Recall the notation
\[\langle x \rangle := \sqrt{1 + |x|^2}. \]

Exercise 5.1. (a) Let \(s \in \mathbb{R} \). Show that
\[m(x, \xi) = \langle x \rangle^s, \quad m(x, \xi) = \langle \xi \rangle^s, \quad m(z) = \langle z \rangle^s \]
are order functions, where we denote \(z = (x, \xi) \).

(b) Show that the order functions in part (a) satisfy \(m \in S(m) \).

Exercise 5.2. Show that
\[a(x, \xi) = \sum_{|\alpha| \leq k} a_\alpha(x) \xi^\alpha \]
where each \(a_\alpha(x) \) has all derivatives bounded, lies in \(S(\langle \xi \rangle^k) \).

Exercise 5.3. (a) Let \(m_1, m_2 \) be order functions. Show that \(m_1 m_2 \) is an order function as well.

(b) Show that if \(a_1 \in S(m_1), a_2 \in S(m_2), \) then \(a_1 a_2 \in S(m_1 m_2) \).

Exercise 5.4. (a) Arguing similarly to the proof in the lecture, show that if \(m \) is an order function and \(a \in S(m) \), then \(\text{Op}_h(a)^* \) is a continuous operator on \(\mathcal{S}(\mathbb{R}^n) \).

(b) Using part (a), show that \(\text{Op}_h(a) \) is a continuous operator on \(\mathcal{S}'(\mathbb{R}^n) \).

Exercise 5.5. Using Exercise 3.5(b) and following the proof for standard quantization given in the lecture, show that if \(m \) is an order function and \(a \in S(m) \), then the Weyl quantization \(\text{Op}_h^w(a) \) is a continuous operator on \(\mathcal{S}(\mathbb{R}^n) \) and on \(\mathcal{S}'(\mathbb{R}^n) \).

Exercise 5.6. (a) Show that \(a(x, \xi) = e^{-i(x, \xi)} \) does not lie in \(S(m) \) for any order function \(m \).

(b) With \(a \) defined in part (a) and \(h := 1 \), show that \(\text{Op}_h(a) \) does not map \(\mathcal{S}(\mathbb{R}^n) \) to itself, and it does not map \(\mathcal{S}'(\mathbb{R}^n) \) to itself either.

Date: July 29, 2019.