;where � and � are material constants of the medium in which the wave travels (the dielectricconstant and the permeability constant). If we assume solutions � of the form �ei!t, we obtainHelmholtz's equation.The electromagnetics community often produces complex matrices that are symmetric becausethey arise from a Galerkin method in which the so-called basis functions and testing functionsare complex conjugates. However, as was properly pointed out to me by R. Craig Baucke of GEAircraft Engines, the matrices need not be symmetric, as arbitrary functions can be used.In 
uid mechanics, one ideally wishes to solve the Navier-Stokes equations of 
uid 
ow. However,in certain situations one can greatly simplify the equations by assuming the 
ow of an incompress-ible, inviscid, irrotational 
uid. In this case, the velocity at any point in space is obtained as thegradient of a potential: v = r�, where � is a solution of Laplace's equation.Numerical linear algebraists sometimes like to ask whether a solution to a linear system iscomputed to high relative accuracy. However, this may be of less interest to some engineers:Prospective users of a 
ow{calculation method are rarely interested in whether ornot an accurate solution of an idealized problem can be obtained, but are concernedwith how well the calculated 
ow agrees with the real 
ow. ([23])Some version of Green's identity is used to recast the problem as a boundary integral equation.In electromagnetics, one solves for either a \charge distribution" or a \current distribution" (orsome mix) on the boundary which can then be used to obtain the desired solution at any locationin space. Analogously, in 
uids one solves for either a \single-layer potential" or a \double-layerpotential" (or some mix) on a boundary.Mathematically, one has an integral equation of either the \�rst kind" or of the \second kind."Characteristic of integrals of the �rst kind is the appearance of a Green's function in the integral,while in the second kind one notices normal derivatives of the Green's function.10



7.2 Quantum ScatteringIn quantum mechanical scattering, the goal is to predict the probability that a projectile willscatter o� a target with some speci�c momentum and energy. Typical examples are electron/protonscattering, scattering of elementary particles from atomic nuclei, atom/atom scattering, and thescattering of electrons, atoms, and molecules from crystal surfaces. Experimentally, projectiles canbe collided with each other (as, for example, in the proposed Superconducting Super Collider),or a projectile can be scattered from a �xed target (as, for example, in atom/crystal scattering,where an atom is scattered from a crystal surface). Both classical and quantum scattering ofatomic scale particles are inherently probabilistic and the experimentally measured quantity is thescattering cross section. The di�erential scattering cross section gives the probability that a particlewith an initially well-de�ned momentum will scatter into a particular direction with a particularmomentum. The scattering cross section can be de�ned using classical physics, but for energyregimes in which quantum mechanics is applicable, scattering theory based on classical physicsleads to physically incorrect results. In such cases, quantum mechanics is required to correctlydetermine the scattering cross section.In quantum scattering theory, the projectile and target are assumed to initially be so far apartthat they feel no mutual interaction. This corresponds to a time in�nitely long before the collision.This initial state of the projectile/target system is given by its Schr�odinger wavefunction. Longafter the collision has occurred and the projectile has moved in�nitely far away from the target andis again no longer interacting with it, the state of the system will be given by its �nal Schr�odingerwave function. This corresponds to a time in�nitely long after the collision. The scattering cross-section is obtained from the �nal Schr�odinger wave function or from the scattering operator S,which maps the initial wave function into the �nal wave function.The �nal Schr�odinger wave function can be calculated by solving either the time-dependent orthe time-independent Schr�odinger equations. The time-dependent Schr�odinger equation is a partialdi�erential equation that is �rst order in time and second order in position. The time-independentSchr�odinger equation is a partial di�erential equation that is second order in position. However,modern scattering theories usually determine the cross section by calculating the scattering operatorS, instead of the Schr�odinger wave function. The S operator is related to the transition operator T ,which is given by the so-called Lippmann-Schwinger equation. This equation is a Cauchy singularFredholm integral equation of the second kind. Numerical solution of either the time-dependentor time-independent Schr�odinger equations, or of the Lippmann-Schwinger equation, nearly alwaysrequires solving large linear systems.John Prentice [31] of Quetzal Computational Associates and Sandia National Laboratories hasdeveloped a theory for calculating the transition operator T (and hence the S operator and thescattering cross section) for inert atoms scattering from crystal surfaces at low energy. Assumingcertain crystal lattice symmetry, the Lippmann-Schwinger equation in this case leads to a system ofone-dimensional Cauchy singular Fredholm equations of the second kind. Prentice uses a Nystrom11



method to numerically solve this system and has so far discretized the equation into a dense linearsystem with n = 6500 unknowns on a Cray-2, though he would ideally like to solve the system forn = 10; 000. He can foresee the need to perform n = 100; 000 as well. Initial attempts to solve hissystem on the CM-2 have not yet been successful. The author considered some iterative methodsfor his system, but has not yet reported any success in this area.Another very complicated example of quantum scattering, described to me by Don Truhlar fromthe University of Minnesota [33], includes chemical reactions that are assumed to occur when theprojectile hits the target. In the language of quantum mechanics, these are known as \multichannelcollisions." Here each \channel" refers to a possible set of quantum numbers for the reactants orproducts. Donald Truhlar reports solving dense linear systems of size n = 11; 678 as one componentof the calculation. The size of the matrix is the number of channels times the average number ofbasis functions per channel. The authors describe some preliminary results using GMRES.7.3 Economic ModelsTed Frech, at University of California{Santa Barbara, informed me that large matrices have beenused in input-output models of a central planning economy such as the former Soviet Union. Theinput-output model that has found many applications also for market economies is the NobelPrize-winning invention of Leontief of New York University. The size of the matrix is related to thenumber of goods that are modeled. Frech surmises that the constraint for modeling many goodsis the accumulation of quality, timely data rather than computing power. Neither he nor otherexperts in economics that I have contacted are aware of any current applications requiring densematrices of order greater than 10,000.7.4 Large Least-Squares ProblemsLinda Kaufman of Bell Lababoratories reported a 2.7 million by 1300 dense least squares problem.She did not mention the application.Srinivas Bettadpur described a large least squares problem in which the data were variationsin the Earth's gravitational �eld. Techniques known as di�erential accelerometry can measure thegradient of the constant g to within 10�9 m/sec2 for each meter. These measurements are then �tusing least-squares to an expansion in spherical harmonics. In their problem they used the normalequations to build a 11,000-by-11,000 matrix, which then solved by the Cholesky factorization.They very carefully estimated the condition number of their matrix and found it to be acceptable[4]. 12



8 Jacobi or Not Jacobi for Large Dense Symmetric EigenvalueProblems?In the early days of computing, the Jacobi algorithm was the method of choice for solving thesymmetric eigenvalue problem. During the 1960's, the advantages of the QR algorithm becameincreasingly clear to the point that the Jacobi algorithm was discarded.During the 1980's, the Jacobi eigenvalue method for symmetric matrices was resurrected be-cause of its perceived utility on parallel machines. Many authors considered variations on the the\Kirkman Schoolgirl Problem" (from classical combinatorics) of n schoolgirls paring o� on each ofn � 1 days so that everyone gets to be in a pair with everyone else exactly once. Such orderingshave become parallel Jacobi orderings. One variation that I entitled the Paradiso Cafe Problem(named for a Harvard Square cafe that has four triangular tables outside) remains unsolved. Itssolution seems to have little current relevance for parallel computing, but the problem has greatsentimental value:The Paradiso Cafe Problem: If twelve computer scientists drink espressos at four di�erenttriangular tables, each night for six nights, is it possible to create a seating arrangement so thateach scientist is sitting at a table with each other scientist at least once? What if the tables arearranged in a square and two of the three people at each table are found the next night at the twoneighboring tables? (This corresponds to adding wires on an n-dimensional hypercube.) Generalizeto (n+ 1)2n scientists at 2n tables arranged in a hypercube.The Jacobi algorithm received further attention in 1990 when Demmel and Veseli�c [13] an-nounced that if a symmetric positive de�nite matrix happens to well determine its small eigen-values, the Jacobi algorithm with a minor modi�cation will compute these eigenvalues accurately,while the QR algorithm can destroy the eigenvalues. A matrix well determines its eigenvalues ifsmall relative perturbations to the entries lead to small relative perturbations in the eigenvalues.The Jacobi algorithm is once again falling out of favor in the 1990s, probably because thevery �ne grained model of computing that made Jacobi seem so attractive, turned out to be moreabstraction than reality.Though the Jacobi algorithm may still have uses in certain special cases, its chief attractionboth on serial and parallel machines has always been its simplicity more than anything else. Thisidea has been espoused by Parlett ([30, p.184]).9 Applications of Large Dense Eigenvalue ProblemsIt is clear that the electromagnetics community (rightly or wrongly) has been pushing the stateof the art in conventional dense linear systems solvers. The large dense eigenvalue problem does13



not seem to have quite so strong a champion. The principle customers for large dense eigenvalueproblems are computational chemists solving some form of Schrodinger's equation.Rik Little�eld of the Paci�c Northwest Lab sums up the situation as follows (personal commu-nication):Eigenproblems in computational chemistry come in a wide variety of sizes and types.Generally the matrices are real symmetric, occasionally complex Hermitian. Roughlyspeaking, there are three main regimes:1. Small (N = a few hundred) and dense, with complete solution required (all eigen-values and vectors).2. Moderate (N = a few hundred to a few thousand) and dense, requiring partialsolution (20%-50% of the eigenvectors, corresponding to the smallest eigenvalues).3. Large to very large (N = 104 to 109) but sparse (1% dense), and requiring only afew (one to ten) of the eigenvectors, corresponding to the smallest eigenvalues.9.1 Schr�odinger's Equation via Con�guration InteractionsProbably the most studied eigenvalue problem in the computational quantum chemistry is theapproximate solution of Schr�odinger's wave equation,H = E ;for a molecular system with many electrons. HereH is a linear di�erential operator known as theHamiltonian. In this context it has four terms (not shown here): a Laplacian term, representing theelectron kinetic energy, and three terms representing potential energy: electron-nucleus interaction,electron-electron repulsion, and nucleus-nucleus repulsion. The nuclei are considered �xed; hencethe last term is constant.The Schr�odinger equation for a one-electron system (hydrogen) has a well-known analytic so-lution that is widely discussed in undergraduate courses in physical chemistry, general chemistry,general physics, or quantum mechanics. When feasible the electron problem is discretized andsolved numerically as an eigenvalue problem. Alternatively, large dense random matrix modelsdescribed in Mehta ([27, p.3]) have been used to model such systems.Discretizing the problem requires a choice of a �nite dimensional basis, but what constitutes agood basis? Bases are typically built up from sums and products of eigenfunctions for the hydrogenatom, with symmetries imposed from physical motivation.Perhaps in the distant past, EISPACK style algorithms were used for such problems, but nowthe most common method of solution is Davidson's method ([11, 9, 28]) requiring accessing thematrix only through matrix-vector multiplies. Davidson's algorithm can be thought of as a hybridalgorithm between Lanczos and inverse iteration. The algorithm is similar to Lanczos in that it14



computes an orthogonal basis for a subspace one column at a time. It di�ers from Lanczos in thatone does not compute a subspace on which the original operator is tridiagonal. The trade-o� isthat tridiagonality is sacri�ced in the hope of speedier convergence. In Lanczos, the next vector tobe computed has to be an orthogonal basis vector for the next bigger Krylov space. In Davidson,one performs an approximate inverse iteration to get a good eigenvector and insists that it be inthe span of one's orthogonal space at the next step.This method, though familiar for many years to researchers in computational chemistry, remainssomewhat unknown to the numerical linear algebra community. For this reason, we discuss it brie
y.Davidson's Method for Eigenvalue ComputationChoose an initial V1 = [v1]for k=1,: : :Hk:=V Tk AVkCompute the smallest eigenpair (�k; yk) of Hkxk := Vkykrk := (�kI �A)xktk+1 := (�kI �D)�1rk, where D =diag(A)Orthogonalize [Vk; tk+1] into Vk+1.Notice that normally the computation of rk would put one into a next higher Krylov space, butthe computation of tk+1 is an approximate inverse iteration step. Notice that this step would beof most use when D approximates A very well, that is, the matrix is highly diagonally dominant.Sadkane [9] generalize this idea by allowing any matrix to be used here.With such methods, the smallest eigenvectors of matrices of sizes into the millions have beencalculated.9.2 Nonlinear eigenvalue problems and molecular dynamicsAnother technique for solving molecular dynamics problems uses the so-called local density approx-imation. John Weare at the University of California in San Diego is leading a large team with highambitions of performing such calculations on parallel supercomputers. The approximation leads tononlinear eigenvalue problems of the formA(y(X))X = X� ;where A is an n-by-n matrix function of a vector y, X is an n-by-k matrix of selected eigenvec-tors, and the ith component of y(X) is Pkj=1 jXijj2.15



9.3 The nonsymmetric eigenvalue problemThere appear to be few applications currently solving large dense nonsymmetric eigenvalues prob-lems for n > 10; 0000. One of the larger problems that has been solved was a material scienceapplication described in Nicholson and Faultner ([29]), but the respondent gave me very littleinformation about this application.10 Are algorithms O(n3), O(n2), or O(logn) anymore?Numerical linear algebraists tend to know the approximate number of 
oating-point operations forthe key dense algorithms. Often the exact constants are known, but here we consider the asymptoticorder. Thus, the dense symmetric eigenvalue problem requires O(n3) operations to tridiagonalize amatrix and O(n2) operations to then diagonalize. Traditionally, theO(n2) algorithms are considerednegligible compared with the O(n3) algorithms. This, of course, assumes both algorithms can runat the same rate. This assumption is far from being a given in modern computation. Vector andparallel architectures require that we no longer so quickly dismiss the O(n2) part of an algorithmas irrelevant.A complexity term that I �nd particularly insidious is the description of certain algorithmsas having parallel complexity O(logn). The simplest example is the summing of n numbers on abinary tree or hypercube with n = 2k leaves/nodes. Strictly speaking such an algorithm requireslogn parallel operations, but referring to the algorithm as an O(logn) algorithm ignores the modernrealities of parallel computing. Big parallel machines are expensive, and it is a terrible waste ofresources to run an algorithm with one element per processor:The myth of fine grained parallelism:Nobody computes with one element per processor. If you only have one element per processor, whyare you using such a big machine?More realistically, the ability to vectorize on a smaller machine with more data per processorfar outweighs the ability to parallelize. If there are m summands per processor, the number ofparallel operations becomes (m� 1)+ logn. The more elements per processor, the more likely theO(m) part of the algorithm will overtake the logn portion.Other examples of this phenomenon are parallel pre�x, reduction, and spreads on trees orhypercubes. The parallel pre�x operation may be de�ned on a sequence fxig as16



Parallel Prefixfunction x :=scan(x):if length(x)> 1,x2i := x2i + x2i�1 (all i)fx2ig :=scan(fx2ig) (recursive step on the even components)x2i+1 := x2i + x2i+1 (all i)endifThere are further complications if the information is to be available in the right place on atree or hypercube, but the important idea in parallel pre�x is readily seen above. (By describingthe algorithm on a tree, I suspect that many authors \miss the forest for the tree.") When thealgorithm completes, xi will contain the partial sum of the original x up to xi. On a real machine, ifthere arem numbers per processor, the local sum of elements is computed serially in each processor,the parallel pre�x is performed, then the result is added to form all the partial sums per processor.If there are m elements per processor, the number of parallel operations is roughly 2m + 2 logn.Indeed, if the log n is going to be felt, it will be because this part of the operation does not vectorizeand the communication overhead is expensive. In conclusion, the log n part is the bad part of thealgorithm, not the good part.11 ConclusionThis article contains a snapshot of large dense linear algebra as it appears in 1993. I received morethan 100 messages in direct response to my survey questions. I wish to gratefully acknowledge andthank everyone for their information. I look forward to observing the future of supercomputingand linear algebra.12 AcknowledgementThis work was supported in part by the Applied Mathematical Sciences Subprogram of the O�ceof Energy Research, U.S. Department of Energy, under contract DE-AC03-76SF00098.References[1] D.A. Anderson, J.C. Tannehill, and R.H. Pletcher, Computational Fluid Mechanics and HeatTransfer, McGraw-Hill, New York, 1984.[2] K. Atkinson, A survey of boundary integral equation methods for the numerical solution ofLaplace's equation in three dimensions, in Numerical Solutions of Integral Equations, ed. byM. Golberg, Plenum Press, New York, 1990.17
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