Recall the Composition and Adjoint Theorems: for \(a, b \in \mathcal{S}(\mathbb{R}^{2n}), \)
\[
\text{Op}_h(a) \text{Op}_h(b) = \text{Op}_h(a\# b), \quad \text{Op}_h(a) = \text{Op}_h(a^*)
\]
where we have the asymptotic expansions in \(\mathcal{S}(\mathbb{R}^{2n}) \), as \(h \to 0 \)
\[
a\# b(x, \xi; h) \sim \infty \sum_{j=0}^{\infty} (-ih)^j \sum_{|\alpha| = j} \frac{1}{\alpha!} \partial^{\alpha}_\xi a(x, \xi) \partial^{\alpha}_x b(x, \xi),
\]
(4.1)
\[
a^*(x, \xi; h) \sim \infty \sum_{j=0}^{\infty} (-ih)^j \sum_{|\alpha| = j} \frac{1}{\alpha!} \partial^{\alpha}_x \partial^{\alpha}_\xi a(x, \xi).
\]
(4.2)

Exercise 4.1. (a) Check by hand that an expansion similar to (4.1) holds for \(a = \xi_j \), \(b = x_j \). (Of course the expansion will no longer be in \(\mathcal{S}(\mathbb{R}^{2n}); \) the next section will address this.) Check the Product Rule and the Commutator Rule in this case.

(b) Check by hand that an expansion similar to (4.2) holds for \(a = x_j \xi_j \).

(c)* By direct computation (using the Leibniz rule) show that expansions of the form (4.1)–(4.2) hold in the case when \(a, b \) are polynomials in \(\xi \), and thus \(\text{Op}_h(a), \text{Op}_h(b) \) are semiclassical differential operators, see Exercise 3.2.

Exercise 4.2. Verify that the \(j = 0, 1 \) terms of (4.1) give the Product Rule and the Commutator Rule, and the \(j = 0 \) term of (4.2) gives the Adjoint Rule.

Exercise 4.3. Using the multinomial theorem, show the following identities used in the proof of the Composition Theorem and the Adjoint Theorem:
\[
\frac{1}{j!} \langle \partial_y, \partial_\eta \rangle^j (a(y, \eta)b(y, \xi)) |_{y=x, \eta=\xi} = \sum_{|\alpha| = j} \frac{1}{\alpha!} \partial^\alpha_\xi a(x, \xi) \partial^\alpha_x b(x, \xi),
\]
\[
\frac{1}{j!} \langle \partial_x, \partial_\xi \rangle^j a(x, \xi) = \sum_{|\alpha| = j} \frac{1}{\alpha!} \partial^\alpha_x \partial^\alpha_\xi a(x, \xi).
\]

Exercise 4.4. In lecture, we only established the expansion (4.1) for any fixed \((x, \xi) \). Show that this expansion is valid in \(\mathcal{S}(\mathbb{R}^{2n}) \), in particular the remainder is controlled

Date: July 28, 2019.
uniformly in \((x, \xi)\) and the expansion can be differentiated. (Here \(a \# b\) is compactly supported and thus there is no need to get asymptotics as \((x, \xi) \to \infty\).)

Exercise 4.5. (a) Assume that \(Q\) is a \(2n \times 2n\) invertible symmetric real-valued matrix, \(a \in C^\infty_c(\mathbb{R}^{2n})\) is supported in the ball \(B_{\mathbb{R}^{2n}}(0, R)\) for some \(R \geq 1\), and
\[
\tilde{a}(\rho; h) := \int_{\mathbb{R}^{2n}} e^{\frac{i}{2h}(Q w, w)} a(\rho + w) \, dw.
\]
Show that for each multiindices \(\alpha, \beta\) and each \(N\) there exists a constant \(C_{\alpha \beta N}\) such that for all \(h \in (0, 1]\)
\[
|\rho^\alpha \partial_\rho^\beta \tilde{a}(\rho; h)| \leq C_{\alpha \beta N} h^N \quad \text{for all } \rho \in \mathbb{R}^{2n}, \ |
ho| \geq 2R.
\]
(Hint: integrate by parts using the identity \(e^{\frac{i}{2h}(Q w, w)} = h L e^{\frac{i}{2h}(Q w, w)}\) where \(L := -\frac{i}{|w|^2}(Q^{-1} w, \partial_w)\).)

(b) Explain how part (a) gives the last part of the proof of the Adjoint Theorem in the lecture.

Exercise 4.6. Following the proof of the Adjoint Theorem, show the following change of quantization formula: if \(a \in C^\infty_c(\mathbb{R}^{2n})\), then
\[
\text{Op}_h^w(a) = \text{Op}_h (a_w)
\]
where \(a_w(x, \xi; h)\) has the asymptotic expansion in \(\mathcal{S}(\mathbb{R}^{2n})\)
\[
a_w(x, \xi; h) \sim \sum_{j=0}^\infty \left(-\frac{ih}{2}\right)^j \sum_{|\alpha| = j} \frac{1}{\alpha!} \partial_x^\alpha \partial_\xi^\alpha a(x, \xi).
\]
In particular, \(a_w = a + \mathcal{O}(h)\) in \(\mathcal{S}(\mathbb{R}^{2n})\). For a more general change of quantization statement, see Theorem 4.13 in Zworski’s book.