§8. CHANGE OF VARIABLES

This section will lay the groundwork for defining semiclassical quantization on manifolds.

§8.1. Compactly supported symbols

Assume that we are given a diffeomorphism \(\varphi: U \rightarrow V \), \(U, V \subset \mathbb{R}^n \) open sets.

Let \(a \in C_c^\infty(\mathbb{R}^{2n}) \). We want to conjugate \(a \) by the pullback operator \(\varphi^* \) of \(\varphi \), i.e. study the operator

\[
\varphi^* D_p \varphi(a)(\varphi^{-1})^*.
\]

But for \(u \in \mathcal{S}(\mathbb{R}^n) \), \((\varphi^{-1})^* u \in C_c^\infty(V) \) does not extend to a function on \(\mathbb{R}^n \) because \(\varphi \) was only defined locally. So we also fix a cutoff \(\chi \in C_c^\infty(U) \).

Then \(\chi \varphi^*: C_c^\infty(V) \rightarrow C_c^\infty(U) \),

\[
(\varphi^{-1})^* \chi: C_c^\infty(U) \rightarrow C_c^\infty(V)
\]

naturally extend to operators \(C_c^\infty(\mathbb{R}^n) \rightarrow C_c^\infty(\mathbb{R}^n) \) (and thus \(\mathcal{S}(\mathbb{R}^n) \rightarrow \mathcal{S}(\mathbb{R}^n) \)).

The symbol will change by the map

\[
\hat{\varphi}: U_x \times \mathbb{R}^n_2 \rightarrow V_x \times \mathbb{R}^n_2 \quad \text{(subsets of } \mathbb{R}^{2n})
\]

\[
\hat{\varphi}(x, \xi) = (\varphi(x), d\varphi(x)^{-T} \cdot \xi)
\]

inverse of the transpose of \(d\varphi(x) \).
Theorem

Under the above assumptions, \(\varphi \in \mathcal{O}_p^h(a) \), \((\varphi^{-1})^* \chi = \mathcal{O}_p^h(b) \)

"operator on \(V \)"

"operator on \(U \)"

for some \(b(x, \xi, h) \in S(\mathbb{R}^{2n}) \) with an expansion

\[
b(x, \xi, h) = \sum_{j=0}^{\infty} h^j L_j \left(a \circ \tilde{\varphi} \right) \quad \text{where } L_j \text{ are differential operators of order } 2j
\]

and the leading term is

\[
b(x, \xi, h) = \chi(x)^2 a \left(\tilde{\varphi}(x, \xi) \right) + O(h) \quad \text{in } S(\mathbb{R}^{2n}).
\]

Proof

1. We use oscillatory testing:

 \[
 \text{if } e_{\xi}(x) = e^{i \langle x, \xi \rangle} \quad \text{then}
 \]

 \[
b(x, \xi, h) = e^{-i \langle x, \xi \rangle} \left(\chi \varphi \mathcal{O}_p^h(a) \mathcal{O}_p^h(b) \chi \right) = \chi(x) \left(\mathcal{O}_p^h(a) \mathcal{O}_p^h(b) \chi \right) = \chi(x) a(\varphi(x), \eta) \left(\mathcal{O}_p^h(b) \chi \right)
 \]

 \[
 = \left(2\pi h \right)^{-n} \int_{\mathbb{R}^{2n}} e^{i \langle x, v \rangle} \int_{\mathbb{R}^{2n}} e^{i \langle \xi, v \rangle} \chi(x) a(\varphi(x), \eta) \chi(\varphi(y), \eta) \, d\xi \, dy
 \]

 \[
 = \left(2\pi h \right)^{-n} \int_{\mathbb{R}^{2n}} e^{i \langle x, v \rangle} \int_{\mathbb{R}^{2n}} e^{i \langle \xi, v \rangle} \chi(x) a(\varphi(x), \eta) \chi(\varphi(y), \eta) \, d\xi \, dy
 \]

 \[
 = \left(2\pi h \right)^{-n} \int_{\mathbb{R}^{2n}} e^{i \langle x, v \rangle} \int_{\mathbb{R}^{2n}} e^{i \langle \xi, v \rangle} \chi(x) a(\varphi(x), \eta) \chi(\varphi(y), \eta) \, d\xi \, dy
 \]

 \[
 = \left(2\pi h \right)^{-n} \int_{\mathbb{R}^{2n}} e^{i \langle x, v \rangle} \int_{\mathbb{R}^{2n}} e^{i \langle \xi, v \rangle} \chi(x) a(\varphi(x), \eta) \chi(\varphi(y), \eta) \, d\xi \, dy
 \]

 \[
 = \left(2\pi h \right)^{-n} \int_{\mathbb{R}^{2n}} e^{i \langle x, v \rangle} \int_{\mathbb{R}^{2n}} e^{i \langle \xi, v \rangle} \chi(x) a(\varphi(x), \eta) \chi(\varphi(y), \eta) \, d\xi \, dy
 \]

2. For fixed \((x, \xi)\), use stationary phase:

 \[
 \Phi = \langle z - x, \xi \rangle + \langle \varphi(z) - \varphi(x), \eta \rangle, \quad \text{integrating in } z, \eta
 \]

 \[
 \partial_{\eta} = 0 \iff x = z, \quad \partial_{z} = 0 \iff \xi = \partial_{\varphi} \varphi(z)^T \cdot \eta
 \]
Thus the only critical point is
\(z = x, \eta = d\varphi(x)^{-T} \xi \).

This gives an asymptotic expansion of the form stated above.

Let us compute the leading term.

The Hessian of the phase is
\[
\begin{pmatrix}
 z & -d\varphi(z)^T \\
 -d\varphi(z) & 0
\end{pmatrix}
\]

so \(\det d^2 \varphi \mid z = 1 = \det d^2 \varphi(z) \).

The value of \(\varphi \) at the critical point is 0.

So the leading term is
\[
b(x, \xi) = X(x)^2 a(x, d\varphi(x)^{-T} \xi) + O(h)
\]

3. It remains to get the expansion in \(S(\mathbb{R}^{2n}) \).

- Higher derivatives: straightforward (st. phase uniform in parameters)
- \(x \to \infty \): \(b \) is compactly supported in \(x \)
- \(\xi \to \infty \): get \(b = O(h^m <\xi^m>\infty) \) for large \(\xi \)

by integrating by parts in \(z \).

See the book of Dyatlov-Zworski, Proposition E.10 for details. □
§ 8.2. General symbols

Recall the expansion was
\[b(x, \xi; h) = x(x) A(\psi(x), d\mu(x)^{-1} \cdot \xi) + \ldots \]

Unfortunately, this operation does not preserve the class \(S^1(1) = \{ a : \forall \xi, \partial^\infty a \text{ is bounded} \} \).

Indeed, in 1D (for simplicity)
\[\partial_x b = x(x)^2 \partial^2_x a(\psi(x), \frac{1}{\rho(x)}, \xi, \xi) \cdot \frac{1}{\rho(x)} \cdot \xi \]

only know this is bounded

this is not bounded

To fix this, we need to require that

derivatives in \(\xi \) decay by a power of \(\xi \):

Definition Let \(k \in \mathbb{R} \). We say \(a(x, \xi; h) \)
is in \(S^k(\mathbb{R}^{2n}) \), if \(\forall \alpha, \beta \in \mathbb{N}_0^n \), \(\forall x, \xi, h \)

\[|\partial^\alpha_x \partial^\beta_\xi a(x, \xi; h)| \leq C_{\alpha, \beta} (\xi)^{k-1} \]

\(S^k \) are called **Kohn-Nirenberg symbols**.

Note that \(S^k \subset S^1(\langle \xi \rangle^k) \).

Definition Assume that \(a \in S^k(\mathbb{R}^{2n}), a_j \in S^{k-j}(\mathbb{R}^{2n}) \)

\(j = 0, 1, \ldots \)

We write \(a \sim \sum_{j=0}^{\infty} h^j a_j \), if \(\forall N, \)

\[a - \sum_{j=0}^{N} h^j a_j = O(h^N) S^{k-N}(\mathbb{R}^{2n}) \text{ as in } h. \]
We now revisit the calculus of \(\xi \).

Theorem (Composition Formula)

Let \(a \in S^k(\mathbb{R}^{2m}) \), \(b \in S^\ell(\mathbb{R}^{2m}) \). Then

\[
O_{ph}(a)O_{ph}(b) = O_{ph}(a \# b), \quad a \# b \in S^{k+\ell}(\mathbb{R}^{2m}),
\]

\[
a \# b \sim \sum_{j=0}^{\infty} (-ih)^j \sum_{\|\alpha\| = j} \frac{1}{\alpha!} \partial_\alpha a \cdot \partial_\alpha b
\]

Here the expansion is in \(S^{k+\ell} \), so we get

Product Rule:

\[
a \# b = ab + O(h) S^{k+\ell-1}
\]

Commutator Rule:

\[
a \# b - b \# a = -ih \{a, b\} + O(h^2) S^{k+\ell-2}
\]

Why do we get an expansion with improved remainders?

An informal explanation is that the terms in the expansions decay faster in \(\xi \), owing to the \(\xi \)-derivatives:

\[
\partial_\xi a \cdot \partial_\xi b \in S^{k+\ell-1-1}
\]

For the actual proof see Zworski’s book,

Theorem (Adjoint Formula)

Let \(a \in S^k(\mathbb{R}^{2m}) \). Then

\[
O_{ph}(a)^* = O_{ph}(a^*), \quad a^* \in S^k(\mathbb{R}^{2m}),
\]

\[
a \sim \sum_{j=0}^{\infty} (-ih)^j \sum_{\|\alpha\| = j} \frac{1}{\alpha!} \partial_\alpha a \cdot \partial_\alpha \overline{a} \leftarrow \text{expansion in } S^{k}
\]

Adjoint Rule:

\[
a^* = \overline{a} + O(h) S^{k-1}
\]
Theorem (Change of variables)

Assume that \(U, V \subseteq \mathbb{R}^n \) are open sets, \(\varphi : U \to V \) is a diffeomorphism, \(X \in C^\infty_c(U) \), and \(\tilde{\varphi}(x, \xi) := (\varphi(x), d\varphi(x)^{-1} \cdot \xi) \).

Let \(a \in S^k(\mathbb{R}^{2n}) \). Then

\[
X \varphi^* Op_h(a)(\varphi^{-1})^* X = Op_h(b), \quad b \in S^k(\mathbb{R}^{2n}),
\]

\[b = \sum_{j=0}^{\infty} h^j L_j(a \circ \tilde{\varphi}) \]

expansion in \(S^k \) diff. operator of order \(2j \) mapping \(S^k \to S^{k-j} \).

In particular

\[b(x, \xi) = X(x)^\top a(\tilde{\varphi}(x, \xi)) + O(h^\infty), \quad S^k \to S^{k-1}. \]

Theorem (Pseudodolocality) Assume \(a \in S^k(\mathbb{R}^{2n}) \) and \(X_1, X_2 \in C^\infty_c(\mathbb{R}^{2n}) \), \(\text{supp } X_1 \cap \text{supp } X_2 = \emptyset \).

Then \(X_1 Op_h(a) X_2 = O(h^{\infty}) S^k \to S \), namely it has the form \(u \mapsto \int_{\mathbb{R}^{2n}} K(x, y; h) u(y) \, dy \)

where \(\forall N \geq C_n \| (x, y) \|_{\mathbb{R}^{2n}} \leq C_N \).

Proof follows from the composition formula:

\[X_1 Op_h(a) X_2 = Op_h(b) \]

where \(b = O(h^{\infty}) S(\langle x \rangle^{-n}, \langle y \rangle^{-n}) \)

for all \(N \) (the \(\langle x \rangle^{-n} \) is because \(X_1, X_2 \in C^\infty_c \)).

Interpretation: \(\text{supp } u \subseteq \bar{U} \Rightarrow Op_h(a) u = O(h^\infty) \to \text{outside of } U. \)