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PREFACE

Mathematicians are Frenchmen of sorts: whatever one says to
them they translate into their own language and then it becomes
something entirely different.

Johann Wolfgang von Goethe, Maximen und Reflexionen, 1840

The purpose of this book is to provide a broad introduction to the theory
of scattering resonances.

Scattering resonances appear in many branches of mathematics, physics
and engineering. They generalize eigenvalues or bound states for systems in
which energy can scatter to infinity. A typical state has then a rate of oscil-
lation (just as a bound state does) and a rate of decay. Although the notion
is intrinsically dynamical, an elegant mathematical formulation comes from
considering meromorphic continuations of Green’s functions or scattering
matrices. The poles of these meromorphic continuations capture the phys-
ical information by identifying the rate of oscillations with the real part of
a pole and the rate of decay with its imaginary part. The resonant state,
which is the corresponding wave function, then appears in the residue of the
meromorphically continued operator. An example from pure mathematics
is given by the zeros of the Riemann zeta function: they are, essentially, the
resonances of the Laplacian on the modular surface. The Riemann hypoth-
esis then states that the decay rates for the modular surface are all either
0 or 1

4 . A standard example from physics is given by shape resonances cre-
ated when the interaction region is separated from free space by a potential
barrier. The decay rate is then exponentially small in a way depending on
the width of the barrier.
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4 PREFACE

In the book we provide an introduction to mathematical techniques used
in the study of scattering resonances, concentrating on simplest models but
providing references to modern literature and indications of what happens
in more general situations. Some chapters (such as Chapter 2 and 3) are
meant to be easily accessible and others (such as Chapter 5) somewhat more
demanding. The rather substantial set of appendices provides detailed ac-
counts of most methods needed in the text. A diagram representing the
dependencies of various sections is presented at the end of Chapter 1. The
choice of topics is necessarily determined by the research interests of the
authors and many important aspects of the subject are not covered. We
also stayed away from exciting but technical developments such as precise
asymptotics for shape resonances, fractal Weyl laws, resonance gaps for
chaotic systems or the applications of scattering theory to hyperbolic dy-
namical systems – see the survey [Zw17] for an overview and references.

SD was introduced to scattering resonances by MZ who in turn had
the good fortune to be introduced to this field by Richard Melrose. We
would like to thank him for his generous guidance and insights and for his
foundational results on resonance counting and trace formulas.

The view point and many discoveries of Johannes Sjöstrand changed
the subject in a profound way. MZ was privileged to maintain a long col-
laboration with him and would like to thank him for sharing his ideas and
expertise over the years.

Many other colleagues and collaborators have contributed to our under-
standing of the subject and special thanks are due to Ivana Alexandrova,
Jean-François Bony, David Bindel, Paul Brumer, Nicolas Burq, Tanya Chris-
tiansen, Kiril Datchev, Frédéric Faure, Jeff Galkowski, Colin Guillarmou,
Laurent Guillopé, Bernard Helffer, Peter Hintz, Michael Hitrik, Long Jin,
Ulrich Kuhl, André Martinez, William H. Miller, Shu Nakamura, Frédéric
Naud, Stéphane Nonnenmacher, Galina Perelman, Vesselin Petkov, Jim Ral-
ston, Antônio Sá Barreto, Hart Smith, Plamen Stefanov, Siu-Hung Tang,
Jared Wunsch, András Vasy and Georgi Vodev.

The project of writing this book started during lectures given at Uni-
versité de Paris-Nord in the Spring of 2011 by MZ and attended by SD. We
are grateful for the support of the Chaire d’Excellence at the Laboratoire
Analyse, Géométrie et Applications there and for the generous hospitality
extended by the Laboratoire to the authors in 2011. Particular thanks are
due to Jean-Marc Delort, Alain Grigis, David Dos Santos Ferreira and Ma-
her Zerzeri.

Chapter 2 developed from notes on one dimensional scattering written
by Siu-Hung Tang and MZ in 2001 [TZ01] – we are grateful for his help on
that project and for allowing us to use that material.
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Simon Becker’s careful reading of the final version eliminated count-
less mistakes: we and the readers of this book owe him a great debt. We
are are also particularly grateful to Alexis Drouot, Benjamin Küster, Hari
Manoharan, Alberto Parmeggiani, Euan Spence, Jian Wang, Tobias Weich,
Mengxuan Yang and the three anonymous reviewers of the book for their
helpful comments and corrections.

Peter Hintz helped us with the translation of Goethe’s maxim for the
epigraph.

During the writing of this book SD was partially supported by the Clay
Research Fellowship, Sloan Research Fellowship and the National Science
Foundation grant DMS-1749858. MZ was partially supported by the Na-
tional Science Foundation grants DMS-1201417, DMS-1500852 and by a
2017/2018 Simons Fellowship.
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Chapter 1

INTRODUCTION

1.1 Resonances in scattering theory
1.2 Semiclassical study of resonances
1.3 Some examples
1.4 Overview

1.1. RESONANCES IN SCATTERING THEORY

Scattering resonances are the replacement of discrete spectral data for prob-
lems on non-compact domains. The possibility of escape to infinity means
that in addition to initial energy (the eigenvalue in the compact setting) we
also have a rate of decay. It turns out that this information can be encoded
as a pole of the meromorphic continuation of the resolvent/Green function.

Figure 1.1. The plot of u(t, 0) showing oscillations and decay of the
solution in the interaction region. The full u(t, x) is shown in Figure 1.2.
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12 1. RESONANCES IN SCATTERING THEORY

Figure 1.2. A solution of the wave equation ∂2
t u − ∂2

xu + V (x)u = 0
where V is shown in Figure 1.3. The initial data is localized near 0. The
time axis points away from the viewer.

The simplest setting in which this can be seen is given by the operator
P = −∂2

x on the real line, R. The resolvent R0(λ) := (P − λ2)−1 : L2(R)→
L2(R) is a bounded operator for λ /∈ R. It is given explicitly as follows:

R0(λ)f(x) =

∫
R
R0(λ, x, y)f(y) dy,

R0(λ, x, y) =
i

2λ
eiλ|x−y|, Imλ > 0.

For fixed x, y, R0(λ, x, y) continues to a meromorphic function of λ with
one pole at λ = 0. This pole is the scattering resonance of P . Its dynamical
significance is most easily seen in the context of the wave equation

(∂2
t − ∂2

x)u(t, x) = 0, u(0, x) = 0, ∂tu(0, x) = f(x),

u(t, x) =
1

2

∫ x+t

x−t
f(y) dy.

If f(x) = 0 for |x| > R then

u(t, x) =
1

2

∫
R
f(y) dy for t > |x|+R.

In terms of R0(λ, x, y) this can be reintepreted as follows:

u(t, x) = −i
∫
R

(Resλ=0R0(λ, x, y)) f(y) dy, Resλ=0R0(λ, x, y) =
i

2
.

This means that the residue of R0 at the pole describes long time behaviour
(in t) of the wave in compact sets (in x).
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Figure 1.3. A simple one dimensional potential used to see trapping
and tunneling of the wave in Figures 1.1 and 1.2.

Figure 1.4. Scattering resonances of the potential shown in Figure 1.3.
They are computed using the code squarepot.m by David Bindel [BZ].

A more interesting mathematical example – studied in detail in Chap-
ter 2 – is given by scattering by a compactly supported potential, V , in
dimension one, see Figure 1.3 for an example. Scattering resonances are the
rates of oscillation and decay of solutions of the wave equation

(1.1.1) (∂2
t − ∂2

x + V (x))u = 0

with localized initial data. Figures 1.1–1.2 show such a solution: we see the
main wave escape and some trapped waves bounce in the well created by the
potential and leak out. Instead of the eigenfunction expansion (which would
hold if x took values in the circle R/Z) we have the resonance expansion

u(t, x) =
∑

Imλj>−A
e−iλjtuj(x) +OK(e−tA), x ∈ K b R.

Here scattering resonances λj are complex numbers with Imλj ≤ 0 which are
independent of the initial data – see Theorem 2.9 for the precise statement.
We clearly see that
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Figure 1.5. The power spectrum on the real line (Fourier transform)
of correlations ρf,g(t) = 〈U(t)f, g〉: the blue and black plots show λ 7→
|
∫∞
0
ρf,g(t)e

−iλtdt| for two different choices of f, g. Here U(t) could be
the propagator of the wave equation (1.1.1), or it could be for instance
the pullback by an Anosov flow – see [Zw17, Chapter 4]. Resonances
are the poles of the meromorphic continuation of the power spectrum
to the complex plane and this figure shows a schematic correspondence
between resonances and the power spectrum: Reλj corresponds to the
location of a peak in the power spectrum and Imλj to its width.

Reλj = rate of oscillation,

− Imλj = rate of decay.

The terms uj(x) are calculated using the residues of the meromorphic con-
tinuation of RV (λ) = (P − λ2)−1, P := −∂2

x + V (x), just as we saw above
in the case of V ≡ 0. To explain why meromorphic continuation appears we
use the power spectrum which is the Fourier transform of u in time:

û(λ, x) :=

∫ ∞
0

eiλtu(t, x) dt, Imλ > 0.

The resonance expansion implies that for all A

û(λ, x)− i
∑

Imλj>−A

uj(x)

λ− λj
extends holomorphically to {Imλ > −A}.

Thus û(λ, x) extends meromorphically to λ ∈ C with poles at λj . Writing
û(λ, x) in terms of f and the scattering resolvent RV (λ) we obtain the



1.1. RESONANCES IN SCATTERING THEORY 15

definition of resonances used in this book:

resonances = poles of the scattering resolvent.

Harmonic inversion methods, the first being the celebrated Prony algo-
rithm [Pr95], can then be used to extract scattering resonances (see for
instance [WMS88]) from the power spectrum û(λ, x) for λ real. See Fig-
ures 1.4 and 1.5.

Although this book is intended for a mathematical audience and it con-
centrates on rigorous presentation, physical motivation plays an essential
role in the study of scattering resonances. Even when, as for instance in
scattering on the modular surface, the questions have purely mathematical
context, the origins lie in physics and it is easiest to relate them in the
setting of quantum mechanics.

In quantum mechanics a particle is described by a wave function ψ which
is normalized in L2, ‖ψ‖L2 = 1. The probability of finding the particle in a
region Ω is given by the integral of |ψ(x)|2 over Ω. If ψ = ψk is an eigenstate
of a quantum Hamiltonian P (here k is a quantum number or the index of
the discrete spectrum), the time evolved state is given by

(1.1.2) ψk(t) := e−itPψk = e−itEkψk where Pψk = Ekψk.

In particular the probability density does not change when the state is prop-
agated.

An example could be given by the Bloch electron in a quantum corral
shown in Figures 1.6 and 1.9. The graphs in these figures picture the de-
rivative of the density of states as a function of the voltage (which for us is
the energy E), which measures the response of the quantum system when
excited at energy E.

However the same figures also show that the measured states have non-
zero “widths” – the peak is not a delta function at Ek – and hence can be
more accurately modeled by resonances. The following standard argument of
the physics literature explains the meaning of the real and imaginary parts:
the time evolution of a pure resonant state corresponding to a resonance
λ2
k = Ek − iΓk/2 is given by the following modification of (1.1.2)

ψk(t) = e−itEk−tΓk/2ψk.

Thus the probability of survival beyond time t is p(t) = |ψk(t)|2/|ψk(0)|2 =
e−Γkt. This explains why the convention for the imaginary part of a reso-
nance is Γk/2. Here we neglected the issue that ψk /∈ L2 which is remedied
by taking the probabilities over a bounded interaction region. In the energy
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Figure 1.6. Experimental set-up and data in a scanning tunneling mi-
croscope experiment by Crommie et al [CLE93] from IBM’s Almaden
Research Center. The figure on the left shows a quantum corral formed
by 48 iron atoms on a copper Cu(111) surface. The plot on the right
shows measurements of dI/dV (I being the current) as functions of volt-
age V from different positions of the microscope tip: outside the corral
(open terrace), the center and off center. The peaks show resonances –
see Figure 1.5 for a schematic representation and Figure 2.6 for a simple
mathematical example. The new states visible with an off-center mea-
surement are shown with arrows.

representation the wave function is given by the Fourier transform in time

ϕk(E) :=
1√
2π

∫ ∞
0

eitEψk(t) dt

=
1√
2πi

ψk
Ek − iΓk/2− E

,

which means that the probability density of the time evolved resonant state
ψk(t) at energy E is proportional to the square of the absolute value of the
right hand side. Consequently this probability density is

(1.1.3)
1

2π

Γk
(E − Ek)2 + (Γk/2)2

dE,

and this Lorentzian is the famous Breit–Wigner distribution. To see how this
vague discussion works out mathematically see Theorem 2.20 and references
in §§3.13, 7.6.

In practice there are many deviations from the simple formula (1.1.3),
especially at high energies and in the presence of overlapping resonances. In
Figures 1.6 and 1.9 we see clear Lorentzian peaks and individual resonances
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can be recovered. In experiment whose set up is shown in Figure 1.11 the
resonances overlap and the peaks in scattering data do not have the simple
interpretation using (1.1.3). Figure 2.6 illustrates a mathematical result
related to the Breit–Wigner approximation.

For bound states the Weyl law (see [Iv16] for history and references)
provides an asymptotic formula for the density of states. Weyl laws for
counting of resonant states are more complicated and richer as they involve
both energy and rates of decay. Even the leading term can be affected by
dynamical properties of the system.

1.2. SEMICLASSICAL STUDY OF RESONANCES

For some very special systems resonances can be computed explicitely. One
famous example is the Eckart barrier: −∂2

x + cosh−2 x. It falls into the
general class of Pöschl–Teller potentials which can also be used to compute
resonances of the Laplace–Beltrami operator for hyperbolic spaces or hyper-
bolic cylinders – see for instance [GZ95a] or [Bo16]. Another example is
given by the sphere in which case scattering resonances are zeros of Hankel
functions which can be described asymptotically – see [St06] and Figure 1.7.

In general however it is impossible to obtain an explicit description of
individual resonances. Hence we need to consider their properties and their
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Figure 1.7. Resonances for the sphere (or radius one) in three di-
mensions. For each spherical momentum ` they are given by solutions

of H
(2)

`+1/2(λ) = 0 where H
(2)
ν is the Hankel function of order ν. Each

zero appears as a resonance of multiplicity 2` + 1: the resonances with
` = 12 are highlighted.
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distribution in asymptotic régimes. For instance in the case of obstacle
scattering that could mean the high energy limit. In the case of the sphere
in Figure 1.7 that corresponds to letting the angular momentum ` → +∞.
For a general obstacle that means considering resonances as |λ| → +∞ and
| Imλ| � |λ|.

The high energy limit is a special case of the semiclassical limit. For
instance we can consider resonances of the Dirichlet realization of −h2∆+V
on Rn\O in bounded subsets of C as h→ 0. When V ≡ 0 that corresponds to
the high energy limit for obstacle problems and when O = ∅ to Schrödinger
operators.

In the case of semiclassical Schrödinger operators, the properties of the
classical energy surface ξ2 +V (x) = E can be used to study resonances close
to E ∈ R. Some aspects of that will presented in §2.8 in one dimension
and in Chapters 6 and 7 in more depth. Figure 1.8 shows some of the
principles in dimension one. The last set of resonances shown there and
labeled as Regge resonances comes from the singularities at the boundary
of the support of the potential V shown there. Roughly speaking these
resonances are responsible for large energy asymptotics for the number of
resonances given in Theorem 2.16.

1.3. SOME EXAMPLES

We present here a few examples of scattering resonances appearing in phys-
ical systems.

A textbook example of scattering resonances is related to tunneling
through potential barriers. Resonances generated by that process are the
shape resonances shown in Figure 1.8. Figure 7.1 illustrates a similar poten-
tial (plotted against the “reaction coordinate”) motivated by an actual en-
ergy landscape of a chemical reaction. Only recently experiments caught up
with this well known theory, as shown by the following quote from a survey
lecture [Cl18]: “Quantum scattering resonances in chemical reactions have
long been of interest to theoreticians but have only relatively recently been
experimentally measured.” We refer to [Cl18] for many interesting examples
with varied energy landscapes of different reactions (F + H2 → HF + H1,
F + CHD3 → FH + CD3, O + O2 → O3, the last a very important process
in the earth’s atmosphere).

1It is irresistible not to recall a small anecdote: one of the authors returned from a discussion

with William H. Miller of Chemistry, a major contributor to the subject, to the Mathematics
Department and his very pure maths French visitor mockingly asked “What reactions were you

discussing?”. The answer was the reaction above. Our colleague’s response was “I am relieved –
I was worried you were doing something useful”.
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Figure 1.8. Resonances corresponding to different dynamical phe-
nomena. The bound states are generated by negative level sets of
ξ2+V (x) satisfying Bohr–Sommerfeld quantization conditions. Bounded
positive level sets of ξ2+V (x) can also satisfy the quantization conditions
but they cannot produce bound states – tunnelling to the unbounded
components of these level sets is responsible for resonances with expo-
nentially small (∼ e−S/h) imaginary parts/width – see §§2.8,7.3 and
references in the notes to the corresponding chapters. The unstable
trapped points corresponding to maxima of the potential produce res-
onances which are at distance h of the real axis – see §§6.3,6.6. The
Regge resonances with Imλ ∼ − log Reλ come from the singularities at
the boundary of the support of the potential – see [Re58],[Zw87]. The
anti-bounds are defined here as resonances on the negative imaginary
axis – see [Si00],[DG10]. The resonances are computed using the code
splinepot.m by David Bindel [BZ].
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Figure 1.9. A scanning tunnelling microscope (STM) experiment
from the Manoharan Lab at Stanford University [M∗08]. The figure
shows design and realization of quantum isospectral resonators each as-
sembled from 90 CO molecules on the Cu(111) surface. A scanning
tunneling microscope (STM) spectrum is a plot of dI/dV (I being the
current) as a function of bias voltage V . Each spectrum shows the series
of surface state electron resonances inside a bounded quantum corral –
see Figure 1.5 for a visualization of the relation between the peaks and
the complex resonances. (A to C) Schematics and STM topographies
of the Bilby (A), Hawk (B), and Broken Hawk (C) domains. The seven
identical π/6–π/3–π/2 triangles composing each shape are shown in red.
Blue dots indicate the positions of wall molecules. White crosses mark
locations where dI/dV spectroscopy was performed. STM topographs
are 15 nm by 15 nm (V = 10 mV, I = 1 nA). A single CO molecule used
for registration between spectra accompanies each nanostructure. (D to
F) Spectral fingerprints (dI/dV spectra) acquired throughout Bilby (D),
Hawk (E), and Broken Hawk (F). (G) The normalized averages of the
Bilby and Hawk spectra match closely, consistent with isospectrality,
whereas the average Broken Hawk spectrum clearly differs. Inset: Spec-
tral correlation plot (dashed line denotes perfect match) quantifying
Bilby-Hawk isospectrality and its departure in Broken Hawk.
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Figure 1.10. This figure shows Heller’s digital visualization
https://ejheller.jalbum.net of the Westervelt resonator (of size ∼
1µm = 10−6meter) built at Harvard in 1995 – see [K*97]. A quantum
wave builds up in a resonant cavity between the straight and curved
walls: the waves arrive from below and most of the wave energy is re-
flected back. However, a surprisingly large fraction of the energy finds
its way through the tiny opening if the energy of the electron corre-
sponds to the resonant energy (real part of the scattering resonance) of
the cavity: to quote https://ejheller.jalbum.net “usually it is pretty
quiet in the cavity”. Except for the possibility of escape through the
side openings and tiny hole, classical electrons would be trapped in the
cavity – the quantum waves leak out the sides. The Westervelt resonator
is a quantum version of the Helmholtz resonator – see [Zw17, Figure 15]
– where similar phenomena occur for acoustic waves.

https://ejheller.jalbum.net
https://ejheller.jalbum.net
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Figure 1.11. The experimental set-up used by the Stöckmann group
in Marburg and the Kuhl group in Nice [B∗13],[P∗12]. A three disc
symmetry reduced system is implemented in a microwave scattering ex-
periment. The hard walls correspond to the Dirichlet boundary condi-
tion, that is to odd solutions (by reflection) of the full problem. The
absorbing barrier, which produces negligible reflection at the considered
range of frequencies, models escape to infinity.

Figure 1.6 shows resonance peaks in a scanning tunneling microscope
(STM) experiment by Crommie et al [CLE93]: the position of the peaks
corresponds to the resonant states trapped by the corral. The trapping is
much more pronounced in the experiment showsn in Figure 1.9. It shows
resonance peaks for a STM experiment where isospectral quantum corrals
of CO molecules, instead of less densely packed iron atoms, are constructed
– see [M∗08] and references given there. The resonances are very close to
eigenvalues of the Dirichlet Laplacian (rescaled by ~2/meff where meff is
the effective mass of the Bloch electron). Mathematical results explaining
existence of resonances created by a barrier (here formed by a corral of CO
molecules) are presented in §7.3.

Figure 1.10 shows a visualization of the Westervelt resonator [K*97],
a nano-version of the classical Helmholtz resonator (see [DGM18]). On
the classical level, the cavity has a lot of trapping (see Figure 4.1 and §6.1)
and classical electrons would get confined to the cavity for all times. The
escape through the side openings and through the tiny opening at the bot-
tom produces positive decay rates (non-zero imaginary parts of resonances).
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The general mathematical mechanism of trapping producing long living res-
onances is described in §7.3.

Figure 1.11 shows an experimental set-up for microwave cavities used
to study scattering resonances for chaotic systems. Density of resonances
was investigated in this setting in [P∗12] and that is related to semiclassi-
cal upper bounds in §§3.4,4.3,7.2. In [B∗13] dependence of resonance free
strips on dynamical quantities was confirmed experimentally and Chapter 6
contains related mathematical results and references.

Figure 1.12 shows a MEMS (the acronym for the microelectromechanical
systems) resonator. The numerical calculations in that case are based on the
complex scaling technique, presented in §4.5, adapted to the finite element
methods, and known as the method of perfectly matched layers [Be94].

Figure 1.13 shows the profile of gravitational waves recently detected
by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and
originating from a binary black hole merger. Resonances for such waves
are known by the name of quasi-normal modes in physics literature and
are the characteristic frequencies of the waves emitted during the ringdown
phase of the merger, when the resulting single black hole settles down to its
stationary state – see for instance [KS99],[Dy12],[DZ13] and §§5.7,6.3.

A survey [Zw17] presents recent mathematical results motivated by
other physical phenomena such as quantum corrals [BZH10],[Ga19], [GS15],
Helmholtz resonators [DGM18] (see also Figure 1.10), or dielectric cavities
(see [CW15] for a physics survey and [NS08] for some theoretical results).

There are many topics which still await mathematical treatment and one
example is long wavelength scattering (opposite to semiclassical or short
wavelength scattering discussed in Part 3 of the book). For instance, for
two closely placed scatterers, narrow proximity resonances (small imaginary
part) develop from broader resonances (large imaginary part) of the indi-
vidual scatterers – see Heller [He96]. Narrower resonances due to trapping
introduced by two scatterers occur in semiclassical regime (see §§6.6 and 7.3)
but the mechanism described in [He96] is different.

1.4. OVERVIEW

To make the presentation more accessible we restrict ourselves to the sim-
plest setting in which the theory is physically and mathematically relevant:
compactly supported perturbations in odd dimensions. Many results, espe-
cially the ones based on complex scaling, are valid in all dimensions and for
suitable non-compact perturbations but for the clarity of presentation we
only provide pointers to the literature. The hope is that once the ideas are
grasped in the technically less challenging setting the references will become
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PML region

Wafer (unmodeled)

Electrode

Resonating disk

Figure 1.12. On top: a schematic representation of a MEMS (mi-
croelectromechanical systems) device: a disk attached by a stem to an
absorbing plate. Below, a computed resonant mode for this device: the
top is colored by the amount of displacement in the radial direction,
and the bottom is colored by the amount of displacement in the vertical
direction. The computation was done using the complex scaling/PML
(perfectly matched layer) methods by Bindel–Govindjee [BG05]. As ex-
plained there, for the resonance state shown in the figure, the coupling
between the radial and vertical displacements gives this state a large
imaginary part – in other words a significant loss in oscillations.

accessible. In the case of scattering on asymptotically hyperbolic manifolds
(Chapter 5) we present a general theory as there are few advantages in
restricting our attention to the hyperbolic space alone.

We now present brief descriptions of the content of the chapters.

Chapter 2: We cover basic theory of resonances in dimension one. Many
fundamental concepts such as outgoing solutions, meromorphic continua-
tion of the resolvent, the relation of resonances to the scattering matrix,
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Figure 1.13. Left: an aerial view of the LIGO laboratory in Livingston,
Louisiana, US. Right: the gravitational wave signal observed on Sep-
tember 14, 2015 simultaneously by LIGO Livingston (blue) and LIGO
Hanford (red); see [A∗16],[V*14]. The ringdown oscillations of the
kind shown in Figure 1.1 and connected to quasi-normal modes (which
is what scattering resonances are called in general relativity) have not
been observed yet. What is shown here are oscillations due to a much
stonger effect of black hole merger.

trace formulas, and resonance expansions of waves, appear later in more
complicated settings.

Chapter 3: Here the theory of scattering by compactly supported poten-
tials in odd dimensions is presented in detail. This chapter can be used
as the introduction to the study of more general settings (for instance, in
the theory of zero resonances) and to the open problems in scattering by
compactly supported potentials.

Chapter 4: This chapter is devoted to black box scattering which allows
a unified treatment of many different operators ranging from Laplacians
on surfaces with constant curvature cusp ends to obstacle scattering in the
Euclidean space.

Chapter 5: One of the recent advances in geometric scattering is Vasy’s ap-
proach to meromorphic continuation of resolvents for (even) asymptotically
hyperbolic manifolds. The method was motivated by the study of scattering
for black holes and that connection is also explained.

Chapter 6: Resonance free regions have been investigated in mathemati-
cal scattering theory since the seminal work of Lax–Phillips and Văınberg
(see §4.6). Semiclassical scattering with its connection to classical/quantum
correspondence is the natural setting for investigating resonance free regions.

Chapter 7: This last chapter is concerned with resonances generated by
strong trapping phenomena such as the presence of barriers or singularities of
E 7→

∫
V (x)≥E dx. We conclude with expansions of waves for strong trapping.
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Appendices: We present notational conventions and references to basis
techniques. Proofs of various results which are crucial in the text (such as
Fredholm theory or propagation of singularities in the semiclassical setting)
are presented in detail.
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Chapter 2

SCATTERING
RESONANCES IN
DIMENSION ONE

2.1 Outgoing and incoming solutions
2.2 Meromorphic continuation
2.3 Expansions of scattered waves
2.4 Scattering matrix
2.5 Asymptotics for the counting function
2.6 Trace and Breit–Wigner formulas
2.7 Complex scaling in one dimension
2.8 Semiclassical study of resonances in dimension one
2.9 Notes
2.10 Exercises

In the simplest setting of one dimensional scattering by compactly sup-
ported potentials we can already observe many general phenomena. In par-
ticular, various notions can be explained in a very intuitive setting. Tech-
nically, there are also many advantages: we are dealing with ordinary dif-
ferential equations, the methods of complex analysis apply particularly well
and trace class properties hold nicely.

31
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2.1. OUTGOING AND INCOMING SOLUTIONS

We consider the following class of operators:

PV = D2
x + V (x) , Dx :=

1

i
∂x , V ∈ L∞comp(R) .

The stationary Schrödinger equation then is

(2.1.1) (PV − z)u = f , z ∈ C , f ∈ L2(R) ,

while the dynamical equation is given by

(2.1.2) (i∂t−PV )v = F , v|t=0 = v0 , v0 ∈ L2(R), F ∈ L1
loc(Rt;L2(Rx)).

As we will see below it is sometimes important to consider initial data in
different spaces than L2.

A solution to the stationary equation (2.1.1) produces a solution to
(2.1.2) corresponding to the evolution of the state u:

(2.1.3) v(t, x) := e−iztu(x) , v0(x) = u(x) , F (x, t) = −e−iztf(x) .

Outside the support of V and f , say for |x| ≥ R, (assuming that f is
compactly supported) the solutions of (2.1.1) are given by

u(x) = a±e
i
√
z|x| + b±e

−i
√
z|x| , ±x ≥ R .

To consider the dependence on z we have to choose a branch of
√
z. We

consider
√
z defined on C \ [0,∞) with Im

√
z > 0 everywhere, so that

± lim
ε→0+

√
z ± iε =: ±

√
z ± i0 > 0 , z ∈ (0,∞) .

When considering z ∈ (0,∞) we write
√
z =
√
z + i0.

Outgoing and incoming solutions. A solution to (2.1.1) with z > 0 is
called outgoing if

(2.1.4) u(x) = a−e
−i
√
zx , x < −R , u(x) = a+e

i
√
zx , x > R .

This corresponds to v given by (2.1.3) moving away from the support of
V (x) – see Figure 2.1. We also note that using our convention

z 6∈ [0,∞) =⇒ u(x) ∈ L2(R) .

Similarly, the solution to (2.1.1) is called incoming if

u(x) = b−e
i
√
zx , x < −R , u(x) = b+e

−i
√
zx , x > R .

Although the physical motivation illustrated in Figure 2.1 disappears
when z /∈ (0,∞) we will still use the notions of outgoing and incoming
solutions as defined above, paying attention to our convention for

√
z.
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Figure 2.1. Schematic representation of the outgoing (left) and in-
coming (right) solutions to (2.1.3).

In Section 2.2 we will address the problem of constructing outgoing (or
incoming solutions) to (2.1.1). That will lead to a natural definition of
scattering resonances.

The above definition of outgoing and incoming solutions is given in terms
of the Schrödinger equation. We can also consider the wave equation:

(2.1.5) (−∂2
t − PV )v = F , v|t=0 = v0 , ∂tv|t=0 = v1 .

The stationary equation, formally obtained by taking the Fourier transform
in t, is given by

(2.1.6) (PV − λ2)u = f , λ ∈ C .

In this case the convention regarding the sign of λ in the definition of outgo-
ing and incoming solutions is somewhat arbitrary. We choose a convention
consistent with the choice of

√
z above:

(2.1.7) λ2 = z , λ =
√
z .

In particular,

λ > 0 =⇒
√

(±λ+ i0)2 = ±λ .

The outgoing solution to (2.1.6) with a compactly supported f is sup-
posed to satisfy

(2.1.8) u(x) = a−e
−iλx , x < −R , u(x) = a+e

iλx , x > R .

We now have

Imλ > 0 =⇒ u(x) ∈ L2(R) .
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The solutions to (2.1.6) with f = 0 and Imλ > 0 are the eigenfunctions of
PV corresponding to eigenvalues λ2. Note that the equation (2.1.6) is the
same when λ is replaced by −λ, but the conditions (2.1.8) change under this
operation.

We will use the wave equation motivated λ convention in this chapter,
except in §2.8 which is motivated by quantum mechanics1.

To motivate the study of outgoing solutions to (2.1.6), and the impor-
tance of the poles of the meromorphic continuation of the outgoing resol-
vent, constructed in Section 2.2, we now briefly explain an application to
the long-time asymptotics of the wave equation. The presented ideas lead
to resonance expansions of waves, studied in detail in Section 2.3.

Consider the initial-value problem for the wave equation

(2.1.9) (−∂2
t − PV )v = F, v|t=0 = 0, ∂tv|t=0 = 0.

We assume that

V ∈ C∞c ((−R,R);R), F ∈ C∞c ((0,∞)t × (−R,R)x),

for some R > 0. We take the Fourier–Laplace transform in time

(2.1.10) u(λ, x) := v̂(λ, x) :=

∫ ∞
0

eitλv(t, x) dt.

The integral (2.1.10) converges for Imλ > 0, thanks to standard energy
estimates for the wave equation – see for instance [Ev98, §7.2.4]. Taking
the Fourier transform of (2.1.9) in t, we see that for Imλ > 0, u(λ) solves
the equation (2.1.6):

(2.1.11) (λ2 − PV )u(λ) = F̂ (λ).

On the other hand the d’Alembert’s formula (see [Ev98, §2.4]) shows

(2.1.12) v(t, x) = −1

2

∫ t

0

∫ x+s

x−s
(V v + F )(t− s, y) dyds.

Since we assumed that V and F are supported in {|x| ≤ R}, we obtain

(2.1.13) v(t, x) = v±(x∓ t), ±x ≥ R, t ≥ 0,

for some functions v± with

supp v+ ⊂ (−∞, R), supp v− ⊂ (−R,∞).

see Figure 2.2 or Exercise 2.1.

1Different conventions for scattering resonances are due to their emergence in different fields.
We will discuss those issues as they come along.
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x

t

R−R

(t, x)

(t′, x′)

Figure 2.2. An illustration of the outgoing property for the wave equa-
tion. The values u(t, x), u(t′, x′) are obtained by integrating − 1

2
(V v+F )

over the shaded triangles. For x, x′ > R and t − x = t′ − x′, these tri-
angles have the same intersection with {|x| ≤ R} ⊃ supp(V v + F ),
therefore u(t, x) = u(t′, x′).

It follows that for Imλ > 0, u(λ) is outgoing in the sense of (2.1.8): if
±x ≥ R then

u(λ, x) =

∫ ∞
0

v±(x∓ t)eiλtdt =

∫ ∞
−R

v±(∓s)eiλse±iλxds

= a±(λ)e±iλx, a±(λ) :=

∫ ∞
−R

v±(∓s)eiλs.

Here we used the support properties and v± to guarantee convergence when
Imλ > 0.

One technique for obtaining asymptotics of v(t, x) as t→∞ is to deform
the contour in the Fourier inversion formula

(2.1.14) v(t, x) =
1

2π

∫
Imλ=c

e−itλu(λ)(x) dλ, c > 0.

For that we need to continue u(λ) meromorphically into the lower half-plane
and this is done by requiring that u(λ) solve the equation (2.1.11) with the

outgoing conditions (2.1.8), where F̂ (λ) is entire in λ since F is compactly
supported. For Imλ > 0, we have u(λ) ∈ L2(Rx), therefore u(λ) for general

λ can be viewed as the image of F̂ (λ) under the meromorphic continuation
of the resolvent (λ2 − PV )−1 : L2 → L2, Imλ > 0, through the continuous
spectrum {Imλ = 0} of PV to the entire complex plane. The existence of
this meromorphic continuation, as an operator L2

comp → L2
loc, is established

in Section 2.2. After proving additional estimates on u(λ) in the lower half-
plane, we can deform the contour in (2.1.14) to the line {Imλ = −ν} with
ν > 0. The integral along the new contour will be O(e−νt), owing to the
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e−itλ factor, and we accumulate residues from the poles of u(λ). These poles,
called resonances, will be the central objects of study in this book.

2.2. MEROMORPHIC CONTINUATION

In this section we solve (2.1.6) for λ ∈ C, with u outgoing, that is satisfying
(2.1.8). For that we first consider the case of V = 0. In that case u(x) is
given by an explicit formula:

u(x) =
i

2λ

∫
R
eiλ|x−y|f(y)dy .

For Imλ > 0 this gives the integral kernel of the free resolvent:

R0(λ) := (D2
x − λ2)−1 : L2(R) −→ L2(R) , Imλ > 0 ,

R0(λ, x, y) =
i

2λ
eiλ|x−y| ,

(2.2.1)

where we use the same notation R0(λ) for the operator and its integral
kernel. We should stress that for Imλ < 0,

(D2
x − λ2)−1 = R0(−λ), (D2

x − λ2)−1 : L2(R) −→ L2(R) , Imλ < 0 .

This means that the spectrum ofD2
x is given by [0,∞) and it is absolutely

continuous as can be shown using the Fourier transform – see §B.1.

From the expression (2.2.1) we see that for fixed x and y, R0(λ, x, y) is
a meromorphic function of λ ∈ C defining an operator C∞c (R) → C∞(R)
which is not bounded on L2 for Imλ ≤ 0.

Using the notion of a meromorphic family of operators (see Appen-
dix C.3) we summarize these facts as follows.

THEOREM 2.1 (Meromorphic continuation of the free resolvent).
The operator R0(λ) defined by (2.2.1) for Imλ > 0 extends to a meromorphic
family of operators for λ ∈ C:

R0(λ) := L2
comp(R) −→ L2

loc(R) .

We have

(2.2.2) ‖R0(λ)‖L2→L2 =
1

d(λ2, [0,∞))
≤ 1

|λ| Imλ
, Imλ > 0 .

and for ρ ∈ C∞c (R), supp ρ ⊂ [−L,L], λ ∈ C,

(2.2.3) ‖ρR0(λ)ρ‖L2(Rn)→Hj(Rn) ≤ CL,je2L(Imλ)− |λ|−1〈λ〉j , 0 ≤ j ≤ 2,

where x− := max(0,−x).
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REMARK. The estimate (2.2.2) and the fact that −∆R0(λ) = I−λ2R0(λ)
immediately imply that

(2.2.4) ‖R0(λ)‖L2→Hk ≤
〈λ〉k

|λ| Imλ
, Imλ > 0 , 0 ≤ k ≤ 2.

Proof. 1. The estimate (2.2.2) follows directly from spectral theory, since
the spectrum of D2

x is equal to R+:

d(λ2, [0,∞)) =

{
2 Imλ|Reλ| (Reλ)2 ≥ (Imλ)2,
|λ|2 (Reλ)2 ≤ (Imλ)2,

and hence d(λ2,R+) ≥ |λ| Imλ.

2. The estimate (2.2.3) for j = 0 follows from (2.2.1) by Schur’s criterion
(A.5.3) since∫ ∞

−∞
|ρ(x)ρ(y)R0(λ)(x, y)| dx ≤ C|λ|−1

∫ ∞
−∞
|ρ(x)ρ(y)|e− Imλ|x−y| dx

is bounded by CL|λ|−1e2L(Imλ)− and same is true if integration is performed
in the y variable instead.

3. To obtain the estimate for j = 2 we use elliptic regularity estimates (see
for instance [Zw12, Theorem 7.1]): if U and W are intervals and U b W
then

‖u‖H2(U) ≤ C
(
‖u‖L2(W ) + ‖D2

xu‖L2(W )

)
.

Hence, if ρ̃ ∈ C∞c (R) satisfies ρ̃ = 1 near supp ρ then

(2.2.5) ‖ρu‖H2(R) ≤ C
(
‖ρ̃u‖L2(R) + ‖ρ̃D2

xu‖L2(R)

)
.

4. We now apply (2.2.5) to u = R0(λ)ρf , f ∈ L2 so that

‖ρR0(λ)ρf‖H2 ≤ C‖ρ̃R0(λ)ρf‖L2 + C‖ρ̃D2
xR0(λ)ρf‖L2 .

Since ρ̃D2
xR0(λ)ρf = ρf + ρ̃λ2R0(λ)ρf is bounded by CL〈λ〉e2L(Imλ)−‖f‖L2

in L2 the estimate (2.2.3) with j = 2 follows. Finally, the estimate for j = 1
is obtained by interpolating between the cases j = 0 and j = 2. �

For V 6= 0 we have a result which shows that the outgoing resolvent of
PV := D2

x + V (x) also has a meromorphic continuation.

THEOREM 2.2 (Meromorphic continuation of the resolvent in one
dimension). Suppose that V ∈ L∞comp(R;C). Then the resolvent

RV (λ) := (D2
x + V − λ2)−1 : L2(R) −→ L2(R) , Imλ > 0 ,

is a meromorphic family of operators with a finite number of poles. The
family RV (λ) extends to a meromorphic family of operators for λ ∈ C:

RV (λ) : L2
comp(R) −→ H2

loc(R) .
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Proof. 1. We first construct RV (λ) for Imλ� 1. For that we write

(2.2.6) (PV − λ2)R0(λ) = (D2
x − λ2 + V )R0(λ) = I + V R0(λ).

For Imλ � 1, ‖V R0(λ)‖L2→L2 ≤ ‖V ‖∞(Imλ)−2 ≤ 1/2, and hence I +
V R0(λ) is invertible using the Neumann series:

(I + V R0(λ))−1 =
∞∑
j=0

(−1)j(V R0(λ))j .

This shows that

(2.2.7) RV (λ) := (PV − λ2)−1 = R0(λ)(I + V R0(λ))−1.

If ρ ∈ C∞c ((−L,L)), L > 0, then for Imλ > 0, ρR0(λ) : L2 → H2
0 ((−L,L))

(see (2.2.4)). Hence ρR0(λ) is a compact operator on L2 by Theorem B.4.
By taking L large enough we can choose ρ which is equal to 1 on suppV . In
particular, ρV = V . Hence for Imλ > 0 the operator V R0(λ) = V ρR0(λ) is
also compact and we can apply Theorem C.8 (or rather the remark after the
theorem since V R0(λ) has a pole at 0) to see that RV (λ) : L2(R)→ L2(R)
is a meromorphic family of operators in Imλ > 0.

2. To obtain a continuation to the entire C, we define the following mero-
morphic family of operators:

(2.2.8) K(λ) := V R0(λ) : L2
comp(R)→ L2

comp(R) .

(Strictly speaking the notion of meromorphic families operators is only de-
fined on Banach spaces: what we mean here is that ρ̃K(λ)ρ̃ : L2 → L2 is a
meromorphic family for any ρ̃ ∈ C∞c .)

The only pole of K(λ) is at λ = 0. With the same ρ ∈ C∞c (R) as in Step
1, (1− ρ)K(λ) = 0, and hence, by inspection,

(I +K(λ)(1− ρ))−1 = I −K(λ)(1− ρ).

As in step 1, we see that for Imλ� 1, I+K(λ)ρ is invertible by a Neumann
series argument. We conclude that for Imλ� 1,

(I +K(λ))−1 =
(
(I +K(λ)(1− ρ))(I +K(λ)ρ)

)−1

= (I +K(λ)ρ)−1(I −K(λ)(1− ρ)) .

3. By (2.2.7), for Imλ� 1,

(2.2.9) RV (λ) = R0(λ)(I +K(λ)ρ)−1(I −K(λ)(1− ρ)) .

For λ ∈ C \ 0, (2.2.3) shows that ρR0(λ)ρ : L2(R) → H2
0 ((−L,L)), and

hence by Theorem B.4 this operator is compact. Since V = V ρ, we conclude
that K(λ)ρ is compact on L2(R), and hence I + K(λ)ρ is a meromorphic



2.2. MEROMORPHIC CONTINUATION 39

family of Fredholm operators (see §C.3). Theorem C.8 gives a meromorphic
continuation of

(2.2.10) (I +K(λ)ρ)−1 : L2(R) −→ L2(R),

to C.

4. From (2.2.3) we also conclude that for Imλ ≥ 0, ‖K(λ)ρ‖L2→L2 ≤ C/|λ|.
The Neumann series argument and (2.2.9) show that RV (λ) has only finitely
many poles for Imλ > 0. (See Theorem 2.10 for more on that.)

5. We now observe that

I −K(λ)(1− ρ) : L2
comp(R)→ L2

comp(R) ,

and

(I +K(λ)ρ)−1 : L2
comp(R)→ L2

comp(R) .

The last property can be checked for Imλ � 1 using the Neumann series
argument: if χρ = ρ, χ̃χ = χ then

(1− χ̃)(I +K(λ)ρ)−1χ = 0 , Imλ� 1 ,

and this remains true for all λ by analytic continuation.

Combining these facts with the expression for RV given in (2.2.9) we
obtain the meromorphy of RV (λ) for λ ∈ C as a family of operators L2

comp →
L2

loc. �

DEFINITION 2.3. We call the poles of RV (λ) scattering resonances or
simply resonances . The multiplicity of a resonance at λ is defined as follows:

(2.2.11) mR(λ) := rank

∮
λ
RV (ζ)dζ ,

where the integral is over a small circle containing no other poles of RV . We
refer to the meromorphic continuation, RV (λ), as the scattering resolvent.

When λ is not a resonance we put mR(λ) = 0 which is of course consis-
tent with the above definition.

REMARKS. 1. When V ∈ L∞comp(R,R) then the operator PV is self-
adjoint and the existence of RV (λ), Imλ > 0, as a meromorphic operator
on L2 follows from the spectral theorem. The poles occur at i

√
−Ej where

Ej are the negative eigenvalues of PV – see Figure 1.8. These statements
also follow from Theorem 2.1.

2. We also have the following basic fact valid for real valued potentials

(2.2.12) V ∈ L∞comp(R;R) =⇒ mR(λ) = 0 , λ ∈ R \ {0} .



40 2. MEROMORPHIC CONTINUATION

This implies that for λ /∈ R \ {0}, there exists a limit

lim
ε→0+

RV (λ+ iε) : L2
comp → L2

loc.

This fact is known as the limiting absorption principle. It follows that the
spectrum of PV is given by the continuous spectrum [0,∞) and a finite num-
ber of negative eigenvalues. We will prove this after the proof of Theorem
2.5 below.

3. Reality of V or, equivalently, self-adjointness of PV imply the following
symmetry of resonances:

(2.2.13) V ∈ L∞comp(R;R) =⇒ mR(λ) = mR(−λ̄) , λ ∈ C \ {0} .
In fact, we will check the following identity of Schwartz kernels:

RV (−λ̄, y, x) = RV (λ, x, y).

Since both sides are meromorphic in λ we only need to check that

(2.2.14) RV (−λ̄)∗ = RV (λ) for Imλ > 0,

when both sides are bounded operators on L2 (note that Im(−λ̄) > 0 if
Imλ > 0). Using the correspondence between λ and z in (2.1.7) that follows
from ((PV − z)−1)∗ = (PV − z̄)−1. �

4. It is also useful to express the operator (I +V R0(λ)ρ)−1 through RV (λ),
as follows:

(2.2.15) (I + V R0(λ)ρ)−1 = I − V RV (λ)ρ.

This follows immediately from the identity

I − (I + V R0(λ)ρ)−1 = V R0(λ)ρ(I + V R0(λ)ρ)−1

and the following formula:

(2.2.16) RV (λ)ρ = R0(λ)ρ(I + V R0(λ)ρ)−1,

which in turn is true for Imλ � 1 by considering the Neumann series
in (2.2.7) and for general λ by analytic contuation.

When λ is not a pole of RV , the operator RV (λ) gives solutions to the
Helmholtz equation satisfying the outgoing condition:

THEOREM 2.4 (RV (λ) at regular points). Assume that λ ∈ C is not
a pole of RV . Then for each f ∈ L2

comp(R), u = RV (λ)f is the unique

outgoing solution, in the sense of (2.1.8), to the equation (PV − λ2)u = f .

Proof. 1. The identity (PV − λ2)RV (λ)f = f holds for Imλ > 0 by the
definition of RV (λ) and extends to all λ by analytic continuation. Same is
true for the outgoing condition, which can be written as

(2.2.17) (∂x ∓ iλ)(RV (λ)f)(±R) = 0,
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where R > 0 is such that suppV ∪ supp f ⊂ (−R,R). Indeed, for Imλ > 0

this condition holds as RV (λ)f ∈ L2 must be a linear combination of eiλ|x|

and e−iλ|x| for ±x > R, and e−iλ|x| is exponentially growing as |x| → ∞.

2. It remains to show that RV (λ)f is the unique outgoing solution to (PV −
λ2)u = f and for that it suffices to prove the identity

(2.2.18) u = RV (λ)(PV − λ2)u

for all outgoing functions u ∈ H2
loc. We note that the outgoing condition

guarantees that (PV − λ2)u is compactly supported.

3. The equation (2.2.18) is true for Imλ > 0 by the definition of RV (λ):
u = RV (λ)f ∈ H2 in this case. To handle λ in the closed lower half-plane,
we argue by analytic continuation. For that we decompose any outgoing
u ∈ H2

loc as

u(x) = u0(x) + χ+(x)a+e
iλx + χ−(x)a−e

−iλx,

where u0 ∈ H2
comp, and where χ± ∈ C∞(R) are equal to 1 near ±∞ and to

0 near ∓∞. Then for Imλ > 0 each term is in H2 and hence

u0 = RV (λ)(PV − λ2)u0, χ±e
±iλ• = RV (λ)(PV − λ2)(χ±e

±iλ•).

Since (PV − λ2)(χ±e
±iλ•) ∈ L2

comp, the equations have to be valid for all λ
at which RV is holomorphic. Hence (2.2.18) holds for any outgoing u. �

We next study in detail the singular part of RV (λ), starting from the
following statement away from λ = 0. We use the notation in which tensor
product is identified with an operator:

(2.2.19) (u⊗ v)(f)(x) := u(x)

∫
R
v(y)f(y)dy.

THEOREM 2.5 (Singular part of RV (λ) in one dimension). Suppose
mR(λ0) > 0, λ0 6= 0.

1) There exist linearly independent uj ∈ H2
loc(R), j = 1, . . . ,mR(λ0), such

that u1 is outgoing (see (2.1.8)) and

(2.2.20) (PV − λ2
0)u1 = 0 , (PV − λ2

0)uj = uj−1 ,

1 < j ≤ mR(λ0).

2) The Laurent expansion of RV (λ) near λ0 is given by

(2.2.21) RV (λ) = −
mR(λ0)∑
k=1

(PV − λ2
0)k−1Πλ0

(λ2 − λ2
0)k

+A(λ, λ0) ,

where λ 7→ A(λ, λ0) is holomorphic near λ0,

Πλ0 = − 1

2πi

∮
λ0

RV (λ)2λdλ ,
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and

(2.2.22) (PV − λ2
0)mR(λ0)Πλ0 = 0 , Ran Πλ0 = span {u1, . . . , umR(λ0)} .

3) Suppose that V ∈ L∞(R;R). If mR(λ0) = 1 then

(2.2.23)
Πλ0 = −iu1 ⊗ u1, (PV − λ2

0)u1 = 0,

u1(x) = c±e
±iλ0x, ±x� 1.

Moreover, u1 is normalized as follows: for R large enough,

(2.2.24) − 2iλ0

∫ R

−R
u1(x)2 dx+ c2

+e
2iλ0R + c2

−e
−2iλ0R = 1.

REMARK. In Section 2.7 we will find an interpretation of Πλ0 , λ0 6= 0, as
a projection. That will explain our sign convention. It will also give an al-
ternative proof of the normalization of u1 in (2.2.24). Generically resonances
have multiplicity 1, and mR(0) = 0.

DEFINITION 2.6. In the notation of (2.2.20), u1 is called a resonant
state, and uj’s, j > 1, generalized resonant states.

Proof. 1. From the general result about meromorphic continuation in §C.3
we know that for some finite rank operators Ak, 1 ≤ k ≤ K,

RV (λ) =

K∑
k=1

Ak
(λ2 − λ2

0)k
+A(λ, λ0) , λ0 6= 0 ,

where A(•, λ0) is holomorphic near λ0, and

A1 = −Πλ0 :=
1

2πi

∮
λ0

RV (λ)2λdλ .

The residue theorem gives

(2.2.25)
1

2πi

∮
λ0

RV (ζ)dζ =
K∑
k=1

(−1)k−1 (2k − 2)!

(k − 1)!
(2λ0)−2k+1Ak.

2. We now consider the equation (PV −λ2)RV (λ) = I near λ = λ0: modulo
terms holomorphic near λ0 we have

(PV − λ2)RV (λ) ≡
K∑
k=1

(
(PV − λ2

0)Ak
(λ2 − λ2

0)k
− Ak

(λ2 − λ2
0)k−1

)

≡
K∑
k=1

(PV − λ2
0)Ak −Ak+1

(λ2 − λ2
0)k

,

where we use the convention that Ak = 0 for k > K.
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It follows that Ak+1 = (PV −λ2
0)Ak which shows that (2.2.21) holds and

(PV − λ2
0)KΠλ0 = 0.

3. We now need to show the existence of uj ’s satisfying (2.2.20) and (2.2.22).

The operator (PV − λ2
0) commutes with Πλ0 and (PV − λ2

0)KΠλ0 = 0.
Hence

PV − λ2
0 : Ran Πλ0 → Ran Πλ0 ,

is nilpotent and we can put it into a Jordan normal form. That means that
there exists a basis of Ran Πλ0 ⊂ H2

loc(R) of the form

u`,j , 1 ≤ ` ≤ L , 1 ≤ j ≤ k` ,
L∑
`=1

k` = K ,

(PV − λ2
0)u`,j = u`,j−1 , 1 ≤ j ≤ k` , u`,0 := 0 .

From (2.2.9) we see that each u`,j is a linear combination of functions

in R0(λ0)(L2
comp), . . . , ∂K−1

λ R0(λ0)(L2
comp). Then by (2.2.1), for ±x � 1,

u`,j(x) is the product of e±iλ0x with a polynomial in x. Since (PV −λ2
0)u`,1 =

0, we see that u`,1 ∈ R0(λ)(L2
comp), that is u`,1 is outgoing. But then it is

unique up to a multiplicative constant. This shows that L = 1 and that
uj := u1,j satisfy (2.2.20). We also see that K = dim Ran Πλ0 .

4. Returning to (2.2.25) we see from Step 3 that

Nλ0 :=
K∑
k=2

(−1)k−1 (2k − 2)!

(k − 1)!
(2λ0)−2k+1(PV − λ2

0)k−1

is a nilpotent operator Nλ0 : Ran Πλ0 → Ran Πλ0 . Hence

mR(λ0) := rank

∮
λ0

RV (ζ)dζ

= rank

(
K∑
k=1

(−1)k−1 (2k − 2)!

(k − 1)!
(2λ0)−2k+1(PV − λ2

0)k−1

)
Πλ0

= rank(I +Nλ0)Πλ0 = rank Πλ0 = K.

This gives (2.2.22).

5. It remains to consider the case of real potentials and of resonances with
multiplicity 1.

We first note that the construction in Step 1 of the proof of Theorem 2.2
shows that for V real the Schwartz kernel of RV (ik), k � 1 is real. Since
RV (ik) is also self-adjoint it follows that RV (ik, x, y) = RV (ik, y, x). By
analytic continuation this is true at any value of λ. If, near λ0,

(2.2.26) RV (λ) = −(λ− λ0)−1Πλ0 +A(λ, λ0),
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we conclude that the Schwartz kernel of the rank one operator Πλ0 is sym-
metric in x and y and hence, Πλ0 = iu1 ⊗ u1 for an outgoing solution of
(PV − λ2

0)u1 = 0.

To prove the normalization condition (2.2.24), fix R > 0 and χ± ∈
C∞(R) such that χ±(x) = 1 for ±x ≥ R, χ±(x) = 0 for ±x ≤ 0 and such
that u1(x) = c±e

±iλ0x on suppχ±. Put

ũ1 = u1 − c+χ+e
iλ0x − c−χ−e−iλ0x ∈ H2

comp(R),

and define for λ ∈ C the following outgoing function

uλ := ũ1 + c+χ+e
iλx + c−χ−e

−iλx, uλ0 = u1.

Then, given that (PV − λ2
0)u1 = 0, we find for λ near λ0,

(PV − λ2)uλ = (PV − λ2)ũ1 − c+[∂2
x, χ+]eiλx − c−[∂2

x, χ−]e−iλx

= (λ− λ0)
(
− 2λ0ũ1 − ic+[∂2

x, χ+]xeiλ0x + ic−[∂2
x, χ−]xe−iλ0x

)
+O((λ− λ0)2)L2

comp
.

Using the identity (2.2.18) for the outgoing function u = uλ (λ in a punc-
tured neighborhood of λ0), the expansion (2.2.26) and the fact that χ′± and
ũ1 are supported inside (−R,R), we see that

uλ = RV (λ)(PV − λ2)uλ

= (λ− λ0)−1u1

∫ R

−R
u1(x)(PV − λ2)uλ(x)dx+O(|λ− λ0|).

Inserting λ = λ0 gives,

1 =

∫ R

−R
u1

(
− 2iλ0ũ1 + c+[∂2

x, χ+]xeiλ0x = c−[∂2
x, χ−]xe−iλ0x

)
dx.

From the definition of ũ1 and the fact that u1 = c±e
±iλ0x on suppχ±, we

then get

1 = −2iλ0

∫ R

−R
u2

1 dx+ c2
+

∫ R

−R
(2iλ0χ+ + e−iλ0x[∂2

x, χ+]eiλ0xx)e2iλ0x dx

+c2
−

∫ R

−R
(2iλ0χ− − eiλ0x[∂2

x, χ−]e−iλ0xx)e−2iλ0x dx.

Now, integration by parts, together with the fact that χ± = 1 near ±R and
χ± = 0 near ∓R, shows that∫ R

−R
(2iλ0χ+ + e−iλ0x[∂2

x, χ+]eiλ0xx)e2iλ0x dx = e2iλ0R,∫ R

−R
(2iλ0χ− − eiλ0x[∂2

x, χ−]e−iλ0xx)e−2iλ0x dx = e−2iλ0R,
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which finishes the proof of (2.2.24). �

We can now provide

Proof of (2.2.12). We need to show that there are no outgoing solutions to
(PV − λ2)u = 0 for λ real and non-zero (at λ = 0 the example of V = 0
shows that a pole is possible and the outgoing solution is given by u = 1).
Since V is real ū is also a solution. Using the notation of (2.1.8) we calculate
the Wronskians:

W (u, ū) :=

∣∣∣∣ u ū
ux ūx

∣∣∣∣ =

{
2iλ|a−|2 , x < −R ,
−2iλ|a+|2 , x > R .

Since the Wronskian for the equation −∂2
x + V − λ2 is constant, this is

impossible for λ 6= 0 and u 6≡ 0. �

For λ0 = 0 we restrict our attention to real V ’s, that is to self-adjoint
operators PV . We need detailed information about the zero resonance only
for resonance expansions and trace formulæ. In both cases we will assume
self-adjointness of PV so that we can use the spectral theorem.

THEOREM 2.7 (Singular part of RV (λ) at 0 in one dimension).
Suppose that V ∈ L∞comp(R;R), V 6≡ 0, and that 0 is a resonance. Then
mR(0) = 1 and

RV (λ) = −Π0

λ
+A(λ) ,

where λ 7→ A(λ) is holomorphic near 0, and

(2.2.27) Π0 = −iu1 ⊗ u1 , PV u1 = 0; u1(x) = c±, ±x� 1,

where c± ∈ R \ 0 and c2
+ + c2

− = 1.

Proof. 1. Since PV is self-adjoint, for Imλ > 0, |λ| � 1 (so that we avoid
possible eigenvalues which are the poles in Imλ > 0), the spectral theorem
gives

‖RV (λ)‖L2→L2 =
1

d(λ2,R+)
≤ 1

|λ| Imλ
.

This shows that

RV (λ) =
A2

λ2
+
A1

λ
+A(λ) ,

where Aj are finite rank operators, L2
comp → H2

loc. By applying PV − λ2 to
RV (λ) we conclude that PVAj = 0.

2. For ψ ∈ C∞c (R) and ρ ∈ C∞c (R; [0, 1]) and Imλ > 0, |λ| � 1,

‖ρ(A2 + λA1 + λ2A(λ))ψ‖L2 ≤ ‖(A2 + λA1 + λ2A(λ))ψ‖L2

= ‖λ2RV (λ)ψ‖L2 ≤
|λ|2

d(λ2,R+)
‖ψ‖L2 .
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Hence, letting λ = it, t→ 0+, we conclude that

‖ρA2ψ‖L2 ≤ ‖ψ‖L2 .

Since ρ ∈ C∞c (R; [0, 1]) is arbitrary we conclude that A2 is bounded on
L2(R). The range of A2 consists of solutions to PV u = 0, namely u = a+bx,
for x� 1, so we conclude that a = b = 0, which implies that A2 = 0.

3. We now show that Π0 := A1 has rank 1. Indeed, when λ is not a pole of
RV , by Theorem 2.4 RV (λ)(L2

comp) consists of outgoing functions. Taking
the meromorphic expansion of the outgoing condition (2.2.17) at λ = 0, we
see that the range of Π0 consists of outgoing functions. Since PV Π0 = 0,
Ran Π0 consists of outgoing solutions to the equation PV u = 0. Since the
space of such solutions is at most one-dimensional, we see that Π0 has rank
one.

4. Arguing as in the proof of part 3 of Theorem 2.5, we see that

Π0 = −iu1 ⊗ u1,

where u1 ∈ H2
loc solves PV u1 = 0 and is outgoing, that is u1(x) = c±,

±x � 1, for some c± ∈ C. We have c± 6= 0 since otherwise u1, a solution
of an ordinary differential equation, would be identically zero. We also
get the condition c2

+ + c2
− = 1, since the proof of (2.2.24) applies for the

zero resonance. Finally, by (2.2.14), we see that Π0 is antisymmetric: for
ψ,ϕ ∈ L2

comp(R), 〈Π0ψ,ϕ〉L2 = −〈ψ,Π0ϕ〉. Hence ū1 = ±u1, so either u1 or
iu1 is real-valued. The second option is impossible since then c± are purely
imaginary and cannot satisfy c2

+ + c2
− = 1; we conclude that u1, and thus

c± are real. �

REMARK. We can construct a real-valued potential V ∈ C∞c (R) such
that RV has a resonance at λ = 0 and the constants c± in (2.2.27) are
any given numbers in R \ 0 satisfying c2

+ + c2
− = 1. Indeed, for c+c− > 0

consider a function u ∈ C∞(R;R) which is nonvanishing everywhere and
u(x) = c± for ±x� 1. Put V = u′′/u, then PV u = 0 and by Theorem 2.4,
zero is a resonance of RV . Moreover, the function u1 from Theorem 2.7
is a multiple of u. For c+c− < 0 we repeat the same argument, taking
u ∈ C∞(R;R) which is nonvanishing except at x = 0, u(x) = c± for ±x� 1,
and u(x) = c+x for |x| < 1.

EXAMPLE. We present a natural family of potentials which have reso-
nances of multiplicity 2 for some values in the family. This is illustrated in
Figure 2.3.

Consider a potential V ∈ C1
c (R;R), suppV ⊂ [−a, a] with the property

that V (x) < −c < 0 for, say, x ∈ (−b, b), 0 < b < a. We then consider a
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resonance becoming an eigenvalue

Figure 2.3. We consider resonances for τV where V is shown in
the first panel on the left. The resonances for τ = 1 are shown below
the graph of V . On the right, we take a large discrete set of τ ’s, 1 <
τ < 1.12 and see two continuous families of resonances meeting on iR−.
Pseudospectral effects due to the non-normal nature of RV at the point
of multiplicity two (see Theorem 2.5) make the motion very rapid near
at the bifurcation. Hence the double resonance is hard to pinpoint
numerically. The specific potential and it resonances were obtained using

splinepot(3.4*[0,1,-1,2,0],[-2,-1,0,1,2])

see [BZ].

family of potentials τV , τ ≥ 1, that is we vary the coupling constant in the
Schrödinger operator

Pτ := D2
x + τV (x) .

By applying min-max methods directly (see Theorem B.12) or by using semi-
classical Weyl law (with h2 = 1/

√
τ – see for instance [Zw12, Theorem 6.8])

we see that the number of negative eigenvalues of Pτ grows (proportionally
to
√
τ) as τ increases.

The construction of RτV (λ) also shows that for any R, resonances in
D(0, R) are continuous as functions of τ . This means that eigenvalues, that
is resonances on iR+, are obtained, as τ increases, from a continuous family
of resonances passing through zero.

In view of the symmetry of resonances with respect to the real axis given
in (2.2.13), the simplicity of the resonance at λ = 0 given in Theorem 2.7
and the absence of resonances on R \ {0} (see (2.2.12)) it means that two
resonances meet on iR− before splitting. One of them will move through 0
to become an eigenvalue. This provides a simple example of a resonance,
λ0 ∈ iR− for which mR(λ0) = 2.
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The multiplicity of a resonance can also be described using Fredholm
determinants – see §B.5. For that we define

(2.2.28) D(λ) := det(I + V R0(λ)ρ) .

where ρ ∈ L∞comp and ρ V = V . This is allowed as V R0(λ)ρ is a (meromor-
phic) family of operators of trace class.

We note that D(λ) is a meromorphic function of λ with a single pole at
λ = 0. The multiplicity of a zero of D(λ) is defined in the usual way and we
have,

(2.2.29) mD(λ) :=
1

2πi

∮
D′(ζ)

D(ζ)
dζ ,

where the integral is over a positively oriented circle which includes λ and
no other pole or zero of D(λ).

THEOREM 2.8 (Multiplicity of a resonance in one dimension).
The multiplicities defined by (2.2.11) and (2.2.29) are related as follows

(2.2.30) mD(λ) = mR(λ) , λ ∈ C \ {0} .
For V ∈ L∞comp(R;R),

(2.2.31) mD(0) = mR(0)− 1.

Proof. The proof is based on the Gohberg–Sigal theory of residues for mero-
morphic families of operators reviewed in Section C.4.

1. We start with the case of a pole at zero, assuming that V ∈ L∞comp(R,R),
V 6≡ 0. From (2.2.15),

(2.2.32) (I + V R0(λ)ρ)−1 = I − V RV (λ)ρ

and Theorem 2.7 we see that (I+V R0(λ)ρ)−1 has a simple pole of rank one
at 0 if and only if RV (λ) has a pole at 0. On the other hand I + V R0(λ)ρ
has a simple pole of rank one at 0. Hence Theorem C.10 shows that

(2.2.33) I + V R0(λ)ρ = U1(λ)(Q0 + λ−1Q−1 + λQ1)U2(λ),

where
rankQ−1 = 1, rankQ1 = mR(0), QjQk = δjkQj ,

and Uj(λ) are invertible and holomorphic. The conclusion then follows from
Theorem C.11.

2. Now let V ∈ L∞comp(R,C), V 6≡ 0 and assume that mR(λ0) = 1, λ0 6= 0.
From (2.2.32) we see that the pole of the left hand side is simple with a
rank one residue. Theorem C.10 shows that near there exist holomorphic
invertible operators Uj(λ), such that near λ0

(I + V R0(λ)ρ)−1 = U1(λ)(P0 + (λ− λ0)−1P1)U2(λ),
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where PiPj = δijPj , rankP1 = 1 and rank(I − P0) < ∞. (There are no
polynomial terms as they produce poles of I+V R0(λ)ρ which is holomorphic
near λ0 6= 0.) Theorem C.11 then shows that mD(λ0) = 1.

3. When mD(λ0) = 1, λ0 6= 0, this argument can be reversed using
RV (λ)ρ = R0(λ)ρ(I + V R0(λ)ρ)−1.

4. The case of mR(λ0) > 1 will be proved in §2.7 using the method of
complex scaling. �

2.3. EXPANSIONS OF SCATTERED WAVES

A motivation for the study of resonances is the fact that they describe os-
cillations and decay of waves for problems on non-compact domains. In
this sense they replace eigenvalues and Fourier series expansions. Except
for Theorem 2.10 we assume in this section that V is real valued. That is
because we need to use methods of spectral theory of self-adjoint operators.

To explain the expansions consider first PV = D2
x + V on [a, b] with

Dirichlet (or Neumann) boundary condition. Then the problem{
(PV −λ2)u = 0 on (a, b)

u(a) = u(b) = 0

has a set of distinct solutions

(i
√
−Ek, vk) , (λj , uj) ,

EN < · · · < E1 < 0 < λ2
0 < λ2

1 < · · · → ∞ ,∫ b

a
|uj |2dx =

∫ b

a
|vk|2dx = 1 .

We then consider the wave equation
(D2

t − PV )w = 0 on R× (a, b)

w(0, x) = w0(x) , ∂tw(0, x) = w1(x) on [a, b]

w(t, a) = w(t, b) = 0 on R .

It can be solved using the eigenfunction expansion (Fourier series in the case
when V ≡ 0):

w(t, x) =
N∑
k=1

cosh(t
√
−Ek)akvk(x) +

N∑
k=1

sinh(t
√
−Ek)√

−Ek
bkvk(x)

+

∞∑
j=0

cos(tλj)cjuj(x) +

∞∑
j=0

sin(tλj)

λj
djuj(x)

(2.3.1)
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where

ak =

∫ b

a
w0(x)vk(x)dx , bk =

∫ b

a
w1(x)vk(x)(x)

cj =

∫ b

a
w0(x)uj(x)dx , dj =

∫ b

a
w1(x)uj(x)dx .

We now give the analogue of (2.3.1) when [a, b] is replaced by R:

THEOREM 2.9 (Resonance expansions of scattering waves in one
dimension). Let V ∈ L∞(R;R) and suppose that w(t, x) is the solution of

(2.3.2)


(D2

t − PV )w(t, x) = 0 ,

w(0, x) = w0(x) ∈ H1
comp(R) ,

∂tw(0, x) = w1(x) ∈ L2
comp(R) .

Then, for any A > 0,

w(t, x) =
∑

Imλj>−A

mR(λj)−1∑
`=0

t`e−iλjtfj,`(x) + EA(t) ,(2.3.3)

where the sum is finite,

mR(λj)−1∑
`=0

t`e−iλjtfj,`(x) = −Resµ=λj

(
(iRV (µ)w1 + µRV (µ)w0) e−iµt

)
,

(PV − λ2
j )
`+1fj,` = 0 ,

(2.3.4)

and for any K > 0, such that suppwj ⊂ (−K,K), there exist constants
CK,A and TK,A

‖EA(t)‖H2([−K,K]) ≤ CK,Ae−tA (‖w0‖H1 + ‖w1‖L2) , t ≥ TK,A .

REMARKS. 1. For numerical illustrations of this theorem see Figures 1.2
and‘1.1.

2. It may at first seem strange that only exponential appear as contribu-
tions of negative eigenvalues (compared to sinh and cosh in (2.3.1)): the
exponentially decaying terms are absorbed into the error term EA(t) when
A is small and are “masked” by the resonance expansion when A is large.

3. We notice that the error term EA(t) is more regular for large times. That
corresponds to propagation of singularites: when time is large all singular-
ities leave a compact set. When V ∈ C∞c (R) then an examination of the
proof shows that we have the same bound with the right hand side replaced
by ‖EA(t)‖Hk([−K,K]) for any k.
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Figure 2.4. The contour used to obtain the resonance expansion.

Before proving Theorem 2.9 we need the existence of a resonance free
region and an estimate for the resolvent:

THEOREM 2.10 (Resonance free regions in one dimension). Sup-
pose that V ∈ L∞comp(R;C). Then for any ρ ∈ C∞c (R) and any δ < 1/|chsuppV |
(where chsuppV is the convex hull of the support of V ) there exist constants
A,C, T such that

(2.3.5) ‖ρRV (λ)ρ‖L2→Hj ≤ C|λ|j−1 eT (Imλ)− , j = 0, 1, 2 ,

for

Im λ ≥ −A− δ log(1 + |λ|) , |λ| > C0 .

In particular there are only finitely many resonances in the region

{λ : Imλ ≥ −A− δ log(1 + |λ|)} .

for any A > 0.

Proof. 1. First we modify the estimate (2.2.3) for the free resolvent

(2.3.6) ‖ρ1R0(λ)ρ1‖L2→L2 ≤ C|λ|−1e(b−a)| Imλ|, 0 ≤ j ≤ 2,

where ρ1 ∈ L∞and supp ρ1 ⊂ [a, b].

We then recall (2.2.9):

(2.3.7) ρRV (λ)ρ = ρR0(λ)ρ1(I + V R0(λ)ρ1)−1(1− V R0(λ)(1− ρ1))ρ

where we assumed that ρ = 1 on suppV , and ρ1 ∈ L∞com(R) is any function
satisfying ρ1V = V . In particular we can take ρ1 = 1lchsuppV . We see now
that (2.3.5) holds for λ at which we can invert I + V R0(λ)ρ1 by Neumann
series, and that follows from

‖V ρ1R0(λ)ρ1‖L2→L2 ≤
1

2
.
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2. To establish this estimate we put [a, b] := chsuppV and use (2.3.6) to see
that for Imλ > −A− δ log(1 + |λ|),

‖V ρ1R0(λ)ρ1‖L2→L2 ≤ C‖V ‖L∞e(b−a)| Imλ|/|λ|

≤ C‖V ‖L∞e(A+δ log(1+|λ|))(b−a)/|λ|

≤ C ′‖V ‖L∞ |λ|−1+δ(b−a) ≤ 1/2 ,

provided that δ < 1/(b− a) and |λ| ≥ R.

3. Returning to (2.3.7) we use the bound (2.2.3) for ρR0(λ)ρ1 and ρR0(λ)(1−
ρ1)ρ terms to obtain (2.3.5). �

The idea for obtaining the expansion (2.3.3) is to deform the contour in
the representation of the wave propagator based on the spectral theorem.

Proof of Theorem 2.9. 1. Let us first consider (2.3.2) with w0 ≡ 0 and
w1 ∈ H2(R), suppw1 ⊂ (−K,K).

By the spectral theorem, the solution of (2.3.2) can be written as

(2.3.8) U(t) :=

∫ ∞
0

sin tλ

λ
dEλ +

K∑
k=1

sin tµk
µk

vk ⊗ vk ,

where µ2
k < 0 (Imµk > 0) are the negative eigenvalues of PV with vk the

corresponding real valued normalized eigenfunctions (we use the notation
(2.2.19)) and dEλ is the spectral measure on (0,∞):

(2.3.9) PV =

∫ ∞
0

λ2dEλ +
∑
k=1

µ2
kvk ⊗ vk, I =

∫ ∞
0

dEλ +
∑
k=1

vk ⊗ vk,

Since for µ near µk, RV (µ) = (µ2
k − µ2)−1(vk ⊗ vk) + Qk(µ), where

µ 7→ Qk(µ) is holomorphic near µk, and Resµ=µk (µ2
k − µ2)−1 = −(2µk)

−1

we have

(2.3.10)
K∑
k=1

sin tµk
µk

vk ⊗ vk =
∑
±
±

K∑
k=1

Resµ=±µk iRV (±µ)e−iµt.

2. Using Stone’s Formula recalled in Theorem B.10 we write the spectral
measure dEλ in (2.3.9) in terms of RV (λ):

(2.3.11) dEλ =
1

πi
(RV (λ)−RV (−λ))λdλ ,

where we noted the change of variables (2.1.7): z = λ2, ±λ =
√
z ± i0.
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Hence

w(t)−
K∑
k=1

sin tµk
µk

vk ⊗ vk =
1

πi

∫ ∞
0

sin tλ(RV (λ)−RV (−λ))w1dλ

=
1

πi

∫ ∞
0

eitλ − e−itλ

2i
(RV (λ)−RV (−λ))w1dλ

=
1

2π
lim
ε→0+

∫
R\(−ε,ε)

e−itλ(RV (λ)−RV (−λ))w1dλ

=
1

2π
lim
ε→0+

∫
Σε

e−itλ(RV (λ)−RV (−λ))w1dλ

+
1

2π
lim
ε→0+

∫
σε

e−itλ(RV (λ)−RV (−λ))w1dλ

=
1

2π

∫
Σε0

e−itλ(RV (λ)−RV (−λ))w1dλ

+
1

2π
lim
ε→0+

∫
σε

e−itλ(RV (λ)−RV (−λ))w1dλ ,

where Σε is the union of R \ (−ε, ε) with the semicircle (0, π) 3 s 7→ εe−is,
oriented counterclockwise, and σε is the same semicircle oriented clockwise.
The paremeter ε0 is chosen so that there are no poles of RV in D(0, ε0)\{0}.

To justify convergence of the integral over Σε0 we use the spectral the-
orem (see (2.3.11)) which shows that

(RV (λ)−RV (−λ))(D2
x + V ) = λ2(RV (λ)−RV (−λ)) .

From that we conclude that for ρ ∈ C∞c equal to 1 on suppw1,

ρ(RV (λ)−RV (−λ))ρw1 = ρ(RV (λ)−RV (−λ))w1

= ρ(RV (λ)−RV (−λ))(1 + λ2)−1(1 +D2
x + V )w1 .

(2.3.12)

Since ρ(RV (λ) − RV (−λ))ρ = O(1) : L2 → L2 this shows that the integral
converges in L2

loc.

3. The integral over σε converges to 0 as ε → 0+ in L2
loc unless RV has a

resonance at 0. In that case we use Theorem 2.7 to see that

1

2π
lim
ε→0+

∫
σε

e−itλ(RV (λ)−RV (−λ))w1dλ =
1

2π
lim
ε→0+

∫
σε

e−itλ
2Π0w1

λ
dλ

=
1

π

∫ π

0
Π0w1(−ids)

= −iΠ0w1.

4. Now let ρ ∈ C∞c (R) satisfy ρ ≡ 1 on [−K,K] (recall that we assumed
that suppw1 ⊂ (−K,K)). Choose R large enough so that all the resonances
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with Imλ > −A− δ log(1+ |Reλ|) are contained in |λ| ≤ R. We deform the
contour of integration in the integral over Σε0 using the following contours:

Γ := {λ− i(A+ ε+ δ log(1 + |Reλ|)) : λ ∈ R} ,
ΓR := Γ ∩ {|Reλ| ≤ R} ,

γ±R = {±R− it : 0 ≤ t ≤ A+ ε+ δ log(1 +R)} , γR := γ+
R ∪ γ

−
R ,

γ∞R = (−∞,−R) ∪ (R,∞) .

Here we choose ε and so that there are no resonances on Γ. We also put

ΩA := {λ : Imλ ≥ −A− ε− δ log(1 + |Reλ|)} \ {0}
and define

ΠA(t) := −i
∑
λj∈ΩA

Resλ=λj (ρRV (λ)ρe−iλt) .

In this notation (2.3.10) and the residue theorem show that U(t) defined in
(2.3.8) is given by

(2.3.13) ρU(t)ρ = −imR(0)Π0ρ+ ΠA(t) + EΓR(t) + EγR(t) + Eγ∞R (t) ,

where (with natural orientations)

(2.3.14) Eγ(t) :=
1

2π

∫
γ
e−itλρ(RV (λ))−RV (−λ))ρw1dλ .

We note that the contributions from the poles of RV (−λ) at λ = −µk cancel
the contributions from sin tµk – see (2.3.10).

5. Since ρ ≡ 1 on suppw1

(2.3.15) ‖EγR(t)w1‖H1 , ‖Eγ∞R (t)w1‖H1 → 0 , R→∞.

In fact, using (2.3.5) and (2.3.12) we obtain

‖Eγ∞R (t)w1‖H1 ≤ C
∫ ∞
R

(1 + |λ|2)−1‖w1‖H2dλ ≤
C

R
‖w1‖H2 ,

and

‖EγR(t)w1‖H1 ≤
C

1 +R2
‖w1‖H2 .

Hence (2.3.15) holds for w1 ∈ H2, suppw1 ⊂ (−K,K).

6. We now return to (2.3.13) and see that

(2.3.16)
ρU(t)ρw1 = −iΠ0w1 + ΠA(t)w1 + EΓ(t)w1,

for w1 ∈ H2, suppw1 ⊂ (−K,K),

where EΓ is defined using (2.3.10) and Γ defined in Step 4.

We now show that for t� 1,

(2.3.17) ‖EΓ(t)w1‖H2 ≤ Ce−tA‖w1‖L2 .
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For that we use (2.3.5) with j = 2 and |λ| > R, and the assumption that
there are no poles of RV (λ) near Γ in a compact set. Thus we obtain:

‖EΓ(t)w1‖H2 ≤ Ce−At
∫
R
e−tδ log(1+|λ|)eδT log(1+|λ|)(1 + |λ|)‖w1‖L2dλ

≤ Ce−At
∫
R

(1 + |λ|)−δ(t−T )+1‖w1‖L2dλ

≤ C ′e−At‖w1‖L2 , t > T + 3/δ .

Since C∞c ((−K,K))) ⊂ H2 is dense in L2([−K,K]) the decomposition
(2.3.16) and the estimate (2.3.17) are valid for w1 ∈ L2, suppw1 ⊂ [−K,K]
proving theorem for w0 = 0.

The case of arbitrary w0 ∈ H1
comp and w1 ≡ 0 follows by replacing

sin tλ/λ by cos tλ in the formula for w(t, x). �

2.4. SCATTERING MATRIX IN DIMENSION ONE

Outside of the support of V , a solution of

(2.4.1) (PV − λ2)u = 0

can be written as a sum of outgoing and incoming terms

u(x) = uin(x) + uout(x) , |x| ≥ R .

Following the conventions described in the beginning of this chapter,

uin(x) = bsgn(x)e
−iλ|x| , uout(x) = asgn(x)e

iλ|x| , |x| ≥ R .

In scattering we compare the incoming waves with the outgoing ones and
mathematically that is captured by the scattering matrix which is defined
as follows

(2.4.2) S :

(
b−
b+

)
7−→

(
a+

a−

)
.

To describe S = S(λ) at frequency λ we need to find solutions to (2.4.1)
of the following form:

(2.4.3) u±(x) = e±iλx + v±(x, λ)

where v±(x, λ) is outgoing. The functions v± are easily found using the
outgoing resolvent RV (λ):

(2.4.4) v±(x, λ) = −RV (λ)
(
V e±iλx

)
.

This is well defined away from the poles of RV (λ). In particular, in the
self-adjoint case that means that u± exist for λ ∈ R \ 0.
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REMARK. The strange ± notation (which is different than the ± notation
of (2.4.2)) is motivated by the higher dimensional setting in which ± is
replace by ω ∈ Sn−1. When n = 1, S0 = {+,−}.

If we write

(2.4.5) v±sgn(x)(λ) := e−iλ|x|v±(x, λ) , |x| > R ,

then (2.4.2) shows that

S(λ) :

(
1
0

)
7−→

(
1 + v+

+(λ)
v+
−(λ)

)
,

S(λ) :

(
0
1

)
7−→

(
v−+(λ)

1 + v−−(λ)

)
,

(2.4.6)

which means that

(2.4.7) S(λ) = I +A(λ) , A(λ) =

v+
+(λ) v−+(λ)

v+
−(λ) v−−(λ)

 .

THEOREM 2.11 (Scattering matrix in terms of the resolvent).
1) The coefficients of A(λ) are meromorphic functions of λ given by the
following formulæ:

(2.4.8) vωθ (λ) =
1

2iλ

∫
R
eiλ(ω−θ)xV (x)(1− e−iλωxRV (λ)(eiλω•V )(x))dx ,

where θ, ω ∈ {+,−}.
2) If we put Eρ(λ) : L2(R) −→ C2,

(2.4.9) Eρ(λ)u :=

(∫
R
e−iλxu(x)ρ(x)dx,

∫
R
eiλxu(x)ρ(x)dx

)
,

where ρ ∈ L∞comp, ρV = V , then

(2.4.10) S(λ) = I +
1

2iλ
Eρ(λ)(I + V R0(λ)ρ)−1V Eρ(λ̄)∗.

Proof. 1. Since RV (λ) = R0(λ)(I − V RV (λ)), we have

vωθ (λ) = −e−iλθyR0(λ)(I − V RV (λ))(V eiωλ•)(y) , θy > R ,

where suppV ⊂ [−R,R].

Using the explicit formula for R0(λ) we then notice that for f with
supp f ⊂ [−R,R],

R0(λ)f(y) = − 1

2iλ
eiθλy

∫
R
e−iθλxf(x)dx , θy > R .
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Combining the two expressions we obtain (2.4.8).

2. Now we use RV (λ)V = R0(λ)(I + V R0(λ)ρ)−1V (see (2.2.9)) and (I +
V R0(λ)ρ)−1V = ρ(I + V R0(λ)ρ)−1V , so that

(2.4.11) vωθ (λ) = −e−iλθyR0(λ)ρ(I + V R0(λ)ρ)−1(V eiωλ•) , θy > R ,

and (2.4.10) follows. �

INTERPRETATION. 1. We have v+
+(λ) = v−−(λ). This can be seen by

comparing the values of the Wronskian:

W (u+, u−) :=

∣∣∣∣ u+ u−

∂xu
+ ∂xu

−

∣∣∣∣ =

{
−2iλ(1 + v−−) , x < −R ,
−2iλ(1 + v+

+) , x > R .

Since W is constant, it follows that for λ 6= 0, v+
+(λ) = v−−(λ).

2. The coefficients vωθ (λ) have important physical interpretations:

t(λ) = 1 + v±±(λ) is the transmission coefficient,

r+(λ) = v−+(λ) is the right reflection coefficient,

r−(λ) = v+
−(λ) is the left reflection coefficient.

(2.4.12)

This interpretation follows from comparing (2.4.2) and (2.4.6).

3. Changing λ to −λ in the definition of S(λ) shows that when S(λ) and
S(−λ) both exist then

(2.4.13) S(−λ) = JS(λ)−1J, J :=

(
0 1
1 0

)
.

4. When V is real and λ ∈ R \ {0} and u solves (2.4.1) we can also take
Wronskians of u and ū:

W (u, ū) =

{
iλ(|a−|2 − |b+|2), x < −R
iλ(|b−|2 − |a+|2), x > R ,

which means S given by (2.4.2) is unitary. Hence we obtain unitarity of
the scattering matrix: S(λ)∗ = S(λ)−1. A meromorphic continuation of this
equality gives

(2.4.14) V ∈ L∞comp(R;R) =⇒ S(λ̄)∗ = S(λ)−1 , λ ∈ C .

This implies that vωθ (λ) are holomorphic for λ ∈ R.

REMARK. As already remarked above we should think of± as the element
of the “sphere”, S0, in one dimensional space. As we will see the same
formula is valid in dimension n with θ, ω ∈ Sn−1. The scattering “matrix” is
then given as the sum of the idenity and an operator defined by an integral
kernel (2.4.8) in Sn−1 × Sn−1. Of course the interpretation of reflected and
transmited waves is then less clear.
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The representation given in Theorem 2.11 gives us important estimates
for the coefficients of the scattering matrix in the physical half plane, Imλ ≥
0:

THEOREM 2.12 (Estimates on the scattering matrix). For

Imλ ≥ 0 , |λ| ≥ C0 ,

we have

(2.4.15) ‖e∓iλxRV (λ)V e±iλ•‖L2→L∞ ≤
C1

|λ|
.

Consequently, (2.4.8) implies that for Imλ ≥ 0, |λ| ≥ C0,

v+
+(λ) =

1

2iλ

(
V̂ (0) +O(1/|λ|)

)
,

v−−(λ) =
1

2iλ

(
V̂ (0) +O(1/|λ|)

)
.

(2.4.16)

REMARK. The estimate (2.4.15) implies that ‖e∓iλxRV (λ)(V e±iλ•)‖L∞ ≤
C1/|λ| for Imλ ≥ 0, |λ| ≥ C0: we simply apply the operator to 1lsuppV . That
particular estimate will be used to obtain (2.4.16).

Proof. 1. Let

Rω0 (λ) := e−iλωxR0(λ)eiλω•.

Its Schwartz kernel given by

(2.4.17) Rω0 (λ, x, y) := e−iλωxR0(λ, x, y)eiλωy =
i

2λ
eiλ(|x−y|−ω(x−y)).

As |x− y| − ω(x− y) ≥ 0, (2.4.17) shows that for Imλ ≥ 0 we have

‖V Rω0 (λ)ρ‖L2→L2 ≤ C/|λ|.
Hence the Neumann series for (I + V Rω0 (λ)ρ)−1 converges for Imλ ≥ 0,
|λ| > C0. Similarly,

Rω0 (λ)ρ = O(1/|λ|) : L2 → L∞ , Imλ ≥ 0 .

2. Recalling (2.2.9),

RV (λ)V = R0(λ)(I + V R0(λ)ρ)−1V

we see

e−iωλxRV (λ)V eiωλ• = e−iωλxR0(λ)eiωλ•
(
e−iωλ•(I + V R0(λ)ρ)−1eiωλ•

)
V

= Rω0 (λ)(I + V Rω0 (λ)ρ)−1V,

where for Imλ > 0 and |λ| > C0 the convergence is guaranteed by estimates
in Step 1. The same estimates then imply (2.4.15). The asymptotic formulas
(2.4.16) then follow from the expression for vωω in (2.4.8). �
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REMARKS. 1. We should stress that unlike many results in this chapter
the statements about the scattering matrix for λ real remain valid for real-
valued potentials satisfying very weak decay conditions – see [Me85] for one
account of that and for references.

2. The scattering matrix can also be described in the following way:

(2.4.18) S(λ) =

 iλ

X̂(λ)

Ŷ (λ)

X̂(λ)
Ŷ (−λ)

X̂(λ)

iλ

X̂(λ)

 ,

where X and Y are naturally defined distributions, compactly supported in
the case when V is compactly supported – see Fig. 2.5. We do not use this
representation here but it can be very helpful in the study of resonances

(which are then the zeros of X̂) and also of inverse problems – see Melin
[Me85] and [TZ01],[Zw87],[Zw01].

The determinant of the scattering matrix is related to the determinant
defined by (2.2.28):

THEOREM 2.13 (A determinant identity). For V, ρ ∈ L∞comp satifying
ρ V = V , let

D(λ) := det(I + V R0(λ)ρ) .

Then

(2.4.19)
D(−λ)

D(λ)
= detS(λ) ,

where S(λ) is the scattering matrix.

Proof. 1. In the notation of (2.4.9) we write

(2.4.20) ρ(R0(λ)−R0(−λ))ρ =
i

2λ
Eρ(λ̄)∗Eρ(λ) ,

that is

(2.4.21) Eρ(λ̄)∗Eρ(λ) = ρ(x)eiλx ⊗ ρ(y)e−iλy + ρ(x)e−iλx ⊗ ρ(y)eiλy .

2. We now write

(I + V R0(−λ)ρ) =

(I + V R0(λ)ρ)
(
I − (I + V R0(λ)ρ)−1V (R0(λ)−R0(−λ)) ρ

)
=

(I + V R0(λ)ρ)(I − (I + V R0(λ)ρ)−1(iV Eρ(λ̄)∗Eρ(λ)/2λ)) =

(I + V R0(λ)ρ) (I + T (λ)) ,

where we defined

(2.4.22) T (λ) :=
1

2iλ
(I + V R0(λ)ρ)−1V Eρ(λ̄)∗Eρ(λ) .
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x

y

0a b

x
=
y

(b, b)

(b, 2a− b)
suppY ⊂ [2a, 2b]

suppX ⊂ [−2(b− a), 0]

ch suppV = [a, b]

Figure 2.5. The distributions X and Y appearing in (2.4.18) are de-
fined as follows: suppose that the convex hull of suppV is given by
[a, b] and solve (∂2

y − ∂2
x + V (x))A−(x, y) = 0 with A−(x, y) = δ(x− y),

x < a. The support of ∂yA−(x, y) is shaded in the figure (A−(x, y)
could be equal to a non-zero constant in the cone on the left.) For
x > b, ∂yA−(x, y) solves the free wave equation and hence ∂yA−(x, y) =
X(x− y) + Y (x+ y) where X,Y ∈ D′(R) and suppX ⊂ [−2(b− a), 0],
suppY ⊂ [2a, 2b]. The original proof of Theorem 2.16 in [Zw87] pro-
ceeded by showing that the convex hull of suppX is [−2(b − a), 0] and
then applying a theorem of Titchmarsh [HöII, Theorem 16.1.9] on the
counting of zeros of Fourier transforms. In Melin’s treatment [Me85]
(inspired by Faddeev, Gelfand–Levitan and Deift–Trubowitz) of the in-
verse problem on the line, A−(x, y) is the Schwartz kernel of an operator
intertwining −∂2

x + V (x) and −∂2
x.

We note that T (λ) : L2 → L2 is a finite rank operator.

3. Hence to prove (2.4.19) we need to show that

(2.4.23) detC2S(λ) = detL2(I + T (λ)) ,

Putting

A := (2iλ)−1(I + V R0(λ)ρ)−1)V E(λ̄)∗, B = E(λ)

we have T (λ) = AB. On the hand (2.4.10) shows that S(λ) = I + BA.
Hence (2.4.23) follows from (B.5.18): det(I +AB) = det(I +BA). �
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The multiplicity of a pole of S(λ) and S(λ)−1 is defined using the de-
terminant of the scattering matrix. The poles of the scattering matrix are
sometimes called scattering poles. Theorem 2.13 combined with Theorem
2.8 gives

THEOREM 2.14 (Multiplicities of scattering poles in one dimen-
sion). The multiplicity of a scattering pole defined by

(2.4.24) mS(λ) = − 1

2πi
tr

∮
λ
S(ζ)−1∂ζS(ζ)dζ ,

where the integral is over a positively oriented circle which includes λ and
no other pole or zero of detS(λ), is related to the multiplicity of a scattering
resonance (2.2.11) as follows:

(2.4.25) mS(λ) = mR(λ)−mR(−λ) .

The scattering matrix is always holomorphic and unitary at zero, and
thus does not ‘see’ the resonance at zero directly. However, we have the
following

THEOREM 2.15 (Scattering matrix at zero). For V ∈ L∞comp(R;R)
we have

1) If 0 is not a pole of RV , then S(0) = −J , where J is defined in (2.4.13).

2) If 0 is a pole of RV and c± ∈ R\0, c2
++c2

− = 1, are defined in Theorem 2.7,
then

S(0) =

(
2c−c+ c2

+ − c2
−

c2
− − c2

+ 2c−c+

)
.

Proof. 1. Suppose first that 0 is not a resonance. Then v±(x, 0), as defined
by (2.4.4), is outgoing by Theorem 2.4. However, the function 1 is also
outgoing at λ = 0, which means that u±(x, 0) are outgoing solutions to the
equation PV u = 0. By another application of Theorem 2.4, we see that
u± = 0. Then v± = −1, and it remains to use (2.4.5).

2. Suppose now that 0 is a resonance. By Theorem 2.7,

RV (λ) = A(λ) +
i

λ
u1 ⊗ u1,

where A(λ) is holomorphic near 0, PV u1 = 0, and u1(x) = c± for ±x � 1.
We have ∫

u1(x)V (x) dx =

∫
u′′1(x) dx = 0
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and thus, by (2.4.4), v±(x, λ) is holomorphic at λ = 0. Therefore, v±+(λ), v±−(λ)
are holomorphic at λ = 0, and for λ near 0, we have

(2.4.26) u±(x, λ) =

{
e±iλx + v±+(λ)eiλx, x� 1,

e±iλx + v±−(λ)e−iλx, −x� 1.

Since PV u
±(x, 0) = 0, we see that u±(x, 0) are multiples of u1(x). Therefore,

(2.4.27) c−(1 + v±+(0)) = c+(1 + v±−(0)).

Next, differentiating (2.4.26) in λ, we find

∂λu
±(x, 0) =

{
(±1 + v±+(0))ix+ ∂λv

±
+(0), x� 1,

(±1− v±−(0))ix+ ∂λv
±
−(0), −x� 1.

However, since (PV −λ2)u±(x, λ) = 0, we have PV ∂λu
±(x, 0) = 0. Therefore,

the Wronskians W (u1, ∂λu
±) are constant. We compute

W (∂λu
±, u1) =

{
ic+(±1 + v±+(0)), x� 1;

ic−(±1− v±−(0)), −x� 1.

Therefore,

c+(1 + v+
+(0)) = c−(1− v+

−(0)),

c+(−1 + v−+(0)) = c−(−1− v−−(0)),

Combining these equations with (2.4.27), we obtain the formula for S(0). �

Theorem 2.15 implies the following characterization of the zero resonance
in terms of the scattering matrix:

(2.4.28) detS(0) = (−1)mR(0)+1.

2.5. ASYMPTOTICS FOR THE COUNTING FUNCTION

In this section we will prove a Weyl law for the number of scattering res-
onances of a compactly supported, bounded, complex valued potential. In
higher dimensions only weaker results are known and for the existence of
resonances we need to assume that the potential is real valued: as we will
see in Chapter 3 a complex valued compactly supported potential in three
dimensions may have no resonances at all.

THEOREM 2.16 (Asymptotics for the number of resonances). Sup-
pose that V ∈ L∞com(R;C). Then

(2.5.1)
∑
{mR(λ) : |λ| ≤ r} =

2|chsuppV |
π

r(1 + o(1)) ,

as r −→∞. Here chsupp is the convex hull of the support.
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In addition, for any ε > 0,

(2.5.2)
∑
{mR(λ) : |λ| ≤ r , | Imλ| ≥ ε|Reλ|} = o(r) ,

as r −→∞.

MOTIVATION. To obtain the asymptotic formula we use the theory of
entire functions of finite type – see §D.2. One standard application of that
theory is a proof of Titchmarsh’s theorem stating that if g ∈ L1

comp(R) then

the number of zeros of ĝ in D(0, r) is equal to π−1| chsupp g|r(1 + o(r)), as
r → ∞. This follows Theorem D.2, (D.2.9), and from the Paley-Wiener
Theorem which shows that the following bound is optimal

|ĝ(λ)| ≤ Cea(Imλ)−+b(Imλ)+ , chsupp g = [a, b].

We will apply these methods to the determinant D(λ) = det(I + V R0(λ)ρ).
Using the formula (2.4.19) the growth of D(λ) will be related to the growth
of the reflection coefficients v±∓(λ) for Imλ > 0. Formula (2.4.8) shows that
the reflection coefficients can be considered as nonlinear Fourier transforms
of V : the linearizations of v±∓ at V = 0 are given by V̂ (∓2λ)/2iλ. Hence

the optimal growth of v±∓, and consequently of D(λ) can be related to the
support of V .

Before proving the theorem we need some estimates for the determinant
D(λ) = det(I+V R0(λ)ρ). These estimates will also be useful in the section
on trace formulas.

THEOREM 2.17 (Determinant estimates). There exist constants Cj,
j = 0, 1, 2, 3 such that the determinant D(λ) defined by (2.2.28) satisfies

lim
t→+∞

D(eiθt) = 1 , 0 < θ < π ,

|D(λ)| ≤ C1(1 + 1/|λ|) , Imλ ≥ 0 ,

|D(λ)| ≥ C2, Imλ > 0, |λ| ≥ C0,

|λD(λ)| ≤ C3(1 + |λ|) exp(2|chsuppV |(Imλ)−) , λ ∈ C ,

(2.5.3)

where chsuppV is the convex hull of the support of V .

In addition, if −µ2
K < −µ2

K−1 < · · ·−µ2
1 < 0, µj > 0, are the eigenvalues

of PV then the scattering matrix satisfies

(2.5.4)

∣∣∣∣∣
K∏
k=1

λ− iµk
λ+ iµk

detS(λ)

∣∣∣∣∣ ≤ e2| chsuppV | Imλ, Imλ ≥ 0.

REMARK. The estimate (2.5.4) will not be needed in this section and is
a by-product of the proof of the estimates on D(λ). It will be useful in §2.6.
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We start with the following lemma concerning trace class norms of the
free cut-off resolvent:

LEMMA 2.18. Suppose that ρ ∈ L∞(R) and supp ρ ⊂ [−L,L]. Then

‖ρR0(λ)ρ‖L1 ≤
C exp(2L(Imλ)−)

| Imλ|
, Imλ 6= 0 ,

‖ρR0(λ)ρ‖L1 ≤ C +
C

|λ|
, λ ∈ R .

(2.5.5)

Proof. 1. We start with the case of Imλ > 0. In that case, as operators on
L2,

R0(λ) = (D2
x − λ2)−1 = (Dx − λ)−1(Dx + λ)−1 .

The explicit formulae for the Schwartz kernels are given by

(Dx ± λ)−1(x, y) = ±ie±iλ(x−y)H(±(x− y)) , Imλ > 0 ,

where H(t) = 0 for t < 0 and H(t) = 1 for t ≥ 0.

From this we see that∫
R

∫
R
|ρ(x)(Dx ± λ)−1(x, y)|2dxdy ≤ 2L‖ρ‖2∞

Imλ
.

Hence

‖ρR0(λ)ρ‖2L1 ≤ ‖ρ(Dx + λ)−1‖L2‖(Dx − λ)−1ρ‖L2 ≤
C

(Imλ)2
.

2. To prove the estimate for Imλ ≤ 0 we use (2.4.20), (2.4.21) and the fact
that

(2.5.6) ‖u⊗ v‖L1 = ‖u‖L2‖v‖L2 .

This gives,

‖ρR0(λ)ρ‖L1 ≤ ‖ρR0(−λ)ρ‖L1 +
1

|λ|
‖ρeiλ•‖L2‖ρe−iλ•‖L2

≤ C

| Imλ|
+
Ce−2L Imλ

|λ|

≤ 2Ce2L(Imλ)−

| Imλ|
.

3. To establish the second inequality in (2.5.5) we first use Theorem 2.1 and
Proposition B.21 to see that

(2.5.7) ‖ρR0(λ)ρ‖L1 ≤ ‖ρR0(λ)ρ‖L2→H2 ≤ C(|λ|+ 1/|λ|).
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To see the improvement we recall (B.4.3):

‖ρR0(λ)ρ‖L1 = max
{ek},{f`}

∑
`,k

〈ρR0(λ)ρek, f`〉,

where the maximum is taken over all pairs of orthornormal bases of L2(R).
Hence the second inequality in (2.5.5) follows from

(2.5.8) |h(λ)| ≤ C0 + C0/|λ|, h(λ) :=
∑
k,`

〈ρR0(λ)ρek, f`〉,

as long as C0 is independent of the choice of the bases.

4. Consider

h1(λ) :=
λh(λ)

λ+ 2i
.

Then h1(λ) is holomorphic in the strip | Imλ| < 2. The estimate (2.5.7)
shows that

|h1(λ)| ≤ C1 + C1|λ|, | Imλ| ≤ 1,

and the first estimate in (2.5.5) (established in Steps 1 and 2 of the proof)
shows that

|h1(λ)| ≤ C2, | Imλ| = 1.

The inequality (2.5.8) then follows from the three line theorem (see §D.1).

5. Finally we show the lower bounds on D(λ) for Imλ ≥ 0, and |λ| large.
Since V R0(λ)ρ = O(1/|λ|)L2→L2 (Theorem 2.1), (I+V R0(λ)ρ)−1 exists and
is uniformly bounded on L2 in that range of λ’s. Hence

D(λ)−1 = det((I + V R0(λ)ρ)−1)

= det(I − V R0(λ)ρ(I + V R0(λ)ρ)−1)

≤ exp
(
‖V ‖∞‖ρR0(λ)ρ‖L1‖(I + V R0(λ)ρ)−1‖

)
= O(1),

which gives the lower bound. �

Proof of Theorem 2.17. 1. To study D(eiθt) we use (B.5.20) with A = 0 and
B = V R0(eiθt)ρ:

|D(eiθt)− 1| ≤ ‖V ‖∞‖ρR0(eiθt)ρ‖L1e2+‖V ‖∞‖ρR0(eiθt)ρ‖L1

The first estimate in (2.5.5) shows that the right hand side goes to 0 as
t→ +∞ for 0 < θ < π.

2. We now write

V R0(λ)ρ = A(λ) +B(λ), A(λ) :=
i

2λ
V ⊗ ρ
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where, B(λ) is holomorphic and, by applying (2.5.6) and the estimates
(2.5.5),

‖B(λ)‖L1 ≤ C, Imλ ≥ 0.

From (B.5.19) we see

|D(λ)| = | det(I +A(λ) +B(λ))| ≤ det(I + |A(λ)|)| det(I + |B(λ)|)

≤ e‖B(λ)‖L1 det(I + |A(λ)|) ≤ C det(I + |A(λ)|).

(2.5.9)

Here (using the notation (2.2.19))

|A(λ)| := (A(λ)∗A(λ))
1
2 =

1

2|λ|
‖V ‖2
‖ρ‖2

ρ̄⊗ ρ

and hence (see Exercise B.1)

det(I + |A(λ)|) = 1 +
‖V ‖2‖ρ‖2

2|λ|
.

Returning to (2.5.9) we obtain

(2.5.10) D(λ) = O(1) +O(1/|λ|) , Imλ ≥ 0 .

3. For estimates in Imλ ≤ 0 we use Theorem 2.13:

(2.5.11) D(λ) = detS(−λ)D(−λ) .

Hence we need to estimate detS(−λ) for Imλ ≤ 0.

Using (2.4.7) and Theorem 2.12 we see that for Imλ ≤ 0, |λ| ≥ C0,

(2.5.12) detS(−λ) = 1− v−+(−λ)v+
−(−λ) +O(1/|λ|) .

Now, (2.4.8) and (2.4.15) show that for Imλ ≤ 0, |λ| ≥ C0,

|v−+(−λ)v+
−(−λ)| ≤ C

∫
R

∫
R
e2 Imλ(x−y)|V (x)||V (y)|dxdy

≤ C ′e−2 Imλ| chsuppV |,

which shows that

(2.5.13) | detS(−λ)| ≤ Ce2| chsuppV || Imλ|, Imλ ≤ 0, |λ| ≥ C0.

From (2.5.10) and (2.5.11) we conclude that

|λD(λ)| ≤ C(1 + |λ|)e2| chsuppV |(Imλ)− , |λ| ≥ C0,

Since λD(λ) is holomorphic it follows the estimate is valid everywhere. That
completes the proof of (2.5.3).

4. To establish (2.5.4) we see that (2.5.13) and unitarity of S(λ) for λ ∈ R
shows that

g(λ) := e2iλ| chsuppV |
K∏
k=1

λ− iµk
λ+ iµk

detS(λ),
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satisfies

|g(λ)| =
{

1 λ ∈ R,
O(1) Imλ ≥ 0, |λ| ≥ C0.

Using Theorem 2.14 we see that product over µk’s removed the possible
singularities of detS(λ). This means that g(λ) is holomorphic for Imλ ≥ 0.
But then the Phragmén–Lindelöf theorem (see for instance [Ti39, §5.61] for
the particular case needed here) shows that |g(λ)| ≤ 1 for Imλ ≥ 0 which is
(2.5.4). �

Proof of Theorem 2.16. 1. Using Theorem 2.8 we will prove the theorem
by obtaining an asymptotic formula for the number of zeros of the entire
function

f(λ) := λD(λ) ,

where D(λ) is defined in (2.2.28). The factor λ removes the pole at λ = 0 –
see the second estimate in (2.5.3).

2. By rescaling and translation we can assume that

(2.5.14) chsuppV = [−1, 1] .

In view of Theorem D.2 and (D.2.9) it suffices to show that

(2.5.15)

∫
R

log+ |f(x)|
1 + x2

dx <∞ , |f(λ)| ≤ (1 + |λ|)Ne4(Imλ)−

and

(2.5.16) lim sup
|λ|→∞

log |f(λ)|
|λ|

= 4.

The conditions in (2.5.15) follow immediately from (2.5.3) and we are left
to establish (2.5.16), that is to calculate the type of f .

3. From (2.5.3), (2.5.11) and (2.5.12) we see that for Imλ ≤ 0, |λ| ≥ C0,

|v−+(−λ)v+
−(−λ)|/C − C ≤ |D(λ)| ≤ C|v−+(−λ)v+

−(−λ)|+ C.

Also, using (2.4.8), (2.4.15) and (2.5.14)

|v±∓(−λ)| = O(1)

∫ 1

−1
e∓2 Imλxdx = O(e2| Imλ|).

Hence, the type of λD(λ) will be exactly 4 if we show that we cannot have

(2.5.17) |v−ωω (−λ)| ≤ Ce2(1−δ)|λ| , Imλ ≤ 0, |λ| ≥ C ,
with δ > 0 for ω = + or for ω = −.

4. Let us choose β > 0 such that RV (λ) is holomorphic for Imλ ≥ β;
that is possible as there are only finitely many poles on RV (λ) in Imλ ≥ 0.
Motivated by Theorem 2.12 we define

fω(x, λ) := e−iωλxRV (λ)(V eiωλ•)(x),
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which is holomorphic for Imλ ≥ β. Theorem 2.12 (see also the remark
following the statement) shows that

(2.5.18) |f−(x, λ)| ≤ C/|λ|, Imλ > β.

Since v−+(−λ + iβ) is holomorphic for Imλ ≤ 0, (2.5.17) with ω = +
implies that

(2.5.19) |v−+(−λ+ iβ)| ≤ Ce2(1−δ)|λ|, Imλ ≤ 0, δ > 0,

and we need to find a contradiction to this statement.

We start with (2.4.8): for Imλ ≤ 0,

v−+(−λ+ iβ) = − 1

2(β + iλ)

∫
R
e2iλxV (x)e2βx(1− f−(x,−λ+ iβ))dx.

We then introduce

V β
ε (x) := 1l[1−ε,1](x)V (x)e2βx ,

gβε (x, λ) = 1l[1−ε,1](x)f−(x,−λ+ iβ) .
(2.5.20)

5. Take ε < δ, and define

Iε(2λ) :=

∫
R
e2iλxV β

ε (x)(1− gβε (x, λ))dx .

which holomorphic in Imλ ≤ 0. In the same range of λ’s∫
R
e2iλx 1l[−1,1−ε](x)V (x)e2βx(1− f−(x,−λ− iβ))dx =

O(1)

∫ 1−ε

−1
e−2 Imλx(1 +O(|λ|−1))dx = O(e2(1−ε)|λ|).

Hence, the fact that ε < δ and the assumption (2.5.19) show that

|Iε(2λ)| ≤ Ce2(1−ε)|λ| .

The Paley-Wiener theorem [HöI, Theorem 7.3.1] then shows that

Îε(x) = 0 , x > 1− ε ,
that is

V β
ε (x) =

1

2π

∫
R

∫
R
e2iλ(y−x)V β

ε (y)gβε (y, λ)dλdy .

for 1− ε ≤ x ≤ 1. Plancherel’s theorem and the Cauchy–Schwarz inequality
then imply that

‖V β
ε ‖L2 =

∥∥∥∥∫
R
e2iλyV β

ε (y)gβε (y, λ)dy

∥∥∥∥
L2(dλ)

≤
∥∥∥‖V β

ε ‖L2‖gβε (•, λ)‖L2(dy)

∥∥∥
L2(dλ)

= ‖V β
ε ‖L2‖gβε ‖L2(dydλ).

(2.5.21)
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We note that gβε ∈ L2(dλ) because of the O(1/|λ|) decay of f− (2.5.18).

Because of the factor 1l[1−ε,1] in the definition of gβε in (2.5.20), we have

(2π)−1‖gβε ‖L2(dydλ) → 0 , ε→ 0 + .

It follows from (2.5.21) that for ε small enough ‖V β
ε ‖L2 = 0. Recalling

(2.5.20) this means that

V (x) = 0 for 1− ε < x < 1,

contradicting the assumption that chsupp V = [−1, 1].

6. The same argument applies under the assumption that (2.5.17) holds for
ω = − and it shows that

V (x) = 0 for −1 < x < −1 + ε,

leading again to contradiction. Hence (2.5.16) holds and Theorem D.2 gives
the asymptotics of resonances. �

2.6. TRACE AND BREIT–WIGNER FORMULAS

We will now prove three closely related trace formulas. The first one,
the Birman–Krĕın formula, relates the scattering matrix to the trace of
f(PV )− f(P ). The second is a version of the Breit–Wigner approximation
(1.1.3) for the effect of resonances on the spectrum. The last formula is a
Poisson formula which relates the trace of the wave group to a sum of res-
onances

∑
e−iλj |t| and is a special, refined, case of Melrose’s trace formula

described in §3.10. The Birman–Krĕın formula is also valid in higher dimen-
sions and for more general perturbations. However, Breit–Wigner formulas
in higher dimensions are harder to formulate rigorously – see §§3.13 and 7.6
for comments on that.

From a technical point of view the trace formulas are consequences of
the determinant identity presented in Theorem 2.13.

THEOREM 2.19 (Birman–Krĕın formula in one dimension). Sup-
pose that V ∈ L∞comp(R;R). Then for f ∈ S (R) the operator f(PV )− f(P0)
is of trace class and

tr (f(PV )− f(P0)) =
1

2πi

∫ ∞
0

f(λ2) tr
(
S(λ)−1∂λS(λ)

)
dλ

+
K∑
k=1

f(Ek) +
1

2
(mR(0)− 1)f(0) ,

(2.6.1)

where S(λ) is the scattering matrix and EK < · · · < E1 < 0 are the (nega-
tive) eigenvalues of PV .
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INTERPRETATION. As in the beginning of Section 2.3 we can compare
this result to a result involving eigenvalues. Let us denote the Dirichlet
realization of PV on [a, b] by PDV . The spectrum of PDV is discrete,

EN < EN−1 < · · · < E1 ≤ 0 < λ2
0 < λ2

1 < · · · → ∞ .

For f ∈ S (R), we have

(2.6.2) tr f(PDV ) =

∞∑
j=0

f(λ2
j ) +

N∑
k=1

f(Ek)

which can be written as

(2.6.3) tr f(PDV ) =

∫ ∞
0

f(λ2)
dN(λ)

dλ
dλ+

N∑
k=1

f(Ek)

where

N(λ) = |{λ2
j : λ2

j ≤ λ2}|
is the counting function for the positive eigenvalues of PDV .

Hence we have the following correspondence between confined (discrete
spectrum) and open (continuous spectrum/scattering) problems:

N(λ) ←→ σ(λ) :=
1

2πi
log detS(λ)

σ′(λ) =
1

2πi
tr
(
S(λ)−1∂λS(λ)

)
.

(The last identity follows from Lemma B.26.) Since S(λ) is unitary for
λ ∈ R the right hand side is real. The natural choice of the branch of the
logarithm is dictated by (2.4.28): σ(0) = 1

2(mR(0)+1). (In three dimensions

it is σ(0) = 1
2m̃R(0), and in odd dimension n ≥ 5, σ(0) = 0 – see (3.7.28).)

The analogy with the counting function can however be somewhat mis-
leading as σ(λ) does not have the monotonicity properties of N(λ) – see
Figure 2.6. A more accurate spectral interpretation is given in terms of the
Krĕın spectral shift function – see Yafaev [Ya92, Chapter 8] and [Ya09,
Chapter 9].

Proof of Theorem 2.19. For simplicity we assume that there are no negative
eigenvalues as their contribution is easy to analyse.

1. Since we assume that V ∈ L∞(R;R), PV is self-adjoint and we can apply
Stone’s formula as we did in the proof of Theorem 2.9. That gives

f(PV ) =
1

2πi

∫ ∞
0

f(λ2)(RV (λ)−RV (−λ))2λdλ

=
1

4πi

∫
R
f(λ2)(RV (λ)−RV (−λ))2λdλ ,
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where we used the fact that the integrand is even in λ. The integral on the
left should be understood as an operator L2

comp → L2
loc.

2. We write

RV (λ)−R0(λ) = −RV (λ)V R0(λ)

= −R0(λ)(I + V R0(λ)ρ)−1V R0(λ) .
(2.6.4)

We note that this operator has a simple pole at λ = 0. The residue is given
by (u⊗ u+ 1⊗ 1/2)/i, where u is given in (2.2.27) and u = 0 if mR(0) = 0.

We define

B(λ) := −2λRV (λ)V R0(λ)

= −2λR0(λ)(I + V R0(λ)ρ)−1V R0(λ) : L2
comp → L2

loc,
(2.6.5)

which is a meromorphic family of operators, holomorphic in Imλ ≥ 0. (In
view of (2.6.4), the simple pole at λ = 0 is cancelled by the λ factor and we
assumed there were no negative eigenvalues.) With this notation we have

f(PV )− f(P0) =
1

4πi

∑
±

∫
R
f(λ2)B(±λ)dλ .(2.6.6)

The spectral theorem shows (again we assumed that there are no eigenvalues;
easy modifications are needed otherwise) that

(2.6.7) ‖RV (λ)‖L2→L2 =
1

d(λ2,R+)
≤ 1

|λ| Imλ
, Imλ > 0 .

Applying this with V = 0 gives, for Imλ > 0,

‖λR0(λ)‖L2→H2 ≤ C|λ|(‖D2
xR0(λ)‖L2→L2 + ‖R0(λ)‖L2→L2)

≤ C|λ|(1 + |λ|2)‖R0(λ)‖L2→L2

≤ C(1 + |λ|2)/ Imλ.

This estimate and the fact that V ∈ L∞comp show that V R0(λ) is of trace
class for Imλ > 0 (see Theorem B.4) and that

‖λV R0(λ)‖L1 ≤ C
1 + |λ|2

Imλ
, Imλ > 0.

Combining this with (2.6.5) and (2.6.7)

(2.6.8) ‖B(λ)‖L1 ≤
1 + |λ|2

| Imλ|2|λ|
≤ 1 + |λ|2

| Imλ|3
, Imλ > 0.

Let g ∈ S (C), supp g ⊂ {| Imλ| ≤ 1}, be an almost analytic extention
of f(λ2) (see B.2):

(2.6.9) g(λ) = f(λ2) , λ ∈ R , ∂λ̄g(λ) = O(| Imλ|∞) .
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The Cauchy–Green formula (D.1.1) applied to the right hand side of (2.6.6)
shows that

f(PV )− f(P0) =
1

2π
(t+(f)− t−(f)) ,

t±(f) :=

∫
± Imλ>0

∂λ̄g(λ)B(±λ)dm(λ) .
(2.6.10)

Using (2.6.8) and (2.6.9) we conclude that for any N > 0, and in particular
for N ≥ 4,

‖t±(f)‖L1 ≤ CN
∫

0<± Imλ<1
| Imλ|N (1 + |λ|)−N+2| Imλ|−3dm(λ) <∞ .

This proves the claim that

(2.6.11) f(PV )− f(P0) ∈ L1 .

3. To calculate the trace of f(PV ) − f(P0) we use Theorem 2.13. Taking
logarithmic derivatives of both sides of (2.4.19) we obtain

trF (−λ) + trF (λ) = tr ∂λS(λ)S(λ)−1 ,

F (λ) := −∂λ(V R0(λ)ρ)(I + V R0(λ)ρ)−1 .
(2.6.12)

We note that F (λ), λ ∈ C, is a meromorphic family of operators in L1(L2),
with no poles in Imλ > 0 (we assumed that there are no negative eigenval-
ues). From (2.2.33) (see §C.4) we see that

(2.6.13) trF (λ) = − tr(λ−1Q1 − λ−1Q−1) + ϕ(λ) =
1−mR(0)

λ
+ ϕ(λ),

where ϕ(λ) is holomorphic in Imλ ≥ 0. To estimate ϕ(λ) we recall (see the
proof of Theorem 2.10) that

‖V R0(λ)ρ‖L2→H2 ≤ C|λ|eC(Imλ)− , |λ| ≥ 1.

The Cauchy estimate (C.3.1) (or an explicit calculation) show that for
Imλ ≥ 0, |λ| > 1,

‖∂λV R0(λ)ρ‖L1 ≤ C‖∂λV R0(λ)ρ‖L2→H2 ≤ C ′|λ|.

From the definition of F (λ) and from the invertibility of I + V R0(λ)ρ for
|λ| � 1, Imλ ≥ 0 it now follows that

| trF (λ)| ≤ C|λ|, |λ| ≥ C0, Imλ ≥ 0.

Since ϕ(λ) is holomorphic in Imλ ≥ 0 we obtain.

|ϕ(λ)| ≤ C(1 + |λ|), Imλ ≥ 0.

4. We claim that for Imλ > 0

(2.6.14) trF (λ) = trB(λ) ,
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where B(λ) was defined by (2.6.5).

To see (2.6.14) we use the fact that R0(λ) is bounded on L2 for Imλ > 0
and hence

∂λ(V R0(λ)ρ) = 2λV R0(λ)2ρ .

Using this, the cyclicity of the trace (Theorem B.4.9 applied twice) and
ρV = V , we obtain, always for Imλ > 0,

trF (λ) = −2λ trR0(λ)(I + V R0(λ)ρ)−1V R0(λ) = trB(λ) ,

which is (2.6.14).

5. We now use (2.6.14) and (D.1.1) in (2.6.10):

tr (f(PV )− f(P0)) =
1

2π

∑
±
±
∫
± Imλ>0

∂λ̄g(λ) trF (±λ)dm(λ)

=
1

4πi

∑
±

∫
γ±(ε)

g(λ) trF (±λ)dλ

+
1

2π

∑
±
±
∫

Ω±(ε)
∂λ̄g(λ) trF (±λ)dm(λ),

(2.6.15)

where where

Ω±(ε) = D(0, ε) ∩ C±, C± := {± Imλ > 0},

γ+(ε) = ∂(C+ \ Ω+(ε)), γ−(ε) = ∂(C+ ∪ Ω−(ε)),

and the boundaries are positively oriented (as boundaries of the indicated
sets).

Estimates (2.6.8) (applied using (2.6.14)) and (2.6.9) show that the last
term on the right hand side of (2.6.15) is O(ε∞). Using (2.6.12) we then see
that

1

4πi

∑
±

∫
γ±(ε)

g(λ) trF (±λ)dλ =
1

4πi

∫
R
f(λ2) tr ∂λS(λ)S(λ)−1dλ

+
1

4πi

∑
±

∫
γ±(ε)\R

g(λ) trF (±λ)dλ+O(ε) .

(The error term O(ε) comes from passing to the limit from γ±(ε)∩R to R.)

The structure of F (λ) near 0 given in (2.6.13) shows that

1

4πi

∑
±

∫
γ±(ε)\R

g(λ) trF (±λ)dλ = (mR(0)− 1)
f(0)

4πi

∫
∂D(0,ε)

dλ

λ
+O(ε)

=
1

2
(mR(0)− 1)f(0) +O(ε).



74 2. TRACE AND BREIT–WIGNER FORMULAS

Letting ε → 0 and noting that trS(λ)−1∂S(λ) is even (see (2.6.12)) we
obtain (2.6.1). �

REMARK. An examination of the proof of (2.6.11) shows that TV : f 7→
tr f(PV ) − f(P0) defines a tempered distribution, TV ∈ S ′(R). This will
be important in higher dimensions where the properties of detS(λ) are less
clear.

The density appearing in (2.6.1) can be expressed in terms of resonances
as follows:

THEOREM 2.20 (Breit–Wigner approximation). Suppose that V ∈
L∞comp(R;R). Then

(2.6.16)
1

2πi
tr ∂λS(λ)S(λ)−1 = − 1

π
| chsuppV | − 1

π

∑
j

Imλj
|λ− λj |2

,

where the sum is over all non-zero resonances of PV and it converges for
λ ∈ R.

INTERPRETATION. 1. The operator −i∂λS(λ)S(λ)−1 is known as the
Eisenbud–Wigner time delay operator – see [TZ01, Proposition 1.1].

2. For Imλj < 0, the density

dmλj (λ) = − 1

π

Imλj
|λ− λj |2

dλ

defines a probability measure on R and is known in this context as the Breit–
Wigner Lorentzian. Formally, if Imλj = 0 then the Lorentzian becomes
δ(λ − λj) which is consistent with the discussion following Theorem 2.19.
The Birman–Krĕın formula can then be written as

tr (f(PV )− f(P0)) =
∑
j

∫ ∞
0

f(λ2)dmλj (λ)− | chsuppV |
π

∫ ∞
0

f(λ2)dλ

+
K∑
k=1

f(Ek) +
1

2
(mR(0)− 1)f(0).

This means that the spectral shift function (see §3.13 for discussion and
references) is expressed in terms of resonances. This provides a rigorous
formulation of the Breit–Wigner approximation (1.1.3) – see Fig. 2.6.

3. The approximation based on (2.6.16) uses finitely many λj ’s for λ in a
bounded set – see Figure 2.6. Each term in the sum on the right hand side
is O(λ−2) as λ→∞ but in the proof of we will see that

− 1

π

∑
j

Imλj
|λ− λj |2

=
1

π
| chsuppV |+O(λ−2), λ→ +∞.
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Figure 2.6. Breit–Wigner approximation in a simple example: The res-
onances for the potential on top are computed using a code squarepot.m
by David Bindel [BZ]. The right hand side of (2.6.16) is computed us-
ing 40 of those resonances. The ones shown correspond to the peaks in
trS(λ)−1∂λS(λ)/2πi. The scattering matrix was computed using the
transfer matrix – see Exercise 2.6. The plot was truncated to show the
fine feature agreement with (2.6.16).

When V ∈ C∞c (R;R) the asymptotics of σ(λ) = tr ∂λS(λ)S(λ)−1/2πi pre-
sented in Exercise 2.4 (see Theorem 3.67 for the general version) show that
O(λ−2) can be replaced by a full asymptotic expansion.

Proof of Theorem 2.20. 1. Theorem 2.14 shows that the zeros of detS(λ)
for Imλ ≥ 0 are given by −λj where λj are resonances of PV . They are then
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the zeros of

g(λ) := e2iλ| chsuppV |
K∏
k=1

λ− iµk
λ+ iµk

detS(λ),

where we used the notation of (2.5.4). From that bound we see that g(λ)
is holomorphic for Imλ ≥ 0 and that |g(λ)| ≤ 1 there. Carleman’s estimate
(D.1.12) then gives

(2.6.17)
∑
j

| Imλj |
|λj |2

<∞.

2. Hadamard’s factorization theorem (D.2.7) applied to λD(λ) (where D(λ)
is given by (2.2.28) and satisfies (2.4.19)) and the symmetries of detS(λ)

(detS(λ)−1 = detS(−λ) = detS(λ̄) – see (2.4.13) and (2.4.14)) show that

(2.6.18) detS(λ) = eiaλ
P (λ̄)

P (λ)
, P (λ) :=

∏
j

(
1− λ

λj

)
e
λ
λj , a ∈ R,

where the product is over all non-zero resonances. For λ ∈ R, (2.6.17) and
(2.6.18) give

1

2πi
tr ∂λS(λ)S(λ)−1 =

a

2π
− 1

2πi

∑
j

(
1

λ− λj
− 1

λ− λ̄j
+

1

λj
− 1

λ̄j

)

=
a

2π
− 1

π

∑
j

(
Imλj
|λ− λj |2

− Imλj
|λj |2

)

= −B − 1

π

∑
j

Imλj
|λ− λj |2

, B := − a

2π
− 1

π

∑
j

Imλj
|λj |2

.

To obtain (2.6.16) it remains to show that B = | chsuppV |/π.

3. We start by estimating tr ∂λS(λ)S(λ)−1 as λ → ±∞. For that we use
Theorem 2.4.23, detS(λ) = det(I+T (λ)) where T (λ) is defined by (2.4.22).
Then,

| tr ∂λS(λ)S(λ)−1| = | tr ∂λT (λ)(I + T (λ))−1|

≤ ‖∂λT (λ)‖L1‖(I + T (λ))−1‖L2→L2 .

The estimate V R0(λ)ρ = O(|λ|−1)L2→L2 implies that

(I + V R0(λ)ρ)−1 = O(1)L2→L2 ,

λ→ ±∞. The definition (2.4.22) gives T (λ) = O(|λ|−1)L2→L2 so that

(I + T (λ))−1 = O(1)L2→L2 , λ→ ±∞.
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To estimate the trace class norm of ∂λT (λ) we write, in the notation of
(2.4.22), and for λ→ ±∞ (real)

‖∂λT (λ)‖L1 ≤ ‖∂λ(I + V R0(λ)ρ)−1V (λ−1Eρ(λ)∗Eρ(λ)‖L1
+ ‖(I + V R0(λ)ρ)−1V ∂λ(λ−1Eρ(λ)∗Eρ(λ)‖L1

≤ C‖∂λ(V R0(λ)ρ)‖L2→L2‖Eρ(λ)∗Eρ(λ)‖L1
+ C‖V R0(λ)ρ‖L2→L2‖∂λ(λ−1Eρ(λ)∗Eρ(λ))‖L1

≤ Cλ−2.

.

Here we used the bound ‖∂`λV R0(λ)ρ‖L2→L2‖ ≤ C/|λ| (obtained from the
explicit formula for R0(λ)) and the fact that Eρ(λ)∗Eρ(λ) is a finite rank
operator (2.4.21) which can be differentiated with respect to λ keeping the
boundedness in λ.

4. Returning to the calculation in Step 2 we see that

(2.6.19)
1

π

∑
j

| Imλj |
|λ− λj |2

= B +O(λ−2), λ→ ±∞.

For δ > 0 and Λ > |λ| we split the left hand side into three terms

1

π

∑
j

| Imλj |
|λ− λj |2

= S[0,(1−δ)Λ](λ) + S(1−δ,1+δ)Λ(λ) + S[(1+δ)Λ,∞)(λ),

SI :=
1

π

∑
|λj |∈I

| Imλj |
|λ− λj |2

, I ⊂ [0,∞).

We then see that (2.6.17) gives (recall |λ| < Λ)

S[(1+δ)Λ,∞)(λ) ≤
∑

|λj |≥(1+δ)Λ

| Imλj |
(|λj | − Λ)2

≤ δ−2
∑

|λj |≥(1+δ)Λ

| Imλj |
|λj |2

= oδ(1),

uniformly as Λ→∞. Also, the asymptotic formula for the counting function
of resonances (2.5.1) gives∫ Λ

−Λ
S[1−δ,1+δ](λ)dλ = O(δΛ) + o(Λ).

Hence integrating (2.6.19) from −Λ to Λ we obtain

1

π

∑
|λj |≤(1−δ)Λ

∑
±

tan−1

(
Λ± Reλj
| Imλj |

)
+O(δΛ) + oδ(Λ) = 2BΛ +O(1).

In view of (2.5.2) we only need to sum over | Imλj | < δ2|λj | at an expense
of adding another oδ(Λ) error term.
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Since for x > 0, tan−1(x)/π = 1/2 +O(〈x〉−1), |λj | ≤ (1 − δ)Λ and for
| Imλj | < δ2|Reλj |∑

±
tan−1

(
Λ± Reλj
| Imλj |

)
= 1 +O

(
| Imλj |

Λ− |Reλj |

)
= 1 +O(δ).

Combined with (2.5.1) this gives

2

π
| chsuppV |Λ +O(δΛ) + oδ(Λ) = 2BΛ +O(1).

Since δ is arbitrary this shows that B = | chsuppV |/π as claimed. �

REMARK. If we use the representation (2.4.18) of the scattering matrix,

the transmission coefficient is given by t(λ) = iλ/X̂(λ). Exercise (2.10.1)

then shows that detS(λ) = X̂(−λ)/X̂(λ). Our mathematical version of
the Breit–Wigner approximation (2.6.16) then follows from results of Titch-
marsh [Ti26, Theorems IV and VI] and from [Zw87] where chsuppX =
[−2| chsuppV |, 0] is established. Here we used a different complex function
theory to establish (2.5.1) from which we obtained (2.6.16) directly.

We now define the following distribution on R: with the sum over all
resonances and ϕ ∈ C∞c ((−L,L)),

(2.6.20) p.v.
∑
j

e−i|t|λj (ϕ) := lim
R→∞

∑
|λj |≤R

∫
R
ϕ(t)e−iλj |t|dt.

To check that (2.6.20) defines a distribution we integrate by parts twice
using e−iλt = ∂t

(
(i/λ)e−iλt

)
:

p.v.
∑
λj 6=0

e−i|t|λj (ϕ) = lim
R→∞

∑
0<|λj |≤R

∫ L

0
(ϕ(t) + ϕ(−t))e−iλjtdt

= lim
R→∞

∑
0<|λj |≤R

(
2i

λj
ϕ(0) +O

(
sup |ϕ(2)|
|λj |2

))

Thanks to (2.5.1),
∑

λj 6=0 |λj |2 < ∞, while the symmetry of resonances

λj → −λ̄j gives ∑
0<|λj |≤R

2i

λj
=

∑
0<|λj |≤R

2 Imλj
|λj |2

.

The estimate (2.6.17) shows that the series on the right converges and hence
(2.6.20) is well defined.

As a consequence of Theorems 2.19 and 2.20 we have the following trace
formula for resonances:
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THEOREM 2.21 (Trace formula for resonances). Suppose that V ∈
L∞comp(R;R). Then for ϕ ∈ C∞c (R) the operator∫

R
ϕ(t)

(
cos t
√
P V − cos t

√
P 0

)
dt

is of trace class and, using definition (2.6.20),

2 tr
(

cos t
√
P V − cos t

√
P 0

)
= p.v.

∑
λ∈C

mR(λ)e−iλ|t| − 2| chsuppV |δ0(t)− 1,
(2.6.21)

in the sense of distributions on R.

INTERPRETATION. 1. The expansion (2.3.1) leads directly to a trace
formula for, say, the Dirichlet realization of PV on [a, b]. We denote that
Dirichlet realization by PDV . Assuming for simplicity that there are no non-
positive eigenvalues, we have

2 tr cos t
√
PDV =

∑
λ2∈Spec(PDV )

e−iλt .

Hence the expansion (2.6.21) is an exact analogue of this well known con-
sequence of the spectral theorem. What is remarkable is the fact that un-
like the resonance wave expansions given in Theorem 2.9 the trace formula
(2.6.21) is exact.

2. The Poisson formula (2.6.21) remains valid in higher dimensions as
(3.10.2) but with a less precise statement at t = 0.

Proof of Theorem 2.21. 1. In the distributional sense,

(2 cos t
√
P V )(ϕ) = f(PV ), f(z) := ϕ̂(

√
z) + ϕ̂(−

√
z),

where f ∈ C∞(R)∩S ((0,∞)) (and hence Theorem 2.19 is applicable as we
can replace f by χf ∈ S (R) where χ ∈ C∞(R) vanishes for sufficiently large
negative values). Compared to the definition (2.6.20) we see that (2.6.21) is
equivalent to

tr (f(PV )− f(P0)) = lim
R→∞

∑
|λj |≤R

∫
R
ϕ(t)e−iλj |t|dt

− 2| chsuppV |ϕ(0)− ϕ̂(0).

(2.6.22)
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Writing σ(λ) := log detS(λ)/2πi, Theorem 3.51 shows that (since σ′(λ)
is even)

tr (f(PV )− f(P0)) = 1
2

∫ ∞
−∞

f(λ2)σ′(λ)dλ+

K∑
k=1

f(Ek) + 1
2(mR(0)− 1)f(0).

In Step 3 of the proof of Theorem 2.20 we showed that σ′(λ) = O(〈λ〉−2)
and thus the integral converges.

Hence the proof of the theorem is reduced to showing that∫
R
ϕ̂(λ)σ′(λ)dλ+mR(0)ϕ̂(0) +

∑
Imλj>0

(ϕ̂(λj) + ϕ̂(−λj))

= lim
R→∞

∑
|λj |≤R

∫
R
ϕ(t)e−iλj |t|dt− 2| chsuppV |ϕ(0).

(2.6.23)

We first note that for Imλj < 0, t 7→ e−i|t|λj is a tempered distribution. The
symmetry λj 7→ −λ̄j then shows that

Ft7→λ

 ∑
|λj |≤R
Imλj<0

e−iλj |t|

 =
∑
|λj |≤R
Imλj<0

2| Imλj |
|λ− λj |2

.

Parseval’s formula [HöI, (7.1.8)] and (2.6.17) then show that

(2.6.24) lim
R→∞

∑
|λj |≤R
Imλj<0

∫
R
ϕ(t)e−iλj |t|dt =

1

π

∫
R
ϕ̂(λ)

∑
Imλj<0

| Imλj |
|λ− λj |2

dλ.

Inserting (2.6.16) (Theorem 2.20) into (2.6.23) and using
∫
R ϕ̂(λ)dλ = 2πϕ(0)

shows that it remains to prove (recall that resonances in Imλ > 0 lie on the
imaginary axis and are square roots of finitely many eigenvalues of PV )

1

π

∫
R
ϕ̂(λ)

∑
Imλj>0

Imλj
|λ− λj |2

dλ+
∑

Imλj>0

∫
R
ϕ(t)e−iλj |t|dt

=
∑

Imλj>0

(ϕ̂(λj) + ϕ̂(−λj)) = 2
∑

Imλj>0

∫
R
ϕ(t) cos(λjt) dt.

(2.6.25)

But the same argument which led to (2.6.24) shows that the first term on the

left hand side is equal to
∑

Imλj>0

∫
R ϕ(t)eiλj |t|dt. Since eiλj |t| + e−iλj |t| =

2 cos(λjt) this proves (2.6.25), concluding the proof of (2.6.21). �
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Re z

Im z

R−R

Γ

θ

Figure 2.7. Curve Γ used in complex scaling. The curve is given by
x 7→ x+ ig(x) for a C∞ function g satisfying g(x) = 0 for −R ≤ x ≤ R
and g(x) = x tan θ for |x| sufficiently large, where θ is a given constant.

2.7. COMPLEX SCALING IN ONE DIMENSION

In this section we present the simplest case of the method of complex scaling
which produces a natural family of non-self-adjoint operators whose discrete
spectrum consists of resonances.

The idea is to consider D2
x as a restriction of the complex second deriv-

ative D2
z to the real axis thought of as a contour in C. This contour is then

deformed away from the support of V so that P can be restricted to it. This
provides ellipticity at infinity at the price of losing self-adjointness.

An account of this method in higher dimensions will be provided in
§4.5. Again, in one dimension we can provide a low-tech self-contained
presentation.

Let Γ ⊂ C be a C1 simple curve. We define differentiation and integra-
tion of functions mapping Γ to C as follows. Let γ(t) be a parametrization
R→ Γ ⊂ C, and let f ∈ C1(Γ) in the sense that f ◦ γ ∈ C1(R). We define

∂Γ
z f(z0) = γ′(t0)−1∂t(f ◦ γ)(t0) , γ(t0) = z0 ,

where the inverse and the multiplication are in the sense of complex numbers.
We further define

DΓ
z =

1

i
∂Γ
z .

By the chain rule, ∂Γ
z f(z0) is independent of parametrization. In fact, if α

is another parametrization, α(s0) = z0, then

γ′(t0) = c(s0)α′(s0), c(s0) =
(
∂s(γ

−1 ◦ α)(s0)
)−1 ∈ R.
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Then

α′(s0)−1∂s(f ◦ α)(s0) = α′(s0)−1∂s(f ◦ γ ◦ (γ−1 ◦ α))(s0)

= α′(s0)−1∂s(γ
−1 ◦ α)(s0)∂t(f ◦ γ)(t0)

= α′(s0)−1c(s0)−1∂t(f ◦ γ)(t0)

= γ′(t0)−1∂t(f ◦ γ)(t0).

If f extends to a C1 function in a neighbourhood of Γ and

γ(t) = γ1(t) + iγ2(t) , γj : R −→ R ,

then

∂Γ
z f(z0) = γ′(t0)−1(∂xf(z0)γ′1(t0) + ∂yf(z0)γ′2(t0))

In particular, if f is holomorphic in a neighborhood of Γ, then the Cauchy-
Riemann equation, ∂yf = i∂xf , shows that

∂Γ
z f = ∂xf = ∂zf ,

so in this case ∂Γ
z coincides with the holomorphic differential operator.

To integrate along the curve we can use both the complex contour mea-
sure and the arclength measure, denoted

dz = γ′(t)dt , |dz| = |γ′(t)|dt ,

respectively. We assume that γ ∈ C2(R;C). The spaces L2(Γ) and Hj(Γ),
j = 1, 2, are defined using the measure |dz|.

Given a potential V ∈ L∞comp(R;C) we further assume that

(2.7.1) Γ ∩ R ⊃ [−L,L], suppV ⊂ (−L,L).

The potential V is then a well defined function on Γ, so that putting

(2.7.2) PV,Γ := (DΓ
z )2 + V (z) ,

makes sense.

We make the following assumption on the behaviour of Γ at infinity:

∃ θ ∈ (0, π), a± ∈ C, K b C,

Γ \K =
⋃
±

(
a± ± eiθ(0,∞)

)
\K.(2.7.3)

We orient Γ so that Im γ(t) → +∞ as t → +∞: this can be done in
view of (2.7.3). We also define

(2.7.4) ΛΓ := {λ ∈ C \ R− : −θ < arg λ < π − θ}.

where arg : C \ R− → (−π, π). An example of Γ is shown in Fig. 2.7. We
remark that one can also consider more general behaviour at infinity such
as shown in Fig.2.8 where Γ = {x+ ig(x) : x ∈ R} for a specific g.
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Re z

Im z

R−R

Γ

Figure 2.8. Curve Γ used in some PML (perfectly matched layer)
computations. A typical curve is given by a function R 3 x 7→ x+ ig(x)
where g(x) = −|x + R|α for x < −R, g(x) = 0 for −R ≤ x ≤ R, and
g(x) = (x− L)α for x > R, where α > 1.

Let us first consider the case of V ≡ 0.

THEOREM 2.22 (Complex scaling for the free Laplacian). For λ ∈
C \ 0 and f ∈ C1

c (Γ), define

R0,Γ(λ)f(z) :=
i

2λ

∫
Γ
eiλϕ(z,w)f(w)dw,

ϕ(γ(t), γ(s)) := ±(γ(t)− γ(s)), ±(t− s) ≥ 0.

(2.7.5)

For λ ∈ ΛΓ, R0,Γ(λ) extends to an operator L2(Γ)→ H2(Γ) which is a two

sided inverse of (DΓ
z )2 − λ2 : H2(Γ)→ L2(Γ).

Proof. 1. For f ∈ C2
c (Γ) we check by direct calculation that

R0,Γ(λ)((DΓ
z )2 − λ2)f(z) = f(z), ((DΓ

z )2 − λ2)R0,Γ(λ)f(z) = f(z).

Since C2
c (Γ) is dense in L2(Γ) and in H2(Γ), the result will follow once we

show that R0,Γ(λ) is bounded on L2 for λ ∈ ΛΓ.

2. To bound R0,Γ(λ) on L2(Γ) we can, by reparametrization, assume that

γ(t) = b± + eiθt for ±t ≥ C0. Then for 0 < θ + arg λ < π

Re(iλϕ(γ(t), γ(s))) = − sin(θ + arg λ)|λ||t− s|+O(1)

≤ −ε|λ||t− s|+O(1),

for some ε > 0. This implies that

sup
t∈R

∫
R
|eiλϕ(γ(t),γ(s))||γ′(s)|ds <∞
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so that boundedness of R0,Γ(λ) on L2(Γ) follows from Schur’s estimate
(A.5.3). �

We will now use the inverse of the free operator (DΓ
z )2−λ2 to show that

PV,Γ−λ2, λ ∈ ΛΓ, is a Fredholm operator and to identify the values of λ for
which it is not invertible with scattering resonances.

THEOREM 2.23 (Complex scaling in dimension one). Suppose that
Γ satisfies (2.7.3) and PV,Γ is defined by (2.7.2) with V ∈ L∞comp(R;C).

1) For λ ∈ ΛΓ,

(2.7.6) PV,Γ − λ2 : H2(Γ)→ L2(Γ) ,

is a Fredholm operator and the spectrum of PΓ,V in ΛΓ is discrete.

2) We have

(2.7.7) mR(λ) = trL2(Γ)
1

2πi

∮
(ζ2 − PV,Γ)−12ζdζ, λ ∈ ΛΓ,

where the integral is over any sufficiently small positively oriented curve
enclosing λ (the value is constant when the curves are sufficiently small). In
particular, the eigenvalues of PΓ,V in ΛΓ are independent of Γ and coincide
with scattering resonances.

3) With the same notation,

(2.7.8) mD(λ) = trL2(Γ)
1

2πi

∮
(ζ2 − PV,Γ)−12ζdζ, λ ∈ ΛΓ,

where mD(λ) was defined in (2.2.29).

REMARKS. 1. The operator

Πλ,Γ =
1

2πi

∮
λ
(ζ2 − PV,Γ)−1 2ζ dζ : L2(Γ)→ L2(Γ),

is a projection – see Theorem C.9. Since the operator PV,Γ is not normal
the projection is not orthogonal. The trace in (2.7.6) then gives the rank of
this projection.

As in the proof of Theorem 2.7 we then see that near an eigenvalue,
λ ∈ ΛΓ,

(2.7.9) (PV,Γ − ζ2)−1 =

m∑
j=1

(PV,Γ − λ2)j−1Π

(λ2 − ζ2)j
+A(ζ, λ),

where, for ζ near λ, ζ 7→ A(ζ, λ) is a holomorphic family of bounded oper-
ators on L2(Γ). The fact that the order of the pole is equal to the rank of
the projection is a consequence of the fact that we are dealing with ordinary
differential equations which can have at most one L2 solution – see step 2
of the proof below.
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2. Part 3 of the theorem provides the proof of Theorem 2.8 in the case when
mR(λ) > 1, for scattering poles with arg λ > −π. When V is real valued
that gives the result for all λ as there are no poles on the real axis. (We can
also use the symmetry (2.2.13).) For complex valued potentials we need to
change the contour to Γ to obtain the same result for poles near (−∞, 0).

Proof. 1. For λ ∈ ΛΓ, Theorem 2.22 shows

ρR0,Γ(λ) : L2(Γ)→ H2([−L,L]) ↪→ L2(Γ),

and hence V R0,Γ(λ) = V ρR0,Γ(λ) : L2(Γ) → L2(Γ) is a compact operator.
It follows that

(PV,Γ − λ2)R0,Γ(λ) = (I + V R0,Γ(λ))

which implies the Fredholm property of PV,Γ − λ2, λ ∈ ΛΓ. Theorem C.8
shows that (I + V R0,Γ(λ))−1 is a meromorphic family of operators which
means that the spectrum of PV,Γ in ΛΓ is discrete.

2. Suppose λ ∈ ΛΓ is a resonance of multiplicity m = mR(λ). According
to Theorem 2.5 this equivalent to the existence of um : R → C satisfying
(PV − λ2)mum(x) = 0 and

u1(x) := (P − λ2)m−1um(x) =

{
Aeiλx x ≥ L
Be−iλx x ≤ −L

This means that um satisfies

um(x) =

{
P (x)eiλx, x ≥ L,
Q(x)e−iλx, x ≤ −L,

with polynomials P and Q of degree m − 1. (This is easy to see on the

Fourier transform side: 0 = (ξ2 − λ2)P (−Dξ)δ(ξ − λ) = (2λ)m
∑degP

j=0 (ξ −
λ)mpjδ

(j)(ξ − λ) =⇒ degP ≤ m− 1.)

We now define ũ : Γ → C as follows. We write Γ as a disjoint union of
connected components,

Γ = Γ− ∪ [−L,L] ∪ Γ+,

so that Im z → ±∞ on Γ±. We then put

(2.7.10) ũm(z) =


P (z)eiλz, z ∈ Γ+ ,
um(z), z ∈ [−L,L] ,

Q(z)e−iλz z ∈ Γ− .

The function ũm clearly satisfies

(PV,Γ − λ2)mũm = 0 , (PV,Γ − λ2)m−1ũm 6= 0 .

Since

Re(iλz|Γ±) = − sin(θ + arg λ)|λ||z|+O(1) < −ε|λ||z|+O(1), ε > 0 .
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It follows that

‖ũm‖2L2(Γ) ≤
∫ L

−L
|um(x)|2dx+

∑
±
C

∫
Γ±

|z|m−1e−ε|λ||z|d|z| <∞,

and the same estimate is valid for ũj := (PV,Γ − λ2)m−j ũm, 1 ≤ j ≤ m.
Because u1 ∈ L2(Γ) solving (PV,Γ−λ2)u1 = 0 is unique up to a multiplicative
constant (there is always a solution of the ordinary equation which is not
in L2), this shows that for every resonance of multiplicity m we obtain an
eigenvalue of PV,Γ of algebraic multiplicity m and geometric multiplicity 1.

3. This argument can be reversed. Let λ ∈ ΛΓ be an eigenvalue of PV,Γ of
multiplicity m (and, as explained above, geometric multiplicity 1). Since

e−∓iz|Γ± /∈ L2(Γ),

this forces the corresponding ũm to be of the form (2.7.10) and by reversing
the construction in step 2 we see that λ is a resonance of multiplicity m.
This proves (2.7.7).

4. To prove (2.7.8) choose ρ ∈ C∞c (R) with support in [−L,L] and equal to
1 on the support of V . In view of (2.7.1) ρ defines a function on Γ and the
multipliation operator on L2(Γ): u(z) 7→ ρ(z)u(z). The definition of R0,Γ

shows that

ρR0,Γ(λ)V = ρR0(λ)V ,

where the operator on the right is well defined as an operator on L2(Γ).
Consequently,

(I + ρR0,Γ(λ)V )−1 = (I + ρR0(λ)V )−1

is a meromorphic family of operators on L2(Γ) – see (2.2.10). Arguing as
in step 3 of the proof of Theorem 2.2 we obtain the following analogue of
(2.2.9):

RV,Γ(λ) = R0,Γ(λ)(I + V R0,Γ(λ)ρ)−1(I − V R0,Γ(λ)(1− ρ))

= R0,Γ(λ)(I + V R0(λ)ρ)−1(I − V R0,Γ(λ)(1− ρ)) .
(2.7.11)

Since

R0,Γ(λ) = (P0,Γ − λ2)−1 : L2(Γ)→ H2(Γ) ,

I − V R0,Γ(λ)(1− ρ) = (I + V R0,Γ(λ)(1− ρ))−1 : L2(Γ)→ L2(Γ) ,

are holomorphic families of invertible operators, we apply Theorem C.11 to
obtain (2.7.7). �

INTERPRETATION. The method of complex scaling identifies scatter-
ing resonances in conic regions ΛΓ with eigenvalues of non self-adjoint oper-
ators PV,Γ. We gain the advantage of being able to use methods of spectral
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theory, albeit in the murkier non-normal setting. The multiplicity of a res-
onance is now the trace of a projection. The resonant states, that is the
outgoing solutions to (P − λ2)u, are restrictions to R of functions which
continue holomorphically to fuctions with L2 restrictions to Γ. In one di-
mension this is explicit as seen in (2.7.10). Since have dealt only with com-
pactly supported potentials our countours Γ had to coincide with R near
the support of V . The method generalizes to the case of potentials which
are analytic and decaying to 0 in conic neighbourhoods of ±(L,∞). As we
will see later on it also generalized to higher dimensions though of course
the treatment is not as explicit there.

As an application of the method we present the following result about
perturbation of resonances.

THEOREM 2.24 (Continuity of resonances under perturbations).
Suppose that V0 ∈ L∞comp([−L,L]) and that Ω b C is a fixed bounded open

set with a C1 boundary ∂Ω such that there are no resonances of V0 on ∂Ω.

Denoting by mV (λ) the multiplicity of λ as a resonance of V there exists
ε such that for V ∈ L∞comp([−L,L]) with ‖V − V0‖∞ < ε, we have

(2.7.12)
∑
λ∈Ω

mV0(λ) =
∑
λ∈Ω

mV (λ).

REMARK. The dependence of ε on V0 and Ω can be quite dramatic. The
simplest example is given by taking a family Vs = sV , s ∈ [0, 1], where V 6= 0
is a fixed potential in L∞comp. From Theorem 2.16 we know that for s 6= 0
there infinitely many resonances while s = 0 there is only one resonance at
0.

Proof of Theorem 2.24. 1. Let us first assume that 0 /∈ Ω. By writing Ω
as a disjoint union of sets with piecewise C1 boundaries and no resonances
on those boundaries, we can assume that Ω ⊂ ΛΓ or Ω ⊂ ΛΓ̄ for some Γ
(Γ̄ := {λ̄ : λ ∈ Γ}) and we will consider the first of these cases, the other
being analogous. (As discussed in Remark 2 after Theorem 2.23 we need the
second case for resonances near (−∞, 0) in the case V is not real valued.)
We take contours such that Γ ∩ R ⊂ [−L− 1, L+ 1].

Hence the resonances of V in Ω are the same as eigenvalues of PV0,Γ
there. From (2.7.7) we see that

(2.7.13)
∑
λ∈Ω

mV0(λ) =
1

2πi
tr

∫
∂Ω

(ζ − PV0,Γ)−1dζ,

2. Since there are no resonances on ∂Ω, there exists M such that

‖(ζ − PV0,Γ)−1‖L2(Γ)→H2(Γ) ≤M, ζ ∈ ∂Ω.
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For V ∈ L∞([−L,L]),

ζ − PV,Γ = (ζ − PV0,Γ)
(
I − (ζ − PV0,Γ)−1(V − V0)

)
Hence for ‖V −V0‖∞ < ε, with epsilon sufficiently small, the last factor can
be inverted by Neumann series. It follows that

‖(ζ − PV,Γ)−1‖L2(Γ)→H2(Γ) ≤ 2M, ζ ∈ ∂Ω.

With ρ ∈ C∞c ((−L− 1, L+ 1)), ρ = 1 on [−L,L], we obtain a bound on the
trace class norm:

‖ρ(ζ − PV0,Γ)−1‖L1 ≤ ‖ρ(ζ − PV0,Γ)−1‖L2(Γ)→H2(Γ)

≤ C(+ sup
Ω
|ζ|M) ≤ C ′M.

We can now estimate

1

2π

∣∣∣∣tr∫
∂Ω

(
(ζ − PV0,Γ)−1 − (ζ − PV,Γ)−1

)
dζ

∣∣∣∣
=

1

2π

∣∣∣∣tr∫
∂Ω

(
(ζ − PV0,Γ)−1(V − V0)ρ(ζ − PV,Γ)−1

)
dζ

∣∣∣∣
≤ CM2‖V − V0‖L∞ < 1,

if ‖V −V0‖L∞ < ε with ε small enough. Since the left hand side has to take
integral values this means it has to be equal to 0. Returning to (2.7.13) that
means that we can replace V0 by V on the right hand side and that proves
(2.7.12).

3. When 0 ∈ Ω we need a different argument as the complex scaling method
does not work there. However, we can assume that Ω = D(0, r) as we can
apply the previous argument to Ω \ D(0, r). We can further assume that

V0 has a resonance at zero and that D(0, r) does not contain any other
resonances. Theorem 2.8 then shows that (we use the obvious notation for
multiplicities depending on the potential)

mV0(0)− 1 = tr

∫
|ζ|=r

(I + V0ρR0(ζ)ρ)−1V0∂ζ(ρR0(ζ)ρ)dζ,

where ρ ∈ C∞c (R) is equal to 1 on [−L,L]. Also,

‖(I + V0ρR0(ζ)ρ)−1‖L2(R)→L2(R) < M, |ζ| = r.

Since

I + V ρR0(λ)ρ = (I + V0ρR0(λ)ρ)
(
I + (I + V0ρR0(λ)ρ)−1(V − V0)R0(λ)ρ

)
we see that if ‖V − V0‖L∞ < ε with ε small enough then

‖(I + V ρR0(ζ)ρ)−1‖L2(R)→L2(R) < 2M, |ζ| = r.
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We conclude that V has no resonances on |ζ| = r and that

(2.7.14)
∑
|λ|<r

mV (λ) = 1 +
1

2πi
tr

∫
|ζ|=r

(I + V ρR0(ζ)ρ)−1V ∂ζ(ρR0(ζ)ρ)dζ,

noting that right hand side, as an integral of a logarithmic derivative of a
meromorphic function, D(λ), takes only integral values. We have

‖∂ζ(ρR0(ζ)ρ)‖L1 ≤ C, |ζ| = r,

see Lemma 2.18 and (C.3.1). Hence we can argue as in step 2 and see that
the right hand side in (2.7.14) is equal to 1. �

REMARK. The reader have probably noticed that the proof in step 3 can
be used near any resonance. But as we proved (2.2.30) using complex scaling
(see Remark 2 after Theorem 2.23) it is natural to use complex scaling to
give a direct proof of the continuity of resonances. One can also see that the
argument in the above proof is valid for more general families of operators.

The second application is closely related and shows generic simplicity
of scattering resonances. Although we have spent some time and effort
discussing resonances of higher multiplicity2 it is important to remember
that higher multiplicities are vere special.

THEOREM 2.25 (Generic simplicity of resonances in dimension
one). For any L, there exists V ⊂ L∞([−L,L],R) which is an intersection
of open dense sets in L∞([−L,L],R) and such that

∀V ∈ V , λ ∈ C , mR(λ) ≤ 1.

REMARKS. 1. An intersection of open dense set is sometimes called a
residual set and the property that holds on a residual set is called generic.
Complements of residual sets are called meagre. All this is related to the
classical Baire category theorem which states that a complete metric space
cannot be meagre.

2. As can be seen from the proof, we can replace L∞([−L,L];R) with
C∞c ((−L,L);R) or other spaces of functions.

We start the proof with the following lemma:

LEMMA 2.26 (An application of Rouché’s Theorem). Suppose that
ε 7→ fε(z) a family of functions holomorphic in a neighbourhood of D(0, r0)
and that

fε(z) = zm − ε+O(ε2) +O(ε|z|), |z| ≤ r0.

2Higher multiplicities can indeed occur as explained in the example in §2.2. For a more
general construction see [Sj87, §4].
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Then for ε sufficiently small fε(z) has exactly m simple zeros in the disc
D(0, r0),

zk = ε
1
m e

2πik
m

(
1 +O(ε

1
m )
)
, k = 0, . . . ,m− 1.

Proof. 1. Since

|zm − fε(z)| = |ε+O(ε2 + εr0)| ≤ Cε < |z|m, |z| = r0, ε� 1

Rouché’s Theorem shows that the number of zeros of fε and zm agree (with
multiplicities) in |z| < r0, that is fε has exactly m zeros there.

2. Consider the discs Dk := D(ε
1
m e

2πim
k , ρε

1
m ), 0 ≤ k ≤ m − 1. We note

that

ρ < π/m =⇒ Dk ∩D` = ∅, k 6= `.

For z ∈ ∂Dk,

|zm − ε− fε(z)| ≤ C0ε
1+ 1

m .

On the other hand, if ρ > 2C0ε
1
m then for z ∈ ∂Dk,

|zm − ε| = ερ(1 +O(ρ2)) > C0ε
1+ 1

m ≥ |zm − ε− fε(z)|,

If ε is small enough we can choose ρ so that C0ε
1
m < ρ < π/m, and as Dk’s

are then disjoint, Rouché’s theorem shows that there is exactly one zero of
fε in each Dk. This shows that all m zeros are simple. �

Proof of Theorem 2.25. 1. Since for real valued potentials, there are no
resonances on R\{0}, it is enough to show that for a residual set of potentials
resonances are simple in C \ R−.

We introduce the following ordering in C \ R−:

z � w ⇐⇒ |z| < |w| or |z| = |w|, arg(z) ≤ arg(w),

where arg : C \ R− → (−π, π). For any V we order resonances as follows:

λ1 � λ2 � . . . λn � . . .

We then define

Vn := {V ∈ L∞([−L,L];R) : mR(λj) = 1, j = 1, . . . , n}.

2. Theorem 2.24 shows that the set Vn is open on L∞([−L,L];R): we
take Ω to be the union of n disjoint discs, each containing one resonance
λj . Theorem 2.24 shows that for potentials in a neighbourhood of V ∈ Vn
the multiplicity does not change in each disc, which means that resonances
remain simple.
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3. We now show that Vn is dense in L∞([−L,L];R). That means that for
V /∈ Vn, any neighbourhood of V in L∞ contains an element of Vn. We can
choose k ≥ 0 so that ordered resonances of V satisfy

λ1 = · · · = λm1 ≺ λm1+1 = · · · = λm1+m2 ≺ . . . λn+k,

|λn+k| < |λn+k+1|, m1 +m2 + · · ·mp = n+ k.

Consider

(2.7.15) λ := λm1+·+mj−1+1,

and assume that m = mj > 1. That means that λ 6= 0 and, using symmetry
(2.2.13), we can assume that Reλ ≥ 0. This means that λ2 is an eigenvalue
of PV,Γ for a contour Γ with π/2 < θ < π (see (2.7.3)). Hence there exists
wm ∈ L2(Γ) satisfying

(2.7.16) (PV,Γ − λ2)mwm = 0, w1 := (PV,Γ − λ2)m−1wm 6= 0,

see (2.7.9) and (2.7.10). It is unique up to a multiplicative constant. Fol-
lowing §C.1 we construct the following Grushin problem for PV,Γ:

PV,Γ(ζ) :=

(
PV,Γ − ζ2 R−

R+ 0

)
: H2(Γ)⊕ C −→ L2(Γ)⊕ C,

R− : C→ L2(Γ), R−u− := u−wm, ‖wm‖L2(Γ) = 1,

R+ : H2(Γ)→ C, R+u :=

∫
Γ
uw̄1|dz|, ‖w1‖L2(Γ) = 1,

where the normalization of wm and w1 was chosen for later convenience. We
note that

(2.7.17) kerH2(Γ)(PV,Γ − λ2) = Cw1

and as the index is 0 (changing λ to ζ close to λ produces an invertible
operator – see Theorem C.5), the dimension of the coker (PV,Γ − λ2) is also
1. The function wm is not in the image PV,Γ−λ2 as otherwise m in (2.7.16)
would not be minimal, that is, the multiplicity of λ would be greater than
m. Hence

(2.7.18) (PV,Γ − λ2)H2(Γ) + Cwm = L2(Γ).

Hence PV,Γ(λ) is invertible and by Lemma C.3 so is PV,Γ(ζ) for ζ close to
λ. We also check that

PV,Γ(ζ)−1 =

(
E(ζ) E+(ζ)
E−(ζ) E−+(ζ)

)
, E−+(ζ) = (ζ2 − λ2)m,

E−(λ)v =

∫
Γ
vw̄m|dz|, E+(λ)v+ = v+w1.
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4. Now take W ∈ L∞([−L,L],R) and consider PV+εW (ζ). If ε > 0 is small
enough, Lemma C.3 shows that this operator is invertible for ζ close to λ
and the corresponding Eε−+ has an expansion given by (C.1.7):

Eε−+(ζ) = (ζ2 − λ2)m − εE−(ζ)WE+(ζ) +O(ε2)

= (ζ2 − λ2)m − ε
∫ L

−L
W (x)w1(x)w̄m(x)dx+O(ε|λ− ζ|+ ε2).

Since w1 and wm solve differential equations (of orders 2 and 2m respec-
tively, w1w̄m|[−L,L] 6= 0. Hence

∫
Ww1w̄m 6= 0 for some choice of W ∈

L∞([−L,L];R). We can then apply Lemma 2.26 to see that for ε > 0 small
enough all the zeros of Eε−+(ζ) near λ as simple.

5. We can apply this argument to each λ of the form (2.7.15). If wm1
mj and

w
mj
1 denote the corresponding wm and w1 the condition we need to obtain

simplicity of the eigenvalues PV+εW,Γ near λ2
j is∫ L

−L
W (x)w

mj
1 (x)w̄

mj
mj (x)dx 6= 0, j = 1, . . . , p.

But such W exists as w
mj
1 w̄

mj
m1 do not vanish identically in [−L,L]. We

conclude that there exist arbitrarily small L∞([−L,L];R) perturbation of
V such that the first n resonances of V + εW are simple. (Note that by
continuity the resonances, the perturbation still satisfy |λn+k| < |λn+k+1| if
ε is small enough.) We now take

V =
∞⋂
n=1

Vn,

concluding the proof. �

2.8. SEMICLASSICAL STUDY OF RESONANCES

In this section we will present some results concerning resonances in the
semiclassical limit. This means we consider Schrödinger operators with a
small parameter h:

P = P (h) := (hDx)2 + V, V ∈ L∞comp(R;R), 0 < h < 1.

REMARK. Since this is the first appearance of h some comments are in
place. Although motivated by the Planck constant

~ = 1.054571726(47)× 10−34J · s,

our h in the Schrödinger equation plays the role of ~/
√

2m. Its effective size
depends in addition on the units of length used and may vary from prob-
lem to problem. The semiclassical approximation h → 0 can be applied in
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situations where that effective size is small. In many problems the semiclas-
sical approximation, although mathematically valid only for h very small,
produces good results for h = 1.

CONVENTION. Because the motivation in this section comes from quan-
tum mechanics rather than wave propagation we use a different convention
for the spectral parameter. We now consider z ∈ C \ (−∞, 0]) with the
convention that

± Im z > 0 =⇒ ± Im
√
z > 0.

From Theorem 2.2 we know that, as an operator L2
comp → L2

loc,

R(z, h) := ((hDx)2 + V − z)−1

= h−2(D2
x + h−2V − λ2)−1, λ =

√
z/h,

continues meromorphically from Im z > 0, Re z > 0 to Im z ≤ 0, Re z > 0.
The poles of that meromorphic continuation are denoted by

Res(P ) = Res(P (h))

and the multiplicity is defined as in §§2.2 and 2.7:

(2.8.1) m(z) := rank

∮
z
R(ζ, h)dζ =

1

2πi
tr

∮
z
(ζ − (hDΓ

x )2 − V )−1dζ.

2.8.1. Truncated harmonic oscillator. As an example of resonances
generated by a well in an island we consider the potential given in Fig. 2.10.
The method applies to more general potentials having a unique positive non-
degenerate minimum and step singularities at the boundary of the support.
For simplicity we present the case of the truncated harmonic oscillator and
of the ground state.

Thus we consider the potential V ∈ L∞comp(R;R) defined by

V (x) =

{
x2 + 1 |x| ≤ 1,

0 |x| > 1.

and the operator

(2.8.2) P (h) = (hDx)2 + V.

We want to describe the resonance for P (h) which is close to the lowest
eigenvalue of (hDx)2 + x2 + 1,

(2.8.3) z̃ = 1 + h, with an eigenfunction (ground state) ũ(x) = e−x
2/2h.

As ũ is even, we can study P (h) on a half-line with the Neumann boundary
condition at x = 0.



94 2. SEMICLASSICAL STUDY OF RESONANCES

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

 

 

exact calculation

semiclassical approximation

Figure 2.9. Numerically computed values e1/h Im z(h) for z(h) in
Theorem 2.27 compared to the semiclassical approximation given there.

THEOREM 2.27. For h small enough, there exists a resonance

(2.8.4) z = 1 + h− i4π−1h
1
2 e−1/h(1 +O(h)),

with an even resonant state.

REMARKS. 1. The correction to the real part is of order e−1/2h and the
approximation to the imaginary part is very accurate for relatively large
values of h – see Fig. 2.9

2. A finer analysis shows that for any even j bounded by a fixed h-
independent J , there exists an even resonant state with

zj = 1 + h(2j + 1)− i h
1
2
−jcje

−1/h(1 +O(h)),

cj := 21+2j

(∫ ∞
0

Pj(y)2e−y
2
dy

)−1

.

Here Pj are Hermite polynomials defined recursively by P0 = 1, Pj+1 =
(2x − ∂x)Pj . A similar formula can be given for j odd, and these are the
only resonances in

[1− C1h, 1 + C1h]− i[0, h| log h|/C2],
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x

1

1

V

Figure 2.10. The potential V from Theorem 2.27.

where C1 depends on J .

INTERPRETATION. We see that the eigenvalues Ej(h) = 1 + (2j+ 1)h
of the (shifted) harmonic oscillator become resonances when the potential is
truncated and a finite barrier is created. The resonances are exponentially
close to the eigenvalues of the (shifted) harmonic oscillator and in particular
we have a perturbative formula for the resonance width (the physical name
for the imaginary part):

− Im z1(h) = 4π−1h
1
2 e−1/h(1 +O(h)),

corresponding to tunneling through the barrier. The width is exponentially
small in terms of the semiclassical parameter h. These type of resonances
are called shape resonances as their properties are affected by the shape of
the barrier.

The proof of Theorem 2.27 requires some preparation. To start we define
uz ∈ C∞([0, 1]), z ∈ C, to be the unique solution of the problem

(2.8.5) (h2D2
x + x2 + 1− z)uz = 0, uz(0) = 1, u′z(0) = 0,

and then put

X(z) = (X1(z),X2(z)) := (uz(1), hu′z(1)) ∈ C2.

Then z is a resonance if and only if

(2.8.6) X2(z)− i
√
zX1(z) = 0.

We will apply a contraction mapping principle to the equation (2.8.6) to
obtain a resonance exponentially close to z̃ = 1 + h. For that, we will need
to estimate the first and second derivatives of X in z.
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To compute the first derivative ∂zX at z = z̃ we introduce another,
growing, solution to (P (h)− z̃)u = 0:

((hDx)2 + x2 + 1− z̃)ṽ = 0, ṽ(0) = 0, ṽ′(0) = 1.

Since the Wronskian, W (ũ, ṽ) := ũṽ′ − ũ′ṽ ≡ 1, we obtain an expression for
ṽ in terms of ũ:

ṽ(x) = ũ(x)

∫ x

0

1

ũ(y)2
dy = e−x

2/2h

∫ x

0
ey

2/hdy.

It is easy to see that

(2.8.7) |ṽ(x)|+ |hṽ′(x)| ≤ Cex2/2h,
and that3

ṽ(1) = 1
2he

1/2h(1 +O(h)), ṽ′(1) = 1
2e

1/2h(1 +O(h)).(2.8.8)

We define

(2.8.9) Y = (Y1,Y2) := (ṽ(1), hṽ′(1)),

and we see from (2.8.8) that

(2.8.10) Y = 1
2he

1/2h(1 +O(h))(1, 1)

With this notation we can state the following lemma.

LEMMA 2.28. With Y defined by (2.8.9) we have

∂zX(z̃) = −h−
3
2π

1
2 Y +O(e−1/2h).

Proof. 1. For uz defined by (2.8.5) the derivative with respect to the pa-
rameter z satisfies the following non-homogeneous equation:

(2.8.11) (P (h)− z)∂zuz = uz; ∂zuz(0) = 0, ∂zu
′
z(0) = 0.

2. The derivative ∂zX(z̃) can be written as a linear combination of X(z̃),Y
with Wronskians at x = 1 as coefficients:

(2.8.12) ∂zX(z̃) = W (∂zuz̃, ṽ)(1) ·X(z̃)−W (∂zuz̃, ũ)(1) ·Y.

To compute the Wronskians, we use the following identity, true for all func-
tions w1, w2 and each z ∈ C:

(2.8.13) h2∂xW (w1, w2) = w2 · (P (h)− z)w1 − w1 · (P (h)− z)w2.

Since (P (h)− z̃)ũ = 0, (2.8.11) and (2.8.13) show that

W (∂zuz̃, ũ)(1) = h−2

∫ 1

0
ũ(x)2 dx.

3The dominant contribution to the integral over 0 < y < 1 comes from y = 1 and hence we
can make a change of variables y2/h = t and integrate by parts over 1/2h < t < 1/h.
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Similarly

W (∂zuz̃, ṽ)(1) = h−2

∫ 1

0
ũ(x)ṽ(x) dx.

Since ∂zuz̃(0) = ∂zu
′
z̃(0) = 0, the bound (2.8.7) gives

|W (∂zuz̃, ṽ)(1)| ≤ Ch−2.

Inserting the estimate |X(z̃)| ≤ Ce−1/2h in (2.8.12) shows that

∂X(z̃) = −
(
h−2

∫ 1

0
ũ(x)2 dx

)
Y(z̃j) +O(e−1/(2h)).

Calculating∫ 1

0
ũj(x)2 dx = h

1
2

∫ 1/h

0
e−y

2
dy = h

1
2π

1
2 (1 +O(e−1/h)),

completes the proof. �

To bound the second derivative ∂2
zX we need to estimate how fast so-

lutions to the initial value problem for the equation (P (h) − z)u = 0 can
grow:

LEMMA 2.29. Let C0 be a fixed constant. Assume that z satisfies

(2.8.14) 1 ≤ Re z ≤ 1 + C0h, | Im z| ≤ C0h
2.

Then there exists a constant C1, depending on C0, such that for each u ∈
C∞([0, 1]), f = (P (h)− z)u, and each x ∈ [0, 1],

(2.8.15)

e−x
2/2h(h1/2|u(x)|+ |hu′(x)− xu(x)|)

≤ C1

(
h1/2|u(0)|+ h|u′(0)|+ h−1‖e−y2/2hf(y)‖L2(0,x)

)
.

Proof. 1. Put

v(x) := e−x
2/2hu(x), g(x) := e−x

2/2hf(x),

so that

−h2v′′ − 2xhv′ + (1− h− z)v = g,

and (2.8.15) becomes

(2.8.16) h1/2|v(x)|+ h|v′(x)| ≤ C
(
h1/2|v(0)|+ h|v′(0)|+ h−1‖g‖L2(0,x)

)
.
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2. We now put h + Re z − 1 = νh, where ν ≥ 1 is bounded uniformly in h
and independent of x. We have the following estimate valid for x ≥ 0:

1

2
∂x(h2|v′|2 + hν|v|2) = Re(v′(h2v′′ + νhv))

= −2xh|v′|2 + Im z Im(vv′)− Re(gv′)

≤ C(h2|v′|2 + h2|v|2 + h−2|g|2)

≤ C(h2|v′|2 + hν|v|2 + h−2|g|2).

Since ∂xF ≤ CF + G implies F (x) ≤ eCxF (0) +
∫ x

0 e
C(x−y)G(y)dy (Gron-

wall’s inequality) we arrive to (2.8.16) for x ∈ [0, 1]. �

With Lemma 2.29 the bound on the second derivative is easy:

LEMMA 2.30. Assume that z satisfies (2.8.14). Then for some constant
C we have

|∂2
zX(z)| ≤ Ch−2e1/2h.

Proof. This follows directly by applying Lemma 2.29 to (2.8.5), (2.8.11), and
the equation

(P (h)− z)∂2
zuz = 2∂zuz, ∂2

zuz(0) = 0, ∂2
zu
′
z(0) = 0

and putting x = 1. �

We can now give the proof of Theorem 2.27. The basic idea is to solve
equation (2.8.6) by Newton’s method. From Lemma 2.28 we know that
the first derivative at z̃ is exponentially large and Lemma 2.30 provides an
estimate for the second derivative in a neighbourhood of z̃. Hence we expect
that there is a zero exponentially close to z̃ and the proof below shows that
this is in fact the case.

Proof of Theorem 2.27. 1. Put

Θ(z) := X2(z)− i
√
zX1(z),

so that by (2.8.6), z is a resonance if and only if Θ(z) = 0. Using the explicit
formula for the ground state (2.8.3) we see that

Θ(z̃) = −(1 + i)e−1/2h(1 +O(h)).

This, Lemma 2.28 and (2.8.10) give

∂zΘ(z̃)

Θ(z̃)
= (1 + i)−1e1/2h(1 +O(h))h−

3
2π

1
2 (Y2(z̃)− iY1(z̃) +O(h)|Y(z)|)

= 2−1iπ
1
2h−

1
2 e1/h(1 +O(h).
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2. The equation Θ(z) = 0 is equivalent to z = Ψ(z), where

Ψ(z) := z − Θ(z)

dzΘ(z̃)
.

Take large N and define the disc

Ω := {|z − z̃| ≤ hN}.

Then by Lemma 2.30,

|∂zΘ(z)− ∂zΘ(z̃)| � |∂zΘ(z̃)|, z ∈ Ω,

and thus

|∂zΨ(z)| ≤ 1/2, z ∈ Ω.

Then Ψ : Ω→ Ω and |Ψ(z)−Ψ(z′)| ≤ |z−z′|/2 for z, z′ ∈ Ω. By contraction
mapping principle, the equation z = Ψ(z) has a unique solution z in Ω; this
z is then the unique resonance in Ω.

3. To see the asymptotic expansion for z, we use that it is the limit of the
sequence z(k) defined by

z(0) = z̃, z(k+1) = Ψ(z(k)).

It is then enough to prove that z = z(1) +O(h
3
2 e−1/h). Since |z(k+1)−z(k)| ≤

|z(k) − z(k−1)|/2,

|z − z(1)| =

∣∣∣∣∣
∞∑
k=1

z(k+1) − z(k)

∣∣∣∣∣ ≤ 2|z(2) − z(1)|,

and it suffices to show that

z(2) = z(1) +O(h
3
2 e−1/h).

But that is the same as showing that Θ(z(1))/∂zΘ(z(1)) = O(h
3
2 e−1/h). The

definition of z(1), Lemma 2.30 and the expressions for Θ(z̃) and ∂zΘ(z̃) is
step 1, show that

Θ(z(1))

∂zΘ(z(1))
=

Θ(z̃) + ∂zΘ(z̃)(z(1) − z̃) +O(h−2e1/2h)(z(1) − z̃)2

∂zΘ(z̃) +O(h−2e1/2h)(z(1) − z̃)

=
O(h−2e1/2h(h

1
2 e−1/h)2)

2−1(1− i)h−
1
2π

1
2 e1/2h(1 +O(h))

= O(h−
1
2 e−2/h),

which is an even stronger estimate. This completes the proof of Theorem
2.27. �
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2.8.2. A general bound on resonance width. The next result is an easy
one dimensional version of a theorem due to Burq (see §6.5 below). It states
that for any compactly supported potential the modulus of the imaginary
part of the resonance is bounded from below by exp(−C/h). Theorem 2.27
shows that this bound is optimal. Except for the simple characterization of
outgoing solutions, we avoid the use of one dimensional methods to prepare
the reader for the proof of the higher dimensional case in §6.5.

To estimate the imaginary we use the following basic fact. Suppose that
V ∈ L∞(R;R) and that u ∈ H2([−R,R]) solves

((hD)2
x + V (x)− z)u(x) = 0, x ∈ [−R,R], z ∈ C.

Then

(2.8.17) Im z

∫ R

−R
|u(x)|2dx = −h2 Imux u

∣∣ R
−R.

Proof of (2.8.17). Since u ∈ C1([−R,R]), the following integration by parts
argument is justified:

0 =

∫ R

−R

(
((hDx)2 + V − z)uū− u((hDx)2 + V − z)u

)
dx

=

∫ R

−R
((hDx)2uū− u(hDx)2ū)dx− (z − z̄)

∫ R

−R
|u|2dx

= −h2ux ū
∣∣ R
−R + h2u ūx

∣∣ R
−R − (z − z̄)

∫ R

−R
|u|2dx.

The formula (2.8.17) follows from dividing this by 2i. �

Before we use (2.8.17) to estimate resonance width we need the following
simple lemma:

LEMMA 2.31. Suppose that M > 0. Then for u ∈ H2
comp(R) we have

(2.8.18) ‖e−Mx/h(hDx)2eMx/hu‖L2 ≥M2‖u‖L2 .

Proof. We define the semiclassical Fourier transform

Fhu(ξ) :=
1√
2πh

∫
R
u(x)e−ixξ/hdx,

and recall its basic properties:

Fh(hDxu)(ξ) = ξFhu(ξ), ‖u‖L2(R) = ‖Fhu‖L2(R),
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see for instance [Zw12, §3.3]. We then have

‖e−Mx/h(hDx)2eMx/hu‖L2 = ‖(hDx − iM)2u‖L2

= ‖(ξ − iM)2Fhu‖L2

≥M2‖Fhu‖L2 = M2‖u‖L2 ,

where we used the fact that

|(ξ − iM)2| = |ξ − iM |2 = |ξ|2 +M2 ≥M2. �

We are now ready to prove

THEOREM 2.32 (Lower bounds on resonance width in dimension
one). Suppose that P (h) := −h2∆ + V , V ∈ L∞comp(R;R) and that E > 0.
Then there exists c = c(V,E) such that for 0 < h < h0,

(2.8.19) Re z ∈ [E/2, E], z ∈ Res(P (h)) =⇒ | Im z| > e−c/h.

Proof. 1. Suppose z is a resonance with E/2 ≤ Re z ≤ E. In view of
Theorem 2.2 this means that there exists u, a resonant state, satisfying

((hDx)2 + V − z)u = 0, u(x) = A±e
±i
√
zx/h, ±x� 1, A± 6= 0.

In view of (2.8.17) the lower bound (2.8.19) will follow from showing that
for some R,

(2.8.20)

∫ R

−R
|u(x)|2dx ≤ Cec/h

∣∣ Imux ū
∣∣ R
−R
∣∣.

.

2. We can assume that Im z > −h as otherwise there is nothing to prove.
Note that as Re z ≥ E/2 this implies that Im

√
z > −h/C. Hence for R

sufficiently large,

∣∣ Imux ū
∣∣ R
−R
∣∣ = Re z(|A+|2 + |A−|2)e−2R Im

√
z/h

≥ 1

C

∫ R+1

R
|A+e

i
√
zx/h|2dx+

1

C

∫ −R
−R−1

|A−ei
√
zx/h|2dx

=
1

C

∫
R≤|x|≤R+1

|u(x)|2dx,

(2.8.21)

where the constant C depends on R and E.

3. From (2.8.21) we see that (2.8.20) follows from the estimate

(2.8.22)

∫ R

−R
|u(x)|2dx ≤ Cec/h

∫
R≤|x|≤R+1

|u(x)|2dx.

(This is easy by using ODE methods but we proceed in a more complicated
way indicating some aspects of higher dimensional methods such as (6.5.30).)
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To establish (2.8.22) we use Lemma 2.31: for M2 > ‖V ‖L∞ + 1, (2.8.18)
shows that for v ∈ H2

comp,

‖e−Mx/h((hDx)2 + V )eMx/hv‖L2 ≥ ‖e−Mx/h(hDx)2eMx/hv‖L2 − ‖V v‖L2

≥ (M2 − ‖V ‖L∞)‖v‖L2 ≥ ‖v‖L2 .

We apply this to v = eMx/hχu where χ ∈ C∞c ((−R−1, R+1); [0, 1]) is equal
to 1 on [−R,R]:∫ R

−R
|u(x)|2dx ≤ e2MR/h‖e−Mx/hχu‖2L2(R)

≤ e2MR/h‖e−Mx/h((hDx)2 + V )χu‖2L2

≤ 2e4MR/hh‖χ′hDxu‖2L2

≤ Ce4MR/h

∫
R≤|x|≤R+1

|u(x)|2dx,

(2.8.23)

where the last inequality follows from the fact that suppχ′ ⊂ {R ≤ |x| ≤
R+1} and u(x) = A±e

i
√
z|x|/h there. Combining this estimate with (2.8.23)

gives (2.8.22) completing the proof. �

2.9. NOTES

For more information about the structure of the resolvent at λ = 0 see
Jensen–Nenciu [JN01] and references given there.

Theorem 2.16 was proved in some special cases in Regge [Re58] and in
general (for V ∈ L1

comp(R;R)) in [Zw87] (see Figure 2.5 for indication how
it was done there). Different proofs were given by Froese [Fr97] and Simon
[Si00]. Here we followed [Fr97], where complex valued potentials were
allowed. That paper also treats certain non-compactly supported potentials.

The importance of the Carleman estimate (2.6.17),(D.1.12) in one di-
mensional scattering seems to go back to Selberg [Se53] in scattering on
finite volume hyperbolic surfaces. The reason why scattering on finite vol-
ume surfaces is effectively one dimensional will be explained in Example 3
in §4.1 (see also Example 3 in §4.2).

For recent advances in the study of resonances for potentials in dimension
one see Korotyaev [Ko04],[Ko05],[Ko14], Bledsoe–Weikard [BW15] and
references given there.

The presentation of complex scaling in Section 2.7 owes a lot to unpub-
lished notes of Kiril Datchev.
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For more general one dimensional “well-in-an-island” potentials the shape
resonances were described by Helffer–Sjöstrand [HS86, §11] – see also Ser-
vat [Se04] and Dalla Venezia–Martinez [DM17] for more recent accounts
and references.

2.10. EXERCISES

Section 2.1

1. Show that in the notation of (2.1.13) we have

v+(z) = −1
2

∫ ∞
0

∫ R

z+τ
(V v + F )(τ, y)dydτ,

v−(z) = −1
2

∫ ∞
0

∫ z−τ

−R
(V v + F )(τ, y)dydτ.

Section 2.2

2. Find an approximation for resonances for a step potential,

V (x) =

{
0 |x| > L,
V |x| ≤ L,

Hint: Use the characterization of a resonant state

(D2
x + V (x)− λ2)u = 0, u(x) = a±e

iλ|x|, |x| ≥ L.

Section 2.4

3. Use (2.4.13) to show that in the notation of (2.4.12),

(2.10.1) detS(λ) =
t(λ)

t(−λ)
.

4. Suppose that V ∈ C∞c (R;R). Use Theorem 2.13 to show that

σ(λ) :=
1

2πi
log detS(λ) =

J∑
j=1

ajλ
−j +O(λ−J−1), λ→∞,

where

a1 = − 1

2π

∫
V (x)dx, a2 =

1

8π

∫
V (x)2dx.

Hint: For operators with ‖A‖ < 1 and of trace class (see §B.4 for a review
of the trace class) we have log det(I−A) = tr log(I−A) = −

∑∞
k=1 k

−1 trAk

and this can be applied with A := −V R0(λ)ρ for λ � 1. To evaluate the
traces split integrals involving |x− y| to integrals over x > y and y < x and
integrate by parts. This result is a special case of Theorem 3.67.
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Section 2.6

5. Check carefully that the proof of Theorem 2.19 applies when there are
negative eigenvalues.

6. Suppose that x0 < x1 < · · · < xN and Vj ∈ R, j = 1, · · · J . Define

(2.10.2) V (x) :=


0 x ≤ 0
Vj xj−1 < x ≤ xj , 0 < j ≤ N
0 x > xN .

Find an expression for S(λ) using transfer matrices (which should also be
computed):

Mstep(k−, k+) :

(
a−
b−

)
→
(
a+

b+

)
,

u(x) = a±e
ik±x + b±e

−ik±x, ±x ≥ 0, u ∈ C1(R),

Mfree(K) =

(
eiK 0
0 e−iK

)
.

This method was used to compute the scattering phase for the data in
Fig. 2.6.

Hint: Compute the transfer matrix for the scattering problem with the
potential V :

MV (λ) :

(
a−
b−

)
→
(
a+

b+

)
,

u(x) = u(x) = a±e
ik±x + b±e

−ik±x, ±x� 1, (D2
x + V (x)− λ2)u = 0

as a product of Mstep and Mfree for appropriate choices of the parameters.
The scattering matrix sends incoming data to outgoing data:

S(λ) :

(
a−
b+

)
→
(
a+

b−

)
(see (2.4.2) where the notation is different!) and MV and S can be related.
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In this section we will consider the simplest higher dimensional situation:
scattering by compactly supported potentials in odd dimensions. Some of
the results presented in Chapter 2 are valid in this case with proofs requiring
only small modifications. Other results, such as asymptotics, or even sharp
lower bounds, for the number of scattering poles, are not known.
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The main advantage of odd dimensions greater than one is the strong
Huyghens principle for the wave equation: if �u = 0 and the support of
initial data lies in |x| < R then support of u(t, •) lies in |t|−R < |x| < |t|+R.
The weak Huyghens principle valid in all dimensions says only that the
support of u(t, •) lies in |x| < |t|+R.

One consequence of the strong Huyghens principle is the analytic con-
tinuation of (−∆− λ2)−1 from Imλ > 0 to C.

3.1. FREE RESOLVENT IN ODD DIMENSIONS

The outgoing resolvent of the free Laplacian is defined just as in the case of
dimension one:

(3.1.1) R0(λ) := (−∆− λ2)−1 : L2(Rn) −→ L2(Rn) , Imλ > 0 .

Its existence follows from using the Fourier transform which provides an
explicit diagonalization of −∆:

(3.1.2)

R0(λ)ϕ(x) :=
1

(2π)n

∫
Rn

ei〈ξ,x〉

|ξ|2 − λ2
ϕ̂(ξ)dξ , Imλ > 0 ,

ϕ̂(ξ) :=

∫
Rn
ϕ(x)e−i〈x,ξ〉dx.

This formula is of course valid in all dimension but the operator R0(λ) has
much nicer properties when n is odd.

3.1.1. Relation to the wave equation. We will starts our presentation
with the properties of the wave equation. Thus we consider its unique for-
ward fundamental solution:

(3.1.3) �E+ := (∂2
t −∆)E+ = δ0(x)δ0(t) , suppE+ ⊂ {t ≥ 0} .

For n odd we have a particularly nice expression for the distribution E+.
Its action on ϕ ∈ C∞c (Rt × Rnx) is given by

〈E+, ϕ〉 =

∫ ∞
0
〈E+(t), ϕ(t, •)〉dt ,

〈E+(t), ψ〉 :=
1

4πk

(
d

ds

)k−1

ψ̃(
√
s)|s=t2 , n = 2k + 1, t > 0,

ψ̃(r) := rn−2

∫
|ω|=1

ψ(rω)dω ,

(3.1.4)

and we have a distributional convergence E+(t)→ 0, E′+(t)→ δ0 as t→ 0+
– see [Ev98, §2.4.1] or [HöI, Section 6.2].
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The crucial fact seen from this expression is the support property of E+:
for odd n ≥ 3

(3.1.5) suppE+ = {(x, t) : |x| = |t|, t ≥ 0} .

This implies the strong Huyghens principle:

�u = f, supp f ⊂ [−R,R]t ×BRnx (0, R) , u|t<−R = 0 =⇒
u(t, x) = 0 , for |x| < t− 2R.

The weak Huyghens principle valid in all dimensions says that u(t, x) = 0
for |x| > t+ 2R.

The distribution E+(t) appearing in (3.1.4) is used to solve the initial
value problem:

�u = 0 , u(0, x) = ϕ0(x) , ∂tu(0, x) = ϕ1(x) ,

u(t, x) = E+(t) ∗ ϕ1(x) + ∂tE+(t) ∗ ϕ0(x) , ϕj ∈ C∞(Rn) , t ≥ 0.
(3.1.6)

Here u ∗ v denotes the convolution of a compactly supported distribution u
with a smooth function v. Putting

E(t) :=

{
E+(t), t > 0,

−E+(−t), t < 0,

E(0) := 0, gives

E(t) ∈ C∞(Rt; D ′(Rn)).

The solution of (3.1.6) can also be given using the spectral decomposition
of−∆ and the functional calculus – this corresponds to the Fourier transform
decomposition:

u(t, x) =
sin(t
√
−∆)√
−∆

ϕ1(x) + cos(t
√
−∆)ϕ0(x) ,

f(
√
−∆)ϕ(x) :=

1

(2π)n

∫
Rn
f(|ξ|)ei〈x,ξ〉ϕ̂(ξ)dξ ,

(3.1.7)

where f(ρ) = sin tρ/ρ or f(ρ) = cos tρ.

If we write

U(t) :=
sin(t
√
−∆)√
−∆

,

then a comparison with (3.1.6) gives the Schwartz kernel of U(t):

(3.1.8) U(t, x, y) = E(t, x− y),

see [HöI, Section 6.1] for the details on the pull back (by (x, y) 7→ x − y
here) of distributions.

The strong Huyghens principle (3.1.5) implies that

(3.1.9) (U(t)v) (x) = 0, t > sup{|x− y| : y ∈ supp v}.
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For future reference we note that the spectral representation immediately
gives

(3.1.10) ∂kt U(t) : Hs(Rn) −→ Hs−k+1(Rn) , k ∈ N , s ∈ R .

The free resolvent R0(λ) given by (3.1.2) can be written using U(t):

(3.1.11) R0(λ) =

∫ ∞
0

eiλtU(t)dt .

In fact, for Imλ > 0,

1

|ξ|2 − λ2
=

∫ ∞
0

sin t|ξ|
|ξ|

eitλdt , Imλ > 0 ,

where the integral converges since supλ∈R | sin tλ/λ| = |t|. The formula
(3.1.11) then follows from (3.1.2) and (3.1.7).

This representation gives us the following important result:

THEOREM 3.1 (Free resolvent in odd dimensions). Suppose that
n ≥ 3 is odd. Then the resolvent defined by

R0(λ) = (−∆− λ2)−1 : L2(Rn)→ L2(Rn) ,

for Imλ > 0, continues analytically to an entire family of operators

R0(λ) : L2
comp(Rn) −→ L2

loc(Rn) .

For any ρ ∈ C∞c (Rn) we have the following estimates:

(3.1.12) ρR0(λ)ρ = O((1 + |λ|)j−1eL(Imλ)−) : L2(Rn) −→ Hj(Rn) ,

j = 0, 1, 2, where L > diam (supp ρ) := sup{|x− y| : x, y ∈ supp ρ}.

Proof. 1. For the statement about holomorphy it suffices show that for any
ρ ∈ C∞c (Rn),

ρR0(λ)ρ : L2 −→ L2

continues from Imλ > 0 to an entire family of bounded operators.

2. If L > diam supp ρ then (3.1.9) gives ρU(t)ρ = 0 for t ≥ L. Then (3.1.11)
shows that, for Imλ > 0 at first,

(3.1.13) ρR0(λ)ρ =

∫ L

0
eiλtρU(t)ρ dt .

The right hand side is now defined and, as an operator L2(Rn) → L2(Rn),
holomorphic for λ ∈ C.

3. Since U(t) = sin t
√
−∆/

√
−∆, and supλ∈R | sin tλ/λ| = |t|, we have

‖U(t)‖L2→H1 ≤ C‖U(t)‖L2→L2 + C‖
√
−∆U(t)‖L2→L2

= O(|t|+ 1) .
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This and (3.1.13) give the bound (3.1.12) for j = 1. For j = 0 we write

λρR0(λ)ρ =

∫ L

0
Dt(e

iλt)ρU(t)ρdt = −
∫ L

0
eiλtρDtU(t)ρdt .

We have

DtU(t) = −i cos t
√
−∆ = OL2→L2(1) ,

and the bound (3.1.12) for j = 0 follows.

4. Finally, we consider (3.1.12) for j = 2. Suppose that ρ1 ∈ C∞c (Rn)
satisfies

ρ1 = 1 near supp ρ, diam(supp ρ1) < L.

Since (−∆− λ2)R0(λ) = I, we have

‖ρR0(λ)ρ‖L2→H2 ≤ C‖∆ρR0(λ)ρ‖L2→L2 + C‖ρR0(λ)ρ‖L2→L2

≤ C‖ρ∆R0(λ)ρ‖L2→L2 + C‖[∆, ρ](ρ1R0(λ)ρ1)ρ‖L2→L2

+ C‖ρR0(λ)ρ‖L2→L2

≤ C|λ|2‖ρR0(λ)ρ‖L2→L2 + C‖ρ1R0(λ)ρ1‖L2→H1

+ C‖ρR0(λ)ρ‖L2→L2 + C ,

for some constants C (which may change from line to line). Hence (3.1.12)
for j = 2 follows from the estimates for j = 0, 1. �

The wave equation representation and the formulæ for E(t) (and hence
U(t) in view of (3.1.8)) given in (3.1.4) can be used to derive an explicit
formula for the Schwartz kernel of R0(λ), R0(λ, x, y). Instead we take a
direct approach based on the Fourier transform representation (3.1.2).

3.1.2. An explicit formula for R0(λ) in odd dimensions. We start
with the following

LEMMA 3.2 (Oscillatory integrals over Sn−1). Suppose that n ≥ 3
is odd and dω denotes the standard measure on Sn−1 (induced from the
Lebesgue measure on Rn, Sn−1 := {x : |x| = 1, x ∈ Rn}).

Then for ζ ∈ R, and x ∈ Rn,∫
Sn−1

eiζ〈ω,x〉dω = 2π
n−1
2

(
eiζ|x|Fn(ζ|x|) + e−iζ|x|Fn(−ζ|x|)

)
,(3.1.14)

where Fn(k) is given by

(3.1.15) Fn(k) := e−2ik(−∂k)
n−3
2

(
e2ik/ik

n−1
2

)
,

REMARK. The integral in (3.1.14) can be expressed using the Bessel
function Jn−2

2
but we take a direct approach.
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Proof. 1. It is clear that the right hand side is a function of ζ and |x|.
Hence we can assume that x = |x|e1 where e1 = (1, 0, . . . , 0) ∈ Rn. Using
the parametrization of Sn−1 by BRn−1(0, 1):

ω = (±
√

1− r2, rθ), θ ∈ Sn−2, 0 ≤ r ≤ 1,

and putting cn := vol (Sn−2) and k := ζ|x|, we have∫
Sn−1

eik〈ω,e1〉dω = cn

∫ 1

0

(
eik
√

1−r2 + e−ik
√

1−r2
) rn−2

√
1− r2

dr

= 2cn

∫ 1

0
cos(ky)(1− y2)

n−3
2 dy

= 2cn(1 + ∂2
k)

n−3
2

∫ 1

0
cos(ky)dy

= cn(1 + ∂2
k)

n−3
2

(
eik − e−ik

ik

)
.

2. Putting Dk := (1/i)∂k, we factorize

(1 + ∂2
k)

n−3
2 = (1 +Dk)

n−3
2 (1−Dk)

n−3
2

= (e−ikDke
ik)

n−3
2 (−eikDke

−ik)
n−3
2

= e−ikD
n−3
2

k e2ik(−Dk)
n−3
2 e−ik

= e−ik(−∂k)
n−3
2 e2ik(−∂k)

n−3
2 e−ik.

Hence

(1 + ∂2
k)

n−3
2

(
eik

ik

)
= e−ik(−∂k)

n−3
2 e2ik(−∂k)

n−3
2 (1/ik)

=
(
n−3

2

)
! e−ik(−∂k)

n−3
2

(
e2ik/ik

n−1
2

)
,

with the action on −e−ik/ik obtained by taking complex conjugates. We

now recall that cn = 2π(n−1)/2/
(
n−3

2

)
! which gives (3.1.14). �

From Lemma 3.2 we obtain a formula for the Schwartz kernel of R0(λ):

THEOREM 3.3 (Schwartz kernel of the resolvent in odd dimen-
sions). Suppose that n ≥ 3 is odd. Then the Schwartz kernel of the resolvent
R0(λ) defined in Theorem 3.1 is given by

(3.1.16)
R0(λ, x, y) =

eiλ|x−y|

|x− y|n−2
Pn(λ|x− y|),

Pn(k) := i2−n+1π−
n−1
2 kn−2Fn(k),
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where Fn is given in (3.1.14); Pn is a polynomial of degree (n− 3)/2 with

Pn(0) =
(n− 3)!

π
n−1
2 2n−1

(
n−3

2

)
!
,

(
z
n−3
2 Pn(1/z)

)
|z=0 =

1

4π

1

(2πi)
n−3
2

.

(3.1.17)

REMARK. Formulæ (3.1.17) give the extremal coefficients of the poly-
nomial Pn(z): Pn(0) determines the leading asymptotic of R0(λ, x, y) as

|x− y| → 0 and, (z
n−3
2 Pn(1/z))z=0, the leading asymptotic as |x− y| → ∞.

In dimension n = 3, (3.1.16) takes the simple form

R0(λ, x, y) =
eiλ|x−y|

4π|x− y|
.

Proof. 1. We prove the formula for Imλ > 0 and continue both sides ana-
lytically in λ. We start by rewriting (3.1.2) using polar coordinates ξ = ζω,
ω ∈ Sn−1, ζ ∈ R and Lemma 3.2:

R0(λ, x, y) =
1

(2π)n

∫ ∞
0

∫
Sn−1

eiζ〈ω,x−y〉

ζ2 − λ2
dωζn−1dζ

=
1

2

1

(2π)n

∫
R

∫
Sn−1

eiζ〈ω,x−y〉

ζ2 − λ2
dωζn−1dζ

=
1

2nπ
n+1
2

∫
R
eiζ|x−y|Fn(ζ|x− y|) ζn−1

ζ2 − λ2
dζ

+
1

2nπ
n+1
2

∫
R
e−iζ|x−y|Fn(−ζ|x− y|) ζn−1

ζ2 − λ2
dζ.

We note that switching to the integral over (0,∞) to the integral over R
was justified as for n odd ζn−1 = (−ζ)n−1.

2. For |x − y| 6= 0, the functions Fn(±ζ|x − y|)ζn−1 are holomorphic in ζ
and hence we can deform the contours in the two integrals on the right hand
side: to Im ζ = N → ∞ and Im ζ = −N → ∞, respectively. For the first
integral we obtain a contribution from the pole at ζ = λ and for the second
from the pole at ζ = −λ. The residue theorem then gives

(3.1.18) R0(λ, x, y) = 2−n+1π−
n−1
2 ieiλ|x−y|λn−2Fn(λ|x− y|),

and this gives (3.1.16).
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3. To compute the highest and lowest coefficients of Pn we use (3.1.15)
which gives

Pn(0) = π−
n−1
2 2−n+1

(
n−1

2

) (
n−1

2 + 1
)
· · ·
(
n−1

2 + n−5
2

)
= π−

n−1
2 2−n+1 (n− 3)!(

n−3
2

)
!
.

Similarly we obtain the formula for the highest coefficient of Pn(z). �

We finish with an explicit version of Stone’s formula (B.1.12) for the free
Laplacian in odd dimensions:

THEOREM 3.4 (Stone’s formula for the free Laplacian). Suppose
n ≥ 3 is odd and R0(λ) = (−∆ − λ2)−1, Imλ > 0. Then the analytic
continuation of the Schwartz kernel R0(λ, x, y) satisfies

(3.1.19) R0(λ, x, y)−R0(−λ, x, y) =
i

2

λn−2

(2π)n−1

∫
Sn−1

eiλ〈ω,x−y〉dω, λ ∈ C,

where dω denotes the standard measure on Sn−1.

REMARK. We refer to (3.1.19) as Stone’s formula as it is special case
of a formula valid for all self-adjoint operators – see Theorem B.10. The
right hand side is related to the spectral measure of −∆ obtained using the
Fourier transform and the left hand side is the difference of boundary values
of resolvents at the real axis: for λ > 0,

R0(λ) = lim
ε→0+

(−∆− λ2 − iε)−1, R0(−λ) = lim
ε→0+

(−∆− λ2 + iε)−1,

where the limits are taken in the sense of operators C∞c (Rn) → C∞(Rn)
(with finer formulations possible).

Proof. We could use contour deformation starting with (3.1.2) as in §3.1.4
below but we can use (3.1.18) and Lemma 3.2.

Indeed, from (3.1.18) we see that

R0(λ, x, y)−R0(−λ, x, y) =

i2−n+1π−
n−1
2 λn−2(eikFn(k) + e−ikFn(−k))|k=λ|x−y|,

which combined with (3.1.14) gives (3.1.19). �

3.1.3. Asymptotic behaviour of R0(λ)f . The next theorem gives asymp-
totics of R0(λ)f , f ∈ E ′(Rn) as |x| → ∞ for λ 6= 0.

This result does not depend on the parity of the dimension.
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THEOREM 3.5 (Outgoing asymptotics). Suppose that n ≥ 3 is odd
and that f ∈ E ′(Rn) is a compactly supported distribution (or f ∈ S (Rn)).

Then for λ ∈ R \ 0,

R0(λ)f(|x|θ) = eiλ|x||x|−
n−1
2 h(|x|, θ) ,

h(x, θ) ∼
∞∑
j=0

|x|−jhj(θ) , h0(θ) =
1

4π

(
λ

2πi

) 1
2

(n−3)

f̂(λθ) ,
(3.1.20)

as |x| → ∞.

Proof. 1. The proof is based on the formula (3.1.16) for the Schwartz kernel
of R0(λ) and the following expansions valid as |x| → ∞:

|x− y| = |x|(1− 2〈x/|x|, y〉/|x|+ |y|2/|x|2)
1
2

= |x| − 〈x/|x|, y〉+ (|y|2/2− 〈x/|x|, y〉2/2)/|x|+ · · ·

= |x| − 〈x/|x|, y〉+

K−1∑
k=1

ak(y, x/|x|)|x|−k +O(|y|K+1|x|−K).

(3.1.21)

The last bound is valid for y ∈ Rn, |x| > 1 and |ak(y, ω)| ≤ Ck|y|k+1.
Similarly,

|x− y|−p = |x|−p(1− 2〈x/|x|, y〉/|x|+ |y|2/|x|2)−p/2

= |x|−p (1− p〈x/|x|, y〉/|x|+ · · · )

= |x|−p
(

1 +
K−1∑
k=1

bk(y, x/|x|)|x|−k +O(|y|K |x|−K)

)
,

(3.1.22)

where |bk(y, ω)| ≤ Ck|y|k.
2. We now use (3.1.16) and (3.1.17) (see the remark following the theorem)
to write

R0(λ, x, y) =
1

4π

λ
n−3
2

(2πi)
n−3
2

eiλ|x−y|

|x− y|
n−1
2

(
1 + · · ·+ an|x− y|−

n−3
2

)
.

Pairing this with f(y) ∈ E ′(Rn) (or integrating against f(y) ∈ S (Rn)) and
using expansions (3.1.21) and (3.1.22) gives (3.1.20). �

3.1.4. Continuation of the resolvent using contour deformation.
We will now consider another way of continuing the resolvent kernelR0(λ, x, y).
To streamline the notation we will write

R0(λ, x, y) = R0(λ, x− y),
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0 λ

−λ

γn(λ), n odd

0 λ

−λ

γn(λ), n even

Figure 3.1. Contour deformation used to define R0(λ) for Imλ ≥ 0.

and we think of R0(λ, x) as a distribution in the x variables. Then for
ϕ ∈ C∞c (Rn) (for any n, odd or even)

(3.1.23) R0(λ)(ϕ) =
1

(2π)n

∫
Rn

ϕ̂(ξ)

|ξ|2 − λ2
dξ, Imλ > 0,

where the left hand side is understood as the distributional pairing ofR0(λ)(x)
and ϕ(x).

REMARK. The spectral representation (3.1.23) immediately implies bounds
on the free resolvent for Imλ > 0:

‖R0(λ)‖L2→Hk ' sup
t>0

(1 + t)k/2

|t− λ2|
≤ C ′ 〈λ〉

k

|λ| Imλ
, k = 0, 1, 2.(3.1.24)

This estimate is independent of the dimension.

We can re-write the integral in (3.1.23) using polar coordinates in ξ = ρθ,
ρ ∈ (0,∞), θ ∈ Sn−1 so that

R0(λ)(ϕ) =
1

(2π)n

∫
Sn

∫ ∞
0

ϕ̂(ρθ)

ρ2 − λ2
ρn−1dρdθ, Imλ > 0,

where dθ is the element of integration on Sn−1.

We can rewrite the integral in ρ as a contour integral over the following
contours:

γn =

{
R, oriented from −∞ to +∞, for n odd
R− + R+, R± oriented from 0 to ±∞, for n even,

(3.1.25) R0(λ)(ϕ) =
1

2

1

(2π)n

∫
Sn

∫
γn

ϕ̂(ρθ)

ρ2 − λ2
ρn−1dρdθ, Imλ > 0.

We can now deform the contours in a λ-dependent way, as shown in
Fig. 3.1 for λ ∈ R \ {0}. For Imλ < 0 the further deformation leads to
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0

λ

−λ

n odd

Figure 3.2. Contour deformations used to define R0(λ) for λ > 0 for
n odd. Because of the orientation R0(e−πiλ) = R0(λ) for λ > 0 and the
operator is defined in C.

contours shown in Fig. 3.2 (n odd) and Fig. 3.3 (n even):

γn(λ) = γn + δn(λ) + δn(−λ),

where, for some r < | Im ζ|,

δn(ζ) =

{
∂D(ζ, r) for Im ζ < 0 and n odd, or for n even,
−∂D(ζ, r) Im ζ > 0 and n odd,

where the boundary of a disc is positively oriented.

For n odd the contour integrals over δn(±λ) can be absorbed into γn as
λ crosses the real axis again and this shows that we can continue R0(λ)ϕ,
ϕ ∈ C∞c to a holomorphic function in C \ {0}. This gives the holomorphic
continuation of the distributional kernel, R0(λ, x, y).

For n even the contour integrals over δn(±λ) cannot be absorbed into
γn as λ crosses the real axis again due to the wrong orientation: that means
that R0(λ, x, y) continues to the logarithmic cover of C\{0} when n is even.
The integrals over δn(±λ) can be evaluated by the residue theorem and that
shows that for n even

R0(λei`π)(x) = R0(λ)(x) +
`

2i
(−1)

n−2
2

(`+1) λn−2

(2π)n−1

∫
Sn−1

eiλ〈x,ω〉dω.

3.1.5. Additional estimates. We conclude this section with two low en-
ergy estimates which will be useful in §3.9. In particular, they can be omitted
till that section is reached.
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0

λ

−λ

n even

Figure 3.3. Contour deformations used to define R0(λ) for λ > 0 for
n even. Now R0(e−πiλ) = R0(λ) can be expressed using an integral ove-
gral over the circular contour which doubles rather than gets absorbed.
The resolvent is defined on the logarithmic plane.

LEMMA 3.6. Suppose that ρ ∈ C∞c (Rn), n ≥ 3, odd. Then for any C0 > 0
and k ∈ N there exist C1 such that

(3.1.26)
‖λρR0(λ)R0(λ0)kR0(λ)ρ‖L2→H2k ≤ C1,

for 0 ≤ |λ| ≤ C0 ≤ 1
2 Imλ0 ≤ 2C0, Imλ ≥ 0.

Proof. 1. It is convenient to prove a stronger estimate for the same range of
λ and λ0:

(3.1.27) ‖e−〈x〉λR0(λ)R0(λ0)kR0(λ)e−〈x〉‖L2→H2k ≤ C.

2. We first prove

(3.1.28) ‖e−〈x〉λR0(λ)R0(λ0)kR0(λ)e−〈x〉‖L2→L2 ≤ C,
for any k ≥ 0. In fact, using R0(λ0)R0(λ) = (λ2 − λ2

0)−1(R0(λ)−R0(λ0))

R0(λ)R0(λ0)kR0(λ) = ak(λ
2 − λ2

0)−kR0(λ)2 + bk(λ
2 − λ2

0)−k−1R0(λ)

+
k−1∑
`=0

ck`(λ
2 − λ2

0)−2−`R0(λ0)k−`.

Since |λ2 − λ0|2 > (Imλ0)2 − |λ|2 > 3C2
0 > 0 and since ‖R0(λ0)‖L2→L2 ≤

C|λ0|−1(Imλ0)−1 ≤ C ′C−2
0 (see (3.1.24)) we only need to show that

‖e−〈x〉R0(λ)e−〈x〉‖L2→L2 ≤ C and ‖e−〈x〉λR0(λ)2e−〈x〉‖L2→L2 ≤ C.

The first estimate follows the representation of the Schwartz kernel of R0(λ)
given in Theorem 3.3 and the Schur criterion (A.5.3). For the second esti-
mate we note that

λR0(λ)2 = 1
2∂λR0(λ)
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which gives an expression for the Schwartz kernel of λR0(λ)2. Then the
Schur criterion gives the second estimate.

This gives (3.1.26) for k = 0.

3. To move to k ∈ N, we start with the following observation: suppose that
e−〈x〉u ∈ H2(Rn). Then with ‖ • ‖ := ‖ • ‖L2

(3.1.29) ‖∆(e−〈x〉u)‖ ≤ C‖e−〈x〉∆u‖+ C‖e−〈x〉u‖.
In fact,

∆(e−〈x〉u) = e−〈x〉
(
∆u− 2〈x〉−1x · ∇u+ (n+ (n− 1)|x|2)〈x〉−3u

)
= e−〈x〉∆u− 2〈x〉−1x · ∇(e−〈x〉u) +O(1)e−〈x〉u.

Thus,

‖∆(e−〈x〉)u‖2 ≤ 2‖e−〈x〉∆u‖2 + 8‖∇(e−〈x〉u)‖2 + C‖e−〈x〉u‖2

= 2‖e−〈x〉∆u‖2 − 8〈∆(e−〈x〉u), e−〈x〉u〉+ C‖e−〈x〉u‖2

≤ 2‖e−〈x〉∆u‖2 + 1
2‖∆(e−〈x〉u)‖2 + (C + 32)‖e−〈x〉u‖2.

Since we assumed e−〈x〉u ∈ H2, the integration by parts was justified. Hence,
we can move the ∆(e−〈x〉u) term to the left hand side, proving (3.1.29).

4. The estimate (3.1.29) shows that

‖e−〈x〉λR0(λ)R0(λ)kR0(λ)e−〈x〉‖L2→H2k ≤

C‖e−〈x〉λR0(λ)∆k R0(λ0)kR0(λ)e−〈x〉‖L2→L2

+ C‖e−〈x〉λR0(λ)R0(λ)kR0(λ)e−〈x〉‖L2→L2 .

But then (3.1.26) follows from (3.1.28) by iterating the identity −∆R0(λ0) =
I + λ2

0R0(λ0) k times. �

The second lemma provides a basic weighted estimate on the resolvent
up to the real axis near 0 energy. It can be refined in many ways – see
[JK79],[Je80a],[Mu82] for classical estimates and [Va18] for recent devel-
opments.

LEMMA 3.7. Suppose that n ≥ 3 is odd and s ≥ 0, s /∈ N. Then, for
C0, C1 > 0 there exists C3 such that for

|λ| ≤ C0 Imλ ≤ C1,

(3.1.30) ‖〈x〉−sR0(λ)〈x〉−s‖L2→L2 ≤ C2 + C2|λ|s−2.

Proof. From Theorem 3.3 we know that for Imλ ≥ 0,

|R0(λ, x, y)| ≤

n−3
2∑

k=0

ck|λ|k|x− y|2+k−ne− Imλ |x−y|.
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Using 2〈x〉〈y〉 ≥ 〈x− y〉 we have for s ≥ 0,

〈x〉−s|x− y|2+k−n〈y〉−s ≤ C|x− y|2+k−n〈x− y〉−s.

Hence, for s ≥ 0, s /∈ N,∫
R
〈x〉−s|R0(λ, x, y)|〈y〉−sdx ≤

n−3
2∑

k=0

ck|λ|k
∫ ∞

0
(1 + r)−sr1+ke− Imλ rdr

≤

n−3
2∑

k=0

ck|λ|k
(
C +

∫ ∞
1

r1+k−se− Imλ rdr

)

≤

n−3
2∑

k=0

ck|λ|k(C + C(Imλ)s−k−2)

≤ C + C|λ|s−2.

The Schur criterion (A.5.3) then gives (3.1.30). �

3.2. MEROMORPHIC CONTINUATION

In this chapter we define scattering resonances for compactly supported
potentials in odd dimension and present some of their basic properties.

3.2.1. Continuation of the resolvent. Once we have established the
properties of the free resolvent in odd dimensions the properties of

RV (λ) := (PV − λ2)−1 , PV = −∆ + V, Imλ� 0 ,

V ∈ L∞(Rn,C) , n ≥ 3, odd, ∆ =

n∑
j=1

∂2
xj ,

follow exactly as in one dimension. The situation is even simpler as we do
not have a resonance at zero for R0(λ).

In particular the proof of the following theorem is exactly the same as
in the one dimensional case:

THEOREM 3.8 (Meromorphic continuation of the resolvent). Sup-
pose that V ∈ L∞comp(Rn;C) and that n ≥ 3 is odd. Then the

RV (λ) := (−∆ + V − λ2)−1 : L2 −→ L2 , Imλ > 0 ,

is a meromorphic family of operators with finitely many poles. It extends to
a meromorphic family of operators for:

RV (λ) := L2
comp −→ L2

loc, λ ∈ C.
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Just as in the proof of Theorem 2.2 we have a formula for the meromor-
phically continued resolvent. Let ρ ∈ L∞comp(Rn) satisfy ρ ≡ 1 on suppV .
Then

(3.2.1) RV (λ) = R0(λ)(I + V R0(λ)ρ)−1(I − V R0(λ)(1− ρ)) .

We also have

(3.2.2)
RV (λ)ρ = R0(λ)ρ(I + V R0(λ)ρ)−1,

ρRV (λ) = (I + ρR0(λ)V )−1ρR0(λ).

Since the operator ρR0(λ)V is compact, I + ρR0(λ)V is invertible unless
it has a non-trivial kernel – see (C.2.6). Hence, if RV (λ) is singular at λ0

then there exists U such that U = −ρR0(λ0)V U . Since ρ with ρV = V is
arbitrary this means that

(3.2.3) RV (λ) has a pole at λ0 =⇒ ∃u ∈ H2
loc, u = R0(λ0)V u.

The converse also follows from (3.2.2) and a more precise statement is given
in Theorem 3.15.

REMARK. For future reference we make the following observation about
the Schwartz kernel of RV (λ): if V ∈ L∞comp(Rn;C) then

(3.2.4) RV (λ, x, y) = RV (λ, y, x).

In fact, since R0(λ, x, y) = R0(λ, y, x) this follows from (3.2.2) as the two
expressions for ρRV (λ)ρ are transposes of each other and ρ can be chosen
to be equal to 1 on arbitrarily large sets.

Scattering resonances are the poles of RV (λ) and their multiplicities,
mR(λ) are defined by

(3.2.5) mV (λ) = mR(λ) := dim span {A1(L2
comp), · · ·AJ(L2

comp)},

where

RV (ζ) =
J∑
j=1

Aj
(ζ − λ)j

+A(ζ, λ),

with ζ 7→ A(ζ, λ) holomorphic near λ. We refer to the continuation, RV (λ),
as the scattering resolvent. .

As we will see in Theorem 3.9 this definition coincides with the definition
(2.2.11) away from 0:

mV (λ) = mR(λ) := dim spanA1(L2
comp)

= rank

∮
λ
RV (ζ)2ζdζ, λ 6= 0.

(3.2.6)
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We use notation mV to emphasize the dependence on the potential V .
When there is no ambiguity mR is used to distinguish this multiplicity from
the multiplicity mS(λ) defined in §3.7 using the scattering matrix.

The structure of the singular part of the resolvent at a pole is described
by following the proof of 1) in Theorem 2.5:

THEOREM 3.9 (Singular part of RV (λ) ). Suppose mR(µ) > 0, µ 6= 0.
Then for some integer K(µ) ≤ mR(µ) ,

(3.2.7) RV (λ) = −
K(µ)∑
k=1

(PV − µ2)k−1

(λ2 − µ2)k
Πµ +A(λ, µ) ,

where λ 7→ A(λ, µ) is holomorphic near µ, and

(3.2.8) Πµ = − 1

2πi

∮
µ
RV (λ)2λdλ, (PV − µ2)K(µ)Πµ = 0.

The elements of the range of (PV − µ2)K(µ)−1Πµ satisfy (PV − µ2)u = 0
and are called resonant states. See Definition 4.8 and Theorem 4.9 for a
treatment in a more general setting.

REMARKS. 1. The expansion (3.2.7) takes a particularly simple form
when mR(µ) = 1, µ 6= 0:

(3.2.9) RV (λ) =
u⊗ u
λ− µ

+A(λ, µ), u ∈ H2
loc(Rn),

where for f ∈ L2
comp(Rn), (u ⊗ u)f(x) := u(x)

∫
Rn u(y)f(y)dy. In fact,

since K(µ) = 1 and Πµ is of rank one the Schwartz kernel of the residue is
given by u(x)v(y) for some u, v ∈ H2

loc(Rn). But the Schwartz kernel of the
resolvent satisfies (3.2.4) (see also Exercise 3.4) which means that we can
choose v(x) = u(x).

2. A generalization of Theorem 3.23 to a large class of compactly supported
perturbations of −∆ is given in §4.2. A discussion of outgoing solutions is
also provided there.

3.2.2. Resonance expansions of scattered waves. The proofs of The-
orem 2.10 on resonance free regions and of Theorem 2.9 apply without any
modifications to the case of higher odd dimensions. Thus we obtain

THEOREM 3.10 (Resonance free regions). Suppose that

V ∈ L∞comp(Rn;C) , n ≥ 3 , odd.

Then for any ρ ∈ C∞c (R3) there exist constants A,C, T depending on ρ such
that

(3.2.10) ‖ρRV (λ)ρ‖L2→Hj ≤ C|λ|j−1 eT (Imλ)− , j = 0, 1, 2 ,
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for

Im λ ≥ −A− δ log(1 + |λ|) , |λ| > C0 , δ < 1/diam (suppV ) .

In particular there are only finitely many resonances in the region

{λ : Imλ ≥ −A− δ log(1 + |λ|)} .

for any A > 0.

THEOREM 3.11 (Resonance expansions of scattering waves). Let
V ∈ L∞(Rn;R) for n ≥ 1 odd, and suppose that w(t, x) is the solution of

(3.2.11)


(D2

t − PV )w(t, x) = 0 ,

w(0, x) = w0(x) ∈ H1
comp(Rn) ,

∂tw(0, x) = w1(x) ∈ L2
comp(Rn) .

Let {λj} be the set of resonances of PV (including {i
√
−Ek}Nk=1, where EN <

· · · ≤ E2 ≤ E1 ≤ 0 are the eigenvalues of PV ).

Then, for any A > 0,

(3.2.12) w(t, x) =
∑

Imλj>−A

mR(λj)−1∑
`=0

t`e−iλjtwj,`(x) + EA(t) ,

where the sum is finite and

mR(λj)−1∑
`=0

λ`je
−iλjtwj,`(x) = −Resλ=λj

(
(iRV (λ)w1 + λRV (λ)w0) e−iλt

)
,

(PV − λj)`+1wj,` = 0 ,

(3.2.13)

and for any K > 0, such that suppwj ⊂ [−K,K], there exist constants CK,A
and TK,A

‖EA(t)‖H2([−K,K]) ≤ CK,Ae−tA (‖w0‖H1 + ‖w1‖L2) , t ≥ TK,A .

3.2.3. Finite rank perturbations and multiplicities. To handle agree-
ment of multiplicities it is convenient to work with simple poles. This section
as well as Theorem 3.45 below deal with these thorny issues and can be safely
skipped at first reading.

The theory presented above applies without changes to V of the form

V = V0 + V1, V0 ∈ L∞comp(Rn,C),

V1 =

J∑
j=1

fj ⊗ gj , fj , gj ∈ L∞comp(Rn;C),
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that is to potentials replaced by a sum of a potential and a finite rank
perturbation. The advantage of this approach is the ease with which the
multiplicities can be split. That will allow a simple treatment of the relation
between multiplicities of the scattering matrix and the resolvent.

We have already seen that the structure of the singular part of the
resolvent can be quite complicated and both statements and proofs are easier
when the resonances are simple, that is when multiplicity is equal to 1.

We start with a simple lemma which is a more precise version of Theorem
C.4 in a special case. From (C.2.2) we see that for a compact operator on a
Hilbert space dim ker(I +K) = dim coker (I +K) = dim ker(I +K∗).

LEMMA 3.12 (Grushin problem for Fredholm operators). Suppose
that K : H → H is a compact operator on a Hilbert space H. Let v1, · · · , vm
be an orthonormal basis of ker(I+K) and w1, · · · , wm be an orthormal basis
of ker(I +K∗). Define

R− : Cm → H, R−u− :=
m∑
j=1

u−,jwj ,

R+ : H → Cm, R+u := (〈u, vj〉H)mj=1.

Then

(3.2.14)

[
I +K R−
R+ 0

]−1

=

[
E E+

E− 0

]
: H ⊕ Cm → H ⊕ Cm,

where

E+ : Cm → H, E+z =
m∑
j=1

zjvj , z ∈ Cm,

E− : H → Cm, E−u = (〈u,wj〉H)mj=1.

The next lemma deals with simplicity of zeros of determinants:

LEMMA 3.13 (Simplicity of zeros). Suppose that M(λ) is a holomor-
phic family of m×m matrices and for some holomorphic function g,

detM(λ) = λpg(λ), g(0) 6= 0, M(0) = 0.

There exists a matrix A such that for any holomorphic family of m × m
matrices, λ 7→M(λ, ε) satisfying

M(λ, ε) = M(λ) + εA+ f(λ, ε), ‖f(λ, ε)‖ = O(ε2 + |λ|ε),

there exists ε0 and r0 such that for 0 < ε < ε0, detM(λ, ε) has exactly p
simple zeros in D(0, r0).
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Proof. 1. We note that for 0 < |λ| ≤ r0 with r0 small enough, detM(λ) 6= 0
and hence M(λ) is invertible. It follows that for |λ| = r0

‖M(λ)−1(M(λ, ε)−M(λ))‖ ≤ Cr0ε < 1,

if ε < ε0 for some ε0 chosen small enough depending on r0 and A. The
matrix valued version of Rouché’s Theorem C.12 now shows that the number
of zeros of detM(λ, ε) in |λ| < r0 is equal to p, the multiplicity of the only
zero of detM(λ) there.

2. We can apply Lemma C.13 to M(λ), so that

M(λ) = E(λ)M0(λ)F (λ),

M0(λ) = λk1P1 + λk2P2 + · · ·λkrPr, kj > 0,

PkPj = PjPk = δjkPk,
r∑
j=1

Pj = ICm ,
m∑
j=1

kj rankPj = p,

and E(λ), F (λ) are holomorphic and invertible near λ = 0. We can make
identifications ImPj ' Cmj , mj = rankPj .

3. Let 0 < θ � 1 and put Dm = diag(1, eiθ, · · · , ei(m−1)θ). We then put

A0 = Dm1P1 +Dm2P2 + · · ·+DmrPr,

where we identified ImPj with Cmj and Cm with Cm1 ⊕ · · · ⊕ Cmr . If θ is
small enough, the zeros of det(M0(λ)− εA0) are simple and are given by

λkj ,q,` = ε1/kje2πi`/kj+iθq/kj ,

` = 0, · · · , kj , q = 0, · · · ,mj − 1, j = 1, · · · , r.

One can check that there exists c0 > 0 such that for (k, q, `) 6= (k′, q′, `′),

(3.2.15) |λk,q,` − λk′,q′,`′ | > c0 max(ε
1
k , ε

1
k′ ),

provided ε and θ are smaller than some fixed constant (depending on kj ’s
and mj ’s).

4. Putting A = E(0)−1A0F (0)−1 we have

(3.2.16)
E(λ)−1M(λ, ε)F (λ)−1 = M0(λ)− εA0 + e(λ, ε),

‖e(λ, ε)‖ = O(ε2 + |λ|ε)

and we are looking for zeros of the determinant of the right hand side. Con-
sider U = D(λkj ,q,`, ε

1/kjρ). In view of (3.2.15) different U ’s are disjoint from
the set where ρ < c0. Then for λ ∈ ∂U , and ρ small enough (independently
of ε),

‖(M0(λ)− εA0)−1‖ =

(
min

j=1,···r,
min

0≤q≤mj−1
|λkj − eiθqε|

)−1

≤ Cε−1ρ−1.
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Hence, for λ ∈ ∂U and using (3.2.16),

‖(M0(λ)− εA0)−1e(λ, ε)‖ ≤ C(|λ|+ ε)ρ−1 ≤ Cε
1
kj ρ−1 < 1,

if Cε
1
kj < ρ. An application of Theorem C.12 shows that the determinant of

M(λ, ε) has exactly one zero in U . In view of (3.2.15) there exists p disjoint
discs with such properties for the corresponding λkj ,q,`’s. It follows that all
the zeros of this determinant in D(0, r0) are simple. �

We can now prove

THEOREM 3.14 (Multiplicity splitting). Suppose that V ∈ L∞comp(Rn;C),
n ≥ 3, odd, and that for some λ0 ∈ C, mV (λ0) > 1. Then there exists a
finite rank perturbation

W =
m∑

i,j=1

fi ⊗ gj , fi, gj ∈ C∞c (Rn;C),

and constants ε0 and r0 such that for 0 < ε < ε0,∑
|λ−λ0|<r0

mV+εW (λ) = mV (λ0),

mV+εW (λ) ≤ 1, |λ− λ0| < r0.

(3.2.17)

REMARK. In Theorem 4.39 we will prove a higher dimensional version of
Theorem 2.25 and show that resonances are generically simple. In this book
that is only done for resonances in a conic neighbourhood of the real axis
(see (4.5.45)) but as remarked there large angle complex scaling of [SZ91]
gives the result for all resonances.

Proof. 1. Since

(3.2.18)
RV (λ) = R0(λ)(I + V R0(λ)ρ)−1(I − V R0(λ)(1− ρ)) ,

(I + V R0(λ)ρ)−1 = I − V RV (λ)ρ ,

we see that simplicity of a pole of RV is equivalent to the simplicity of a
pole of (I + V R0(λ)ρ)−1 and we will consider that operator.

2. We apply Lemma 3.12 with K = V R0(λ0)ρ. From (3.1.12) we have

‖(V + εW )R0(λ)ρ− V R0(λ0)ρ‖L2→L2

≤ ‖V ‖L∞‖ρ(R0(λ)−R0(λ0))ρ‖L2→L2 + ε‖WR0(λ)ρ‖L2→L2

≤ C1(|λ− λ0|+ ε)eC0|λ|,

where C1 depends on V and W . Hence, for λ sufficiently close to λ0 and
ε small enough we can use the same R± as for V R0(λ0)ρ to obtain a well
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posed Grushin problem:[
I + (V + εW )R0(λ)ρ R−

R+ 0

]−1

=

[
Eε(λ) Eε+(λ)
Eε−(λ) Eε−+(λ)

]
,

3. The expansion (C.1.7) gives

Eε−+(λ) = E−+(λ)− εA+O(ε|λ|+ ε2),

where

A = E−WE+ = BTC, Bij :=

∫
Rn
fi(x)wj(x), Cij :=

∫
Rn
gi(x)vj(x)dx.

Since the sets {wj}mj=1 and {vj}mj=1 are linearly independent we can find fj ’s
and gj ’s so that B and C are arbitrary matrices. This means that we can
choose A as in Lemma 3.13. The poles of I + (V + εW )R0(λ)ρ are the zeros
of detEε−+(λ) and hence the conclusion follows. �

As the first application we record the following fact:

THEOREM 3.15 (Multiplicity as a trace). Suppose that n ≥ 3 is odd.
Let mR(λ) be defined by (3.2.5) and suppose ρ ∈ C∞c (Rn) satisfies ρV = V .
Then

(3.2.19) mR(λ) =
1

2πi
tr

∮
λ
(I + V R0(ζ)ρ)−1∂ζ(V R0(ζ)ρ)dζ,

where the integral is over a positively oriented circle containing λ and no
other possible pole of RV . The same result holds with V R0(λ)ρ replaced by
ρR0(λ)V .

Proof. 1. As explained in the beginning of this section we can replace V by
more general operators of the form V = V0 + V1 where V0 is a potential V1

is a finite rank perturbation,

V0 ∈ L∞(Rn;C), V1 =

J∑
j=1

ϕj ⊗ ψj , ϕj , ψj ∈ L∞comp(Rn;C).

Let us denote by nV (λ) the right hand side of (3.2.19).

2. Suppose that that W =
∑J

j=1 fj ⊗ gj , for some fj , gj ∈ L∞comp(Rn;C).

Then for ρ = 1 on a sufficiently large compact set and for 1/C0 ≤ |µ| < C0,

‖V R0(µ)ρ− (V + ε)R0(µ)ρ‖L1(Rn) ≤ ε‖ρR0(µ)ρ‖‖W‖L1(Rn) ≤ C1ε.

Hence for ε > 0 small enough we can apply Theorem C.12 (with A(λ) =
I + V R0(λ)ρ and B(λ) = I + (V + εW )R0(λ)ρ) to see that exist ε0, r0 > 0
such that

(3.2.20)
∑

µ∈D(λ,r0)

nV+εW (µ) = nV (λ), ε < ε0.
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3. Theorem 3.14 shows that for any V there exists W such that the poles
of RV+εW (λ), 0 < ε < ε0 near λ0 are all simple.

In view of (3.2.18) the same holds for the poles of (I + V R0(λ)ρ)−1.
Then (3.2.20) and (3.2.17) show that it is sufficient to prove (3.2.19) in the
case of simple poles of RV (λ) and (I + V R0(λ)ρ)−1.

3. Suppose that λ is such a pole. Then (C.4.6) (the first part of Theorem
C.11) gives

1

2πi
tr

∮
λ
(I + V R0(ζ)ρ)−1∂ζ(V R0(ζ)ρ)dζ = 1 = mR(λ),

proving the claim. �

3.3. RESOLVENT AT ZERO ENERGY

Consider the operator PV , V ∈ L∞comp(Rn;R), where n > 1 is odd. Denote
by H0 the eigenspace of PV at 0:

H0 := {v ∈ H2(Rn) : PV v = 0},

and let

Π0 : L2(Rn)→ L2(Rn)

be the orthogonal projector onto H0.

We describe the structure of the resolvent RV (λ) at λ = 0, starting with
the following

LEMMA 3.16. We have

(3.3.1) RV (λ) = −Π0

λ2
+
iA1

λ
+A(λ),

as operators L2
comp → L2

loc, where λ 7→ A(λ) is holomorphic near 0 and

A1 : L2
comp → L2

loc is a symmetric operator such that PVA1 = 0.

REMARK. In the Lemma, the symmetry of A1 means that 〈A1ϕ,ψ〉 =
〈ϕ,A1ψ〉, for ϕ,ψ ∈ L2

comp(Rn).

Proof. 1. The upper bound on the resolvent in the upper half-plane,

(3.3.2) ‖RV (it)‖L2→L2 ≤
1

t2
, t ∈ (0, ε),

and the fact that λ 7→ RV (λ) is a meromorphic family of operators imply
that we have the following decomposition:

RV (λ) = −A2

λ2
+
iA1

λ
+A(λ),
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where Aj : L2
comp → H2

loc are finite rank operators and A(λ) : L2
comp → H2

loc

is holomorphic near λ = 0. Since RV (it) is self-adjoint for t > 0, we see that
for ϕ,ψ ∈ L2

comp(Rn),

(3.3.3) 〈A2ϕ,ψ〉 = lim
t→0+

〈t2RV (it)ϕ,ψ〉 = lim
t→0+

〈ϕ, t2RV (it)ψ〉 = 〈ϕ,A2ψ〉,

and

〈A1ϕ,ψ〉 = lim
t→0+

〈(tRV (it) + t−1A2)ϕ,ψ〉

= lim
t→0+

〈ϕ, (tRV (it) + t−1A2)ψ〉 = 〈ϕ,A1ψ〉.

Hence Aj are symmetric on L2
comp. Since for ψ ∈ L2

comp(Rn),

ψ = (PV − λ2)RV (λ)ψ

= −λ−2PVA2ψ + λ−1PVA1ψ + (A2 − λA1 + (PV − λ2)A(λ))ψ,

we obtain PVAj = 0.

2. We now observe that (3.3.2) shows that A2 is bounded L2 → L2 and that
(3.3.3) is valid for all ϕ,ψ ∈ L2, that is, A2 is selfadjoint. Since PVA2 = 0,
the range of A2 is contained in H0. To show that A2 = Π0, it remains to
verify that for each v ∈ H0, we have A2v = v, and this follows by substituting
ϕ = v in (3.3.3):

〈v, ψ〉 = 〈t2RV (it)v, ψ〉 → 〈A2v, ψ〉 as t→ 0 + . �

In dimensions 5 or greater, we have A1 = 0:

THEOREM 3.17. Assume that n ≥ 5 is odd. Then

RV (λ) = −Π0

λ2
+A(λ),

where A(λ) : L2
comp → L2

loc is holomorphic at λ = 0.

Proof. 1. Since R0(λ) is injective on L2
comp ((−∆− λ2) is its left inverse), it

follows from (3.2.1) that, for λ near 0,

(3.3.4) RV (λ) = R0(λ)(−Ã2/λ
2 + Ã1/λ+ Ã(λ)),

where Ãj , Ã(λ) : L2
comp → L2

comp and Ã(λ) is holomorphic near 0. For n ≥ 5,

in the notation of Theorem 3.3, and for ϕ ∈ L2
comp(Rn),

R0(0)ϕ(x) = Pn(0)

∫
Rn

ϕ(y)

|x− y|n−2
dy ∈ L2(Rn),

∂λR0(0)ϕ(x) = (iPn(0) + P ′n(0))

∫
Rn

ϕ(y)

|x− y|n−3
dy ∈ L2(Rn),
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and the asymptotics are given by c/|x|n−2 and c′/|x|n−3, respectively. For
n ≥ 7 this means that R0(0)ϕ, ∂λR0(0)ϕ ∈ L2(Rn). This is also true for
n = 5 as using (3.1.16) we check that iP5(0) + P ′5(0) = 0. Hence

R0(0)ϕ, ∂λR0(0)ϕ ∈ L2, for ϕ ∈ L2
comp, n ≥ 5.

From this we conclude that

A1(L2
comp) =

(
R0(0)Ã1 − ∂λR0(0)Ã2

)
(L2

comp)

⊂ R0(0)(L2
comp) + ∂λR0(0)(L2

comp) ⊂ L2.

Since PVA1 = 0, it follows that A1 : L2
comp → H0.

2. We now take ψ ∈ L2
comp, v ∈ H0, and consider, for t > 0,

0 = t〈RV (it)v, ψ〉 − t−1〈v, ψ〉 = 〈v, tRV (it)ψ − t−1〈v, ψ〉

= i〈v,A1ψ〉+ t〈v,A(it)ψ〉+ t−1〈v,Π0ψ〉 − t−1〈v, ψ〉

= i〈v,A1ψ〉+ t〈v,A(it)ψ〉+ t−1〈Π0v, ψ〉 − t−1〈v, ψ〉
→ i〈v,A1ψ〉, t→ 0+,

as Π0v = v. Since A1ψ ∈ H0 we can take v = A1ψ to conclude that
A1 ≡ 0. �

We now concentrate on the interesting case1 of n = 3. We start by
analysing the asymptotic behaviour of the elements of H0:

LEMMA 3.18. Assume that n = 3 and v ∈ H0. Then:

1. v = R0(0)f , where f = −V v = −∆v ∈ L2
comp(R3) and

∫
R3 f = 0.

2. Uniformly in θ ∈ S2 and locally uniformly in y ∈ R3,

(3.3.5)

v(y + rθ) =
1

4πr2

3∑
j=1

bjθj +
3

8πr3

3∑
j,k=1

(Bjk − 2bjyk) θjθk

− 1

8πr3

3∑
j=1

(Bjj − 2bjyj) +O
( 1

r4

)
, r → +∞,

where

(3.3.6) bj(v) =

∫
R3

xjf(x) dx, Bjk(v) =

∫
R3

xjxkf(x) dx.

3. For y ∈ R3 and r > 0,

(3.3.7) Iv(r, y) :=

∫
S2
v(y + rθ) dθ = O(r−4), r → +∞

1This detailed analysis will not be needed in the rest of the book but it contains ideas behind
the important study of more general potentials – see references in §3.13.
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locally uniformly in y.

Proof. 1. We have for all λ ∈ C, (−∆ − λ2)RV (λ) : L2
comp → L2

comp and,
usings (3.2.1),

(3.3.8) RV (λ) = R0(λ)(−∆− λ2)RV (λ).

From (3.3.1), we see that Π0 = R0(0)(−∆)Π0, and, since PV Π0 = 0, that

(−∆)Π0 = −VΠ0 : L2
comp → L2

comp.

By Lemma 3.16, v ∈ H0 is in the image of Π0. Therefore, v = R0(0)f , where
f = (−∆)v = −V v ∈ L2

comp.

2. Since R0(0)(x, y) = 1
4π|x−y| , we write

v(y + rθ) =
1

4π

∫
R3

f(x)

|x− y − rθ|
dx =

1

4πr

∫
R3

f(x)

|θ − r−1(x− y)|
dx

=
1

4πr

∫
R3

f(x)(1− 2r−1〈θ, x− y〉+ r−2|x− y|2)−1/2 dx.

We now use the Taylor expansion (1 + s)−1/2 = 1 − 1
2s + 3

8s
2 + O(s3). In

particular, we get

(3.3.9) v(rθ) =
1

4πr

∫
R3

f +O
( 1

r2

)
;

since v ∈ L2, this implies that
∫
R3 f = 0. Expanding (1 − 2r−1〈θ, x − y〉 +

r−2|x− y|2)−1/2 up to an O(r−3) remainder, we get (3.3.5).

3. Using the formulas∫
S2
θj dθ = 0,

∫
S2
θjθk dθ =

4π

3
δjk,

we see that the spherical integrals of the terms on the right-hand side
of (3.3.5) are zero, except for the O(r−4) remainder. �

We now want to understand the asymptotics, as t→ 0+, of the function
RV (it)v ∈ L2 for v ∈ H0. We first consider R0(it)v:

LEMMA 3.19. Suppose that n = 3 and assume that v ∈ H0. Then we
have the following asymptotic expansion in L2

loc as t→ 0+:

(3.3.10) R0(it)v = Kv + tJv +O(t3/2),

where, using the notation of (3.3.7),

Kv(y) =
1

4π

∫ ∞
0

rIv(r, y) dr, Jv(y) = − 1

4π

∫ ∞
0

r2Iv(r, y) dr.
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Moreover, Jv(y) is a polynomial of order 1 in y and

(3.3.11) ∂yjJv(y) = −bj(v)

12π
, 1 ≤ j ≤ 3,

where bj(v) are defined in (3.3.6).

Proof. We write

R0(it)v(y) =
1

4π

∫
R3

e−t|x−y|

|x− y|
v(x) dx =

1

4π

∫ ∞
0

re−trIv(r, y) dr.

We now use the expansion e−s = 1−s+O(s3/2), valid uniformly in s ∈ [0,∞),
with s = tr. By part 3 of Lemma 3.18, we have locally uniformly in y,
Iv(r, y) = O(r−4) as r → +∞. We moreover have Iv(r, y) = O(1) uniformly
in r, y, since v ∈ H2(R3) ⊂ L∞(R3). Then the integral∫ ∞

0
r1+αIv(r, y) dr

converges absolutely for α = 0, 1, 3/2, which gives (3.3.10).

To show (3.3.11), we use the divergence theorem for the vector field
v(x)ej to obtain

(3.3.12)

∂yj

∫ R

0
r2Iv(r, y) dr = ∂yj

∫
B(y,R)

v(x) dx =

∫
B(y,R)

∂jv(x) dx

= R2

∫
S2
θjv(y +Rθ) dθ.

By (3.3.5), this converges as R → +∞ to bj/3, locally uniformly in y,
proving (3.3.11). �

The operator v 7→ Kv can be characterized in terms of the principal
value integrals:

LEMMA 3.20. Assume that n = 3 and let v ∈ H0 and ϕ ∈ L2
comp and put

u := R0(0)ϕ ∈ L2
loc. Then the limit

(3.3.13) 〈v, u〉0 := lim
R→+∞

∫
B(y,R)

v(x)u(x) dx

exists, is independent of y, and

(3.3.14) 〈v, u〉0 = 〈Kv, ϕ〉.

Proof. For y, y′ ∈ R3 and large R, we proceed as in (3.3.12) to obtain

(3.3.15) ∂y′j

∫
B(y′,R)

v(x)

|x− y|
dx = R2

∫
S2
θj

v(y′ +Rθ)

|y′ − y +Rθ|
dθ.
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Since v(x) = O(|x|−2) by (3.3.5), we see that (3.3.15) is O(R−1), locally
uniformly in y, y′, implying that∫

B(y,R)

v(x)

|x− y|
dx−

∫
B(y′,R)

v(x)

|x− y|
dx = O(R−1).

Then for each fixed y′,

〈Kv, ϕ〉 =
1

4π
lim

R→+∞

∫
R3

ϕ(y)

∫
B(y,R)

v(x)

|x− y|
dxdy

=
1

4π
lim

R→+∞

∫
R3

ϕ(y)

∫
B(y′,R)

v(x)

|x− y|
dxdy

= lim
R→+∞

∫
B(y′,R)

u(x)v(x) dx,

yielding (3.3.13). �

To characterize A1, we consider the following space of resonant states at
zero:

H̃0 := {v ∈ H2
loc(R3) : PV v = 0, v = R0(0)(−∆v)}.

By part 1 of Lemma 3.18, we see that H0 ⊂ H̃0. Moreover, by (3.3.9) (which
applies to any function of the form R0(0)f with f ∈ L2

comp) and since |x|−2

lies in L2 near infinity, we see that

(3.3.16) H0 =

{
v ∈ H̃0

∣∣∣ ∫
R3

∆v(x) dx = 0

}
.

Since ∆v = V v it follows immediately that H0 has codimension at most one

in H̃0:

(3.3.17) m̃R(0) := dim(H̃0/H0) ≤ 1.

LEMMA 3.21. 1. The image of A1 lies inside H̃0.

2. If v ∈ H̃0, then

(3.3.18) v − A1(V )

4π

∫
R3

∆v(x)dx ∈ H0.

Proof. 1. It follows from (3.3.8) that

iA1 = R0(0)(−∆)iA1 + ∂λR0(0)∆Π0.

Since

∂λR0(0)(x, y) =
i

4π
and

∫
R3

∆v = 0, v ∈ H0,

we have

∂λR0(0)∆Π0 = 0.
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Therefore, A1 = R0(0)(−∆)A1. Together with PVA1 = 0 this shows that

the image of A1 lies in H̃0.

2. From by the resolvent identity, RV (λ) = R0(λ) − RV (λ)V R0(λ), we see
that for ρ ∈ C∞c (R3) equal to one near suppV

(3.3.19) R0(λ)V = RV (λ)ρ(PV − λ2)R0(λ)V : L2 → L2
loc.

We now apply (3.3.19) to−v, recalling from Lemma 3.18 that v = −R0(0)V v:

−R0(λ)V v = −
(
−Π0

λ2
+
iA1

λ
+A(λ)

)
ρ(PV − λ2)R0(λ)V v

= Π0ρv + 1
2Π0ρPV ∂

2
λR0(0)V v − iA1ρPV ∂λR0(0)V v + λg(λ),

where g(λ) ∈ L2
loc(R3) is holomorphic. (The singular terms have to cancel

out as the left hand side is holomorphic in λ). Putting λ = 0 we obtain

v = Π0

(
ρv + 1

2ρPV ∂
2
λR0(0)V v

)
− iA1ρPV ∂λR0(0)V v.

3. It follows that for g = −iρPV ∂λR0(0)V v, we have v−A1g ∈ H0. We now
calculate

g(x) =
V (x)

4π

∫
R3

V (y)v(y)dy =
V (x)

4π

∫
R3

∆v(y)dy

completing the proof. �

We finally split A1 into two parts, one produced by functions from H0

and one orthogonal to it in a certain sense:

LEMMA 3.22. Define the operator

(3.3.20) T : L2
comp(R3)→ L2

loc(R3), T f(x) =
1

12π

∫
R3

〈x, y〉f(y) dy.

In the notation of (3.3.17) we have:

1. If m̃R(0) = 0, then A1 = Π0V TVΠ0.

2. If m̃R(0) = 1, then

(3.3.21) A1 = Π0V TVΠ0 + 4π(u0 ⊗ ū0),

where u0 is the unique element of H̃0 satisfying

(3.3.22) u0(x) =
1

4π|x|
+O

( 1

|x|2
)
, |x| → ∞, 〈u0, v〉0 = 0 for v ∈ H0,

where 〈•, •〉0 is defined by (3.3.13).

REMARK. Since Lemma 3.18 (part 1) shows that Π0(V ) = 0 we could
replace the operator T in (3.3.21) by the operator

(3.3.23) G3f(x) := − 1

24π

∫
R3

|x− y|2f(y) dy.
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Indeed, |x− y|2 = |x|2− 2〈x, y〉+ |y|2 and if T1f(x) :=
∫
R f(y)|y|2dy/12π (a

constant function) then

Π0V TVΠ0 = Π0V G3VΠ0 −Π0V T1VΠ0 −Π0V T
∗
1 VΠ0.

But Π0V T1f = (T1f)Π0(V ) = 0.

Proof. 1. Suppose that v ∈ H0 and ψ ∈ L2
comp and take ρ ∈ C∞c (R3) such

that ρV = V and ρψ = ψ. Since (P + t2)v = t2v, we have v = t2R0(it)v for
t > 0. Hence,

〈v, ψ〉 = t2〈RV (it)v, ψ〉 = t2〈v,RV (it)ψ〉

= t2〈v,R0(it)(−∆ + t2)RV (it)ψ〉

= t2〈R0(it)v, ρ(−∆ + t2)RV (it)ψ〉,

(3.3.24)

where in the last equality we used that

(−∆ + t2)RV (it)ψ = (I − V RV (it))ψ = ρ(I − V RV (it))ψ

= ρ(−∆ + t2)RV (it)ψ.

2. We next write the following expansion in L2
comp as t → +0 (note that

(−∆)Π0 = −VΠ0 and (−∆)A1 = −V A1):

(3.3.25) ρ(−∆ + t2)RV (it)ψ =
(−∆)Π0ψ

t2
+

(−∆)A1ψ

t
+O(1).

3. Combining (3.3.10) (Lemma 3.19) with (3.3.24) and (3.3.25) gives

〈v, ψ〉 = 〈Kv, (−∆)Π0ψ〉+ t〈Jv, (−∆)Π0ψ〉+ t〈Kv, (−∆)A1ψ〉+O(t3/2).

The terms next to the first power of t give in the limit t→ 0+,

(3.3.26) 〈Jv, (−∆)Π0ψ〉+ 〈Kv, (−∆)A1ψ〉 = 0.

4. We evaluate the first term in (3.3.26). By part 1 of Lemma 3.18, we have∫
R3(−∆)Π0ψ = 0. By part 3 of the same lemma, we then have

〈Jv, (−∆)Π0ψ〉 = − 1

12π

3∑
j=1

bj(v)

∫
R3

xj(−∆Π0ψ)(x) dx

= − 1

12π

3∑
j=1

bj(v)bj(Π0ψ).

Since bj(v) is equal to the integral of −xjV v, we have

〈Jv, (−∆)Π0ψ〉 = − 1

12π

∫
R3

∫
R3

〈x, y〉V (x)V (y)v(x)Π0ψ(y) dxdy

= −〈v,Π0V TVΠ0ψ〉.
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5. Returning to (3.3.26), by Lemma 3.20

〈Kv, (−∆)A1ψ〉 = 〈v,A1ψ〉0,

which inserted into (3.3.26) gives

〈v, (A1 −Π0V TVΠ0)ψ〉0 = 0.

Thus the image of Ã1 := A1 − Π0V TVΠ0 lies inside H̃0 and is orthogonal
to H0 with respect to the generalization 〈·, ·〉0 of the L2 inner product on

H0. In the case m̃R(0) = 0, we then have Ã1 = 0.

6. We now consider the case m̃R(0) = 1. Let u0 ∈ H̃0 be defined by (3.3.22):
from (3.3.16) we see that such u0 exists and is unique. The discussion in

Step 5 shows that the image of Ã1 is contained in the span of u0. Since Ã1

is symmetric, we have for some c ∈ C,

Ã1 = c(u0 ⊗ ū0).

To find c, we apply (3.3.18) to u0. Since V is L2 orthogonal to the space
H0 by part 1 of Lemma 3.3.5, we have Π0(V ) = 0. Moreover, using the
expansion in (3.3.22) and the fact that u0 = R0(0)(−∆u0) we obtain (see
(3.3.9))

(3.3.27)

∫
R3

(−∆u0)(x)dx =

∫
R3

(−V (x)u0(x))dx = 1.

From (3.3.18) we obtain

u0 +
Ã1(V )

4π
∈ H0.

However, Ã1(V ) = −cu0 and thus c = 4π, finishing the proof. �

We summarize the findings of this section in

THEOREM 3.23 (RV (λ) near 0 for n ≥ 3 odd). 1. Suppose that
V ∈ L∞comp(R;R) and that mR(0) > 0. Then

(3.3.28) RV (λ) = −Π0

λ2
+
iA1

λ
+A(λ) ,

where λ 7→ A(λ) is holomorphic near 0, Π0 is the orthogonal projection onto
the space of L2 solutions to PV u = 0 and A1 is described by Lemma 3.22.

2. For n ≥ 5, (3.3.28) holds with A1 = 0.

We can now reinterpret m̃R(0) defined in (3.3.17) as the multiplicity of
the “genuine” resonance at zero, corresponding to a resonant state which is
not an eigenstate:

(3.3.29) m̃R(0) = mR(0)− tr Π0.
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We note that 0 ≤ m̃R(0) ≤ 1 and that m̃R(0) = 0 for n ≥ 5

3.4. UPPER BOUNDS ON THE NUMBER OF
RESONANCES

As in the case of dimension one we will estimate the number of resonances
using a suitable determinant. We start with

LEMMA 3.24 (Trace class properties). For V, ρ ∈ L∞comp(Rn;C), n ≥
3, odd,

(V R0(λ)ρ)p , p ≥ n+ 1

2
,

is an entire family of trace class operators.

Proof. 1. We first estimate the characteristic values of ρ1R0(λ)ρ1 where
ρ1 ∈ C∞c (Rn). If supp ρ1 ⊂ B(0, R) we can consider

(3.4.1) ρ1R0(λ)ρ1 : L2(TnR) −→ L2(TnR) , TR := Rn/RZn .

2. Then, using (B.3.7) and then (B.3.9), we have

sj(ρ1R0(λ)ρ1) ≤ sj((−∆TnR + 1)−`)‖(−∆TnR + 1)`ρ1R0(λ)ρ1‖

≤ Cj−2`/n‖ρ1R0(λ)ρ1‖L2→H2` .
(3.4.2)

Theorem 3.1 gives

(3.4.3) sj(ρ1R0(λ)ρ1) ≤ C min(|λ|−1, j−1/n, |λ|j−2/n) exp(C(Imλ)−) .

3. By taking ρ1 = 1 on supp ρ∪ suppV we can use (B.3.7) again to see that
(3.4.3) holds for sj(V R0(λ)ρ). Using (B.3.6) we see that

sj ((V R0(λ)ρ)p) ≤ C1|λ|pj−2p/n exp(C1(Imλ)−) .

when p ≥ (n+ 1)/2 ∑
j

sj ((V R0(λ)ρ)p) <∞

which means the operator is of trace class. �

Since for n ≥ 2, V R0(λ) is no longer of trace class we cannot use the
determinant defined by (2.2.28).

DEFINITION 3.25. Suppose that n ≥ 3 is odd. Using Lemma 3.24 the
following definition is justified: for ρ ∈ C∞c equal to 1 near the support of
V ,

(3.4.4) H(λ) := det(I − (V R0(λ)ρ)n+1) .

We sometimes write H = HV to emphasize the dependence on the potential.
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THEOREM 3.26 (Multiplicity of a resonance). Let the functions H
be given by (3.4.4) and let mH(λ) be the multiplicity of λ as a zero of H(λ).

Then, in the notation of (3.2.5),

mR(λ) ≤ mH(λ), λ ∈ C.(3.4.5)

Proof. 1. Arguing as in the proof of Theorem 3.15 it is enough to prove
(3.4.5) when mR(λ) ≤ 1.

2. As n is odd,

(3.4.6) I − (V R0(λ)ρ)n+1 =

n∑
j=0

(−V R0(λ)ρ)j(I + V R0(λ)ρ) .

Hence if λ is a simple pole of (I + V R0(λ)ρ)−1 then the operator I −
(V R0(λ)ρ)n+1 has a non-empty kernel. That implies that H(λ) = 0, that
is, mH(λ) ≥ 1 = mR(λ) completing the proof of (3.4.5). �

DISCUSSION. To obtain a determinant for which the zeros would agree
with resonances with multiplicities we could use regularized determinants –
see [Si79b] – and put

D(λ) := det
p

(I + V R0(λ)ρ), p ≥ n+ 1

2
.

However one can show that, except when n = 3, D(λ) grows too fast as
Imλ→ −∞. This makes estimates on the number of zeros unwieldy.

The determinant H(λ) is introduced to remedy the growth problem but
we pay by introducing additional zeros. For bounds on the growth of the
number of resonances, which is all we are able to do precisely, that of course
does not matter. The choice of n+1 as the power of V R0(λ)ρ was arbitrary
as in view of Lemma 3.24 we could have taken any p ≥ (n+ 1)/2. It turns
out convenient in the proof of Theorem 3.28.

The main result of this section is the following upper bound

THEOREM 3.27 (Upper bounds on the number of resonances).
Suppose that n ≥ 3 is odd and that V ∈ L∞comp(Rn;C). Let mR(λ) be the
multiplicity of a resonance at λ as defined in (2.2.11).

Then

(3.4.7)
∑
|λ|≤r

mR(λ) ≤ CV rn .
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INTERPRETATION. In the case of −∆ + V on a bounded domain, for
instance on Tn, the spectrum is discrete and for V ∈ L∞(Tn;R) we have the
asymptotic Weyl law for the number of eigenvalues:

|{λ : λ2 ∈ Spec(−∆Tn + V ) , |λ| ≤ r}| = cnvol (Tn)rn(1 +O(1/r)) ,

cn = 2vol (BRn(0, 1))/(2π)n ,

where the eigenvalues are included according to their multiplicities.

In the case of −∆ + V on Rn the discrete spectrum is replaced by the
discrete set of resonances. Hence the bound (3.4.7) is an analogue of the
Weyl law. Except in dimension one (see Theorem 2.16) the issue of asymp-
totics or even optimal lower bounds remains unclear at the time of writing
(see Section 3.13 for references).

Jensen’s formula, see (D.1.9) in §D.2, and (3.4.5) show that Theorem
3.27 is an immediate consequence of an estimate on H(λ):

THEOREM 3.28 (Determinant bounds I). If V ∈ L∞comp(Rn;C) and
ρ ∈ C∞c (Rn) is equal to one on suppV , then for some constant A,

H(λ) := det(I − (V R0(λ)ρ)n+1),

satisfies

(3.4.8) |H(λ)| ≤ A exp(A|λ|n) .

In particular, we have ∑
|λ|≤r

mH(λ) ≤ CV rn.

Proof. 1. We use the Weyl inequality (B.5.8) to see that

(3.4.9) |H(λ)| ≤
∞∏
k=1

(
1 + sk((V R0(λ)ρ)n+1)

)
.

We then use (B.3.6) to see that

(3.4.10) sk((V R0(λ)ρ)n+1) ≤ ‖V ‖n+1
∞

(
s[k/(n+1)](ρR0(λ)ρ)

)n+1
.

Hence we need to estimate sj(ρR0(λ)ρ) for ρ ∈ C∞c (Rn).

2. We start with easier estimates in the physical half-plane Imλ ≥ 0. We
apply (3.4.3) to obtain

sj(ρR0(λ)ρ) ≤ Cj−1/n,

which inserted in (3.4.10) gives

sk((V R0(λ)ρ)n+1) ≤ C1k
−(n+1)/n.
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Using this in (3.4.9) we then get

H(λ) ≤ exp

( ∞∑
k=1

sk((V R0(λ)ρ)n+1)

)

≤ exp

(
C1

∞∑
k=1

k−(n+1)/n

)
≤ C2 ,

that is, H(λ) is uniformly bounded for Imλ ≥ 0.

3. To obtain estimates for Imλ < 0 we use (3.1.19) to write

ρ(R0(λ)−R0(−λ))ρ = anλ
n−2Eρ(λ̄)∗Eρ(λ) ,

Eρ(λ)u(ω) :=

∫
Rn
eiλ〈ω,x〉ρ(x)u(x)dx ,

Eρ(λ) : L2(Rn) −→ L2(Sn−1) .

(3.4.11)

Hence for Imλ < 0 (B.3.5) gives

sj(ρR0(λ)ρ) ≤ an|λ|n−2‖Eρ(λ)‖s[j/2](Eρ(λ)) + s[j/2](ρR0(−λ)ρ)

≤ C exp(C|λ|)s[j/2](Eρ(λ)) + Cj−1/n .
(3.4.12)

4. To estimate sj(Eρ(λ)) we use the Laplacian on the sphere, −∆Sn−1 , and
(B.3.6):

sj(Eρ(λ)) ≤ sj((−∆Sn−1 + 1)−`)‖(−∆Sn−1 + 1)`Eρ(λ)‖

≤ C`j−2`/(n−1)‖(−∆Sn−1 + 1)`Eρ(λ)‖

≤ C`1j−2`/(n−1) exp(C1|λ|)(2`)! .

(3.4.13)

Here we used the fact that for ρ with support in B(0, R),

‖(−∆Sn−1 + 1)`Eρ(λ)‖ ≤ Cρ sup
ω∈Sn−1,|x|≤R

∣∣∣(−∆ω + 1)`eiλ〈x,ω〉
∣∣∣ ,

and we estimated sup using, essentially, the Cauchy estimates.

We now optimize the estimate (3.4.13) in `: since (2`)! ≤ (2`)(2`),

C`1j
−2`/(n−1)(2`)! ≤ (j/(C3`

n−1))−2`/(n−1)

= exp(−j
1

n−1 /C4), if ` = (j/C3e)
1

n−1 .

This gives

(3.4.14) sj(Eρ(λ)) ≤ C2 exp
(
C2|λ| − j

1
n−1 /C2

)
.
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5. Going back to (3.4.10) and (3.4.12) we obtain

sk((V R0(λ)ρ)n+1) ≤ C3 exp
(
C3|λ| − k

1
n−1 /C3

)
+ C3k

−n+1
n .

In particular,

(3.4.15) sk((V R0(λ)ρ)n+1) ≤


C4 exp(C4|λ|) , k ≤ C4|λ|n−1

C4k
−n+1

n , k ≥ C4|λ|n−1 .

Returning to (3.4.9) we use (3.4.15) as follows

|H(λ)| ≤
∏

k≤Ck|λ|n−1

exp(C4|λ|)

exp
∑

k≥C4|λ|n−1

C4k
−(n+1)/n


≤ exp(C5|λ|n) ,

which completes the proof. �

REMARK. The exponent n in (3.4.7) is optimal as shown by the case of
radial potentials. Let V (x) = v(|x|)(R−|x|)0

+, where v is a C2 even function,
and v(R) > 0. Then, see [Zw89a],

(3.4.16)
∑
{mR(λ) : |λ| ≤ r} = CRr

n(1 + o(1)) .

The constant CR and its appearance in (3.4.7) is explained and discussed in
[St06].

3.5. COMPLEX VALUED POTENTIALS WITH NO
RESONANCES

As we have seen in Theorem 2.16 one dimensional complex valued compactly
supported non-zero potentials always have infinitely many resonances with
a counting functions satisfying a nice asymptotic formula. The situation is
dramatically different in higher dimensions where complex valued potentials
may have no resonances at all.

THEOREM 3.29 (Complex valued potentials with no resonances).
Let (r, θ, x′) be cylindrical coordinates in Rk+2, where k ≥ 1 is odd:

x = (x1, x2, x
′) , x1 = r cos θ , x2 = r sin θ , x′ ∈ Rk .

Suppose that V ∈ L∞comp(Rk+2;C) is of the following form:

V (x) = eiθmW (r, x′) , W ∈ L∞comp([0,∞)× Rk) .
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Then, if m 6= 0, the resolvent RV (λ) is entire in C, that is the operator
−∆ + V has no resonances.

REMARK. We can easily place conditions on W so that

V ∈ C∞c (R2+k;C) .

Before starting the proof we need two simple lemmas

LEMMA 3.30 (Fourier decomposition of the resolvent). Let Π` be
the projection onto the `’th Fourier mode:

(3.5.1) Π`u(r, θ, x′) := ei`θ
1

2π

∫ 2π

0
u(r, ϕ, x′)e−i`ϕdϕ .

Then for ρ ∈ C∞c (R2+k), ρ = ρ(r, x′), we have

(3.5.2) ‖Π`ρR0(λ)ρΠ`‖L2→L2 ≤
CeC(Imλ)−

〈`〉
, ` ∈ Z .

Proof. 1. Because we chose ρ to be independent of θ, Π` commutes with
ρR0(λ)ρ. Put

u := ρR0(λ)ρΠ`f , f ∈ L2 .

Then (3.1.12) gives

(3.5.3) ‖u‖H1 ≤ CeC(Imλ)−‖f‖L2 .

2. On the other hand

‖u‖2H1 ≥ 〈−∆u, u〉

=

∫
Rn−2

∫ ∞
0

∫ 2π

0
(D2

r − (i/r)Dr −∆x′ + `2/r2)u)ūdθrdrdx′

=

∫
Rk

∫ ∞
0

∫ 2π

0
(|Dru|2 + |Dx′u|2 + `2/r2)u)ūdθrdrdx′

≥ 〈(`2/r2)u, u〉L2 ≥ `2‖u‖2L2/C ,

where the last inequality followed from the fact that r is bounded on the
support of u by maxx∈supp ρ |x| so that `2/r2 ≥ `2/C. Combining this with
(3.5.3) proves (3.5.2). �

The next lemma is an elementary statement about sequences:

LEMMA 3.31 (Two sided sequences). Let {aj}∞j=−∞ be a sequence

satisfying aj → 0, j → ±∞. Suppose that for some m ∈ Z \ {0} and J ∈ N
we have the following property: for each j there exists Cj ≥ 0 such that

(3.5.4) |aj+m| ≤ Cj |aj | , and Cj ≤ 1 for |j| ≥ J ,
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for some J .

Then aj ≡ 0, j ∈ Z.

Proof. Fix j ∈ Z and use (3.5.4) to obtain

|aj | ≤ Cj−m|aj−m| ≤ · · · ≤
p∏

k=1

Cj−km|aj−mp|

≤ K|aj−mp| → 0 , p→∞ , K :=
∏
|`|<J

C` ≥
∏

|j−mk|<J

Cj−km .

This shows that aj = 0 as claimed. �

Proof of Theorem 3.29. 1. In view of (3.2.18) if mR(λ) > 0 for some λ then
(I + V R0(λ)ρ)−1 has a pole for any ρ ∈ C∞c (R2+k) such that ρ = 1 on
suppV . In particular we can take ρ = ρ(r, x′).

Hence there exists u ∈ L2 such that

u = −V R0(λ)ρu = −V ρR0(λ)ρu .

2. We now use the structure of V , V (r, θ, x′) = eimθW (r, x′), to calculate

Πj+mu = Πj+m

(
eimθWρR0(λ)ρu

)
= eimθΠjWρR0(λ)ρΠju .

Lemma 3.30 now shows that

‖Πj+mu‖L2 ≤
C〈λ〉eC|λ|

〈j〉
‖Πju‖L2 .

If we put

aj := ‖Πju‖L2 , Cj :=
C〈λ〉eC|λ|

〈j〉
,

then the assumptions of Lemma 3.31 are satisfied. Thus Πju = 0 for all j
which means that u = 0 and there is no resonance at λ. �

3.6. OUTGOING SOLUTIONS AND RELLICH’S
THEOREM

In Section 2.4 the scattering matrix mapped incoming to outgoing compo-
nents of solutions to

(3.6.1) (PV − λ2)w = 0 .

The intuition behind the notion of incoming and outgoing components of a
solution to (3.6.1) was presented in §2.1.
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A conceptually similar procedure is used in the case of scattering in
higher dimensions with asymptotic formulae such as (3.1.20) replacing ex-
plicit representations involving exp(iλ|x|). The starting point is the same
as in (2.4.3): we consider solutions to (3.6.1) of the form

(3.6.2) w(x, λ, ω) = e−iλ〈x,ω〉 + u(x, λ, ω) ,

where u is outgoing in the sense defined below. It is obtained using the
resolvent RV (λ), except at the possible poles:

(3.6.3) u(x, λ, ω) := −RV (λ)(V e−iλ〈•,ω〉) .

First we need to define outgoing solutions and show that RV (λ) is well
defined for λ ∈ R \ {0}.

DEFINITION 3.32. A solution u to (PV − λ2)u = f , λ ∈ R \ {0}, f ∈
L2

comp(Rn) is called outgoing if there exists g ∈ L2
comp(Rn) such that

(3.6.4) u = R0(λ)g ,

where R0(λ) is the resolvent described in Theorem 3.1.

A solution u is called incoming if u = R0(−λ)g, λ ∈ R \ {0}, for some
g ∈ L2

comp(Rn)

INTERPRETATION. The asymptotic expansion in Theorem (3.5) shows
that the outgoing (+) and incoming (−) solutions satisfy

u(x) =
e±iλ|x|

|x|
n−1
2

a

(
x

|x|

)
+O

(
1

|x|
n+1
2

)
, |x| → ∞.

Hence u can be interpreted as a spherical wave with a(x/|x|) giving the in-
tensity at different directions x/|x|. The different signs λ show that R0(±)g
is holomorphic in ± Imλ ∈ R \ {0}. The wave equation interpretation dis-
cussed in §2.1 shows that the corresponding time dependent solutions are
supported in ±t > C, that is are outgoing/incoming. See also the self-
contained discussion after Theorem 4.9 and Exercise 4.3.

In particular we see that u given by (3.6.3) is outgoing provided that λ
is not a pole of RV (λ):

u(x, λ, ω) = −RV (λ)(V e−iλ〈•,ω〉) = R0(λ)f ,

f = −(I + V R0(λ)ρ)−1(V e−iλ〈•,ω〉) ∈ L2
comp(Rn) .

When V is real valued and λ ∈ R \ {0} then Rellich’s important result
(Theorem 3.33) states that there are no outgoing solutions to (3.6.1). In
other words, RV (λ) has no non-zero real poles:
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THEOREM 3.33 (Rellich’s uniqueness theorem I). Suppose that V ∈
L∞comp(Rn;R) is real valued. Then for λ ∈ R \ {0} there are no outgoing
solutions to

(PV − λ2)u = 0 .

Equivalently, RV (λ) has no poles for λ ∈ R \ {0}.

Proof. 1. We first show that having an outgoing solution for λ > 0 is
equivalent to RV having a pole at λ.

One implication follows directly from (3.2.1): if RV has a pole at λ
then I + V R0(λ)ρ is not invertible which by the Fredholm property (see
§C.2) means that it has a non-empty kernel. If g = −V R0(λ)ρg, then
g = ρg ∈ L2

comp and u := R0(λ)g solves

(PV − λ2)u = (−∆− λ2)R0(λ)g + V R0(λ)g = g + V R0(λ)g = 0.

Hence (3.6.4) holds.

Conversely, suppose that u = R0(λ)g, g ∈ L2
comp solves (PV − λ2)u = 0.

By the same argument we see (I + V R0(λ)ρ)g = 0 and by Theorem 3.26,
RV has a pole at λ.

2. The proof now proceeds by contradiction. So suppose that RV has a pole
at λ > 0. From (3.2.1) we see (as in Step 1) that there exists g ∈ L2 such
that g = −V R0(λ)g. Defining w = −R0(λ)g we obtain V w = g, and hence,

(PV − λ2)w = 0 , w = −R0(λ)V w .

Theorem 3.5 shows that

(3.6.5) w = R0(λ)(V w)(x) =
eiλ|x|

|x|
n−1
2

(
h

(
x

|x|

)
+O

(
1

|x|

))
,

where

h(θ) = cnλ
n−3
2 V̂ w(λθ) .

In particular,

(3.6.6) (∂r − iλ)w = O(r−
n+1
2 ), r := |x|.

3. Since λ is real we have

0 =

∫
B(0,R)

(w(PV − λ2)w̄ − (PV − λ2)ww̄)dx

=

∫
B(0,R)

(w̄∆w − w∆w̄)dx =

∫
∂B(0,R)

(∂rww̄ − w∂rw̄)dS

(3.6.7)

Using (3.6.5) and (3.6.6) we obtain

0 = 2iλ

∫
∂B(0,R)

|w|2dS +O(R−n)

∫
∂B(0,R)

dS
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which gives ∫
∂B(0,R)

|w|2dS = O(R−1).

Taking R→∞ this implies, in the notation of (3.6.5), that

0 =

∫
Sn−1

|h(θ)|2dθ = |cn|2|λ|n−3

∫
Sn−1

|V̂ w(λθ)|2dθ .

4. We conclude that

V̂ w(ξ) = 0 , 〈ξ, ξ〉 = λ2 , ξ ∈ Rn .

If we put

Σ := {ξ ∈ Cn : 〈ξ, ξ〉 = λ2} ,
then Σ is a connected complex hypersurface in Cn and the entire function

V̂ w(ξ) vanishes on Σ ∩ Rn. It follows that V̂ w(ξ) = 0 on Σ. From that we
see that

V̂ w(ξ)

〈ξ, ξ〉 − λ2
is an entire function of ξ ∈ Cn.

Since

(〈ξ, ξ〉 − λ2)ŵ(ξ) = V̂ w(ξ) ,

Paley-Wiener theorem as applied in [HöI, Theorem 7.3.2] shows that w ∈ E ′.
To complete the proof we need the following lemma which is a simple

version of a Carleman estimate (see [Zw12, §7.2] and references given there):

LEMMA 3.34. For every R > 0 there exists ϕ ∈ C∞(Rn;R) such that for
h > 0 and u ∈ H2(Rn) with suppu ⊂ B(0, R) we have

(3.6.8) ‖h2eϕ/h∆e−ϕ/hu‖L2 ≥ ch
1
2 ‖u‖L2 .

Proof. 1. Let us first assume that u ∈ C∞c (B(0, R)). Put

Pϕ := −h2eϕ/h∆e−ϕ/h.

Then

‖Pϕu‖2L2 = 〈Pϕu, Pϕu〉 = 〈P ∗ϕPϕu, u〉
= 〈PϕP ∗ϕu, u〉+ 〈[P ∗ϕ, Pϕ]u, u〉

= ‖P ∗ϕu‖2L2 + 〈[P ∗ϕ, Pϕ]u, u〉
≥ 〈[P ∗ϕ, Pϕ]u, u〉.

(3.6.9)

2. From (3.6.9) we see that it suffices to construct ϕ such that for all
u ∈ C∞c (B(0, R))

〈[P ∗ϕ, Pϕ]u, u〉 ≥ c2h‖u‖2L2 .
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A calculation shows that

Pϕu = −h2∆u+ 2h〈∂ϕ, ∂u〉 − |∂ϕ|2u+ h(∆ϕ)u,

P ∗ϕu = −h2∆u− 2h〈∂ϕ, ∂u〉 − |∂ϕ|2u− h(∆ϕ)u.

Using the identity

[P ∗ϕ, Pϕ] =
1

2
[Pϕ + P ∗ϕ, Pϕ − P ∗ϕ]

we compute

(3.6.10)
[P ∗ϕ, Pϕ]u =− 8h3

n∑
j,k=1

∂2
xjxk

ϕ · ∂2
xjxk

u+ 4h〈∂ϕ, ∂|∂ϕ|2〉u

− 8h3〈∂(∆ϕ), ∂u〉 − 2h3(∆2ϕ)u.

We choose ϕ(x) := |x|2/2 + Mx1 for some large constant M . Then the
contribution from the second line of (3.6.10) is zero and we compute

[P ∗ϕ, Pϕ]u = 8h(−h2∆u+ |x+Me1|2u).

If M ≥ R+ 1 then for u ∈ C∞c (B(0, R)),

〈[P ∗ϕ, Pϕ]u, u〉 ≥ 8h
(
‖hDxu‖2L2 + ‖u‖2L2

)
≥ 8h‖u‖2L2 .

3. The last inequality proved (3.6.8) for u ∈ C∞c (B(0, R)). Since both
sides are finite for u ∈ H2, suppu ⊂ B(0, R) an approximation argument
completes the proof. �

4. To complete the proof of Theorem 3.33 we now apply Lemma 3.34 to u =
eϕ/hw where w comes from Step 4 of the proof: w ∈ H2, suppw ⊂ B(0, R).
We have

0 = h2‖eϕ/h(PV − λ2)w‖L2 = ‖eϕ/h(−h2∆ + h2V − h2λ2)e−ϕ/hu‖L2

≥ ‖eϕ/h(−h2∆)e−ϕ/hu‖L2 − Ch2‖u‖L2

≥ ch
1
2 ‖u‖L2 − Ch2‖u‖L2 ≥ (c/2)h

1
2 ‖u‖L2 ,

if h is small enough. But this means that u ≡ 0 which implies that w ≡ 0.
Hence we have no outgoing solutions to the homogeous equation when λ ∈
R \ {0}. �

Rellich’s uniqueness theorem holds in a stronger form which will be useful
later in this section and also when we consider more general perturbatons:

THEOREM 3.35 (Rellich’s uniqueness theorem II). Suppose P is a
self-adjoint operator with domain H2(Rn) such that for χ ∈ C∞c (B(0, 2R)),
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χ = 1 in B(0, R) we have P (1 − χ) = −∆(1 − χ). Suppose that λ > 0 and
u ∈ H2

loc satisfies

(3.6.11) (P − λ2)u = 0, lim
R→∞

∫
∂B(0,R)

|(∂r − iλ)u|2dS = 0.

Then

(3.6.12) u(x) = 0 for |x| > R.

REMARKS. 1. The second condition in (3.6.11) is implied by a stronger
condition that

(∂r − iλ)u = o(r−
n−1
2 ),

which is called the Sommerfeld radiation condition. As we saw in (3.6.6)
(Step 2 of the proof of Theorem 3.33) it typically arises in an even stronger
form

(∂r − iλ)u = O(r−
n+1
2 ).

2. The specific structure of P is unimportant and this is our first encounter
with more general operators than −∆ + V . What matters is the fact that
P coincides with −∆ outside a compact set and that it is self-adjoint. The
assumptions about the domain of P can also be relaxed as we will see in the
chapter on black box scattering.

Proof. 1. With χ as in the statement of theorem we have

(−∆− λ2)(1− χ)u = [∆, χ]u =: f ∈ C∞c (Rn).

We claim that (1− χ)u = R0(λ)f . To see that put

w := (1− χ)u−R0(λ)f, (−∆− λ2)w = 0.

Then from (3.6.11) and the asymptotics of R0(λ)f in (3.1.20) we see that

(3.6.13)

∫
∂B(0,R)

|G|2dS = o(1), G := 1
2iλ(∂r − iλ)w.

We now use Green’s formula (see Step 3 of the proof of Theorem 3.33 for a
similar argument):

0 = 1
2iλ

∫
B(0,R)

(w(−∆− λ2)w̄ − w̄(∆− λ2)w)dx

= 1
2iλ

∫
B(0,R)

(w̄∆w − w∆w̄)dx = 1
2iλ

∫
∂B(0,R)

(∂rww̄ − w∂rw̄)dS

=

∫
∂B(0,R)

(
|w|2 + 2 ReGw̄

)
dS ≥ 1

2

∫
∂B(0,R)

|w|2dS − 2

∫
∂B(0,R)

|G|2dS.
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This and (3.6.13) (which was derived from the assumption (3.6.11)) imply
that

ϕ(R) :=

∫
∂B(0,R)

|w|2dS → 0, R→∞.

It follows that 1
R

∫
B(0,R) |w(x)|2dx = 1

R

∫ R
0 ϕ(r)dr → 0, R→∞. (Note that

this implies that w ∈ S ′(Rn) and hence ŵ makes sense as a distribution.)
From (−∆−λ2)w = 0 we have supp ŵ ⊂ {|ξ|2 = λ2}. To see that w = 0 we
apply the following result to u = ŵ. It is a special case of [HöI, Theorem
7.1.27]:

LEMMA 3.36. Suppose that u ∈ E ′(Rn) satisfies, for λ > 0,

suppu ⊂ ∂B(0, λ2) and lim
R→∞

1

R

∫
B(0,R)

|û(ξ)|2dξ = 0.

Then u ≡ 0.

Proof. Without loss of generality we can assume that λ = 1.

1. Since u is compactly supported we see that û ∈ C∞(Rn). Suppose that
χ ∈ C∞c (B(0, 1)) and

∫
χ(x)dx = 1. Put χε(x) := ε−nχ(x/ε) and define

C∞c (Rn) 3 uε := u ∗ χε → u ∈ D′(Rn).

Since ûε(ξ) = û(ξ)χ̂ε(ξ), Plancherel’s formula gives

(2π)n‖uε‖2 =

∫
Rn
|û(ξ)|2|χ̂(εξ)|2dξ

≤
∫
ε|ξ|≤1

|û(ξ)|2|χ̂(εξ)|2dξ +

∞∑
j=1

∫
2j−1≤ε|ξ|≤2j

|û(ξ)|2|χ̂(εξ)|2dξ

≤ 1

ε
sup
|η|≤1

|χ̂(η)|2 ε
∫
|ξ|≤1/ε

|û(ξ)|2dξ

+
1

ε

∞∑
j=1

sup
2j−1≤|η|≤2j

2j |χ̂(η)|2 2−jε

∫
|ξ|≤2j/ε

|û(ξ)|2dξ

≤ 1

ε
Cχ sup

R>1/ε

1

R

∫
B(0,R)

|û(ξ)|2dξ,

where

Cχ = sup
|η|≤1

|χ̂(η)|2 +
∞∑
j=1

sup
2j−1≤|η|≤2j

2j |χ̂(η)|2.

The sum converges as χ̂ ∈ S and thus χ̂(η) = O(〈η〉−∞).

Consequently, the hypothesis of the lemma gives

(3.6.14) ‖uε‖2 ≤
C

ε
sup
R>1/ε

1

R

∫
B(0,R)

|û(ξ)|2dξ =: K(ε)/ε, lim
ε→0

K(ε) = 0.
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2. Now suppose that ψ ∈ C∞c (Rn). Because of the support condition on u
we know that suppuε ⊂ suppu+ suppχε ⊂ ∂B(0, 1) +B(0, ε) =: Aε. Using
(3.6.14) we see that

|u(ψ)|2 = lim
ε→0
|uε(ψ)|2 ≤ lim

ε→0
‖uε‖2

∫
Aε

|ψ(x)|2dx

≤ lim
ε→0

K(ε)× lim
ε→0

ε−1

∫
Aε

|ψ(x)|2dx = lim
ε→0

K(ε)

∫
∂B(0,1)

|ψ(x)|2dS

= 0.

Since ψ was an arbitrary smooth function it follows u ≡ 0. �

2. In Step 1 of the proof of Lemma 3.36 we showed (using Lemma 3.36) that

(1− χ)u = R0(λ)f, f = [∆, χ]u ∈ C∞c (Rn).

For χ1 ∈ C∞c (Rn) equal to 1 on the support of χ, the expansion (3.1.20) and
Green’s formula give (see (3.6.7))

(3.6.15)
1

i
〈[−∆, χ1]R0(λ)f,R0(λ)f〉 = |cn|2λn−2

∫
Sn−1

|f̂(λθ)|2dθ.

3. On the other hand,

〈[−∆, χ1]R0(λ)f,R0(λ)f〉 = 〈[−∆, χ1]u, u〉

= 〈[−∆− λ2, χ1]u, u〉

= 〈[P − λ2, χ1]u, u〉

= 〈χ1u, (P − λ2)u〉 − 〈(P − λ2)u, χ1u〉
= 0.

(3.6.16)

Returning to (3.6.15) we see that f̂(λθ) ≡ 0, θ ∈ Sn−1.

4. We now argue as in Step 4 of the proof of Theorem 3.33: f̂(ξ)/(〈ξ, ξ〉−λ2)
is entire and hence (1− χ)u is compactly supported. �

INTERPRETATION. In the formula (3.6.15) the left hand side depends
on χ1 while the right hand side does not. Another way to of stating this
formula is

(3.6.17)
1

i
〈[−∆, χ1]R0(λ)f,R0(λ)f〉 = Im〈R0(λ)f, f〉,

which follows from (3.6.16) applied with −∆ in place of P and with χ1 = 1
on supp f . The Stone’s formula (3.1.19) the right hand side can be expressed
using the spectral pojection of −∆. From this (3.6.15) follows directly with-
out using the expansion (3.1.20).
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The expression on the left of (3.6.17) is called the quantum flux of R0(λ)f
(or of more general solutions). The fact that R0(λ)f is outgoing is reflected
in the fact that the flux is positive; it is negative for an incoming solution.

Using Rellich’s uniqueness theorem the condition of being outgoing can
be formulated in the following equivalent ways. For the proof see the hints
in Exercise 3.5.

THEOREM 3.37 (Outgoing solutions). Suppose that V ∈ L∞comp(Rn;R),

f ∈ E ′(Rn) is a compactly supported distribution and that u solves

(3.6.18) (PV − λ2)u = f , λ ∈ R \ {0} .

Then the following conditions are equivalent:

(i) u(x) = eiλ|x|a(x/|x|)|x|−(n−1)/2 +O(|x|−(n+1)/2), as |x| → ∞, where the
expansion can be differentiated,

(ii) (∂/∂r − iλ)u = o(r−(n−1)/2), as r →∞, r = |x|,

(iii) u = RV (λ)f ,

(iv) u = R0(λ)g, for some g ∈ E ′(Rn).

When V ∈ C∞c (Rn;R) and f ∈ C∞c (Rn) then g ∈ C∞c (Rn).

As in dimension one we want to decompose the solution (3.6.2) into
incoming and outgoing terms. The scattering matrix will then relate these
two terms.

THEOREM 3.38 (Decomposition of free plane waves). For λ ∈
R \ {0}, we have, in the sense of distributions in x/|x| ∈ Sn−1

(3.6.19) e−iλ〈x,ω〉 ∼ 1

(λ|x|)
n−1
2

(
c+
n e
−iλ|x|δω(x/|x|) + c−n e

iλ|x|δ−ω(x/|x|)
)
,

as |x| → ∞, where

c±n = (2π)
n−1
2 e±

π
4

(n−1)i .

More precisely for ϕ ∈ C∞(Sn−1),

(λr)
n−1
2

∫
Sn−1

e−iλr〈ω,θ〉ϕ(θ)dθ = c+
n e
−iλrϕ(ω) + c−n e

iλrϕ(−ω) +O(1/r) ,

as r →∞, with a full expansion in powers of r.

INTERPRETATION. We consider

λ−
n−1
2 c±n δ±ω(θ)

as leading coefficients of the incoming (+) and outgoing (−) components of
exp(−iλ〈x, ω〉), even though that is valid only in the sense of distributions.
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This is an analogue of the decomposition of exp(±iλx), x ∈ R, into the
incoming and outgoing components:

e±iλx = e−iλ|x|(±x)0
− + eiλ|x|(±x)0

+ , x 6= 0 .

Proof. To prove the results we use the method of stationary phase – see for
instance [Zw12, §3.5] or [HöI, §7.7].

1. We can assume that ω = (1, 0, · · · , 0). Then the function 〈θ, ω〉 = θ1 has
two critical points on Sn−1, correspoding to θ1 = ±1. Hence we can assume
that ϕ is supported near the two poles θ1 = ± – the other contributions are
O((λr)−∞) as the phase is non-stationary.

2. Near the two poles we can use coordinates t ∈ Rn−1, θ = (±
√

1− |t|2, t) ∈
Sn−1. Then, for ϕ supported near θ1 = ±1 (t = 0) we have∫

Sn−1

e−iλr〈ω,θ〉ϕ(θ)dθ =

∫
BRn−1 (0,1)

e∓iλr
√

1−|t|2ϕ(±
√

1− |t|2, t)J(t)dt ,

where J(t) = 1 +O(t2).

3. The Hessian of the phase at t = 0 is given by ±IRn−1 and hence the
method of stationary phase gives∫

BRn−1 (0,1)
e∓iλr

√
1−|t|2ϕ(±

√
1− |t|2, t)J(t)dt

∼
(

2π

rλ

)n−1
2

e±i
π
4

(n−1)

(
ϕ(±1, 0) +O

(
1

rλ

))
,

with a full assymptotic expansion in powers of (rλ)−1.

4. A general ϕ can be written as a sum of functions which are supported
near θ1 = ±1, and in the non-stationary region. That gives the result. �

REMARK. The proof gives a more precise result which we formulate as
follows: for ϕ ∈ C∞(Sn−1),

(3.6.20)

∫
Sn−1

e−iλr〈ω,θ〉ϕ(θ)dθ = e−iλra+(λr, ω)(ϕ) + eiλra−(λr, ω)(ϕ),

where

a±(ρ, ω, θ) ∈ S−
n−1
2

phg ((0,∞)ρ;C
∞(Sn−1

ω ,D ′(Sn−1
θ ))



3.6. OUTGOING SOLUTIONS AND RELLICH’S THEOREM 151

which means that for every k ≥ 1,

(3.6.21)

|a±(ρ, •)(ϕ)| ≤ Cρ−
n−1
2 ‖ϕ‖Cn+1 , ρ > 0,

a±(ρ, ω)(ϕ) = ρ−
n−1
2

k−1∑
j=0

ρ−ja±j (ω)(ϕ) + ρ−
n−1
2
−kA±k (ρ, ω)(ϕ),

a±0 (ω) = c±n δ±ω, |a±j (ω)(ϕ)| ≤ Cj‖ϕ‖C2j ,

|Ak(ρ, ω)(ϕ)| ≤ Cpk`‖ϕ‖C2k+n , uniformly in ρ > 0.

This means in particular that a±j (ω) is a family of distribution of order

2j. The expansion (3.6.21) is a distributional formulation of the stationary
phase estimate [HöI, (7.7.13)]. It will be useful in the proof of Theorem
3.51.

The next result shows that the incoming and outgoing scattering pat-
terns are naturally paired. Later it will allow us to establish the unitarity
of the scattering matrix.

THEOREM 3.39 (Boundary pairing). Let P be a self-adjoint operator
with domain H2(Rn), and such that for χ ∈ C∞c (B(0, 2R);R), χ = 1 in
B(0, R) we have P (1− χ) = −∆(1− χ).

Suppose that u` ∈ H2
loc(Rn), ` = 1, 2 satisfy

(P − λ2)u` = F` ∈ S (Rn), λ ∈ R \ {0},

u`(rθ) = r−
n−1
2

(
eiλrf`(θ) + e−iλrg`(θ)

)
+O(r−

n+1
2 ), θ ∈ Sn−1,

with f`, g` ∈ C∞(Sn−1), and the expansion is also valid for derivatives with
respect to ∂r.

Then

2iλ

∫
Sn−1

(
g1ḡ2 − f1f̄2

)
dω =

∫
Rn

(
F1ū2 − u1F̄2

)
dx.(3.6.22)

Proof. 1. We note that the integral on the right hand side is well defined as
F` ∈ S and u` ∈ L∞ (in view of the expansions). If χ ∈ C∞c (Rn;R) is as in
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the statement of the theorem and χ̃ ∈ C∞c (Rn) is equal to 1 on suppχ, then∫
Rn

(
F1ū2 − u1F̄2

)
dx = 〈(P − λ2)u1, χu2〉 − 〈u1, (P − λ2)χu2〉

+ lim
r→∞

∫
B(0,r)

(
(−∆− λ2)u1(1− χ)ū2 − u1(−∆− λ2)((1− χ)ū2)

)
dx

= 〈Pχ̃u1, χu2〉 − 〈χ̃u1, Pχu2〉

+ lim
r→∞

∫
B(0,r)

(−∆u1(1− χ)ū2 + u1∆((1− χ)ū2)) dx

= lim
r→∞

∫
B(0,r)

(−∆u1(1− χ)ū2 + u1∆((1− χ)ū2)) dx.

Here we used the self-adjointness of P and the facts χ̃u1, χu2 ∈ H2(Rn),
[P, χ̃]χ = 0.

2. Hence we need to show that

lim
r→∞

∫
B(0,r)

(−∆u1(1− χ)ū2 + u1∆((1− χ)ū2)) dx

= 2iλ

∫
Sn−1

(
g1ḡ2 − f1f̄2

)
dω.

(3.6.23)

For that we apply Green’s formula which shows that the integral on the left
hand side is equal to∫

∂B(0,r)
u1(rθ)∂rū2(rθ)− ∂ru1(rθ)ū2(rθ)dθ

= iλ

∫
Sn−1

(eiλrf1(θ) + e−iλrg1(θ))(−e−iλrf̄2(θ) + eiλrḡ2(θ))dθ

− iλ
∫
Sn−1

(eiλrf1(θ)− e−iλrg1(θ))(e−iλrf̄2(θ) + eiλrḡ2(θ))dθ +O(r−1)

= 2iλ

∫
Sn−1

(
g1(θ)ḡ2(θ)− f1(θ)f̄2(θ)

)
dθ +O(r−1).

This proves (3.6.23) and hence (3.6.22). �

3.7. THE SCATTERING MATRIX

In this section we will define and describe the scattering matrix for V ∈
L∞comp(Rn;R), n ≥ 3, odd. Except for the behaviour near λ = 0 and the fact
that we use the properties of the resolvent, the parity of the dimension is
not very important here.
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To define the scattering matrix we go back to to (3.6.2)

e(λ, ω, x) = e−iλ〈x,ω〉 + u(x, λ, ω) , (PV − λ2)w = 0 ,

u(x, λ, ω) := −RV (λ)(V e−iλ〈•,ω〉) .
(3.7.1)

Theorem 3.33 shows that w is defined for λ ∈ R \ {0}. We see from ii) in
Theorem 3.37 that u is an outgoing spherical wave The scattering matrix
will be defined as the operator relating the leading incoming and outgoing
terms, normalized so that it is the identity when V = 0.

Using Theorems 3.37 and 3.38 we write the leading terms in w of (3.7.1)
as follows:

e(λ, ω, rθ) ∼ c+
n (λr)−

n−1
2

(
e−iλrδω(θ) + eiλri1−n (δ−ω(θ) + b(λ, θ, ω))

)
.

(3.7.2)

Here b(λ, θ, ω) gives the leading part of the asymptotics of u(rθ, λ, ω) as
r →∞:

(3.7.3) u(rθ, λ, ω) = c−n (λr)−
n−1
2 eiλrb(λ, θ, ω) +O(r−

n+1
2 ),

and the constants are

(3.7.4) c±n = e±
π
4

(n−1)i(2π)
n−1
2 .

DEFINITION 3.40. The absolute scattering matrix maps the incoming
terms to the outgoing terms in (3.7.2):

(3.7.5) Sabs(λ) : δω(θ) 7−→ i1−n (δ−ω(θ) + b(λ, θ, ω)) .

The relative scattering matrix is defined as

(3.7.6) S(λ) : δω(θ) 7−→ δω(θ) + b(λ, θ,−ω),

where b is given in (3.7.2).

The action on delta functions determines the integral kernel defining
S(λ) as an operator on C∞(Sn−1):

f(θ) =

∫
Sn−1

δω(θ)f(ω)dω 7−→
∫
Sn−1

(δ−ω(θ) + b(λ, θ,−ω)) f(ω)dω,

that

S(λ)f(θ) = f(θ) +

∫
Sn−1

b(λ, θ,−ω)f(ω)dω.

See Theorem 3.42 for an equivalent definition of scattering matrices.

We observe that for V = 0 we have

Sabs,0(λ)f(θ) = i1−nf(−θ) .
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V
ω

plane spherical

Figure 3.4. Schematic presentation of plane and spherical waves: a
plane wave hits the perturbation and produces an additional spherical

wave.

The scattering matrix was obtained by normalizing Sabs by this free absolute
scattering matrix:

S(λ) = Sabs(λ)Sabs,0(λ)−1 = in−1Sabs(λ)J, Jf(θ) := f(−θ).

INTERPRETATION. The function b(λ, θ, ω) is called the scattering am-
plitude (up to a normalizing factor). It measures the intensity of the spheri-
cal scattered wave in the direction θ, following an interaction of the incident
plane wave in the direction of −ω (coming from the point ω at infinity) –
see Fig.3.4. We will see below that

(3.7.7) b(λ, θ, ω) = b(λ, ω, θ) for V ∈ L∞(Rn;R).

This is a higher dimensional version of the symmetry of the left and right
transmission coefficients – see (2.4.12) and (2.4.13).

We have the following description of S(λ):

THEOREM 3.41 (Description of the scattering matrix I). The scat-
tering matrix given by (3.7.6) defines an operator

S(λ) = I +A(λ) : L2(Sn−1) −→ L2(Sn−1),

where A(λ) : D′(Sn−1)→ C∞(Sn−1), is given by

A(λ) = anλ
n−2Eρ(λ)(I + V R0(λ)ρ)−1V Eρ(λ̄)∗ ,(3.7.8)

where Eρ(λ) : L2(Rn)→ L2(Sn−1) are defined by Schwartz kernels:

Eρ(λ)(ω, x) := ρ(x)e−iλ〈x,ω〉,

with ρ ∈ C∞c (Rn) equal to one on suppV and an = (2π)−n+1/2i.
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In particular the Schwartz kernel (θ, ω) 7→ A(λ, θ, ω) is real analytic and
can be written as

(3.7.9) anλ
n−2

∫
Rn
eiλ〈ω−θ,x〉V (x)(1− e−iλ〈ω,x〉RV (λ)(eiλ〈ω,•〉V (•))(x))dx.

Proof. 1. The definition of u in (3.7.1) gives

u = R0(λ)f, f(x) := −(I + V R0(λ)ρ)−1(V e−iλ〈•,ω〉)(x).

From Theorem 3.5 and (3.7.3) we obtain

b(λ, θ, ω) = − 1

4π

λn−2

(2πi)
n−3
2

1

c−n
f̂(λθ)

(
c−n = (2π)−n+1i−

n−1
2

)
=

1

2i

λn−2

(2π)n−1

∫
Rn
e−iλ〈x,θ〉(I + V R0(λ)ρ)−1(V e−iλ〈•,ω〉)(x)dx,

which gives (3.7.8).

2. To see (3.7.9) we recall that

(I + V R0(λ)ρ)−1V = (I − V R0(λ)ρ(I + V R0(λ)ρ)−1)V

= (I − V RV (λ))V,

from which the formula follows immediately. �

The next result gives an intrinsic definition of the scattering matrix as
the operator mapping incoming to outgoing data at infinity:

THEOREM 3.42 (Solution with a prescribed incoming part). Sup-
pose that V ∈ L∞comp(Rn;R), λ ∈ R \ {0}. Then for any g ∈ C∞(Sn−1) there

exist unique f ∈ C∞(Sn−1) and v ∈ H2
loc(Rn) such that

(PV − λ2)v = 0,

v(rθ) = r−
n−1
2

(
eiλrf(θ) + e−iλrg(θ)

)
+O(r−

n+1
2 ).

(3.7.10)

Moreover, the scattering matrices defined by (3.7.5) and (3.7.6) relate g and
f as follows:

Sabs(λ) : g(θ) 7−→ f(θ),

S(λ)J : g(−θ) 7−→ in−1f(θ).
(3.7.11)

Proof. 1. For g ∈ C∞(Sn−1) consider

u0(x) := bnλ
n−1
2

∫
Sn−1

g(ω)e−iλ〈x,ω〉dω,

bn = 1/c+
n = (2π)−

n−1
2 e−

π
4

(n−1)i.

Then (−∆− λ2)u0 = 0 and Theorem 3.38 gives asymptotics of u0.



156 3. THE SCATTERING MATRIX

2. We then put

v(x) = u0(x)−RV (λ)(V u0)(x) = bnλ
n−1
2

∫
Sn−1

g(ω)w(x, λ, ω)dω,

where w is given by (3.7.1). This gives the desired v and (3.7.6) (that is, the
fact that S(λ) = in−1Sabs(λ)J , Jg(−θ) = g(θ)) shows that (3.7.11) holds.

3. The uniqueness of v follows from Theorem 3.35. �

REMARK. For any given g ∈ C∞(Sn−1) we can find v0 ∈ C∞(Rn) such
that, for λ ∈ R \ {0},

(−∆− λ2)v0 ∈ S (Rn),

v0(rθ) = r−
n−1
2 e−iλrF (r, θ), F (r, θ) ∼

∞∑
j=0

Fj(θ)r
−j , F0 = g,

Fj+1 =
1

2i(j + 1)λ

(
−∆Sn−1 + (n−1)(n−3)

4 − j(j + 1)
)
Fj .

(3.7.12)

In particular, the terms in the asymptotic expansions of F are determined
by the leading term, g.

To obtain (3.7.12) we write

r
n−1
2 ∂r r

−n−1
2 = ∂r −

n− 1

2r
,

so that, in polar coordinates,

−r
n−1
2 ∆r−

n−1
2 = −∂2

r + (n−1)(n−3)
4r2

− 1
r2

∆Sn−1 ,

and hence

− r−
n−1
2 eiλr∆(r−

n−1
2 e−iλrFj(θ)r

−j) =

− r−j−12ijλFj(θ) + r−j−2
(
−∆θ + (n−1)(n−3)

4 − j(j + 1)
)
Fj(θ).

Hence, we see that vJ0 (r, θ) := r−
n−1
2 eiλr

∑J
j=0 Fj(θ)r

−j , satisfies (−∆ −
λ2)vJ0 = O(r−J−1), r → ∞. Constructing v0 using Borel’s argument (see
for instance [Zw12, Theorem 4.15] ) gives

(3.7.13) (−∆− λ2)v0 ∈ S (Rn).

Conversely, if v0 satisfies (3.7.13), and has an expansion in (3.7.12),
then the terms are determined by the leading term, F0, as in (3.7.12). The
solution v in (3.7.10) is obtained by putting

v = v0 −RV (λ)(PV − λ2)v0.

We can now state basic properties of the scattering matrix:
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THEOREM 3.43 (Properties of the scattering matrix). For V ∈
L∞comp(Rn;C), n ≥ 3, odd, the scattering matrix, S(λ), is meromorphic in C
with poles of finite rank, and it satisfies

(3.7.14) S(λ)−1 = JS(−λ)J , Jf(θ) := f(−θ), λ ∈ C .

There are only finitely many poles in the closed upper half plane and for
Imλ > 0, λ2 ∈ Spec(PV ).

When V ∈ L∞comp(Rn;R) then

(3.7.15) S(λ)−1 = S(λ̄)∗ , λ ∈ C .

In particular, S(λ) is unitary for λ ∈ R and holomorphic on R.

REMARK. Since S(λ) = I+A(λ) where A(λ) is of trace class (see Theorem
3.41) the determinant, detS(λ), is well defined – see §B.5. From (3.7.15),
(B.5.17) and Proposition B.30 we see that

(3.7.16) (detS(λ))−1 = detS(λ̄) for V ∈ L∞comp(Rn;R).

We also have,

(3.7.17) (detS(λ))−1 = detS(−λ), for V ∈ L∞comp(Rn;C) .

In fact, from (3.7.14), (B.5.17) and Proposition B.30 (or the fact that
tr(JA(−λ)J)k = trA(−λ)k)

detS(λ)−1 = det(I + JA(−λ)J) = det(I +A(−λ)) = detS(−λ).

Proof of Theorem 3.43. 1. The meromorphy of λ 7→ S(λ) follows from the
meromorphy of λ 7→ RV (λ) and the representation (3.7.8).

2. Theorem 3.42, and (3.7.11) in particular, show that Sabs(λ)−1 = Sabs(−λ)
for λ ∈ R \ {0} and hence for all λ, in the sense of meromorphic families of
operators. Since S(λ) = in−1Sabs(λ)J , we have

S(−λ) = in−1Sabs(−λ)J = in−1Sabs(λ)−1J

= in−1(i1−nS(λ)J)−1J = i2(n−1)JS(λ)−1J

= JS(λ)−1J,

since n is odd.

3. The unitarity of Sabs(λ) for real valued V follows from Theorems 3.39
and 3.42. In the notation of (3.7.10), we apply (3.6.22) with u1 = u2 = u,
g1 = g2 = g and f1 = f2 = Sabs(λ)g to obtain

‖S(λ)g‖2L2(Sn−1) = ‖g‖2L2(Sn−1).
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It follows that S(λ) is unitary for λ ∈ R \ {0}. Since Theorem 3.41 shows
that λ 7→ S(λ) is a meromorphic family of operators, 0 must be a removable
singularity and S(λ) is unitary for λ ∈ R .

4. The equation (3.7.15) holds for λ ∈ R and, as both sides are meromorphic
it extends to all of C. �

Proof of (3.7.7). We can now prove the symmetry of the scattering am-
plitudes. For λ = ik, k � 1, RV (ik) = (PV + k2)−1 is self-adjoint (we
assume here V is real valued). This and (3.2.4) show that RV (ik, x, y) is
real valued. The expression for the scattering matrix kernel(3.7.8) shows
that i1−nb(ik, θ, ω) is real – the i factors cancel.

On the other hand,

Sabs(ik)∗ = Sabs(−ik)−1 = Sabs(ik), k ∈ R,

and hence Sabs(ik) is self-adjont. From (3.7.5) we see that the Schwartz
kernel is real and hence b is symmetric, b(ik, θ, ω) = b(ik, ω, θ). By analytic
continuation this remains valid for all λ. �

We now present a different formula for the scattering matrix. The po-
tential V does not appear explicitely and hence it can be used for more
general (compactly supported) perturbations. In fact, it holds for any black
box perturbation which we will consider later in this book.

THEOREM 3.44 (Description of the scattering matrix). Let PV , ρ,
and Eρ(λ) be as in Theorem 3.41. Choose χi ∈ C∞c (Rn), i = 1, 2, 3,

χi|supp V = 1, χi+1|supp χi = 1, χ3 = ρ.

Then the scattering matrix is given by

(3.7.18) S(λ) = I + anλ
n−2Eρ(λ)[∆, χ1]RV (λ)[∆, χ2]Eρ(λ̄)∗ ,

where an := (2π)−n+1/2i.

Proof. 1. For h1, h2 ∈ C∞(Sn−1) let us put

u1 =
(
(1− χ2)E(λ̄)∗ −RV (λ)[∆, χ2]Eρ(λ̄)∗

)
h1 ,

u2 = (1− χ1)E(λ̄)∗h2 ,

where

E(λ) : L2
comp(Rn)→ L2(Sn−1), E(λ)u(ω) :=

∫
Rn
u(x)e−iλ〈x,ω〉dx,

and E(λ̄)∗ : L2(Sn−1)→ L2
loc(Rn).

We check that, thanks to the support properties of χj ’s and ρ,

F1 := (PV − λ2)u1 = 0
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and

F2 := (PV − λ2)u2 = [∆, χ1]Eρ(λ̄)∗h2 .

2. We first assume that λ ∈ R\{0}. We see that u1 satisfies the assumptions
of Theorem 3.39 with

g1(θ) = c−n λ
−n−1

2 h1(−θ) , c−n = e−
i
4
π(n−1)(2π)

1
2

(n−1),

f1(θ) = Sabs(λ)g1(θ) = c−n i
1−nλ−

n−1
2 S(λ)h1(θ) .

In fact, since RV (λ) is the outgoing resolvent, the only incoming contribution
comes from the free term (1− χ1)Eρ(λ̄)∗h1 and this follows from Theorems
3.38 (formula for g1) and 3.42 (formula for f1). Note the change of sign in
the exponent in E(λ̄)∗.

Theorem 3.38 then shows that for u2 we have asymptotic expansion with

g2(θ) = c−n λ
−n−1

2 h2(−θ), f2(θ) = c−n i
1−nλ−

n−1
2 h2(θ).

3. We define

(3.7.19) G(λ) := Eρ(λ)[∆, χ1]RV (λ)[∆, χ2]Eρ(λ̄)∗,

which is an operator L2(Sn−1)→ C∞(Sn−1).

Using the fact that (1− χ2)[∆, χ1] = 0, we have

u1F̄2 = −RV (λ)[∆, χ2]Eρ(λ̄)∗h1 × [∆, χ1]Eρ(λ)∗h̄2,

and since F1 = 0 and [∆, χ1]∗ = −[∆, χ1],

∫
Rn

(F1ū2 − u1F̄2)dx = 〈RV (λ)[∆, χ2]Eρ(λ̄)∗h1, [∆, χ1]Eρ(λ)∗h2〉L2(R3)

= −〈Eρ(λ)[∆, χ1]RV (λ)[∆, χ2]Eρ(λ̄)∗h1, h2〉L2(Sn−1)

= −〈G(λ)h1, h2〉L2(Sn−1).

(3.7.20)

4. On the other hand the pairing formula (3.6.22) and the expressions for
f` and g` from Step 2, give∫

Rn
(F1ū2 − u1F̄2)dx = 2iλ

(
〈g1, g2〉L2(Sn−1) − 〈f1, f2〉L2(Sn−1)

)
= 2iλ−n+2(2π)n−1〈(I − S(λ))h1, h2〉L2(Sn−1).

(3.7.21)

Comparing (3.7.21) with (3.7.20) we see that

A(λ)h2 = (S(λ)− I)h2 = anλ
n−2G(λ),

which, recalling the definition of G(λ) (3.7.19), proves (3.7.18) for λ ∈ R \
{0}. Analytic continution shows that the formula is valid, as an equality of
two meromorphic families of operators, for λ ∈ C. �
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REMARK. It is interesting to note that the representation (3.7.18) does
not depend on the cut-off functions, and that we can reverse the condition
χ2 ≡ 1 on the support of χ1 to χ1 ≡ 1 on the support of χ2. Both facts follow
directly from the properties of the scattering matrix but here we propose a
direct argument based on considering quantum flux.

Suppose that χ2 is equal to one on the supports of functions χ1, χ̃1,
which are equal to 1 near suppV . We claim that

Eρ(λ)[∆, χ2]RV (λ)[∆, χ1 − χ̃1]Eρ(λ̄)∗ ≡ 0 .

This will follow from showing that

(∆− λ2)vj = 0 , j = 1, 2 =⇒
〈RV (λ)[∆, χ1 − χ̃1]v1, [∆, χ2]v2〉L2(Rn) = 0 .

This however is clear as the left hand side is equal to

〈RV (λ)(−PV (χ1 − χ̃1)− (χ1 − χ̃1)∆)v1, [∆, χ2]v2〉L2(Rn)

= −〈(χ1 − χ̃1)v1, [∆, χ2]v2〉L2(Rn) = 0 ,

since (χ1 − χ̃1)[∆, χ2] = 0 . Similarly, if χ1 ≡ 1 on the support of χ̃1, and
χ̃1 ≡ 1 near suppV , then

Eρ(λ)[∆, χ2 − χ̃1]RV (λ)[∆, χ1]Eρ(λ̄)∗ ≡ 0 ,

which shows that we can switch the conditions on χ1 and χ2. Yet another
argument of the same type shows that for the free resolvent we have

Eρ(λ)[∆, χ2]R0(λ)[∆, χ1]Eρ(λ̄)∗ ≡ 0 .

In the study of resonances the following theorem provides a crucial con-
nection between singularities of the scattering matrix and the resolvent.

THEOREM 3.45 (Multiplicities of scattering poles). Suppose that
S(λ) is the scattering matrix for V ∈ L∞comp(Rn;C), n ≥ 3, odd.

If we define

(3.7.22) mS(λ) = − 1

2πi
tr

∮
S(ζ)−1∂ζS(ζ)dζ ,

where the integral is over a positively oriented circle which includes λ and
no other pole or zero of detS(λ), then

(3.7.23) mS(λ) = mR(λ)−mR(−λ) .
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Proof. 1. The results in this section apply equally well to V replaced by
V = V0 + V1 where

V0 ∈ L∞, V1 =

m∑
j=1

fj ⊗ gj ,

fj , gj ∈ L∞, suppV0, supp fj , supp gj ⊂ B(0, R),

(3.7.24)

for some fixed R (we then choose ρ ∈ C∞c (Rn) equal to 1 on B(0, R).

2. We first see that if (I + V R0(ζ)ρ)−1 is holomorphic on |ζ ± λ| = r then
for V ′ close to V , in operator norm (and with a fixed bound on the support
as in (3.7.24))

(3.7.25)
∑
|λ−ζ|<r

mSV (ζ) =
∑
|ζ−λ|<r

mSV ′ (ζ).

In fact, we can use (3.7.8) and (3.7.14) to see that SV (ζ)−1 = JSV (−ζ)J
exists and is bounded on |ζ − λ| = r. Since

(I + V R0(λ)ρ)−1 − (I + V ′R0(λ)ρ)−1 =

(I + V R0(λ)ρ)−1(V ′ − V )ρR0(λ)ρ(I + V ′R0(λ)ρ)−1

we see that if ‖V ′−V ‖L2→L2 is sufficiently small invertibility of I+V R0(λ)ρ
implies invertibility of I + V ′R0(λ)ρ and we can estimate the norm of the
difference of the inverses. The the formula for A(ζ) in (3.7.8) then shows
that

‖SV (ζ)−1(SV (ζ)− SV ′(ζ))‖ < 1, |ζ − λ| = r.

This and Theorem C.12 give (3.7.25).

We can always find arbitrary small r’s for which (I + V R0(ζ)ρ)−1 is
holomorphic on |ζ±λ| = r. The formula (3.7.25) implies that the poles and
zeros of detSV (λ) depend continuously on V in compact sets.

3. The continuity statement above and Theorem 3.14 show that we only
need to prove (3.7.23) if mR(±λ) ≤ 1 (the proof of that theorem applies to
splitting multiplicities of any finite number of resonances). Hence suppose
that RV (ζ) has a pole of multiplicity 1 at λ.

Let us consider the case of λ 6= 0 first. Then by (3.2.9),

(3.7.26) RV (ζ) =
u⊗ u
λ− ζ

+H(ζ, λ),

where ζ 7→ H(ζ, λ) is holomorphic near λ, (PV − λ2)u = 0, u = R0(λ)f ,
f ∈ L∞comp, f 6= 0. Theorem 3.44 shows that

(3.7.27) S(ζ) = S0(ζ, λ)− anλn−2U1 ⊗ U2

ζ − λ
,
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where ζ 7→ S0(ζ, λ) is holomorphic near λ and

Uj := Eρ(λ)[∆, χj ]u.

(Note that the change of sign between (3.7.26) and (3.7.27) comes from
[∆, χ2]∗ = −[∆, χ2].)

We now claim that

U1(θ) = U2(θ) = U(θ) := V̂ u(λθ).

In fact, using the equation PV u = λ2u,

[∆, χj ]u = ∆χju− χj∆u = (∆ + λ2)χju+ V u.

The contribution of the first term vanishes since

F
(
(∆ + λ2)χju

)
(λθ) = (−|ξ|2 + λ2)χ̂ju(λθ) = 0.

Step 4 of the proof of Theorem 3.33 shows that U ≡ 0 would imply that u is
compactly supported which is impossible, as shown in Step 5 of that proof.

4. This means that a simple pole of RV (ζ) at λ, implies (3.7.27) with
U1 = U2 6= 0. Theorem C.10 shows that near λ

S(ζ) = G(ζ)(Q−1(ζ − λ)−1 +Qk(ζ − λ)k + · · ·+Q0)F (ζ),

where Q−1 has rank 1 and G and F are holomorphic and invertible near λ.
Since we assumed that RV (ζ) has at most a simple pole at −λ we also have,
for ζ near λ

S(−ζ) = Ẽ(ζ)(Q̃−1(ζ − λ)−1 + Q̃k(ζ − λ)k + · · ·+ Q̃0)F̃ (ζ),

where rank Q̃−1 = mR(−λ).

By (3.7.14)

S(−ζ) = JS(ζ)−1J

= JF (ζ)−1(Q−1(ζ − λ) +Qk(ζ − λ)−k + · · ·+Q0)G(ζ)−1J

which means that k ≤ 1 and Q̃1 = Q−1, Q̃−1 = Q1. We conclude that

mS(λ) = rankQ−1 − rankQ1 = mR(λ)−mR(−λ),

which, by our reduction to the case of simple poles, proves (3.7.23) for all
λ 6= 0.

5. It remains to discuss the case of λ = 0. We can again assume that
mR(λ) ≤ 1. Then (3.7.18) shows that S(λ) is holomorphic near 0 and using
S(λ)−1 = JS(λ)J so is its inverse. (When V is real valued the scattering
matrix is unitary on the real axis and hence holomorphic and invertible near
0.) That means that mS(0) = 0. �
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REMARK. When V is real valued we can use the results of §3.3 to describe
the scattering matrix at λ = 0. When n ≥ 5, Theorem 3.17 and (3.7.18)
show that S(0) = I. When n = 3

(3.7.28) S(0) = I − m̃R(0)

2π
1⊗ 1,

where m̃R(0) is the multiplicity of the zero resonance – see (3.3.29).

Proof of (3.7.28). From Theorem 3.23 and (3.7.18) we see that near λ = 0,

S(λ) = I − a3λ
−1Eρ(0)[∆, χ1]Π0[∆, χ2]Eρ(0)∗

− a3∂λEρ(λ)|λ=0[∆, χ1]Π0[∆, χ2]Eρ(0)

− a3Eρ(0)[∆, χ1]Π0[∆, χ2]∂λEρ(λ̄)∗|λ=0

+ ia3Eρ(0)[∆, χ1]A1[∆, χ2]Eρ(0)∗ +O(λ).

(3.7.29)

We have Π0 =
∑J

j=1 uj⊗ ūj where uj ∈ H2(R3) and PV uj = 0. Then, using
χ`∆uj = χ`V uj = V uj = ∆uj and part 1 of Lemma 3.18 we have

Eρ(0)[∆, χ`]uj =

∫
R3

(∆(χ`uj)(x)−∆uj(x)) dx = 0, ` = 1, 2.

Hence Eρ(0)[∆, χ`]Π0 = 0, and most terms in (3.7.29) disappear. In view of
Lemma 3.22 and (3.3.27),

S(0) = I + (2π)−1Eρ(0)[∆, χ1](u0 ⊗ ū0)[∆, χ2]Eρ(0)∗,

PV u0 = 0, −
∫
R3

V (x)u0(x)dx = 1.

Now,

Eρ(0)[∆, χ`]u0 =

∫
R3

(∆(χ`u0)(x)− V (x)u0(x)) dx = 1,

and this gives (3.7.28). The change of sign comes for [∆, χ2]∗ = −[∆, χ2].
(We also note that once we see that S(0)− I is of the form c1⊗ 1 then c is
determined by S(0) = S(0)−1.) �

We conclude this section with a useful results relating the determinant
of the scattering matrix to the determinant of an operator acting on L2(Rn).

THEOREM 3.46 (Trace identities). Suppose that

V ∈ L∞comp(Rn;C) , n ≥ 3 , odd,

and that ρ ∈ C∞c (Rn) is equal to 1 on suppV . Let

T (λ) := (I + V R0(λ)ρ)−1(V (R0(λ)−R0(−λ))ρ) : L2(Rn)→ L2(Rn).

Then T (λ) is of trace class and

(3.7.30) detS(λ) = det(I − T (λ)) .
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Proof. 1. The operator T (λ) is of trace class since

ρ(R0(λ)−R0(−λ))ρ : L2(Rn) −→ Hk(B(0, R)) ,

for any k, provided that ρ ∈ C∞(Rn), supp ρ ⊂ B(0, R).

2. We will prove the formula for λ ∈ R. For that we first write S(λ) =
I − Z(λ) where, using (3.7.9),

Z(λ) = bnλ
n−2Eρ(λ)(I − V RV (λ)ρ)V Eρ(λ)∗

= bnλ
n−2Eρ(λ)(I + V R0(λ)ρ)−1V Eρ(λ)∗ ,

(3.7.31)

where bn = −an = i(2π)1−n/2.

3. To prove (3.7.30) all we need to show is that for all k ∈ N

(3.7.32) trT (λ)k = trZ(λ)k .

In fact, (3.7.32) shows for t ∈ C, |t| � 1 (so that the log can be defined),

log det(I − tT (λ)) = tr log(I − tT (λ))

= tr log(I − tZ(λ))

= log det(I − tZ(λ)) .

It follows that det(I − tZ(λ)) = det(I − tT (λ)) for |t| small enough, and by
analytic continuation in t, for t = 1.

4. To establish (3.7.32) we use (3.1.19) for λ ∈ R:

ρ(R0(λ)−R0(−λ))ρ = bnλ
n−2Eρ(λ)∗Eρ(λ)

in the definition of T (λ):

T (λ) = bnλ
n−2(I + V R0(λ)ρ)−1V Eρ(λ)∗Eρ(λ) .

Let A = bnλ
n−2Eρ(λ), B = (I + V R0(λ)ρ)−1V , C = Eρ(λ)∗ so that

T = BCA and Z = ABC,

see (3.7.31). The operators A and C are of trace class as operators between
different spaces:

A : H1 → H2, B : H1 → H1 , C : H2 → H1 ,

and B is a bounded operator. Cyclicity of trace shows that

trH1(ABC)k = trH1 A(BCA)k−1BC

= trH2 BCA(BCA)k−1

= trH2(BCA)k .

This gives (3.7.32). �
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3.8. MORE ON DISTORTED PLANE WAVES

Distorted plane waves were already defined in (3.7.1) were used to define
the scattering matrix. Here we will study them further.

We start with an explicit form of Stone’s formula. Its abstract form for
PV given in (B.1.12) follows from general spectral theory but the results of
§3.6 give us an analogue of Theorem 3.4 which was stated for P0 = −∆.

THEOREM 3.47 (Stone’s formula for PV ). Let V ∈ L∞comp(Rn;R).

For λ ∈ R \ {0} and ω ∈ Sn−1 define e(λ, ω, x) by (3.6.2):

(3.8.1) e(λ, ω, x) := e−iλ〈x,ω〉 −RV (λ)(V e−iλ〈•,ω〉)(x).

Then

(3.8.2) e(λ, x, ω) = e(−λ, x, ω),

and

(3.8.3) RV (λ, x, y)−RV (−λ, x, y) =
i

2

λn−2

(2π)n−1

∫
Sn−1

e(λ, ω, x)e(λ, ω, y)dω.

The Schwartz kernel of spectral measure of PV corresponding to the contin-
uous spectrum is given by

dEλ(λ, x, y) =

∫
Sn−1

e(λ, ω, x)e(λ, ω, y)dω
λn−1dλ

(2π)n
,

PV =

K∑
k=1

Ekuj ⊗ ūj +

∫ ∞
0

λ2dEλ, I =

K∑
k=1

uk ⊗ ūk +

∫ ∞
0

dEλ,

(3.8.4)

where uk’s are normalized eigenfunctions of PV corresponding to eigenvalues
Ek, EK < Ek−1 ≤ · · · ≤ E1 ≤ 0.

INTERPRETATION. The functions defined in (3.8.1) (and earlier in
(3.6.2)) are called distorted plane waves. That is because exp(−iλ〈ω, x〉) is
a free plane wave in the sense that its inverse Fourier transform in λ is equal
to 2πδ(t− 〈ω, x〉) which is a plane wave in the direction of ω: a wave in the
sense of solving the wave equation, (∂2

t −∆)ê = 0.

Formula (3.8.3) combined with (B.1.12) provides a description of the
continuous spectral measure of PV in terms of distorted plane waves. As we
will see in Theorem 3.49 the scattering matrix intertwines e(−λ,−•, x) and
e(λ, •, x).

REMARK. The definition (3.8.1) shows that λ 7→ λ
n−1
2 e(λ, ω, x) extends

to a meromorphic family for λ ∈ C:

(3.8.5) λ
n−1
2 e(λ, ω, x) ∈ C∞(Rλ × Sn−1

ω ;H2
loc(Rnx)),
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This follows from Theorem 3.23.

When n = 3, then the term Π0 does does not contribute a pole of order
two, λ−2, in (3.8.1) as Π0(V ) = 0 – see Step 1 of the proof of Lemma
3.18. But, due to a possible resonance at 0, we may have a singularity λ−1

canceled by λ
n−1
3 = λ.

For n ≥ 5 there is Π0(V ) may not be zero and hence we may have a

pole λ−2. Since n−1
2 ≥ 2 it is cancelled by λ

n−1
2 and λ 7→ λ

n−1
2 e(λ, ω, x) is

smooth.

Proof of Theorem 3.47. 1. To see (3.8.2) we note that self-adjointness of PV
shows that for Imλ > 0, RV (λ)∗ = RV (−λ̄). Combining this with (3.2.4)
we obtain

RV (λ)ū = RV (λ)∗u = RV (−λ̄)u,

and this remains valid for λ ∈ R and u ∈ L2
comp. Hence, for λ ∈ R,

e(λ, ω, x) = eiλ〈x,ω〉 −RV (λ)
(
V eiλ〈x,ω〉

)
= eiλ〈x,ω〉 −RV (−λ)

(
V eiλ〈x,ω〉

)
= e(−λ, ω, x).

2. We now note that (3.8.3) is equivalent to
(3.8.6)

〈(RV (λ)−RV (−λ))ϕ,ϕ〉 =
i

2

λn−2

(2π)n−1

∫
Sn−1

∣∣∣∣∫
Rn
e(λ, ω, x)ϕ(x)dx

∣∣∣∣2 dω,
for any ϕ ∈ C∞c (Rn).

For Imλ < 0, RV (−λ)∗ = RV (λ̄) and hence by analytic continuation,

(3.8.7) 〈RV (−λ)ϕ,ϕ〉 = 〈ϕ,RV (λ̄)ϕ〉, λ ∈ C.

If suppϕ ⊂ BR := B(0, R) then, using (3.8.7) and (PV −λ2)RV (±λ)ϕ =
ϕ, we obtain

〈(RV (λ)−RV (−λ))ϕ,ϕ〉 = 〈RV (λ)ϕ,ϕ〉 − 〈ϕ,RV (λ)ϕ〉
= 〈RV (λ)ϕ,ϕ〉L2(BR) − 〈ϕ,RV (λ)ϕ〉L2(BR)

= 〈RV (λ)ϕ, (PV − λ2)RV (λ)ϕ〉L2(BR)

− 〈(PV − λ2)RV (λ)ϕ,RV (λ)ϕ〉L2(BR)

= 〈∆RV (λ)ϕ,RV (λ)ϕ〉L2(BR)

− 〈RV (λ)ϕ,∆RV (λ)ϕ〉L2(BR).
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3. Since RV (λ)ϕ(x) ∈ C∞(Rn\suppV ) we can apply Green’s formula which
shows that the left hand side of (3.8.6) is equal to

2i Im

∫
∂B(0,R)

∂r [RV (λ)ϕ] (y)RV (λ)ϕ(y)dS(y),(3.8.8)

where dS(y) is the standard measure on the sphere ∂B(0, R).

Hence we need to find asymptotics of the resolvent kernels. The answer
is given in the following analogue of (3.1.20):

LEMMA 3.48. Suppose that V ∈ L∞comp(Rn;R) and λ ∈ R \ {0}. For
y ∈ Rn we have

(3.8.9)

RV (λ, rω, y) =
eiλr

r
n−1
2

λ
n−3
2 cne(λ, y, ω) +O(r−

n+1
2 ), r →∞,

cn =
1

4π

(
1

2πi

) 1
2

(n−3)

,

with a full (differentiable) expansion in powers of 1/r valid uniformly for y
in compact subsets of Rn.

Proof. 1. We recall that

RV (λ) = R0(λ)−R0(λ)V RV (λ).

Since

RV (λ, rω, y) = RV (λ)(δ(• − y))(rω), δ(• − y) ∈ E ′(Rn)

we can apply Theorem 3.5 to see that

λ−
n−3
2 c−1

n e−iλrr
n−1
2 RV (λ, rω, y) = e−iλ〈y,ω〉

−
∫
Rn
e−iλ〈y

′,ω〉V (y′)RV (λ, y′, y)dy′ +O(r−1),

with a full asymptotic expansion in powers of r.

2. The symmetry of RV (λ, y, y′) (see (3.2.4)) shows that the integral on the

right hand side is equal to RV (λ)(V e−iλ〈•,ω〉)(y) which means that the right
hand side is equal to e(λ, y, ω) +O(1/r). �

4. We complete the proof of (3.8.6), and hence of (3.8.3) by inserting (3.8.9)
into (3.8.8) and letting R→∞. More precisely,

r∂r [RV (λ)ϕ] (Rω)RV (λ)ϕ(Rω) =

i|cn|2R−n+2λn−2

∣∣∣∣∫
Rn
e(λ, ω, y)ϕ(y)dy

∣∣∣∣2 +O(R−n+1).
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Hence the integral in (3.8.8) is equal to

2i|cn|2λn−2

∫
Sn−1

∣∣∣∣∫
Rn
e(λ, ω, y)ϕ(y)dy

∣∣∣∣2 dω +O(R−1).

Inserting the value of cn from (3.8.9) and letting R → ∞ gives (3.8.6) and
that is equivalent to (3.8.3).

5. To obtain (3.8.4) we apply Stone’s formula given in Theorem B.10. �

The scattering matrix intertwines distorted plane waves:

THEOREM 3.49. In the notation of Theorem 3.47 define

(3.8.10) EV (λ)f(ω) :=

∫
Rn
e(λ, ω, x)f(x)dx, f ∈ L2

comp(Rn),

EV (λ) : L2
comp(Rn)→ L2(Sn−1). Then,

(3.8.11) EV (λ) = S(λ)JEV (−λ)

where S(λ) is the scattering matrix and Jf(θ) = f(−θ). In other words,

(3.8.12) S(λ)e(−λ,−•, x) = e(λ, •, x).

INTERPRETATION. With EV (λ) : L2
comp(Rn) → L2(Sn−1). Theorem

3.47 can be stated as follows:

(3.8.13)

RV (λ)−RV (−λ) =
i

2

λn−2

(2π)n−1
EV (λ̄)∗EV (λ), λ ∈ C,

dEλ =
λn−1

(2π)n
EV (λ)∗EV (λ), λ > 0.

In fact, using (3.8.2) and (3.8.3) we see that

(3.8.14) RV (λ)−RV (−λ) =
i

2

λn−2

(2π)n−1
EV (−λ)∗EV (−λ), λ ∈ R \ {0},

and changing λ to −λ gives (3.8.13) for λ real once we remember that n is
odd. We then continue both sides meromorphically noting that λ 7→ EV (λ̄)∗

is meromorphic.

We can use (3.8.11) to obtain a formula in which the singularities are
“pushed into” the scattering matrix:

RV (λ)−RV (−λ) =
i

2

λn−2

(2π)n−1
EV (λ̄)∗S(λ)JEV (−λ), λ ∈ C.

This means that for Imλ < 0, except for S(λ), all the factors on the right
hand side are holomorphic (except for finitely many poles coming from neg-
ative eigenvalues).
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Proof of Theorem 3.49. 1. We start by writing the definition of EV in terms
of operators:

(3.8.15) EV (λ) = E0(λ)(I − V RV (λ)),

where we used definitions (3.8.1), (3.8.10) and (3.2.4). Recalling from (3.7.9)
that

S(λ) = I +A(λ), A(λ) = anλ
n−2E0(λ)V (I −RV (λ)V )E0(λ)∗,

an = (2π)1−n/2i, λ ∈ R, we need to show that

(3.8.16) EV (λ)− JEV (−λ) = A(λ)JEV (−λ),

and it is enough to consider λ ∈ R.

2. For λ ∈ R, we apply Theorem 3.47 (as rephrased in (3.8.14)) to obtain

EV (λ)− JEV (−λ) = −E0(λ)V (RV (λ)−RV (−λ))

= anλ
n−2E0(λ)V EV (−λ)∗EV (−λ)

= anλ
n−2E0(λ)V (I −RV (λ)V )E0(−λ)∗EV (−λ)

= A(λ)JEV (−λ)

.

where we also used RV (−λ)∗ = RV (λ) and E0(−λ)∗ = E0(λ)∗J . This gives
(3.8.16) completing the proof. �

3.9. THE BIRMAN–KREĬN TRACE FORMULA

The Birman–Krĕın formula gives an expression for tr(f(PV ) − f(P0)) in
terms of the determinant of the scattering matrix. It was given in one
dimension in Theorem 2.19 and we now proceed to the case of potential
scattering in all odd dimensions. We consider the case of real potentials so
that the Schrödinger operator PV is self-adjoint.

Theorems 2.19 below is valid without much change in all dimensions
and for much less restrictive classes of potentials. That is not the case with
the trace formulæ of Theorem 2.21 and 3.53 which cannot hold in even
dimensions and are delicate for more general perturbations.

We start with2

THEOREM 3.50 (Trace class property of f(PV ) − f(P0)). Suppose
that V ∈ L∞comp(Rn;R). For f ∈ S (R)

(3.9.1) f(PV )− f(P0) ∈ L1(L2(Rn)),

2If the reader is interested in the case of dimension 3 only then Theorem 3.50 can be skipped
as the proof of Theorem 3.51 for n = 3 provides a direct argument for the trace class property.
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that is, the operator on the left hand side is of trace class and

TV : f 7→ tr (f(PV )− f(P0)) , f ∈ S (R)

defines an element of S ′(R).

In addition if 1lB(0,R) is the indicator function of B(0, R), then

(3.9.2) 1lB(0,R) f(PV ) ∈ L1(L2(Rn)),

and

(3.9.3) tr(f(PV )− f(P0)) = lim
R→∞

tr 1lB(0,R)(f(PV )− f(P0)).

Proof. 1. Since f ∈ S , we can write f as

f(z) = (z + i)−Ng(z), g ∈ S (R).

We then apply the Helffer-Sjöstrand formula for functions of self-adjoint
operators (see §B.2):

f(PV )− f(P0) =

1

π

∫
C

(
(PV − z)−1(PV + i)−N − (P0 − z)−1(P0 + i)−N

)
∂̄z g̃(z)dm(z),

(3.9.4)

where dm(z) is the Lebesgue measure on C and

g̃ ∈ S (C), supp g ⊂ {| Im z| < 1},
is an almost analytic extension of g.

2. We write

(PV − z)−1(PV + i)−N − (P0 − z)−1(P0 + i)−N = A+B,

where

A := ((PV − z)−1 − (P0 − z)−1)(P0 + i)−N

= −(PV − z)−1V (P0 + i)−N (P0 − z)−1,

and

B := (PV − z)−1
(
(PV + i)−N − (P0 + i)−N

)
= −(PV − z)−1

N∑
k=1

(PV + i)−N+k−1V (P0 + i)−k,
(3.9.5)

where the formula for B is easily proved by induction on N .

3. Arguing as in (B.3.10) we see that for ρ ∈ C∞c (Rn), singular values satisfy

(3.9.6) sj(ρ(P0 + i)−k) = sj((P0 + i)−kρ) ≤ Cj−2k/n.

We claim that the same estimate is valid with P0 replaced by PV :

(3.9.7) sj(ρ(PV + i)−k) = sj((PV + i)−kρ) ≤ Cj−2k/n.
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In fact, we prove this by induction. The case of k = 0 is immediate and
assume that (3.9.7) holds for k. Without loss of generality we can take ρ
satisfying ρV = V , using the same decomposition as in (3.9.5), applying
(B.3.5), (3.9.6) and the induction hypothesis, (N := k + 1)

sj((PV + i)−k−1ρ) ≤ s[j/N ]((P0 + i)−k−1ρ)

+ C

k+1∑
`=1

s[j/N ]((PV + i)−k+`−1V (P0 + i)−`ρ)

≤ Cj−2k/n

+ C
k+1∑
`=1

s[j/2N ]((PV + i)−k+`−1ρ)s[j/2N ]((P0 + i)−`ρ)

≤ Cj−2(k+1)/n + C ′
k+1∑
`=1

j−2(k+1−`)/nj−2`/n

≤ C ′′j−2(k+1)/n.

4. Returning to step 2, we use (3.9.7) to obtain

sj((PV − z)−1(PV + i)−N − (P0 − z)−1(P0 + i)−N )

≤ s[j/2](A) + s[j/2](B)

≤ ‖(PV − z)−1‖‖(P0 − z)−1‖s[j/2](V (P0 + i)−N )

+ ‖(PV − z)−1‖
N∑
k=1

s[j/2N ]((PV + i)−N+k−1V (P0 + i)−k)

≤ C| Im z|−2j−2N/n.

Expressing the trace class norm (B.4.2) using singular values we see that

(3.9.8) (PV − z)−1(PV + i)−N − (P0 − z)−1(P0 + i)−N = O(| Im z|−2)L1 ,

if N > n/2. Combined with (3.9.4) we obtain (3.9.1).

5. The estimates (3.9.7) also show that for ρ ∈ C∞c (Rn) equal to 1 on
B(0, R) and N > n/2,

1lB(0,R)(PV + i)−N (PV − z)−1 = 1lB(0,R) ρ(PV + i)−N (PV − z)−1

= O(| Im z|−1)L1 ,

which gives (3.9.2).

6. To see (3.9.3) we claim that

(3.9.9) 1lRn\B(0,R)(P0 − z)−1V = O(R−M | Im z|−M−1)L1 ,



172 3. MORE ON DISTORTED PLANE WAVES

for sufficiently large M . From this (3.9.3) follows with a quantitative esti-

mate: let f̃ be an almost analytic extension of f (with the same properties
as g̃ for N = 0). Then using (3.9.4) with N = 0 and the resolvent identity,

tr 1lRn\B(0,R) (f(PV )− f(P0))

= − 1

π
tr

∫
C

(
1lRn\B(0,R)(P0 − z)−1V (PV − z)−1

)
∂̄z f̃(z)dm(z)

= tr

∫
C
O(R−M | Im z|−M−1)L1O(| Im z|−1)LO

(
| Im z|∞〈z〉−∞

)
dm(z)

= O(R−M ).

This gives a quantitative version of (3.9.3).

7. To see (3.9.9) we choose ρ ∈ C∞c , ρ ≡ 1 on suppV (independent of R)
and ψj,R ∈ C∞c , 1 ≤ j ≤ J , such that suppψj+1,R ≡ 1 on suppψj,R, j < J ,
suppψ1,R ≡ 1 on supp ρ and

∂αψj,R = Oα,J(R−|α|), suppψj,R b B(0, R).

In particular suppψj,R ∩ supp ∂ψj+1,R = ∅. This fact will be crucial in the
next calculation.

Since the estimate (3.9.9) is equivalent to the estimate for the adjoint,
we can estimate the trace class norm of

ρ(P0 − z)−1 1lRn\B(0,R) = ρψ1,R · · ·ψJ,R(P0 − z)−1 1lRn\B(0,R)

= ρψ1,R · · ·ψJ−1,R(P0 − z)−1[P0, ψJ,R](P0 − z)−1 1lRn\B(0,R)

= ρ(P0 − z)−1[P0, ψ1,R](P0 − z)−1 · · · [P0, ψJ,R](P0 − z)−1 1lRn\B(0,R) .

From estimates on derivatives of ψj,R we see that

[P0, ψj,R] = O(R−1)Hs+2(Rn)→Hs+1(Rn).

Also (P − z)−1 = O(| Im z|−1)Hs→Hs+2 and hence

[P0, ψj,R](P0 − z)−1 = O(R−1| Im z|−1)Hs(Rn)→Hs+1(Rn).

We conclude that

ρ(P0 − z)−1 1lRn\B(0,R) = O(| Im z|−J−1R−J)L2(Rn)→HJ+2(B(0,R0)),

for R0 such that supp ρ ⊂ B(0, R0). For J large enough ‖ 1lB(0,R0)A‖L1 ≤
C‖A‖L2→HJ+2 , and that concludes the proof of (3.9.9).

8. The proof that f 7→ tr(f(PV ) − f(P0)) defines a tempered distribution
follows from estimates on ∂̄g in terms of the a finite number of semi-norms
sup |〈λ〉m∂kλf |. These follow from the construction of g in §B.2. �

We are now ready for the main result of this section:
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THEOREM 3.51 (The Birman–Krĕın formula). Suppose that V ∈
L∞comp(Rn;R), where n ≥ 3 is odd.

Then for f ∈ S (R) the operator f(PV )− f(P0) is of trace class and

tr (f(PV )− f(P0)) =
1

2πi

∫ ∞
0

f(λ2) tr
(
S(λ)−1∂λS(λ)

)
dλ

+
K∑
k=1

f(Ek) + 1
2m̃R(0)f(0) ,

(3.9.10)

where S(λ) is the scattering matrix and EK < EK−1 ≤ · · · ≤ E1 ≤ 0 are
the eigenvalues of PV and m̃R(0) is defined by (3.3.29) (and can be non-zero
only when n = 3).

REMARKS. 1. For a heuristic interpretation of

σ′(λ) :=
1

2πi
trS(λ)−1∂λS(λ)

see the discussion after Theorem 2.19. We also mention that the operator
−i∂λS(λ)S(λ)−1 is known as the Eisenbud–Wigner time delay operator and
has an interesting physical interpretation – see Jensen [Je81]. From (B.5.23)
we also see that trS(λ)−1∂λS(λ) is the logarithmic derivative of detS(λ).

2. At this stage the integral on the right hand side of (3.9.10) is meant as
distributional pairing of σ′ ∈ S ′ with f(λ2) – see Theorem 3.50. In §3.11
we will see that σ′ is polynomially bounded so that the integral converges
in the usual sense.

3. In Lemma 3.52 §3.11 we will use f(s) = e−ts: that is allowed as f(PV ) =
(χf)(PV ) for χ ∈ C∞(R), suppχ ⊂ (min Spec(PV ) − 1,∞), χ ≡ 1 on
[min Spec(PV ),∞). We then have χf ∈ S (R).

In dimension three a complication arises from the possibility of the reso-
nance at zero – see Theorem 3.23. On the other hand the trace class proper-
ties are easier and hence the proof we presented in dimension one (see §2.6)
applies and in fact is somewhat easier as R0(λ) is now holomorphic at zero.

Proof of Theorem 3.51 for n = 3. 1. As in (3.8.4), the spectral theorem and
Stone’s formula show that

f(PV ) =

K∑
k=1

f(Ek)uk ⊗ ūk +
1

4πi

∫
R
f(λ2)(RV (λ)−RV (−λ))2λdλ,

where we used the fact that the integrand is even to change the integration
from (0,∞) to R. The operator (RV (λ) − RV (−λ))2λ is smooth in λ ∈ R
as an operator L2

comp → L2
loc. For simplicity we will now assume that there

are no negative eigenvalues: their contribution in the formula is clear.
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2. We write

RV (λ)−R0(λ) = −RV (λ)V R0(λ)

= −R0(λ)ρ(I + V R0(λ)ρ)−1V R0(λ) .

This operator can have a pole at λ = 0 as described in Lemma 3.16. In the
notation of that lemma we define

B(λ) := 2λ(RV (λ)−R0(λ)) +
2Π0

λ

= −2λR0(λ)ρ(I + V R0(λ)ρ)−1V R0(λ) +
2Π0

λ
,

B(λ) : L2
comp(R3)→ L2

loc(R3) ,

(3.9.11)

which is a meromorphic family of operators, holomorphic for Imλ ≥ 0. The
possible 1/λ term in RV (λ) at λ = 0 is cancelled by the λ factor and the
spectral pole −Π0/λ

2 by the last term on the right hand side.

With this notation we have (we assumed for simplicity of exposition that
there are no negative eigenvalues)

f(PV )− f(P0) = f(0)Π0 +
1

4πi

∑
±

∫
R
f(λ2)B(±λ)dλ.(3.9.12)

We recall from (3.1.24) that for Imλ ≥ 0 ‖R0(λ)‖L2→H2 ≤ C〈λ〉2/|λ| Imλ.
Arguing as in (3.4.2) (with n = 3) this gives

sj(R0(λ)ρ) = sj(ρR0(−λ̄))

= sj((−∆T3
R

+ 1)−1(−∆T3
R

+ 1)ρR0(−λ̄))

≤ sj((−∆T3
R

+ 1)−1)‖R0(−λ̄)‖L2→H2

= O(〈λ〉2/|λ| Imλ)j−2/3.

Since there are no poles for λ 6= 0, Imλ ≥ 0,

(3.9.13) ‖(I + V R0(λ)ρ)−1‖L2→L2 = O
(
〈λ〉2/|λ|2

)
, Imλ > 0.

In fact, for |λ| � 1 this follows from (3.1.12) and for λ near 0 from (3.3.4).
Hence,

‖B(λ)‖L1 ≤
2

|λ|
+ 2|λ|

∞∑
j=1

sj(R0(λ)ρ(I + V R0(λ)ρ)−1V ρR0(λ))

≤ 2

|λ|
+
C〈λ〉2

|λ|

∞∑
j=1

s[j/2](R0(λ)ρ)2

≤ C〈λ〉6

|λ|3(Imλ)2

∞∑
j=1

j−4/3 ≤ C〈λ〉6

|λ|3(Imλ)2
≤ C〈λ〉6

(Imλ)5
.

(3.9.14)



3.9. THE BIRMAN–KREĬN TRACE FORMULA 175

3. Let g ∈ S (C), supp g ⊂ {| Imλ| ≤ 1}, be an almost analytic extension
of f(λ2), see §B.2. The Cauchy–Green formula (D.1.1) applied to the right
hand side of (3.9.12) shows that (with dm(λ) the Lebesgue measure on C)

f(PV )− f(P0) =
1

2π
(t+(f)− t−(f)) ,

t±(f) :=

∫
± Imλ>0

∂λ̄g(λ)B(±λ)dm(λ).
(3.9.15)

Since ∂λ̄g(λ) = O(| Imλ|∞〈λ〉−∞), the estimate (3.9.14) shows that t±(f) ∈
L1. In particular, this implies directly that the f(PV ) − f(P0) is of trace
class and that f 7→ tr(f(PV ) − f(P0)) defines a tempered distribution – of
course this also follows from Theorem 3.50.

3. To relate the trace of (3.9.15) to the scattering matrix we reformulate
Theorem 3.46 as follows:

(3.9.16) detS(λ) = det((I + V R0(λ)ρ)−1(I + V R0(−λ)ρ)).

This is valid since, in the notation of Theorem 3.46,

I − T (λ) = I − (I + V R0(λ)ρ)−1(V (R0(λ)−R0(−λ))ρ)

= (I + V R0(λ)ρ)−1(I + V R0(−λ)ρ).

Since (−∆ − λ2)∂λR0(λ) = 2λR0(λ), elliptic estimates (see for instance
[Zw12, Theorem 7.1]) show that

ρ∂λR0(λ)ρ = O
(
〈λ〉2eC(Imλ)−

)
: L2(R3)→ H4(R3)

and that implies that

(3.9.17) ‖∂λ(V R0(λ)ρ)‖L1(L2(R3)) ≤ C〈λ〉2eC(Imλ)− , λ ∈ C.

Taking logarithmic derivatives of both sides of (3.9.16) gives

tr ∂λS(λ)S(λ)−1 = trF (−λ) + trF (λ) ,

F (λ) := −∂λ(V R0(λ)ρ)(I + V R0(λ)ρ)−1 .
(3.9.18)

We note that F (λ), λ ∈ C, is a meromorphic family of operators in L1(L2),
with no poles in Imλ > 0.

Theorem 3.15 and the Gohberg–Sigal theory, see §C.4, show that, near
λ = 0,

(3.9.19) I + V R0(λ)ρ = U1(λ)(Q2λ
2 +Q1λ+Q0)U2(λ),

where the operators Uj(λ) are invertible and holomorphic as function of λ,

QiQj = δijQij , rank(I −Q0) <∞,
rankQ2 = mR(0)− m̃R(0) = tr Π0, rankQ1 = m̃R(0).
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(We have (I + V R0(λ))−1 = U2(λ)−1(Q2λ
−2 + Q1λ

−1 + Q0)U1(λ)−1; the
total multiplicity of the pole is mR while the rank of the λ−2 has to be
tr Π0.)

Taking a logarithmic derivative of (3.9.19) gives

trF (λ) = − tr(2λ−1Q2 + λ−1Q1) + ϕ(λ)

= − 1

λ
(2 tr Π0 + m̃R(0)) + ϕ(λ),

(3.9.20)

where ϕ(λ) is holomorphic in Imλ ≥ 0. In view of (3.9.13) and (3.9.17), we
have

(3.9.21) |ϕ(λ)| ≤ C〈λ〉2, Imλ ≥ 0.

4. We claim that for Imλ > 0

(3.9.22) trF (λ) = tr

(
B(λ)− 2Π0

λ

)
,

where B(λ) was defined by (3.9.11). To see this we use the fact that R0(λ) is
bounded on L2 for Imλ > 0 and hence ∂λ(V R0(λ)ρ) = 2λV R0(λ)2ρ. Using
this, the cyclicity of the trace, and ρV = V , we obtain, always for Imλ > 0,

trF (λ) = −2λ trR0(λ)(I + V R0(λ)ρ)−1V R0(λ) = tr

(
B(λ)− 2Π0

λ

)
,

which is (3.9.22).

5. Let

(3.9.23) h(λ) := trF (λ) +
2 tr Π0

λ
= −m̃R(0)

λ
+ ϕ(λ).

In this notation, (3.9.22) and (D.1.1) used in (3.9.15) give

tr (f(PV )− f(P0)) =
1

2π

∑
±
±
∫
± Imλ>0

∂λ̄g(λ)h(±λ)dm(λ)

=
1

4πi

∑
±

∫
γ±(ε)

g(λ)h(±λ)dλ

+
1

2π

∑
±
±
∫

Ω±(ε)
∂λ̄g(λ)h(±λ)dm(λ),

(3.9.24)

where

Ω±(ε) = D(0, ε) ∩ C±, C± := {± Imλ > 0},

γ+(ε) = ∂(C+ \ Ω+(ε)), γ−(ε) = ∂(C+ ∪ Ω−(ε)),

and the boundaries are positively oriented (as boundaries of the indicated
sets).
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Estimates (3.9.21) and ∂λ̄g(λ) = O(| Imλ|∞〈λ〉−∞) show that the last
term on the right hand side of (3.9.24) is O(ε) as ε→ 0. Also, (3.9.18) and
(3.9.23) imply that

1

4πi

∑
±

∫
γ±(ε)∩R

g(λ)h(±λ)dλ

=
1

4πi

∑
±

∫
γ±(ε)∩R

f(λ2)
(
trF (±λ)± 2 tr Π0λ

−1
)
dλ

=
1

2πi

∫ ∞
ε

f(λ2) tr ∂λS(λ)S(λ)−1dλ

=
1

2πi

∫ ∞
0

f(λ2) tr ∂λS(λ)S(λ)−1dλ+O(ε),

as the λ−1 terms cancel. Hence,

1

4πi

∑
±

∫
γ±(ε)

g(λ)h(±λ)dλ =
1

2πi

∫ ∞
0

f(λ2) tr ∂λS(λ)S(λ)−1dλ

+
1

4πi

∑
±

∫
γ±(ε)\R

g(λ)h(±λ)dλ+O(ε) .

The structure of h(λ) near 0 given in (3.9.23) shows that

1

4πi

∑
±

∫
γ±(ε)\R

g(λ)h(±λ)dλ =
m̃R(0)f(0)

4πi

∫
∂D(0,ε)

dλ

λ
+O(ε)

= 1
2m̃R(0)f(0) +O(ε).

Letting ε→ 0 we obtain (3.9.10). �

For odd dimensions n ≥ 5 we do not have a possibility of a zero resonance
but the arguments are complicated by weaker trace class properties. The
following somewhat laborious lemma will be used to establish (3.9.10) for
functions supported near 0:

LEMMA 3.52. Suppose that n ≥ 5 and EK < EK−1 ≤ · · · ≤ E1 ≤ 0 are
the eigenvalues of PV included according to their multiplicities. Then for
sufficiently large M and N ,

tr((PV +M)−Ne−tPV − (P0 +M)−Ne−tP0) =

K∑
k=1

(Ek +M)−Ne−tEk + o(1), t→ +∞.
(3.9.25)

REMARK. A more precise asymptotics for t → +∞ are valid once we
establish (3.9.10) and restrictions on N or M are not needed either – see
Exercise 3.11.
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γε

iε

Figure 3.5. The contour γε in the proof of Lemma 3.52 and the do-
main Ω (shaded).

Proof. 1. For ε small enough define the contour (see Figure 3.5)

γε = (iε− e−
π
8
i[0,∞)) ∪ (iε+ e

π
8
i[0,∞))

oriented from left to right3. We also define

(3.9.26) Ω :=
⋃

0≤ε≤ε0

γε ∩D(0, 2ε0), ε0 � 1,

We choose ε0 small enough so that for no poles of RV (λ) other than 0 belong
to Ω. With this notation, for Imλ0 � 1,

e−tPV (PV − λ2
0)−N − e−tP0(P0 − λ2

0)−N =
∑
Ek<0

(Ek − λ2
0)−Ne−tEkuk ⊗ ūk

+
1

πi

∫
γε

(λRV (λ)RV (λ0)N − λR0(λ)R0(λ0)N )e−tλ
2
dλ.

(We first write the left hand side as a contour integral over γM with M large
– that gives a contour enclosing the spectrum – and then deform it to γε
picking up contribution from negative eigenvalues.)

In (3.9.8) (in the proof of Theorem 3.50) we showed that

(3.9.27) ‖RV (λ)RV (λ0)N −R0(λ)R0(λ0)N‖L1 ≤ C| Imλ|−4, λ ∈ γε,

which shows that

tr((PV +M)−Ne−tPV − (P0 +M)−Ne−tP0) =∑
Ek<0

(Ek +M)−Ne−tEk +
1

πi

∫
γε

f(λ)e−tλ
2
dλ,

(3.9.28)

where

(3.9.29) f(λ) := tr
(
λRV (λ)RV (λ0)N − λR0(λ)R0(λ0)N

)
, λ0 := i

√
M.

Away from a neighbourhood of 0 the estimate (3.9.27) is all that we need
and we now concentrate on λ ∈ Ω, with Ω given in (3.9.26).

3This choice of orientation comes from the fact that we are integrating (PV −z)−1dz, z = λ2

which is then consistent with the residue theorem.
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2. Since n ≥ 5, Theorem 3.17 shows that

λRV (λ)ρ = λR0(λ)ρ(I + V R0(λ)ρ)−1 = λR0(λ)ρ(I − V RV (λ)ρ)

= λ−1R0(λ)VΠ0ρ+ λR0(λ)ρB(λ)ρ1,

where ρ1 ∈ C∞c (Rn), ρ1ρ = ρ, and

(3.9.30)
B(λ) := I − V A(λ)ρ : L2(Rn)→ L2(Rn)

A(λ) := RV (λ) + λ−2Π0,

where A(λ) and B(λ) are holomorphic family of operators for λ ∈ Ω (see
(3.9.26)). Using

(3.9.31) R0(λ)VΠ0 = −R0(λ)((−∆− λ2) + λ2)Π0 = −(I + λ2R0(λ))Π0,

and the adjoint of this identity for λ̄, we obtain

λRV (λ)− λR0(λ) = −λRV (λ)V R0(λ)

= −λR0(λ)ρB(λ)V R0(λ)− λ−1R0(λ)VΠ0V R0(λ)

= −λR0(λ)ρB(λ)V R0(λ)− λ−1(I + λ2R0(λ))Π0(I + λ2R0(λ))

= −λR0(λ)ρB(λ)V R0(λ)− λ−1Π0

− λR0(λ)Π0 − λΠ0R0(λ)− λ3R0(λ)Π0R0(λ).

(3.9.32)

The goal of the above identity is to obtain as few factors of R0(λ) and as
many powers of λ as possible.

3. We rewrite f in (3.9.29) as follows:

f(λ) = tr
(
(λRV (λ)− λR0(λ))R0(λ0)N + λRV (λ)(RV (λ0)N −R0(λ0)N )

)
.

This gives the decomposition

(3.9.33)

f(λ) = a(λ) + b(λ) + c(λ),

a(λ) := −λ−1 tr Π0RV (λ0)N , b(λ) = b1(λ) + b2(λ)

b1(λ) := −λ trR0(λ)ρB(λ)V R0(λ)R0(λ0)N ,

b2(λ) := −λ tr
(
2R0(λ)Π0 + λ2R0(λ)Π0R0(λ)

)
R0(λ0)N ,

c(λ) := trλA(λ)(RV (λ0)N −R0(λ0)N ).

The contribution of a(λ) is straightforward:

1

πi

∫
γε

a(λ)e−tλ
2
dλ = −mR(0)(−λ2

0)−N
1

πi

∫
γε

λ−1e−tλ
2
dλ

= −mR(0)(−λ2
0)−N

1

πi

∫
γ1ε

λ−1e−tλ
2
dλ

= mR(0)(−λ2
0)−N ,

(3.9.34)
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where we deformed γε to γ1
ε := (R \ (−ε, ε))∪ (∂D(0, ε)∩ Imλ > 0) oriented

from left to right: the contributions over the real axis cancel and integration
over the clockwise oriented half circle produces −πi.
4. We now move to the analysis of b1(λ). Since ρR0(λ)R0(λ0)N , λ ∈ γε,
ε > 0, is of trace class, cyclicity of the trace shows that

b1(λ) = λ trB(λ)V ρR0(λ)R0(λ0)NR0(λ)ρ.

If we take N sufficiently large, then by Lemma 3.6 we have

|b1(λ)| ≤ C‖B(λ)‖L2→L2‖λρR0(λ)R0(λ0)NR0(λ)ρ‖L1
≤ C‖B(λ)‖L2→L2‖λρR0(λ)R0(λ0)NR0(λ)ρ‖L2→Hn+1 ≤ C,

for λ ∈ Ω. This shows that we can deform γε to γ0 and hence∫
γε

b1(λ)e−tλ
2
dλ =

∫
γ0

b1(λ)e−tλ
2
dλ = O(1)

∫
γ0

e−tReλ2d|λ|

= O(t−
1
2 ) = o(1).

(3.9.35)

5. To analyse b2 let Π0 =
∑J

j=1 uj ⊗ ūj ,

uj = −R0(0)V uj = O(〈x〉2−n) ∈ Lp(Rn), p >
n

n− 2
,

in particular for some p < 2 when n ≥ 5. We then use Exercise 3.2 and
Young’s inequality (A.5.2) to see that for λ ∈ Ω,

‖R0(λ)uj‖L2 ≤ C|λ|2−n(q−1)/q‖uj‖Lp ,
1

q
+

1

p
=

3

2
.

But since we can use p < 2 this means that we can take q > 1 and hence,

(3.9.36) ‖R0(λ)Π0‖L2→L2 ≤ C|λ|−2−δ, δ > 0.

It follows that

λR0(λ)Π0R0(λ0)N = (|λ|−1+δ) : L2(Rn)→ L2(Rn), λ ∈ Ω,

and since the operator of finite rank the same estimate is valid for the trace
class norm. The same estimate holds for the term involving λ3R0(λ)Π0R0(λ)
(or an even better estimate if we use Exercise 3.3). We can now deform the
contour to γ0 and∫

γε

b2(λ)e−tλ
2
dλ =

∫
γ0

b2(λ)e−tλ
2
dλ =

∫
γ0

O(|λ|−1+δ)e−tReλ2d|λ|

= O(t−δ/2) = o(1).

(3.9.37)
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6. We continue with the analysis of the term c(λ). For that we use (3.9.30)
and (3.9.32) to write

λA(λ) = T1(λ) + T2(λ),

T1(λ) := λR0(λ) + λR0(λ)V A(λ)V R0(λ)− λR0(λ)V R0(λ),

T2(λ) := −λR0(λ)Π0 − λΠ0R0(λ)− λ3R0(λ)Π0R0(λ).

We then write

c(λ) = c1(λ) + c2(λ), cj(λ) := trTj(λ)(RV (λ0)N −R0(λ0)N ).

7. To analyse c1(λ) we use (3.9.5):

(3.9.38) c1(λ) = −
N∑
k=1

trT1(λ)RV (λ0)N+1−kV R0(λ0)k.

We claim the following: for s ≥ 3
2 ,

(3.9.39) ‖〈x〉−sT1(λ)〈x〉−s‖L2→L2 = O(1), λ ∈ Ω,

and for any r ∈ R,

(3.9.40) sj(〈x〉rRV (λ0)kρ), sj(ρR0(λ0)k〈x〉r) ≤ Cj−k/n.

Assuming (3.9.39) and (3.9.40) for now we can estimate c1(λ) as follows.
We first note that (3.9.40) give

sj(〈x〉−sRV (λ0)N+1−kV R0(λ0)k〈x〉s) ≤ Cj−(N+1)/k.

Combining this with (3.9.39) and (3.9.38) give

‖T1(λ)(RV (λ0)N −R0(λ0)N )‖L1(〈x〉sL2) ≤ C, λ ∈ γ0, s ≥ s0.

Using Lemma B.33 we see that

c1(λ) = tr〈x〉sL2 T1(λ)(RV (λ0)N −R0(λ0)N ) = O(1), λ ∈ Ω.

Hence we can deform γε to γ0 and that gives, as in (3.9.35)∫
γε

c1(λ)e−tλ
2
dλ = O(t−

1
2 ).(3.9.41)

7. The term c2 is treated the same as b2 in Step 5. We now put (3.9.41),
(3.9.37), (3.9.35), (3.9.34) and (3.9.33) in (3.9.28) to obtain (3.9.25).

It remains to provide the two missing proofs.

8. Proof of (3.9.39). We use Lemma 3.7 so that (writing ‖Q‖ := ‖Q‖L2→L2),
so that on γ0,

‖〈x〉−sT1(λ)〈x〉−s‖ ≤ |λ|(1 + ‖〈x〉−sR0(λ)〈x〉−s‖)2 (1 + ‖〈x〉sV 〈x〉s‖)

≤ C|λ|(1 + |λ|−2+s)2 ≤ C, s ≥ 3
2 .
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9. Proof of (3.9.40). For r = 0 the estimates were proved in Step 3 of the

proof of Theorem 3.50. Since sj(A) = sj(A
∗A)

1
2 ,

sj(〈x〉rRV (λ0)kρ)2 = sj(ρRV (λ0)k〈x〉2rRV (−λ0)kρ)

≤ sj(ρRV (λ0)k)‖〈x〉2rRV (−λ̄0)ρ‖L2→L2

≤ Cj−2k/n‖〈x〉2rRV (−λ̄0)〈x〉−2r‖L2→L2 ,

(3.9.42)

where we used the estimate with r = 0. To see that the norm on the right
hand side is finite we first note that if M (λ0 = i

√
M) is large enough4 then

‖〈x〉2rV R0(λ0)ρ〈x〉−2r‖L2→L2 ≤ CrM
−1 < 1

2 . A Neumann series argument
then shows that

‖〈x〉2r(I + V R0(λ0)ρ)−1〈x〉−2r‖L2→L2 ≤ 2,

and using (3.14.1) and (3.2.1) we obtain

‖〈x〉2rRV (λ0)〈x〉−2r‖L2→L2 ≤ C.
Returning to (3.9.42) we obtain the first inequality in (3.9.40). The second
inequality follows by taking V = 0. �

We are now ready for the somewhat involved and computational proof
of (3.9.10) in higher dimensions.

Proof of Theorem 3.51 for n ≥ 5. In the proof we first assume that f ∈
C∞c (R \ {0}) and prove (3.9.10) in that case. Let TV ∈ S ′(R) denote
TV (f) = tr(f(PV )− f(P0)) as defined in Theorem 3.50. This means that

TV |R\{0}(E) =
∑
Ek<0

δEk(E) + E 0
+ ∂E

[
σ(
√
E)
]
,

σ(λ) :=
1

2πi
log det(I + S(λ)), E 0

+ =

{
1 E > 0
0 E ≤ 0.

with σ(λ) defined up to a constant – see Theorem 3.67 for more on that.
Hence

TV −
∑
Ek<0

δEk(E) + E 0
+ ∂E

[
σ(
√
E)
]

=

J∑
j=0

cjδ
(j)
0 (E).

We test this against (E + M)−Ne−tE (see Remark 3 after Theorem 3.51)
and apply Lemma 3.52 to see that c0 = mR(0) and cj ≡ 0 for j > 0.

1. We first observe that on the right hand side (3.9.10) we have

(3.9.43) trS(λ)−1∂λS(λ) = trS(λ)∗∂λS(λ) = trSabs(λ)∗∂λSabs(λ),

and hence we can work with the absolute scattering matrix given by (3.7.5).

4This is the only place that the requirement that M is large is used; we are not interested in
optimality of estimates here since the conclusions of the lemma will be strengthened once Theorem

3.51 is proved.
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2. We define

ẽ(λ, ω, rθ) = (2π)−
n−1
2 e

π
4

(n−1)iλ
n−1
2 e(λ, ω, rθ),(3.9.44)

with a similar definition for e0. By (3.8.5) λ 7→ e(λ) is holomorphic on R.

We then rewrite (3.6.20) as follows:

ẽ0(λ, ω, rθ) := eiλra(r, θ, ω) + e−iλrã(r, ω, θ),

where we suppressed the dependence on λ in a and ã. The coefficients are
distribution valued symbols

r
n−1
2 a, r

n−1
2 ã ∈ S0

phg((0,∞)r, C
∞(Sn−1

ω ,D′(Sn−1
θ ))),

where the notation means that we have a full asymptotic expansions in r,

a(r, ω, θ) ∼ r−
n−1
2

∞∑
j=0

r−jaj(θ, ω), aj ∈ C∞(Sn−1
ω ,D′(Sn−1

θ )),

with error bounds described in (3.6.21) and

a0(ω, θ) = δ−ω(θ).

The difference,

ẽ(λ, ω, rθ)− ẽ0(λ, ω, rθ) = eiλrB(r, ω, θ),

is given by

B ∈ S−(n−1)/2
phg ((R0,∞)r, C

∞(Sn−1
ω × Sn−1

θ )),

B(r, ω, θ) ∼ r−
n−1
2

∞∑
j=0

r−jBj(θ, ω), Bj ∈ C∞(Sn−1
ω × Sn−1

θ )),

and

(3.9.45) B0(ω, θ) = b(λ, ω, θ), B0(θ, ω) = B0(ω, θ),

where b apears in (3.7.5), the definition of Sabs(λ) and the symmetry (3.7.7)
was proved after Theorem 3.43. All of the expansions above are uniform for
λ > ε > 0 which is sufficient as we assume that f ∈ C∞c ((0,∞)).

The condition that r > R0 comes from the fact that x 7→ ẽ(λ, x, ω) may
not be smooth for x ∈ suppV , if V is not smooth. We only use the above
expressions asymptotically so this restriction is not important.

3. In the above notation the Schwartz kernel of the absolute scattering
matrix (3.7.5) is given by

(3.9.46) Sabs(λ, θ, ω) = i1−n(a0(θ, ω) +B0(θ, ω)).
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Recalling (3.9.43) and using the symmetry (3.9.45), we have

trS(λ)−1∂λS(λ)

=

∫
Sn−1

∫
Sn−1

(
ā0(θ, ω) + B̄0(θ, ω)

)
∂λB0(θ, ω)dθdω,

(3.9.47)

where the integral is meant in the sense of distributional pairing in θ.

4. Using (3.8.13), we rewrite the spectral measure in (3.8.4) as

(3.9.48) dEλ = ẼV (λ)∗ẼV (λ)
dλ

2π
, λ > 0,

where

ẼV (λ)f(θ) :=

∫
Rn
ẽ(λ, θ, x)f(x)dx, ẼV (λ) : L2

comp(Rn)→ L2(Sn−1).

Putting Br := B(0, r) We note that (3.8.5) gives

(3.9.49) 1lBr ẼV (λ)∗ẼV (λ) 1lBr ∈ L1(L2(Rn)).

Applying (3.9.48) we get

f(PV )−
K∑
k=1

f(Ek)uk ⊗ ūk =
1

2π

∫ ∞
0

f(λ2)ẼV (λ)∗ẼV (λ)dλ,

which combined with (3.9.3) gives

tr(f(PV )− f(P0))−
K∑
k=1

f(Ek)

= lim
r→∞

tr 1lBr(f(PV )− f(P0)) 1lBr −
K∑
k=1

f(Ek)

= lim
r→∞

1

2π

∫ ∞
0

f(λ2) tr 1lBr(ẼV (λ)∗ẼV (λ)− Ẽ0(λ)∗Ẽ0(λ)) 1lBr dλ.

Using (3.9.49) and (B.4.12) (the example at the end of §B.4)

tr 1lBr ẼV (λ)∗ẼV (λ) 1lBr =

∫
Br

∫
Sn−1

|ẽ(λ, x, ω)|2dωdx.

We conclude that

tr(f(PV )− f(P0))−
K∑
k=1

f(Ek)

= lim
r→∞

1

2

1

2π

∫
R
f(λ2)dλ

∫
Sn−1

dω

∫
Br

dx(|ẽ|2 − |ẽ0|2).

(3.9.50)

(Of course |ẽ0|2 = (λ/2π)n−1 but it is useful to keep it as is.)



3.9. THE BIRMAN–KREĬN TRACE FORMULA 185

5. We now use the Maaß–Selberg method for converting the integral in
x ∈ Br to an integral over ∂Br. It is based on the following simple identity:

(PV − λ2)∂λẽ = 2λẽ,

with an analogue valid for P0 and ẽ0.

Hence, using the fact that λ 6= 0 is real, we use Green’s formula and put
D = (1/i)∂:∫

Br

|ẽ|2dx =
1

2λ

∫
Br

(PV − λ2)∂λẽẽdx

=
1

2λ

∫
Br

(
(PV − λ2)∂λẽẽ− ∂λẽ(PV − λ2)ẽ

)
dx

=
1

2λ

∫
Br

(
−∆∂λẽ ẽ+ ∂λẽ∆ẽ

)
dx

=
1

2λ

∫
Sn−1

(
(DrDλe)ẽ+DλẽDrẽ

)
rn−1dθ, x = rθ.

(3.9.51)

6. Before inserting (3.9.51) into (3.9.50) we make three observations:

A) if we write ẽ = ẽ0 + w̃ then, applying (3.9.51) in (3.9.50) shows that no
terms that are quadratic in ẽ0 remain;

B) since w̃(rθ, ω) is smooth in θ, products of terms derived from w̃ and
ẽ0 can be expressed using the expansions in Step 2, with the integrals of
products understood as distributional pairings;

C) all terms with factors of e±2iλr vanish in the r → ∞ limit due to the
integration against f(λ2) ∈ C∞c (Rλ); this means the only distributional
pairings come from terms involving a and B.

D) Noting that

Dre
iλr = eiλr(Dr + λ), Dλe

iλr = eiλr(Dλ + r),

the observations made in Step 6 and the expansions in Step 4 show that

tr(f(PV )− f(P0))−
K∑
k=1

f(Ek)

= lim
r→∞

∫
R
f(λ2)

dλ

4πλ

∫
Sn−1

dω

∫
Sn−1

dθ rn−1C(r),

(3.9.52)

where

C(r) = C(r, θ, ω) ∈ S−n+2
phg ((0,∞)r;D′(Sn−1

θ × Sn−1
ω )),
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is given by

C(r) := (Dr + λ)(Dλ + r)aB̄ + (Dr + λ)(Dλ + r)Bā

+ (Dr + λ)(Dλ + r)BB̄ + (Dλ + r)a(Dr + λ)B

+ (Dλ + r)B(Dr + λ)a+ (Dλ + r)B(Dr + λ)B.

We note that differentiation in r decreases the order in r and differentiation
in λ preserves it. We now group terms according to their order in r: all
terms of size O(r−n) will disappear in the limit (remember the rn−1 factor
in (3.9.52)). Hence,

C(r) = 2λraB̄ + 2λrBā+ 2λr|B|2 +Dr(ra)B̄ + 2λDλaB̄

+Dr(rB)ā+ 2λDλBā+Dr(rB)B̄ + λDλBB̄

+ arDrB +BrDra+ λDλBB̄ +BrDrB +O(r−n)

= 2 Re
(
rDraB̄ + rDrBB̄ + rDrBā+ λDλarDrB

)
+ 2rλRe

(
2aB̄ + |B|2

)
− iRe

(
2aB̄ + |B|2

)
+ 2λDλaB̄ + 2λDλBā

+ 2λDλBB̄ +O(r−n),

where O(r−n) is meant in the sense of distributional expansion in Step 4.

8. The coefficient of r−n+2 in the expansion of C(r) is given by

2λRe(2a0(θ, ω)B̄0(θ, ω) + |B0(θ, ω)|2).

We claim that the integral of this term with respect to ω (or θ) is equal to 0.
In fact, unitarity of the scattering matrix Sabs(λ) and symmetry of b imply
that ∫

Sn−1

(δ−ω(θ) + b(θ, ω))(δ−γ(ω) + b(ω, γ))dω = δγ(θ),

which means that

(3.9.53) b(θ,−γ) + b(γ,−θ) +

∫
Sn−1

b(θ, ω)b(γ, ω)dω ≡ 0.

On the other hand, putting γ = θ in (3.9.53),∫
Sn−1

(
2 Re(a0(θ, ω)B̄0(θ, ω)) + |B0(θ, ω)|2

)
dω

= 2 Re b(θ,−θ) +

∫
Sn−1

|b(θ, ω)|2dω ≡ 0.

9. To compute the coefficient of r−n+1 we note that Dλa0 = 0 and that one
of the terms vanishes due to the unitarity of Sabs. Another satisfies

2 Re
(
rDraB̄ + rDrBB̄ + rDrBā+ λDλarDrB

)
= 2 Re

(
n−1

2 i(a0B̄0 + ā0B0 + |B0|2)
)
r−n+1 +O(r−n) = O(r−n).
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Hence we are left with

4λRe(a0B̄1 + a1B̄0 +B1B̄0) + 2λ
i ∂λB0(ā0 + B̄0).

In view of (3.9.47) and (3.9.52) the second term is exactly what appears in
(3.9.10). Hence it remains to show that the first vanishes. For that we use
(3.7.12) to see that

a1 =
1

2iλ
(−∆Sn−1 + bn) a0, B1 =

1

2iλ
(−∆Sn−1 + bn)B0.

where bn := (n−1)(n−3)
4 is real. This means that (in the sense of distibutional

pairing),

4λRe

∫
Sn−1

(a0B̄1 + a1B̄0 +B0B̄1)dθ

= 2 Re i

∫
Sn−1

(
−a0∆Sn−1B̄0 + ∆Sn−1a0B̄0 + ∆Sn−1B0B̄0 − bn|B0|2

)
dθ

= 2 Re i

∫
Sn−1

(
−∆Sn−1a0B̄0 + ∆Sn−1a0B̄0 − |∇B0|2

)
dθ

= −2 Re i

∫
Sn−1

|∇B0|2dθ = 0.

And this completes the proof. �

3.10. THE MELROSE TRACE FORMULA

The next theorem is the odd dimensional generalization of Theorem 2.21 and
it connects resonances with the trace of the wave group. We first observe
that for we can define the distribution

ϕ 7−→
∑
λ∈C

mR(λ)

∫
R
tnϕ(t)e−iλ|t|dt , ϕ ∈ C∞c (R).

To see this, suppose that suppϕ ⊂ [−R,R]. With (n + 1) integrations by
parts based on (i/λ)∂te

−iλt = e−iλt we see∣∣∣∣∫ ∞
0

tnϕ(±t)e−iλtdt
∣∣∣∣ ≤ CR(1 + |λ|)−(n+1)eR(Imλ)+ sup

0≤k≤n+1
|ϕ(k)|.

Let

(3.10.1) N(r) :=
∑
{mR(λ) : 0 < |λ| ≤ r},
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so that by Theorem 3.27 we have N(r) ≤ CV rn. Since there are only finitely
many λ’s with Imλ > 0,∣∣∣∣∣∑

λ∈C
mR(λ)

∫ ∞
0

tn(ϕ(t) + ϕ(−t))e−iλtdt

∣∣∣∣∣
≤ C sup

0≤k≤n+1
|ϕ(k)|

∑
λ 6=0

mR(λ)〈λ〉−n−1

≤ C sup
0≤k≤n+1

|ϕ(k)|
(
C +

∫ ∞
1

r−n−1dN(r)

)
≤ C sup

0≤k≤n+1
|ϕ(k)|

(
C + C

∫ ∞
1

r−2dr

)
≤ C sup

0≤k≤N
|ϕ(k)| ,

where the constants depend on R and V .

We now present a trace formula in which resonances appear in an almost
the same way as eigenvalues:

THEOREM 3.53 (Trace formula for resonances). Suppose that V ∈
L∞comp(Rn;R), where n ≥ 3 is odd. Then,

2 tn tr
(

cos t
√
P V − cos t

√
P 0

)
= tn

∑
λ∈C

mT (λ)e−iλ|t| ,(3.10.2)

in the sense of distributions on R and where (in the notation of (3.2.5) and
(3.3.29))

(3.10.3) mT (λ) :=

{
mR(λ) λ 6= 0

2mR(0)− m̃R(0) λ = 0.

REMARKS. 1. As explained after Theorem 2.21 in the case of −∆ + V
on a bounded domain in Rn (with, say, Dirichlet boundary conditions) this
result is an immediate consequence of the spectral theorem for self-adjoint
operators with discrete spectra. It is quite remarkable that the same theorem
holds (in odd dimensions, and for compactly supported perturbations) in an
exactly the same form for resonances. The formula remains valid for any
“black box” (see §4.1) compactly supported perturbations in odd dimensions
[SZ94],[Zw97].

2. A power of t in (3.10.2) is needed as there are many possible extensions
of the distribution

∑
λ∈CmT (λ) exp(−i|t|λ) from R \ {0} to R.

3. The trace formula (3.10.2) is a consequence of the Birman–Krĕın formula
and of the Hadamard factorization the scattering determinant, detS(λ),
as a meromorphic function – see Theorem 3.54 below. That was not the
original proof – see §3.13. In applications it is sometimes easier to use the
factorization of detS(λ) directly, see §3.12.
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THEOREM 3.54 (Factorization of the scattering matrix). Suppose
that V ∈ L∞(Rn;C) where n ≥ 1 is odd. Then

detS(λ) = (−1)meg(λ)P (−λ)

P (λ)
,

P (λ) :=
∏
µ 6=0

En(λ/µ)mR(µ) , En(z) := (1− z)ez+z2/2+···+zn/n ,

g(λ) = anλ
n + an−2λ

n−2 + · · ·+ a1λ

(3.10.4)

When V ∈ L∞comp(Rn;R) then

(3.10.5) P (−λ) = P (λ̄), an ∈ iR, m = m̃R(0),

where m̃R(0) is defined by (3.3.29).

Proof. 1. Theorem 3.45 already shows that (3.10.4) holds with g being an
entire function. From (3.7.17) we see that g has to be odd. Hence all we
need to show is that g is a polynomial of degree at most n.

2. We first establish two preliminary bounds

(3.10.6) | detS(λ)| ≤

{
C expC|λ|n , Imλ ≥ 0 , |λ| > C ,

C expC|λ|n2
, λ /∈

⋃
mH(µ)>0D(µ, 〈µ〉−n−ε) ,

where mH(R) was defined before (3.4.5). In view of (3.7.30) this will follow
from estimates on the characteristic values of the operator T (λ) appearing
there, in the spirit of the proof of Theorem 3.27.

3. To apply estimates on characteristic values we use (3.4.11) to write

T (λ) = cn(I + V R0(λ)ρ)−1V Eρ(λ̄)∗Eρ(λ) .

From (3.1.12) we see that

‖(I + V R0(λ)ρ)−1‖ ≤ C , Imλ ≥ 0 , |λ| ≥ C .

Hence in the same range of λ’s we have

sj(T (λ)) ≤ C|λ|n−2‖Eρ(λ̄)∗‖sj(Eρ(λ)) .

Applying (3.4.14) we obtain (with a different constant C)

sj(T (λ)) ≤ C exp
(
C|λ| − j

1
n−1 /C

)
, Imλ ≥ 0 , |λ| ≥ C .



190 3. THE MELROSE TRACE FORMULA

The Weyl inequality can now be applied as in part 5 of the proof of Theorem
3.27 and that gives

|det(I − T (λ))| ≤
∞∏
j=0

(1 + sj(T (λ)))

≤
∏

j≤C|λ|n−1

(1 + eC|λ|) exp
∑
j≥1

e−j
1/n−1/C

≤ C expC|λ|n , Imλ ≥ 0 |λ| ≥ C.

In view of (3.7.30) this proves the first part of (3.10.6).

4. We now consider the case of λ outside of a union of discs containing
resonances. First we note that for any ε > 0, there exists a sequence rk →∞,
such that

(3.10.7) ∀ k , ∂D(0, rk) ∩
⋃

mH(µ)>0

D(µ, 〈µ〉−n−ε) = ∅ ,

which follows from Theorem 3.28 as it implies that∑
µ∈C

mH(µ)〈µ〉−n−ε <∞.

(This estimate shows that the sum of radii of the discs in (3.10.7) is finite; if
∂D(0, r) intersected at least one of the discs for all r > r0, the sum of radii
would have to be infinite.)

To estimate ‖(I + V R0(λ)ρ)−1‖ away from resonances we use (B.5.21)
and (3.4.6) to obtain

‖(I + V R0(λ)ρ)−1‖ ≤ G0(λ)G1(λ)

|H(λ)|
,

where

G0(λ) :=

n∑
k=0

‖V R0(λ)ρ‖kL2→L2 , G1(λ) :=

∞∏
j=0

(1 + sj(V R0(λ))n+1) ,

H(λ) := det(I − (V R0(λ)ρ)n+1) .

Theorem 3.27 shows that H(λ) is an entire function of order n, and its proof
shows that

G1(λ) ≤ C exp(C|λ|n) ,

while G0(λ) ≤ CeC|λ|.
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The minimum modulus theorem for entire functions of order n (see
(D.2.6)) shows that

|H(λ)| ≥ exp(−Cε|λ|n+ε) , λ /∈
⋃

mH(µ)>0

D(µ, 〈µ〉−n−ε) .

Hence for λ’s in the same set we obtain

‖(I + V R0(λ)ρ)−1‖ ≤ C exp(C|λ|n+ε) .

Returning to singular values of T (λ) this gives

sj(T (λ)) ≤ C exp
(
C|λ|n+ε − j

1
n−1 /C

)
, λ /∈

⋃
mH(µ)>0

D(µ, 〈µ〉−n−ε) .

The same argument as before proves the second part of (3.10.6).

5. We now recall the estimates on Weierstrass products (see (D.2.5) and
(D.2.6) in §D.2):

e−Cε|λ|
n+ε ≤ |P (±λ)| ≤ eCε|λ|n+ε , ±λ /∈

⋃
mH(µ)>0

D(µ, 〈µ〉−n−ε) .

Hence in the same set of λ’s we have

| exp(g(λ))| = |detS(λ)| |P (λ)|
|P (−λ)|

≤ C exp(C|λ|n2
+ C|λ|n+ε)

≤ C expC|λ|n2
.

(3.10.8)

We use this estimate on circles of radius rk satisfying (3.10.7). The maximum
principle then shows that the above estimate holds everywhere. Hence,

Re g(λ) ≤ C|λ|n2
,

and an application of the Borel-Carathéodory inequality (D.1.6) gives

|g(λ)| ≤ C|λ|n2
,

which implies that g is a polynomial.

6. To see that g(λ) is a polynomial of degree n we apply the same strategy
as in the proof of (3.10.8) but for Imλ ≥ 0, |λ| ≥ C. This way we can use
the first estimate in (3.10.6). That gives

Re g(λ) ≤ Cε|λ|n+ε , Imλ ≥ 0 , |λ| ≥ C .

For n ≥ 1 any polynomial satisfying this bound has to have degree at most n.

7. The statement (3.10.5) about P (λ) and the polynomial g when V is real
valued comes from the unitarity of the scattering matrix. For the factor
(−1)m see (3.7.28) and Exercise 3.9. �
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Before proving Theorem 3.53 we need a bound on log detS(λ) for λ ∈ R.
A much more precise result will be presented in Theorem 3.67 but the point
is that the lemma depends only on the upper bound on the counting function
in Theorem 3.27 and the factorization of the scattering matrix in Theorem
3.54. Hence, it can be used in more general situations.

LEMMA 3.55. Suppose that V ∈ L∞comp(Rn;R) and n ≥ 1 is odd. Then
for any ε > 0 there exists Cε such that

(3.10.9) | log detS(λ)| ≤ Cε〈λ〉n+ε, λ ∈ R.

Proof. 1. Let

s(λ) := −i log detS(λ), λ ∈ R, s(0) = 0.

(We do not divide by 2π in order to simplify the subsequent formulas.) In
view of (3.10.5),

detS(λ) = (−1)meg(λ)P (λ̄)

P (λ)
.

Since for λ ∈ R and µ 6= 0,

∂λ

(
log

(
1− λ

µ̄

)
− log

(
1− λ

µ

))
= − 2i Imµ

|λ− µ|2
,

we have

(3.10.10) ∂n+1
λ s(λ) = −2

∑
µ6=0

mR(µ) ∂nλ
Imµ

|λ− µ|2
,

where the sum converges uniformly for λ in compact sets. That is guaranteed
by Theorem 3.27 as, with N(r) defined by (3.10.1),

(3.10.11)
∑
µ 6=0

mR(µ)|µ|−n−1 = C +

∫ ∞
0

r−n−1dN(r) <∞.

2. Choose ζ ∈ C∞c ((−3, 3); [0, 1]) equal to 1 on [−2, 2] and define s1(λ) by

(3.10.12) s′1(λ) := −2
∑
µ6=0

mR(µ)ζ

(
|µ|
λ

)
Imµ

|λ− µ|2
, s1(0) = 0.

The upper bound on the number of resonances (3.4.7) and the fact that∫
R | Imµ|/|λ− µ|2dλ = π, show

(3.10.13) |s1(λ)| ≤ C〈λ〉n.

3. We also define

(3.10.14) s2(λ) := s(λ)− s1(λ),
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and use (3.10.10) and (3.10.12) to obtain

∂n+1
λ s2(λ) = −2

∑
µ6=0

mR(µ)∂nλ

[(
1− ζ

(
|µ|
λ

))
Imµ

|λ− µ|2

]
= A+B

where

A := −2
∑
µ6=0

mR(µ)

(
1− ζ

(
|µ|
λ

))
∂nλ

Imµ

|λ− µ|2

and

B := 2
∑
µ 6=0

mR(µ)
n∑
k=1

(
n

k

)
∂kλ

[
ζ

(
|µ|
λ

)]
∂n−kλ

(
Imµ

|λ− µ|2

)
.

The sum in the definition of B is finite as the support of ζ ′ restricts µ’s to
2|λ| ≤ |µ| ≤ 3|λ|. Moreover,

∂kλ [ζ (|µ|/λ)] = Ok

(
〈λ〉−k sup

1≤`≤k
|r`ζ(`)(r)|

)
= O(|λ|−k).

We also have

∂n−kλ

(
2i Imµ

|λ− µ|2

)
= ∂n−kλ

(
(λ− µ̄)−1 − (λ− µ)−1

)
= O(|λ− µ|−n+k−1)

= O(|µ|−n+k−1), |µ| > 2|λ|.

Hence, using (3.4.7),

|B| ≤ C
∑

2|λ|≤|µ|≤3|λ|

mR(µ)|λ|−k|µ|−n+k−1 = O(|λ|−1).

To estimate A we also use (3.4.7):

|A| ≤ C
∑
|µ|≥2|λ|

mR(µ)|µ|−n−1 = C

∫ ∞
2|λ|

r−n−1dN(r) = O(|λ|−1).

We conclude that

|∂n+1
λ s2(λ)| = O(〈λ〉−1) =⇒ s2(λ) = Oε(〈λ〉n+ε).

Combined with (3.10.13) this concludes the proof. �

Proof of Theorem 3.53. 1. Let ϕ := tnψ, ψ ∈ C∞c (R). In the distributional
sense,

(2 •n cos •
√
P V )(ψ) = f(PV ), f(z) := ϕ̂(

√
z) + ϕ̂(−

√
z),
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where f ∈ C∞(R) ∩S ((0,∞)). This means that (3.10.2) is equivalent to

tr (f(PV )− f(P0)) =
∑
λ∈C

mT (λ)

∫ ∞
0

(ϕ(t) + ϕ(−t))e−iλtdt,(3.10.15)

where mT is defined in (3.10.3).

We define σ(λ) := log detS(λ)/2πi, noting that Lemma 3.55 shows that
σ, and hence σ′, are elements of S ′(R). Since σ′(λ) is even (see (3.7.17)),
Theorem 3.51 shows that

tr (f(PV )− f(P0)) = 1
2

∫ ∞
−∞

f(λ2)σ′(λ)dλ+
K∑
k=1

f(Ek) + 1
2m̃R(0)f(0),

where the integral is understood as a pairing of f(λ2) ∈ S (Rλ) and σ′ ∈
S ′(R). We claim that∫ ∞

−∞
f(λ2)σ′(λ)dλ = lim

r→∞

∫ r

−r
f(λ2)σ′(λ)dλ.

In fact, using (3.10.9) and the distributional definition of σ′(λ), we have∫
R
f(λ2)σ′(λ)dλ = −

∫
R
σ(λ)f ′(λ2)2λdλ = − lim

r→∞

∫ r

−r
σ(λ)f ′(λ2)2λdλ

= lim
r→∞

(∫ r

−r
f(λ2)σ′(λ)dλ+ 2f(r2)σ(r)

)
= lim

r→∞

∫ r

−r
f(λ2)σ′(λ)dλ.

Hence the proof of the theorem is reduced to showing that for some rj →∞,

1

2πi
lim
j→∞

∫ rj

−rj
ϕ̂(λ)∂λ(log detS(λ))dλ+ (2mR(0)− m̃R(0))ϕ̂(0)

+
∑

Imµ>0

mR(µ) (ϕ̂(µ) + ϕ̂(−µ))

=
∑
µ∈C

mT (µ)

∫ ∞
0

(ϕ(t) + ϕ(−t))e−iµtdt.

(3.10.16)

2. We define ϕ±(t) := tn±ψ(t) ∈ Cn−1
c (R), so that ϕ = ϕ+−ϕ−. Integration

by parts shows that

(3.10.17) |∂`λϕ̂±(λ)| ≤ C(1 + |λ|)−n−1−`eC(Imλ)± .

It is enough to prove (3.10.16) for ϕ replaced by ϕ± and we will present the
+ case, the − case being analogous.

3. In the notation of (3.10.4),

∂z logEn(z) = −(1− z)−1 + 1 + · · ·+ zn−1 = −zn(1− z)−1.
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Hence the factorization in (3.10.4) gives

∂λ(log detS(λ)) = g′(λ) +
∑
µ6=0

mR(µ)∂λ (logEn(−λ/µ)− logEn(λ/µ))

= g′(λ) +
∑
µ6=0

mR(µ)

(
λ

µ

)n
((λ+ µ)−1 − (λ− µ)−1).

Since mR(µ) = 0 for µ ∈ R \ {0} the sum converges uniformly in λ ∈ [−r, r].
Also, if ψ+(t) := int0+ψ then ϕ̂+(λ) = ∂nλ ψ̂+ and

lim
r→∞

∫ r

−r
ϕ̂+(λ)g′(λ)dλ = lim

r→∞

∫ r

−r
∂nλ ψ̂+(λ)g′(λ)dλ = 0.

(The polynomial g′ has degree at most n− 1 and ∂`λψ̂+(λ) = O(〈λ〉−1−`) for
0 ≤ ` ≤ n.) Hence,

(3.10.18) lim
r→∞

∫ r

−r
ϕ̂+(λ)∂λ(log detS(λ))dλ = lim

r→∞

∑
µ6=0

mR(µ)Φ(µ, r),

where

Φ(µ, r) :=

∫ r

−r
ϕ̂+(λ) (λ/µ)n ((λ+ µ)−1 − (λ− µ)−1)dλ.

4. We now claim that there exists a sequence rj →∞ such that for all µ 6= 0
satisfying mR(µ) > 0 and ∓ Imµ > 0

(3.10.19)
1

2πi
Φ(µ, rj) =

{
±ϕ̂+(±µ) +O(|µ|−n−

1
2 r
−1/2
j log rj), |µ| < rj ,

O(|µ|−n−
1
2 r
−1/2
j log rj), |µ| > rj

.

Let
Γr = ∂D(0, r) ∩ {Imλ ≤ 0},

be oriented counterclockwise. If r 6= |µ| then the residue theorem shows that
for ± Imµ < 0,

Φ(µ, r) = ±2πiϕ̂+(±µ)(r − |µ|)0
+

+

∫
Γr

ϕ̂+(λ) (λ/µ)n ((λ+ µ)−1 − (λ− µ)−1)dλ,

and we need to estimate the last term.

We first note that if |µ| < r/2 or |µ| > 2r then

(3.10.20)

∫
Γr

ϕ̂+(λ) (λ/µ)n (λ± µ)−1dλ = O(|µ|−n−
1
2 r−

1
2 ).

In fact, using (3.10.17) we see that for λ ∈ Γr

ϕ̂+(λ) (λ/µ)n (λ± µ)−1 = O(|r/µ|nr−n−1) min(|µ|−1, r−1)

= O(|µ|−n−
1
2 r−

3
2 ).
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Since the length of Γr is πr, (3.10.20) follows.

5. For r/2 < µ < 2r we will use the following

LEMMA 3.56. Suppose that r > 1, h is holomorphic in a neighbourhood
of Γr and µ /∈ Γr. Then

(3.10.21)

∫
Γr

h(λ)(λ−µ)−1dλ = O (〈log d(µ,Γr)〉+ log r) max
Γr

(|h|+ r|h′|),

where d(µ,Γr) = minλ∈Γr |λ− µ|.

Proof. We define log(λ−µ) for λ ∈ C\(µ+i[0,∞)) if |µ| < r or Imµ > 0 and
for λ ∈ C \ (µ− i[0,∞)) otherwise. In particular, log(λ− µ) is well-defined
and holomorphic on a neighbourhood of Γr. Then,∫

Γr

h(λ)(λ− µ)−1dλ =

∫
Γr

h(λ)∂λ log(λ− µ)dλ

= h(r) log(r − µ)− h(−r) log(−r − µ)−
∫

Γr

h′(λ) log(λ− µ)dλ

= O(| log |r − µ||+ | log |r + µ||+ 4π) max
Γr
|h|

+O(max
λ∈Γr

| log(λ− µ)|)rmax
r∈Γr
|h′|.

Since
max
λ∈Γr

| log(λ− µ)| ≤ 2π + | log d(µ,Γr)|+ log(2r)

and
| log |µ± r|| ≤ | log d(µ,Γr)|+ log(4r),

(3.10.21) follows. �

We now choose a sequence rj →∞ so that

∀ j, Γrj ∩
⋃

mR(±µ)>0

D(µ, 〈µ〉−n−1) = ∅.

As in the case of (3.10.7) this follows from (3.4.7). We then apply Lemma 3.56
with

(3.10.22) h(λ) := ϕ̂+(λ)(λ/µ)n, max
Γr

(|h|+ r|h′|) = O(|µ|−nr−1).

where to get the estimate we used (3.10.17). We have

mR(±µ) > 0 =⇒ d(µ,Γrj ) > 〈µ〉−n−1,

and (3.10.21) gives, for rj/2 ≤ |µ| ≤ 2rj ,∫
Γrj

ϕ̂+(λ) (λ/µ)n (λ± µ)−1dλ = O(r−n−1
j log rj)

= O(|µ|−n−
1
2 r
− 1

2
j log rj).
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Combining this with (3.10.20) gives (3.10.19).

6. Returning to (3.10.18) we see that (3.10.19) and (3.10.11) give

1

2πi

∫ rj

−rj
ϕ̂+(λ)∂λ(log detS(λ))dλ =∑

Imµ<0
|µ|<rj

mR(µ)ϕ̂+(µ)−
∑

Imµ>0
|µ|<rj

mR(µ)ϕ̂+(−µ) + o(1)rj→∞.

This proves (3.10.16) which, as explained in Step 1 gives (3.10.2). �

REMARK. The proof of Theorem 3.53 relies only on the upper bound
on the counting function for resonances and the factorization of detS(λ) in
Theorem 3.54. We did not use any specific results about the distribution of
resonances.

3.11. SCATTERING ASYMPTOTICS

Our next result about the scattering matrix concern asymptotics of the
scattering phase, log detS(λ)/2πi. As explained after Theorem 2.19 the
scattering phase, also known as the scattering winding number, is the ana-
logue of the counting function for eigenvalues of a Schrödinger operator on a
bounded domain. It is of intrinsic interest but it will also play an important
role in establishing existence of infinitely many resonances – see §3.12.

The proof consists of a number of steps, each of independent interest
and each useful in other situations. We first describe the structure of the
scattering amplitude as λ → ∞. That is done by viewing the resolvent
dynamically and relating it to the Schrödinger propagator. We then prove
that the scattering phase has an expansion as λ → ∞. Using heat trace
asymptotics we then compute leading coefficients of that expansions.

In this section we for the first time in the book use microlocal/semiclassical
methods – we will refer to Appendix E for what is needed but will assume
familiarity with basic notation for classes of pseudodifferential operators and
symbols (see §E.1).

3.11.1. Semiclassical structure of the scattering matrix. The semi-
classical parameter h, in the notation of Appendix E is h := 1/λ. The
semiclassical Hamiltonian is

P := h2PV = −h2∆ + h2V, V ∈ C∞c (Rn;R).

The potential term, h2V , is a very weak perturbation of the free Hamiltonian
−h2∆. That is in contrast to the examples considered in §2.8 and to the
theory presented in Part 3 of this book.
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THEOREM 3.57 (Scattering amplitude as a pseudodifferential op-
erator). Suppose that V ∈ C∞c (Rn,C). Let A(λ) be as in Theorem 3.41.
Then

Ah(E) := A(
√
E/h) : L2(Sn−1)→ L2(Sn−1), E > 1.

is a family of semiclassical pseudodifferential operators depending smoothly
on E,

∂kEAh(E) ∈ hΨcomp
h (Sn−1), k = 0, 1 · · · .

Moreover,

(3.11.1) σh(h−1Ah(E))(θ, ξ) =
1

2i
E−1/2

∫
R
V (−ξ/

√
E + sθ) ds,

where ξ ∈ {η ∈ Rn : 〈η, θ〉 = 0} = TθSn−1 ⊂ Rn, and T ∗Sn−1 is identified
with TθSn−1 using the standard metric on the sphere.

The first step of the proof is yet another formula for the scattering
matrix, similar to that in Theorem 3.44:

THEOREM 3.58 (Description of the scattering matrix). Let PV , ρ,
and Eρ(λ) be as in Theorem 3.41. Take χ ∈ C∞c (Rn) such that χ = 1 near
suppV and ρ = 1 near suppχ. Then

(3.11.2) A(λ) = cnλ
n−2Eρ(λ)[∆, χ]RV (λ)V Eρ(λ̄)∗, cn = (2π)1−n/2i.

Proof. Recall that the operator A(λ) is given by

A(λ)f(θ) =

∫
Sn−1

b(λ, θ,−ω)f(ω) dω,

with b(λ, θ, ω) defined in (3.7.3). The function u in that definition is given
by

u(x, λ,−ω) = −RV (λ)(V eiλ〈•,ω〉) = −RV (λ)V Eρ(λ̄)∗δω.

We have (−∆− λ2)u = (PV − λ2)u = 0 on supp(1− χ) and thus

(−∆− λ2)(1− χ(x))u(x, λ,−ω) = [∆, χ]u(x, λ,−ω).

The function (1− χ)u is outgoing and Theorem 3.37 shows that

(1− χ(x))u(x, λ,−ω) = −R0(λ)[∆, χ]RV (λ)V Eρ(λ̄)∗δω(x).

The formula (3.11.2) follows from Theorem 3.5. �

We now analyse the expression (3.11.2) for λ =
√
E/h, where E > 0

varies in a fixed compact set, say E ∈ [1, 2], and h→ 0. The operators [∆, χ]
and multiplication by V (denoted by V ) are differential and Eρ(λ), Eρ(λ)∗

have an explicit oscillatory integral form.
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Therefore the only component of (3.11.2) which needs to be understood
further is the resolvent RV (λ). We rewrite in the semiclassical form:

Rh(E) := h−2RV (
√
E/h), E ∈ [1, 2].

We start with the following microlocalization statement about the free re-
solvent away from the diagonal:

LEMMA 3.59. For fixed E > 0, the free semiclassical resolvent

R0,h(E) := h−2R0(
√
E/h),

satisfies

(3.11.3)
WF′h(R0,h(E)) ∩ (T ∗Rn)2 ∩ {x 6= y}

⊂ {(x, ξ, x+ tξ, ξ) : |ξ|2 = E, t ≥ 0}.

Proof. 1. Let χδ ∈ C∞(R2n) satisfy

χδ(x, y) =

{
0 |x− y| < δ,
1 |x− y| > 2δ.

If R0,h(E, x, y) is the Schwartz kernel of R0,h(E) it is enough to show that

(3.11.4) WFh(χδR0,h) ⊂ {(x, x+ tξ, ξ,−ξ) : |ξ|2 = E, t ≥ 0, x ∈ Rn}.

(See §E.2 for a review of wave front sets.)

2. Theorem 3.3 shows that the smooth function (χδR0,h(E))(x, y) can
be written as

h−
n+1
2 e

i
h
ϕ(x,y)aδ(x, y, h),

where ϕ(x, y) =
√
E|x− y| and ∂αx,yaδ = Oα,δ(1). Its wave front set is then

given by the standard formula (see for instance [Zw12, Example (iii), §8.4]):

{(x, y, ∂xϕ(x, y), ∂yϕ(x, y), (x, y) ∈ supp aδ}.

But that gives (3.11.4) and hence (3.11.3). �

We now write Rh(E) using the semiclassical Schrödinger propagator,

exp(−itP/h), P = h2PV .

This is motivated by the following formula valid for ImE > 0

(3.11.5) Rh(E) =
i

h

∫ ∞
0

eitE/he−itP/h dt.

The integral (3.11.5) converges as an operator L2 → L2 since e−itP/h is

unitary and eitE/h is exponentially decaying for ImE > 0 as t → +∞.
Hence (3.11.5) follows from the spectral theorem.
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This is no longer true when E ∈ R, however we have a microlocal ap-
proximation statement given in the next theorem. It relies strongly on a
translation of the estimate (2.3.5) to the semiclassical setting: for k = 0, 1, 2,

(3.11.6) ‖ρRh(E)ρ‖L2→Hk
h
≤ Ck/h, E ∈ [1, 2].

We call this a non-trapping resolvent estimate – more general versions for
more complicated operators will be studied in Chapter 6, see Theorems 6.10,
6.16 and 6.22.

LEMMA 3.60 (Parametrix for Rh(E)). Assume that B ∈ Ψcomp(Rn), χ ∈
C∞c (Rn), and V are all supported in {|x| < R} and that

WFh(B) ⊂ {1/2 ≤ |ξ| ≤ 2}.

Then for T ≥ 8R,

(3.11.7) χRh(E)B =
i

h

∫ T

0
χeitE/he−itP/hB dt+O(h∞)D′→C∞c .

Proof. 1. Consider an h-tempered family f = f(h) ∈ D′(Rn) (see §E.2.3)
and define a family v = v(h) by

v :=
(
Rh(E)B − i

h

∫ T

0
χ1e

itE/he−itP/hB dt
)
f ∈ D′(Rn).

Here χ1 ∈ C∞c (Rn) is a cutoff such that χ1 = 1 on B(0, R+10T ). Note that
by the nontrapping estimate (3.11.6), v is also h-tempered. We calculate

g := (P − E)v

= Bf + χ1

∫ T

0
∂t(e

itE/he−itP/h)Bf dt− i

h

∫ T

0
eitE/h[P, χ1]e−itP/hBf dt

= χ1e
iTE/he−iTP/hBf − i

h

∫ T

0
eitE/h[P, χ1]e−itP/hBf dt ∈ C∞c (Rn).

From [Zw12, Theorem 12.5] we have

(3.11.8) WFh(e−itP/hBf) ⊂ {(x+ 2tξ, ξ) : |x| ≤ R, |ξ| ∈ [1/2, 2]}.

Then WFh(e−itP/hBf) ∩ supp(1− χ1) = ∅ for t ∈ [0, T ]. Therefore,

[P, χ1]e−itP/hBf = O(h∞)C∞c .

Putting t = T ≥ 8R in (3.11.8) we see that (x, ξ) ∈ WFh(g) implies that
x = y + 2Rξ, |y| ≤ R and hence

〈x, ξ〉 = T |ξ|2 + 〈y, ξ〉 ≥ T/4− 2R ≥ 0.

In other words,

(3.11.9) WFh(g) ⊂ {(x, ξ) : |x| ≥ R, 〈x, ξ〉 ≥ 0, |ξ| ∈ [1/2, 2]}.
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2. We next claim that

(3.11.10) v = R0,h(E)g +O(h∞)C∞ .

Indeed, both v and R0,h(E)g are outgoing, therefore by Theorem 3.37

v −R0,h(E)g = Rh(E)(P − E)(v −R0,h(E)g)

= −Rh(E)(h2V R0,h(E)g).

From (3.11.3) and (3.11.9), we obtain that

(3.11.11) WFh(R0,h(E)g) ∩ {|x| < R} = ∅.

Thus V R0,h(E)g = O(h∞)C∞c and (3.11.10) follows from (3.11.6).

3. Finally, by (3.11.11), we have χR0,h(E)g = O(h∞)C∞c , therefore χv =
O(h∞)C∞c . Since this is true for any h-tempered family f(h), (3.11.7) fol-
lows. �

To write an oscillatory integral expression for Rh(E) and thus for Ah(E),

we need to write such an expression for e−itP/h:

THEOREM 3.61 (Parametrix for the Schrödinger propagator).
Suppose that V ∈ C∞c (Rn;C) and B ∈ Ψcomp

h (Rn). Then for |t| ≤ T ,

(3.11.12) exp(−itP/h)B = exp(−ithPV )B = UB(t) +OT (h∞)S ′→C∞ ,

where for f ∈ C∞c (Rn),

UB(t)f(x) :=
1

(2πh)n

∫
R2n

e
i
h
〈x−y,ξ〉− i

h
t|ξ|2b(t, x, ξ, h)f(y)dydξ,

b(t, x, ξ, h) ∼
∞∑
j=0

hjbj(t, x, ξ), b0(t, x, ξ) = σh(B)(x− 2tξ, ξ).
(3.11.13)

Proof. The proof follows the WKB construction – see [Zw12, §10.2] – much
simplified due to the fact that the flow is explicit and linear.

1. We are looking for b(t, x, ξ, h) solving the following equation asymptoti-
cally in h:

(hDt − h2∆ + h2V )
(
e
i
h
〈x,ξ〉− i

h
t|ξ|2b(t, x, ξ, h)

)
= 0,

b(0, x, ξ, h) = b(x, ξ), B = b(x, hD).
(3.11.14)

We will solve for b as an asymptotic expansion,

b(t, x, ξ, h) ∼
∑
j=0

hjbj(t, x, ξ), b0(0, x, ξ) = b(x, ξ), bj(0, x, ξ) = 0.

Since

e−
i
h
〈x,ξ〉+ i

h
t|ξ|2(hDt − h2∆)e

i
h
〈x,ξ〉− i

h
t|ξ|2 =

h

i
(∂t + 2〈ξ, ∂x〉)− h2∆,
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we have the following set of equations for the terms in the expansion (b−1 ≡
0):

(∂t + 2〈ξ, ∂x〉)bj(t, x, ξ) = −i(−∆x + V (x))bj−1(t, x, ξ).

These are solved by

b0(t, x, ξ) = b(x− 2tξ, ξ)

bj(t, x, ξ) =
1

i

∫ t

0
(−∆x + V (x− 2sξ))bj−1(s, x− 2sξ, ξ)ds, j ≥ 1.

.

Since b is compactly supported in (x, ξ) so are bj ’s (with the size of the
support depending on t) which shows that UB(t) : S ′(Rn) → S (Rn) – see
[Zw12, Theorem 4.1].

2. It remains to justify the estimate on the remainder in (3.11.13) and
for that we will use Duhamel’s formula and the mapping properties of
exp(−itP/h) – see [Zw12, §10.1]. We have shown so far that

(ih∂t − P )UB(t) = r(t) ∈ OT (h∞)S ′→S , UB(0) = B.

Hence, by Duhamel’s formula,

e−itP/hB − UB(t) = − i
h

∫ t

0
e−i(t−s)P/hr(s)ds.

Using [Zw12, (10.1.10)] with m(x, ξ) = 1 + |ξ|2 we see that e−i(t−s)P/h :

Hk
h → Hk

h for all k which implies that e−i(t−s)P/hr(s) = O(h∞)S ′→HN

for all N . Inserting this into (4.6.15) shows that e−itP/hB − UB(t) =
OT (h∞)S ′→C∞ as claimed.

�

Proof of Theorem 3.57. 1. To simplify notation we assume that E = 1 and
drop E from all the formulas. Since Ah(E) = Ah/

√
E(1) that is justified if

E ∈ K b (0,∞).

By (3.11.2), we write

Ah := Ah(1) = 1
2i(2π)1−nh4−nEh[∆, χ]RhV E ∗h , Rh := Rh(1).

where (with dω denoting the measure on Sn−1 induced from Rn)

E ∗h f(x) :=

∫
Sn−1

e
i
h
〈x,ω〉f(ω) dω.

As in the proof of (3.11.3) we see that

WF′h(E ∗h ) ⊂ {(x, ω;ω, x− 〈x, ω〉ω)} ⊂ T ∗Rn × T ∗Sn−1,

where we identified T ∗θ Sn−1 with TθSn−1 ⊂ TθRn, θ ∈ Sn−1 ⊂ Rn.
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Take B ∈ Ψcomp
h (Rn) such that

(3.11.15)
B = 1 microlocally on {x ∈ suppV, |ξ| ∈ [2/3, 3/2]};

WFh(B) ⊂ {|x| < R, |ξ| ∈ [1/2, 2]}.

This and the estimate of the wave front set of E ∗h imply that

V E ∗h = BV E ∗h +O(h∞)D′(Sn−1)→C∞c (Rn).

Therefore, by Lemma 3.60, for fixed large T > 0,

(3.11.16)
Ah(E) =

πh3−n

(2π)n
Eh[∆, χ]

∫ T

0
eit/he−itP/hBV E ∗h dt

+O(h∞)D′(Sn−1)→C∞(Sn−1).

2. We may replace e−itP/hB in (3.11.16) by UB(t) from Theorem 3.61. Also,
we may replace the integral from 0 to T in (3.11.16) by the integral against
a function ψ(t) ∈ C∞c (0, T ) such that ψ = 1 on [δ, T − δ] for δ small enough.
(The supports of [∆, χ] and V are disjoint and we can use propagation
result [Zw12, Theorem 12.5].) Applying the differential operator [∆, χ] to
the formula (3.11.13) we find

[∆, χ]UB(t)f(x) =
2i

h
(2πh)−n

∫
R2n

e
i
h

(〈x−y,ξ〉−t|ξ|2)b̃(t, x, ξ, h)f(y) dydξ,

b̃(t, x, ξ, h) ∼
∞∑
j=0

hj b̃j(t, x, ξ), b̃0(t, x, ξ) = 〈ξ, dχ(x)〉b0(t, x, ξ).

We thus obtain the following integral formula, valid modulo anO(h∞)D′→C∞

remainder:

Ahg(θ) ≡ ih

(2πh)2n−1

∫
R3n+1×Sn−1

e
i
h

Φãg(ω) dt dx dy dξ dω,

Φ(t, x, y, ξ, ω, θ) = 〈x− y, ξ〉+ t(1− |ξ|2) + (〈y, ω〉 − 〈x, θ〉),

ã ∼
∞∑
j=0

hj ãj ,

ã0(t, x, y, ξ) = ψ(t)V (y)〈ξ, dχ(x)〉σh(B)(x− 2tξ, ξ).

(3.11.17)

The support of the symbol ã(t, x, y, ξ, h) is contained in

{t ∈ (0, T ), y ∈ suppV, x ∈ suppχ, |ξ| ∈ [1/2, 2]}.

Moreover, we note for future reference that for |ξ|2 = 1 ∈ [1, 2], it follows
from (3.11.15) that

(3.11.18) ã0(t, x, x− 2tξ, ξ) = 1lR+(t)V (x− 2tξ)〈ξ, dχ(x)〉.
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3. We now use the integral formula for Ah(E) to show that it is an h-
pseudodifferential operator. We refer to §E.1.7 for the definition of a pseu-
dodifferential operator on a manifold (Sn−1 in our case).

First we note that if θ 6= ω then |ξ − θ|2 + |ξ − ω|2 ≥ 1
2 |θ − ω|

2 > 0 and

−h2(|ξ − θ|2 + |ξ − ω|2)−1(∆x + ∆y)e
i
h

Φ = e
i
h

Φ.

Hence, repeated integration by parts in x, y in the integral in (3.11.17) show
that for χ′, χ′′ ∈ C∞(Sn−1) and suppχ′ ∩ suppχ′′ = ∅, we have χ′Aχ′′ =
O(h∞)D′→C∞ .

It then remains to show that for χ′ supported in a small coordinate
neighbourhood, χ′Ahχ

′ is a classical pseudodifferential operator. Without
loss of generality, we consider the coordinate neighbourhood {θn > 0} with

the coordinate θ′, where θ = (θ′,
√

1− |θ′|2). For χ′ supported in this neigh-
bourhood, the symbol of χ′Ahχ

′ is given by oscillatory testing:

aχ′(θ
′, η) := e−

i
h
〈θ′,η〉χ′(θ′)(Ahχ

′)(e
i
h
〈•,η〉)(θ′), θ′, η ∈ Rn−1.

We need to calculate a(θ′, η) and show that it is indeed a classical symbol.
Then χ′Ahχ

′ = aχ′(θ
′, hD′θ, h) (note that we are using here the standard

quantization (E.1.18) and not the Weyl quantization).

4. Using the oscillatory integral expression for Ah, we write

aχ′(θ
′, η) = (2π)1−2nih2−2n

∫
R4n

e
i
h

(Φ(t,x,y,ξ,ω,θ)+〈ω′−θ′,η〉)

χ′(ω′)χ′(θ′)ã(t, x, y, ξ)√
1− |ω′|2

dt dx dy dξ dω′.

The phase in the integral is

〈x− y, ξ〉+ 〈ω′ − θ′, η〉+ t(1− |ξ|2) + (〈y, ω〉 − 〈x, θ〉).

The critical points in (y, ξ) are given by ξ = ω, y = x− 2tξ and the critical
Hessian has determinant 1 and signature 0. Hence, the stationary phase
method (see Proposition E.7) in the (y, ξ) variables gives (with x = (x′, xn),
x′ ∈ Rn−1)

aχ′(θ
′, η) = (2π)1−nih2−n

∫
R2n

e
i
h

Φ]a] dtdxdω′,

Φ](t, x, ω′, θ′) = 〈ω′ − θ′, η〉+ 〈x′, ω′ − θ′〉+ xn

(√
1− |ω′|2 −

√
1− |θ′|2

)
,

a](t, x, ω′, θ′) ∼
∞∑
j=0

hja]j(t, x, ω
′, θ′),

a]0(t, x, ω′, θ′) =
χ′(ω′)χ′(θ′)ã0(t, x, x− 2tω, ω)√

1− |ω′|2
.
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We next apply the stationary phase method in the (x′, ω′) variables: the
critical points are given by ω′ = θ′ and x′ = −η and the Hessian has deter-
minant 1 and signature 0. Hence,

aχ′(θ
′, η) = ih

∫
R2

a[ dtdxn, a[ ∼
∞∑
j=0

hja[j ,

where a[0(t, xn, θ
′, η) =

θ−1
n χ′(θ′)2ã0

(
t,−η + xnθ

′/θn, xn,−η + xnθ
′/θn − 2tθ′, xn − 2tθn, θ

)
,

with ã0 given in (3.11.17). Note that a[ is compactly supported, as follows
from the support condition on ã. Integrating in t, xn, we see that h−1aχ′ is
a compactly supported classical symbol and thus Ah ∈ hΨcomp(Sn).

5. It remains to calculate the principal symbol of h−1Ah. For that recall
that χ has properties listed in Theorem 3.58 and that note that∫ ∞

0
〈θ, dχ (−(η, 0) + (s+ 2t)θ)〉 dt = 1

2

∫ ∞
0

∂t [χ (−(η, 0) + (s+ 2t)θ)] dt

= −1
2χ((−(η, 0) + sθ) ,

which is equal to −1
2 for −(η, 0)+sθ ∈ suppV . Hence, a change of variables

xn = θn(s+ 2t) gives

σh(h−1Ah)(θ′, η)

= i

∫ ∞
0

dt

∫
R
dsV (−(η, 0) + sθ) 〈θ, dχ (−(η, 0) + (s+ 2t)θ)〉

=
1

2i

∫
R
V (−(η, 0) + sθ) ds,

which proves (3.11.1) with E = 1.

6. We now consider the derivatives of Ah(E) with respect to E. The relation
Ah(E) = Ah/

√
E(1) (or the construction of the expansions) shows that the

terms in the expansion depend smoothly on E. On the other hand, in the
notation of Step 3, χ′∂kEAh(E)χ′′ = OD′→C∞(h∞), and χ′∂kEAh(E)χ′ =
aχ′,k(θ

′, hDθ′ , h), where

∂αθ′∂
β
η aχ′,k = O(h−N(k,|α|+|β|))

(that follows from (3.11.2) and (3.11.6)). Also aχ′(θ
′, η) = ãχ′(θ

′, η)+O(h∞),
and ãχ′ has differentiable expansions in h.

The interpolation inequality (A.5.4) (applied with m = 0, ` = M + k
and p = M + k + 1) now gives

sup
|α|+|β|=M

‖∂α∂β(aχ′,k − ∂kE ãχ′)‖L∞ ≤
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CM,k‖aχ′ − ãχ′‖
1

M+k+1

L∞

(
sup

|α|+|β|=M+1
(‖∂α∂βaχ′,k+1‖L∞ + C ′M,k)

) M+k
M+k+1

≤ O(h∞)O(h−NM+1,k+1) = O(h∞).

It follows that aχ′,k is a symbol with a full asymptotic expansion. �

An important consequence of Theorem 3.57 is the existence of the ex-
pansion for the scattering phase:

THEOREM 3.62 (Existence of an asymptotic expansion). Define
the derivative of the scattering phase, σ′(λ), by

(3.11.19) σ′(λ) :=
1

2πi
trS(−λ)∂λS(λ) .

Then there exists a sequence b1, b2, . . . such that

(3.11.20) σ′(λ) ∼
∞∑
j=1

bjλ
n−2−j , λ→ +∞ ,

and

(3.11.21) b1 = −(n− 2) Vol(Sn−1)

2(2π)n

∫
Rn
V (x) dx.

REMARK. In Theorem 3.67 we will show that only even terms appear
in the expansion and will provide a method for computing the coefficients.
That will show that the integrated expansion is also valid – see (3.11.40).

Proof. 1. Since S(λ) = I +A(λ) and Ah(E) = A(
√
E/h),

∂λS(λ) = 2h∂EAh(1), λ = 1/h,

and

(3.11.22) σ′(λ) =
1

2πi
tr(S(λ)∗∂λS(λ)) =

h

πi
tr((I +Ah(1)∗)∂EAh(1))

Theorem 3.57 shows that Ah(1), ∂EAh(1) ∈ hΨcomp
h (Sn−1). Its proof, and

the composition formula for pseudodifferential operators (see Proposition
E.8), also gives asymptotic expansions of full symbols of operators localized
to coordinate patches:

(3.11.23)

bχ′(y, hDy, h) = χ′(I +Ah(1))∂EAh(1)χ′,

bχ′(y, η, h) ∼
∞∑
k=1

hkbχ′,k(y, η),

bχ′,k ∈ C∞c (B(0, 1)y × (B(0, 2) \B(0, 1
2))η),
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y = θ′ ∈ Rn−1 , (θ′, (1 − |θ′|2)
1
2 ) ∈ Sn−1 – see Step 3 of that proof for

the notation. Choosing a partition of unity
∑J

j=1 χ
2
j = 1, χj ∈ C∞(Sn−1),

(3.11.23) gives

trL2(Sn−1)(I +Ah(1))∂EAh(1) =

J∑
j=1

trL2(Rn−1) bχj (y, hDy, h)

=
1

(2πh)n−1

J∑
j=1

∫
T ∗Rn−1

bχj (y, η, h)dydη

∼
∞∑
k=1

akh
−n−1+k,

ak :=

J∑
j=1

∫
T ∗Rn−1

bχj ,k(y, η)dydη.

Returning to (3.11.22) we obtain (3.11.20).

2. The first coefficient is given by the integral of the principal symbol of
h−1∂EAh(1) which we compute using (3.11.1) (note that ξ ∈ {η : 〈η, θ〉 =
0} = TθSn−1 ⊂ Rn and dξdθ = ωn/n! is the volume form obtained from the
symplectic form ω):

b1 =
2

(2π)ni

∫
T ∗Sn−1

∂E |E=1σh(h−1Ah(E))(θ, ξ)dξdθ

= − 1

(2π)n
∂E |E=1

(
E−1/2

∫
R
ds

∫
T ∗Sn−1

dξdθ V (−ξ/
√
E + sθ)

)
= − 1

2(2π)n

∫
R
ds

∫
T ∗Sn−1

dξdθ (ξ · ∇V (−ξ + sθ)− V (−ξ + sθ)) .

We can integrate parts in ξ by assuming, without loss of generality that
θ = (0, 1) = en and ξ = (ξ′, 0), ξ′ ∈ Rn−1:∫

Rn−1

(ξ′, 1) · ∇V (−(ξ′, 0) + sen)dξ′ =

∫
Rn−1

(n− 1)V (ξ + sθ)dξ′.

Hence,

b1 = − n− 2

2(2π)n

∫
R
ds

∫
T ∗Sn−1

dθdξ V (ξ + sθ)

= − n− 2

2(2π)n

∫
Rn×Sn−1

V (x) dθdx = −(n− 2) Vol(Sn−1)

2(2π)n

∫
Rn
V (x)dx,

concluding the proof of (3.11.21). �

It would be tempting to compute the coefficients of the expansions in
Theorem 3.57 directly using symbolic calculus and the structure of the
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parametrix for the propagator and we did this for the first term in the
expansion (3.11.21) However, it is more convenient to compute the terms
appearing in the expansion by using the Birman–Krĕın in formula (3.9.10)
and heat trace asymptotics of Theorem 3.64 below.

3.11.2. Heat trace asymptotics. We start with a representation of the
resolvent useful for Imλ > 0:

LEMMA 3.63 (Another expansion for the resolvent). Suppose V ∈
C∞c (Rn;C). Then for any M ∈ N,

(3.11.24) RV (λ) =
M∑
m=0

XmR0(λ)m+1 +RV (λ)XM+1R0(λ)M+1,

where the operators Xm are defined by induction as follows:

(3.11.25) X0 := I, Xm+1 = −V Xm + [Xm, P0],

where V (as elsewhere) means the multiplication operator f 7→ V f . For
m > 0, Xm have order ≤ m− 1 and compactly supported coefficients.

Proof. 1. For M = 0 (3.11.24) states that

RV (λ)−R0(λ) = RV (λ)X1R0(λ) = −RV (λ)V R0(λ),

which is the resolvent identity.

2. Assuming that (3.11.24) holds for M replaced with M − 1, the inductive
step means proving that

(3.11.26) RV (λ)XMR0(λ)M −XMR0(λ)M+1 = RV (λ)XM+1R0(λ)M+1.

To see this we use the definition of XM+1 to write (we suppress the λ de-
pendence)

RVXM −RVXM+1R0 = RV (XM + V XMR0 + P0XMR0 −XMP0R0)

= RV (XM + (PV − λ2)XMR0 −XM (P0 − λ2)R0)

= RVXM +XMR0 −RVXM

= XMR0.

Multiplying this on the right by RM0 gives (3.11.26). �

We can now study heat trace asymptotics.

THEOREM 3.64. Suppose that V ∈ C∞c (Rn;R). Then,

e−tPV − e−tP0 ∈ L1(L2(Rn)), t > 0,
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c

Figure 3.6. Contours in the z-plane (z = λ2) used to express e−tPV −
e−tP0 in terms of the resolvent. The solid contour provides the usual
expression of e−tPV and e−tP0 . The dashed contour s 7→ c+ |s|ei sgn(s)

π
4 ,

s ∈ R, provides an expression for e−tPV − e−tP0 .

and for any K ∈ N,

(3.11.27) tr
(
e−tPV − e−tP0

)
=

1

(4πt)n/2

K∑
k=1

ak(V )tk +O(tK+1−n/2),

where

(3.11.28) a1(V ) = −
∫
V (x)dx, a2(V ) =

1

2

∫
V (x)2dx.

Proof. 1. Functional calculus for self-adjoint operators shows that

e−tPV − e−tP0 =
1

2πi

∫
Γc

e−tz((PV − z)−1 − (P0 − z)−1)dz,

Γc : s 7→ z(s) := c+ i|s|ei sgn(s)π/4, s ∈ R, c < EK .

(3.11.29)

That follows from a deformation of a contour involving (PV − z)−1 and
(P0 − z)−1 separately (where t > 0 is needed) – see Fig. 3.6. The integral
on the right hand side converges in operator norm on L2 as Re z(s) ∼ |s|,
s→ ±∞, and

‖(PV − z)−1 − (P0 − z)−1)‖ = ‖(PV − z)−1V (P0 − z)−1‖

≤ C|z|−2, z ∈ Γc.

Theorem 3.50 or a direct argument based on (3.11.29) also show that e−tPV −
e−tP0 is of trace class. The trace can then be computed by integrating the
Schwartz kernel over the diagonal.
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2. The formula

1

2πi

∫
Γc

e−tz(P0 − z)−m−1dz =
tm

m!
e−tP0

and Lemma 3.63 show

(3.11.30) tr(e−tPV − e−tP0) =
M∑
m=1

tm

m!
tr
(
Xme

−tP0
)

+ tr eM (t),

where

(3.11.31) eM (t) :=
1

2πi

∫
Γc

e−tz(PV − z)−1XM+1(P0 − z)−M−1dz.

3. We first analyze the terms in the sum on the right hand side of (3.11.30).
The Schwartz kernel of e−tP0 is given by

K(t, x, y) =
1

(4πt)
n
2

e−|x−y|
2/4t,

see for instance [Ev98, Chapter 1] or [HöI, Theorem 3.3.3].

Since for m ≥ 1, Xm is a differential operator of order m − 1, with
compactly supported coefficients,

tm

m!
tr
(
Xme

−tP0
)

=
tm

m!(4πt)
n
2

∫
Rn

(
Xme

−|x−y|2/4t
) ∣∣

x=y
dx

=
1

(4πt)
n
2

tm−[m−1
2 ]

[m−1
2 ]∑

k=0

am,kt
k = O(t[

m
2 ]+1−n

2 ),

(3.11.32)

which means that the expansion makes formal sense. Grouping the coeffi-
cients according to the powers of t gives the coefficients in the expansion
and a calculation based on (3.11.25) gives (3.11.28). In fact,

X1 = V, X2 = V 2 − 2∇V · ∇ −∆V,

X3 = −2
∑
j,k

∂xj∂xkV ∂xj∂xk + X̃3,

where X̃3 is an operator of order 1. Hence,

a1(V ) = (4πt)
n
2 tr(X1e

−tP0) = −
∫
Rn

(V (x)e−|x−y|
2/4t)|x=ydx = −

∫
R3

V (x)dx.

Also,

(4πt)
n
2 tr(X2e

−tP0) =

∫
Rn

(
X2e

−|x−y|2/4t
) ∣∣

x=y
dx =

∫
Rn
V (x)2dx,
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and

(4πt)
n
2 tr(X3e

−tP0) = −2

∫
Rn

∑
j,k

Vxjxk∂xj∂xke
−|x−y|2/t

∣∣
x=y

dx+O(t−1)

= 4

∫
Rn

∆V dx+O(t−1) = O(t−1).

Using this in (3.11.30) gives a2(V ) = 1
2

∫
Rn V (x)2dx.

4. To estimate the trace class norm of the remainder eM (t) in (3.11.31) we
start with estimates on the integrand. Uniformly for Re z ≤ −1 we have
‖(−∆− z)−1‖L2→L2 ≤ 1/|z| and

‖(−∆− z)−1‖L2→H2 ' ‖∆(−∆− z)−1‖L2→L2 + ‖(−∆− z)−1‖L2→L2

≤ C.

For 0 ≤ s ≤ 2, we can use Hölder’s inequality with p = 2/s and q = 2/2− s
to obtain

‖u‖2Hs =

∫
Rn
〈ξ〉2s|û(ξ)|2dξ =

∫
Rn
|û(ξ)|2−s

(
〈ξ〉2|û(ξ)|

)s
dξ

≤ ‖û‖
2−s
2

L2 ‖〈ξ〉2û‖
s
2

L2 = ‖u‖
2−s
2

L2 ‖u‖
s
2

H2 .

Commuting ∆ through the resolvent, it follows that

‖(−∆− z)−1‖Hr→Hs+r ≤ C|z|−1+ s
2 , 0 ≤ s ≤ 2,

on the contour, uniformly with respect to Re z < −1. Consequently as long

M ≥ n =⇒ s :=
n+ 1

M + 1
≤ 2,

we can iterate the estimate to obtain

‖(−∆− z)−M−1‖L2→Hn+1 ≤ CM |z|
−(1− n+1

2(M+1)
)(M+1)

= CM |z|−M+n−1
2 .

Since XM+1 is a differential operator with coefficients supported in |x| ≤ R
we obtain

‖XM+1(−∆− z)−M−1‖L1 ≤ C‖XM+1(−∆− z)−M−1‖L2(Rn)→Hn+1(B(0,R))

≤ C ′′|z|−M+n−1
2 .

5. Returning to (3.11.31) we deform the contour of integration to s 7→
−1/t + is, s ∈ R. Then, using the uniformity of the above estimates for
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Re z < EK − 1, and the bound ‖(PV − z)−1‖L2→L2 ≤ C/|z|, we obtain

‖eM (t)‖L1 ≤ C
∫ −1/t+i∞

−1/t−i∞
etRe z‖XM+1(−∆− z)−M−1‖L1

|dz|
|z|

≤ C ′
∫ −1/t+i∞

−1/t−i∞
|z|−M+n−1

2
|dz|
|z|

≤ C ′tM+ 1−n
2

∫ −1+i∞

−1−i∞
|w|−M+n−1

2
|dw|
|w|

= O(tM−
n−1
2 ),

where the integral converges if M ≥ n. Combined with (3.11.32) that gives
an estimate of the remainder in (3.11.27). �

3.11.3. Asymptotic expansion. To relate the asymptotic expansion of
σ′ in Theorem 3.62 with the heat trace asymptotics in Theorem 3.64 we will
use the following elementary fact:

LEMMA 3.65. For m ∈ Z and t > 0 define

um(t) :=

∫ ∞
1

λme−tλ
2
dλ ∈ C∞((0,∞)t).

Then

(3.11.33)
um(t)− 1

2Γ
(
m+1

2

)
t−

m+1
2 ∈ C∞([0,∞)t), m ≥ 0 or m ∈ −2N,

um(t)− (−1)k+1

2 k! tk log t ∈ C∞([0,∞)t), m = −2k − 1, k ∈ N,

where C∞([0,∞)t) denotes functions which are smooth up to 0 in t, N =
{0, 1, · · · }.

Proof. 1. We first consider the case of m ≥ 0. Then

um(t)−
∫ ∞

0
λme−tλ

2
dλ ∈ C∞([0,∞)t),

and ∫ ∞
0

λme−tλ
2
dλ = t−

m+1
2

∫ ∞
0

xme−x
2
dx = 1

2Γ
(
m+1

2

)
t−

m+1
2 ,

proving the claim.

2. When m = −2k, k ∈ N then,

(−∂t)kum(t) = u0(t) = 1
2Γ(1

2)t−
1
2 + w0(t), w0 ∈ C∞([0,∞)t).

Integrating k times from 1 to t (t→ 0+) gives the desired expression up to
a smooth additive term.
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3. When m = −2k − 1, k ∈ N then,

(−∂t)k+1um(t) = u1(t) = 1
2 t
−1 + w1(t), w1 ∈ C∞([0,∞)t).

We again integrate k+ 1 times from 1 to t (t→ 0+) which gives the second
case of (3.11.33). �

THEOREM 3.66 (Asymptotics of σ′(λ)). Let σ′(λ) be given by (3.11.19).
Then, only even powers appear in the expansion (3.11.20):

(3.11.34) σ′(λ) ∼
∞∑
k=1

c′k(V )λn−2k−1, c′k(V ) :=
2ak(V )

Γ(n2 − k)(4π)
n
2

,

where ak(V ) are given by (3.11.27). Moreover,

(3.11.35)

∫ ∞
0

σ′(λ)−

n−1
2∑

k=1

c′k(V )λn−2k−1

 dλ = −K − 1
2m̃R(0),

where K is the number of eigenvalues of PV and m̃R(0) is the multiplicity
of the zero resonance (3.3.29).

Proof. 1. To obtain (3.11.34) we apply Theorem 3.51 to the function f(λ) =

e−tλ
2

(see Remark after the statement of Theorem 3.51):

(3.11.36)

∫ ∞
0

e−tλ
2
σ′(λ)dλ = tr

(
e−tPV − e−tP0

)
−

K∑
k=1

e−tEk − 1

2
m̃R(0).

The right hand side has an expansion

(3.11.37)
1

(4πt)n/2

∞∑
k=1

akt
k +

∞∑
k=1

bkt
k − (K + 1

2m̃R(0)), t→ 0+

where the second (smooth) sum comes from the Taylor expansion of the
eigenvalue contributions.

2. The asymptotic expansion (3.11.20) means that for λ > 1 and any J ,

σ′(λ) =
J∑
j=1

bjλ
n−j−2 +O(λn−J−3).

In the notation of Lemma 3.65 we then see that for J ≥ n− 2,

(3.11.38)

∫ ∞
0

σ′(λ)e−tλ
2
dλ−

J∑
j=1

bjun−j−2(t) ∈ C [J+3−n
2

]([0,∞)t).

Comparison of (3.11.33) with (3.11.36) shows that bj = 0 for j = 2k, and
b2k−1 = c′k(V ) where c′k(V ) are given in (3.11.34).
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3. It remains to show that (3.11.35) holds. Applying (3.11.38) with J = n−2
(which corresponds to k = (n− 1)/2) shows that

G(t) :=

∫ ∞
0

σ′(λ)−

n−1
2∑

k=1

c′k(V )λn−2k−1

 e−tλ
2
dλ

is a continuous function on [0,∞). The integrand in the definition of G(t)
is uniformly bounded by C〈λ〉−2 as t ≥ 0 and hence G(0+) is equal to
the left hand side of (3.11.35). Comparison with (3.11.37) gives G(0+) =
K + 1

2m̃R(0), completing the proof. �

For completeness we include a result about the asymptotic behaviour of
the actual scattering phase:

THEOREM 3.67 (Asymptotics of the scattering phase). Suppose
that V ∈ C∞c (Rn,C) where n ≥ 1 is odd. Define the scattering phase

(3.11.39) σ(λ) :=
1

2πi
log detS(λ),

by demanding that σ′(λ) is given by (3.11.19) and that σ(0) = m̃R(0)/2
where m̃R(0) is given in (3.3.29).

Then there exists a sequence ck(V ) such that, as λ→ +∞,

(3.11.40) σ(λ) ∼

n−1
2∑

k=1

ck(V )λn−2k −K +
∞∑

k=n+1
2

ck(V )λn−2k,

where K is the number of eigenvalues of PV and

ck(V ) =
ak(V )

Γ(n2 − k + 1)(4π)
n
2

,

with ak(V ) are given in (3.11.36). In particular,

c1(V ) = − 1

Γ(n2 )(4π)
n
2

∫
Rn
V (x)dx ,

c2(V ) =
1

2Γ(n2 − 1)(4π)
n
2

∫
Rn
V (x)2dx .

(3.11.41)

Proof. 1. We know from (3.7.28) that detS(0) = (−1)m̃R(0) (see also (3.10.4)).
Hence our choice of the value of σ(0) determines a branch of the logarithm.

2. We know that σ′(λ) is an even function and hence σ(λ)− 1
2m̃R(0) is odd.

In view of (3.11.35), we have for λ > 0,

σ(λ) =

n−1
2∑

k=1

λn−2k −K −
∫ ∞
λ

σ′(τ)−

n−1
2∑

k=1

c′k(V )τn−2k−1

 dτ.
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Integrating (3.11.34) and noting that

2

(n− 2k)Γ(n2 − k)
=

1

Γ(n2 − k + 1)

gives (3.11.40). �

3.12. EXISTENCE OF RESONANCES FOR REAL
POTENTIALS

Theorem 2.16 implies that any complex valued compactly supported po-
tential in one dimension has infinitely many resonances. In Section 3.5
earlier in this chapter we have shown that there exist complex valued com-
pactly supported potentials in higher dimensions with no resonances. We
will now prove existence of infinitely many resonances for arbitrary poten-
tials V ∈ C∞c (Rn;R). It is based on the Birman–Krĕın formula (2.6.1)
applied with f(s) = e−ts and heat trace asymptotics as t→ 0.

THEOREM 3.68 (Existence of resonances). Suppose that

V ∈ C∞c (Rn,R), with n ≥ 3, odd, V 6= 0.

Then ∑
λ∈C

mR(λ) =∞ ,

that is, V has infinitely many scattering resonances.

REMARK. To show that there have to be some resonances we only use the
Birman–Krein formula and the factorization of the scattering matrix from
§§3.9 and 3.10 respectively. The asymptotic analysis of §3.11 is needed to
show that there are infinitely many resonances.

Proof. 1. We first assume that of RV (λ) has no poles at all. Then Theorem
3.54 implies that

σ(λ) :=
1

2πi
log detS(λ)

= bnλ
n + bn−2λ

n−2 + · · ·+ b1λ , bj ∈ R .
(3.12.1)

Using (2.6.1) with f(s) := e−st we obtain

tr(e−tPV − e−tP0) =

∫ ∞
0

f(λ2)σ′(λ)dλ+m0

= αnbnt
−n

2 + αn−2bn−2t
−n

2
−1 + · · ·

+ α1b1t
− 1

2 +m0,

(3.12.2)



216 3. EXISTENCE OF RESONANCES FOR REAL POTENTIALS

where m0 = mR(0)− 1
2m̃R(0) and αk = k

∫∞
0 xk−1e−x

2
dx = Γ

(
k
2 + 1

)
6= 0.

Comparison with (3.11.40) and (3.11.41) shows that bn = 0 and

bn−2 = −βn−2

∫
Rn
V (x)dx , bn−4 = βn−4

∫
Rn
V (x)2dx 6= 0.

This gives an immediate contradiction when n = 3 as (3.12.2) contradicts
the formula (3.11.27).

2. To obtain a contradiction for n > 3. We consider the behaviour of σ(λ)
as λ→ 0. Suppose that RV (λ) is entire. Theorem 3.17 shows

RV (λ)(V eiλ〈•,ω〉)(x) = B(λ, x, ω),

where B is holomorphic in λ near 0 and smooth in x ∈ Rn, ω ∈ Sn−1. The
formula (3.7.8) then shows that

‖A(λ)‖L1 = O(λn−2) , λ→ 0 .

Using this we see that near 0,

2πiσ(λ) = log det(I +A(λ)) = tr log(I +A(λ))

= O(‖A(λ)‖L1) = O(λn−2) .

Comparing this with (3.12.1) we see that σ(λ) = bn−2λ
n−2. But this con-

tradicts the fact that bn−4 6= 0.

3. It remains to show that the number of resonances is infinite. Again
we proceed by contradiction using Theorems 3.54 and 3.67. Suppose that
there exists a finite number of non-zero resonances. Hence suppose that
−µ2

1 < −µ2
2 ≤ · · · ≤ −µ2

K′ < 0, µk > 0, are the negative eigenvalues of PV
and that iρj , ρj < 0, j = 1, · · · , J1, λj 6= −λ̄j , j = 1 · · · , J2 are a finite set
of resonances with Reλj > 0. Factorization (3.10.4) shows that

detS(λ) = (−1)meg(λ)
K′∏
k=1

λ+ iµk
λ− iµk

J1∏
j=1

λ+ iρj
λ− iρj

J2∏
j=1

λ− λ̄j
λ+ λj

λ− λj
λ+ λ̄j

.

Hence for λ ∈ R and with b(λ) := g′(λ)/2πi,

σ′(λ)− b(λ) = − 1

π

K′∑
k=1

µj
λ2 + µ2

j

− 1

π

J1∑
j=1

ρj
λ2 + ρ2

j

− 1

π

J2∑
j=1

(
Imλj
|λ− λj |2

+
Imλj
|λ+ λj |2

)
,

(3.12.3)

That means that∫ ∞
0

(
σ′(λ)− b(λ)

)
dλ = −1

2K
′ + 1

2J1 + J2.



3.13. NOTES 217

On the other hand, (3.11.35) shows that the left hand side is equal to −K ′−
m0, m0 := mR(0) + 1

2m̃R(0) ≥ 1
2mR(0) ≥ 0, and hence,

0 ≥ −1
2K
′ −m0 = 1

2J1 + J2 ≥ 0,

which means that both sides vanish. Since we showed that some resonances
exist this gives a contradiction. �

3.13. NOTES

This chapter presented odd dimensional potential scattering from the per-
spective of the study of resonances. For a direct treatment of obstacle scat-
tering in dimension three see Taylor [TaII, Chapter 9].

Results in §3.1 are classical. The proof of Theorem 3.1 comes from Vodev
[Vo92]. The contour deformation argument in §3.1.4 is a baby version of
homological conditions for the existence of lacunas for hyperbolic equations
due to Petrovsky – see Atiyah–Bott–G̊arding [ABG70] for a detailed pre-
sentation. We learned this many years ago from Johannes Sjöstrand – see
[Sj02, §2.1]. Exercise 3.3 was suggested by Gilles Carron.

The discussion of the resonance of zero in §3.3 can be used as an in-
troduction, in the spirit of PDE, to the now classical work of Jensen–Kato
[JK79] (where (3.3.21) is described using the operator given in (3.3.23)).
For further discussion of the threshold behaviour for non-compactly sup-
ported potentials see Jensen–Nenciu [JN01], Rodnianski–Tao [RT15] and
references given there. The survey by Schlag [Sc07] can be consulted for
the role of threshold resonances for non-linear equations, and [HZ09, Fig-
ure 6] for an example of a linearly counterintuitive phenomenon involving a
resonance at zero.

The proof of Theorem 3.27 is based on ideas of Melrose who proved the
bound ∑

{mR(λ) : |λ| ≤ r} ≤ CV rn+1 .

The optimal bound (3.4.7) was proved in [Zw89b]. Our presentation uses
a substantial simplification of the argument due to Vodev [Vo92] – see
Chapter 4 for further applications of these methods.

For the early history of Rellich’s uniqueness theorem, Sommerfeld radi-
ation patterns and of outgoing solution see Wilcox [Wi56]. Our definition
that u = R0(λ)g for g ∈ E ′(Rn) is equivalent to the more classical definition
which in dimension three states that for R0 sufficiently large and |x| > R0,

(3.13.1) u(x) =
1

4π

∫
∂B(0,R0)

(
u(y)∂r

(
eiλ|x−y|

|x− y|

)
− eiλ|x−y|

|x− y|
∂ru(y)

)
dS(y),
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see Exercise 3.6.

The class of examples in Theorem 3.29 was constructed by Christiansen
[Ch06].

The interpretation of the (absolute) scattering matrix as mapping the the
incoming “boundary data” to incoming “boundary data” was emphasized
by Melrose in many geometric settings [Me95]. Here the boundary refers to
the boundary at infinity. The more traditional interpretation in which the
scattering matrix provides a mapping between distorted plane waves (see
Theorem 3.47) is given in (3.8.12). In time dependent scattering theory the
scattering operator, S, is defined using wave operators:

W±u := lim
t→±∞

eitPV e−itP0u, u ∈ L2(Rn), S := W ∗+W−.

The scattering operator S commutes with P0 = −∆ (as formally follows
from the definitions of W± which intertwine PV and P0) and hence we can
decompose it using the spectral decomposition of −∆:

S =

∫ ∞
0

S(λ)dE0
λ, f(−∆) =

∫ ∞
0

f(λ2)dE0
λ,

and our scattering matrix S(λ) is produced. Reed–Simon [RS79], Hörmander
[HöII, §14.4], Newton [N02], Yafaev [Ya92], [Ya09], Melrose–Uhlmann
[MU] and Taylor [TaII, Chapter 8] can be consulted for different mathe-
matical perspectives on the subject. Analytic properties of the scattering
matrix were discussed early on by Jensen [Je80b].

A different point of view, rooted in the wave equation and three dimen-
sional obstacle scattering rather than quantum mechanics, was proposed by
Lax–Phillips [LP68]. The key object in their theory is the Lax–Phillips
semigroup, Z(t), obtained by truncating the wave group U(t) by the or-
thogonal projection, π, onto the interaction space which is the orthogonal
complement of spaces of incoming and outgoing data: Z(t) = πU(t)π. This
provides a beautiful dynamical definition of resonances as eigenvalues of B,
the generator of Z(t) = e−itB. This point of view played a crucial role
in the understanding of the relation between the distribution of resonances
and trapping (see §4.6), the developments of trace formulas (see later in
this section) and automorphic scattering (see Examples 2 and 3 in §4.4.3).
For a brief, self-contained presentation of generalized Lax-Phillips theory see
Sjöstrand–Zworski [SZ94, §2]. Various subtle issues such as multiplicities
and domains of operators were also clarified there.
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Since this book is devoted to the study of scattering resonance we focus
on the stationary, energy dependent scattering matrix. The general for-
mula (3.7.18) giving S(λ) in terms of the resolvent is valid for general com-
pactly supported perturbations (see Theorem 4.26) and comes from Petkov–
Zworski [PZ01].

The trace identity in Theorem 3.46 was proved by Buslaev in [Bu62].
Theorem 3.67 and further references can be found in [Gu84]. The Birman–
Krĕın formula goes back to the classical paper [BK62] and is related to the
more general study of spectral shift functions. For that connection and for
references see Yafaev [Ya92, Chapter 8] and [Ya09, Chapter 9].

Trace formulas relating the wave group to the resonances were estab-
lished by Lax–Phillips [LP78] and Bardos–Guillot–Ralston [BGR82] (in
the closely related obstacle case) but for t > 2R, where suppV ⊂ B(0, R).
The case of t > 0 was proved by Melrose [Me82] and generalized by
Sjöstrand–Zworski [SZ94]. A different proof with a more precise statement
at t = 0 was given in [Zw97] (see also [GZ97]) and our exposition provides
a more detailed account of the argument there. The idea for obtaining the
correct power of t in (3.10.2) based on Lemma 3.56 was suggested by Jeff
Galkowski. For a trace formula in even dimensions see Christiansen [Ch17b]
and Zworski [Zw98].

Lemma 3.55 reverse engineers [Me88, §4]. The terms in the definition
(3.10.12) there can be recognized as the Breit–Wigner Lorentzians (1.1.3),
see also Theorem 2.20 and Figure 2.6. Further analysis leads to a justifi-
cation of the Breit–Wigner formulas in the presence of many resonances –
see [PZ99],[PZ01]. For the Breit-Wigner approximation in the semiclassical
limit and for isolated resonances see Gérard–Martinez–Robert [GMR89].

Theorem 3.67 is due to Colin de Verdière [CdV81a] when n = 3 and
Guillopé [Gu84] for other dimensions, see also Buslaev [Bu75] and Chris-
tiansen [Ch98] and references given there. Analysis of heat trace asymp-
totics follows Hitrik–Polterovich [HP03] where more general potentials were
considered – see that paper for references and also [SZ16] for a more direct
approach to heat trace expansions.

That a smooth compactly supported potential (or any superexponen-
tially decaying potential) in any odd dimension has infinitely many reso-
nances was proved by Sá Barreto–Zworski [SZ96] but the method there was
less direct.

There have been many improvement since. Christiansen and Hislop
[CH05] proved that for a generic L∞com(Rn,R) (or C∞c (Rn,R)) potential
the exponent n in the polynomial bound (3.4.7) is optimal. That relied
on the existence of a lower bound given by (3.4.16) and on results from the
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theory of several complex variables. It is also true for generic complex valued
potentials. The paper [CH05] can be consulted for intermediate results on
lower bounds. Here we mention Christiansen [Ch99] and Sá Barreto [Sá01]
who proved that

lim sup
r→∞

N(r)

r
> 0,

and their methods inspired our presentation. Dinh–Vu [DV13] also used
several complex variables techniques and showed that a large class of po-
tentials supported in a ball enjoys the same counting asymptotics as radial
potentials; see also Dinh–Nguyen [DN17].

More recently Smith–Zworski [SZ16] showed that any

V ∈ H
n−3
2 (Rn) ∩ L∞comp(Rn;R),

has infinitely many resonances and any V ∈ L∞comp(Rn;R) has some reso-
nances (all for n odd).

When magnetic field is added interested new phenomena occur which are
not studied here or in the semiclassical setting of Chapter 5.16. Alexandrova–
Tamura [AT14], Bony–Bruneau–Raikov [BBR14] and Tamura [Ta15] can
be consulted for some recent results and for pointers to the literature.

3.14. EXERCISES

Section 3.1

We assume here that n ≥ 3 is odd and write R0(λ, x, y) = R0(λ, x− y)
for the Schwartz kernel of the free resolvent.

1. Show that for any r ∈ R and c0 there exists a constant C1 such that for
Imλ ≥ c0 we have

(3.14.1) ‖〈x〉rR0(λ)〈x〉−r‖L2→L2 ≤ C1,

that is,

R0(λ) : 〈x〉−rL2(R2)→ 〈x〉−rL2(Rn).

Hint. Use Theorem 3.3 and Schur’s criterion (see the proof of the Lemma

3.7) noting that 〈x〉−r〈y〉r ≤ 〈x− y〉|r|.

2. Show that for any C0 > 0 there exists C1 such that for such that for
|λ|/C0 ≤ Imλ ≤ C0,

(3.14.2) ‖R0(λ, •)‖Lq(R) ≤ C1|λ|−2+n(q−1)/q, 1 ≤ q < n

n− 2
.
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3. Use the definition of Pn in Theorem 3.3 to show that λ 7→ R0(λ)2 =
∂λR0(λ)/2λ is analytic near 0 as an operator from L2

comp → L2
loc. Conclude

that for n ≥ 5, Lemma 3.6 can be improved to

(3.14.3)
‖ρR0(λ)R0(λ0)kR0(λ)ρ‖L2→H2k ≤ C1, ρ ∈ C∞c (Rn),

for 0 ≤ |λ| ≤ C0 ≤ 1
2 Imλ0 ≤ 2C0, Imλ ≥ 0.

Section 3.2

4. Suppose that V ∈ L∞comp(Rn;C). Show directly that the Schwartz kernel
of RV (λ) satisfies

(3.14.4) RV (λ, x, y) = RV (λ, y, x),

in the sense of distributions – that is RV (λ) = j∗RV (λ) ∈ D′(Rnx × Rny ),
j(x, y) = (y, x).

Hint: it is enough to prove (3.14.4) for Imλ � 1 and that follows from
having∫
Rn
RV (λ)f1(x)f2(x)dx =

∫
Rn
f1(x)RV (λ)f2(x)dx, fj ∈ L2(Rn), Imλ� 1.

But for that we can put Fj(x) := RV (λ)fj ∈ H2, and use integration by
parts:

∫
F1(PV − λ2)F2 =

∫
(PV − λ2)F1F2.)

Section 3.6

5. Prove Theorem 3.37.

Hint: (i) ⇒ (ii) is obvious and (iv) ⇒ (i) follows from the expansion
(3.1.20). Since for λ ∈ R \ {0}, RV (λ)ρ = R0(λ)ρ(I + V R0(λ)ρ)−1, and
hence (I + V R0(λ)ρ)−1 (R0(λ) is injective on L∞comp(Rn)) have not no poles
(Theorem 3.33), we see that (iii) ⇒ (iv). We finally get (ii) ⇒ (iii) by
applying Theorem 3.35 to u − RV (λ)f . For the last statement use elliptic
regularity: for V and f smooth, u is smooth.

6. Let R0(λ, x, y) be the Schwartz kernel of R0(λ) and suppose that u =
R0(λ)f where f ∈ E ′(Rn) and Imλ > 0. Suppose that O is a bounded open
set with a smooth boundary, supp f ⊂ O. Show that for u /∈ O,

(3.14.5) u(x) =

∫
∂O

(u(y)∂νR0(λ, x, y)−R0(λ, x, y)∂νu(y)) dS(y),

where ∂ν = 〈ν(y), ∂〉, ν(y) is the outward unit normal vector to ∂O and
dS(y) is the surface measure on ∂O. Deduce (3.13.1).

7. Show that if (PV − λ2)u = g, g ∈ E ′(Rn) and (3.14.5) holds then there
exists f ∈ E ′(Rn) such that u = R0(λ)f .

Section 3.7
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8. Suppose that λ > 0. For a given f ∈ C∞(Sn−1) construct v0 such that

(−∆− λ2)v0 ∈ S (Rn), v0(rθ) ∼ eiλr

r
n−1
2

f(θ).

Show that v0 = RV (λ)(PV − λ2)v0.

9. Show that for n = 3, detS(0) = (−1)m where m is the multiplicity of
resonance at zero and that for n ≥ 5, detS(0) = 1.

10. Suppose that V ∈ L∞(B(0, R);R) and that that iµj , j = 1, . . . , J , are
the poles of the scattering matrix with µj > 0. Show that

(3.14.6) ‖S(λ)‖ ≤ e2R Imλ
J∏
j=1

|λ+ iµj |
|λ− iµj |

, Imλ > 0.

Hint: Consider

S1(λ) := e2Riλ
J∏
j=1

λ− iµj
λ+ iµj

S(λ),

which is holomorphic in Imλ ≥ 0 and ‖S1(λ)‖ = 1 for Imλ = 0. The
bound (3.14.6) is equivalent to ‖S1(λ)‖ ≤ 1. Representation of the scattering
matrix (3.7.8) shows that ‖S1(λ)‖ ≤ C(1 + |λ|)N for Imλ > 0. Applying
the Phragmén–Lindelöf principle to S1(λ) in the upper half plane (see for
instance [Ti86, §5.61]) gives ‖S1(λ)‖ ≤ 1, Imλ ≥ 0, and that proves (3.14.6).

Section 3.11

11. Prove the following refinement of Lemma 3.52:

tr(e−tPV − e−tP0) =
K∑
k=1

e−tEk + 1
2m̃R(0)

+ t−
1
2
− (n−5)+

2

K∑
k=0

t−khk +O(t−K−
n
2 ),

(3.14.7)

as t → +∞. What are the improvements if there is no zero eigenvalue or
resonance?

Hint: Use Theorem 3.51 and the facts that σ′(λ) is polynomially bounded
(Theorem 3.62), σ′(λ) = O(λn−5) for n ≥ 5 and O(1) for n = 3 near 0 (use
Theorem 3.58 and the structure of the resolvent at 0 from §3.3).
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Chapter 4

BLACK BOX
SCATTERING IN Rn

4.1 General assumptions
4.2 Meromorphic continuation
4.3 Upper bounds on the number of resonances
4.4 Plane waves and the scattering matrix
4.5 Complex scaling
4.6 Singularities and resonance free regions
4.7 Notes
4.8 Exercises

In Chapters 2 and 3 we studied general properties of resonances in scat-
tering by compactly supported potential. More general compactly supported
perturbations include metric perturbations and obstacle scattering. They of-
fer many new interesting and relevant physical features such as presence of
trapping – see Figure 4.1.

For general results of the type seen in the case of potential scattering it is
convenient to replace a specific perturbation by an abstractly defined black
box perturbation. The table below shows the basic differences and analogies
in the case when n is odd.

Here P denotes a self-adjoint operator equal to −∆ outside B(0, R0) –
see Section 4.1 for precise assumptions. The operator P is assumed to act on
a Hilbert spaceH with an orthogonal decompositionHR0⊕L2(Rn\B(0, R0)).
The orthogonal projection onto the first component – the black box – is
denoted 1lB(0,R0).

225
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An example is given by a compactly supported metric perturbation.
More precisely, let g, gjk − δjk ∈ C∞c (Rn), be a metric on Rn and let P be
the corresponding Laplace–Beltrami operator :

P = −∆g := − 1√
|g|

∑
j,k

∂xj
√
|g|gjk∂xk ,

(gjk) := (gjk)
−1, |g| := det(gjk).

−∆ + V Black Box

Meromorphy of the resolvent If 1lB(0,R0)(P − i)−1 is compact then
RV (λ) : L2

comp → L2
loc; R(λ) : Hcomp → Hloc is meromorphic;

Theorem 3.8. Theorem 4.4.

Upper bound on the number Upper bounds using bounds for
of resonances, N(r) ≤ Crn; eigenvalues of a reference operator:

Theorem 3.27. N(r) ≤ Crn#
; Theorem 4.13.

Trace formula for resonances; Trace formulae hold if for some k
Theorem 3.53. 1lB(0,R0)(P − i)−k ∈ L1(H,H);

[SZ94],[Zw97].

Pole free regions; Geometric assumptions about
Theorem 3.10 the classical flow are needed;

Theorems 4.43, 6.10, 6.16,
[Ma02b],[SZ07a, §3].

Resonance expansions of waves; Delicate when there are no large pole
Theorem 3.11 free regions; Theorem 7.20, [TZ00].

4.1. GENERAL ASSUMPTIONS

Let H be a complex Hilbert space with an orthogonal decomposition

(4.1.1) H = HR0 ⊕ L2(Rn \B(0, R0)),
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Figure 4.1. An example of trapped trajectories in obstacle scattering.

Here R0 > 0 is fixed and

B(x,R) = {y ∈ Rn : |x− y| < R}.

The orthogonal projections on the first and the second summands in (4.1.1)
can be thought of as restrictions of elements of H to B(0, R0) and Rn \
B(0, R0):

u 7−→ 1lB(0,R0) u =: u|B(0,R0) ∈ HR0 ,

u 7−→ 1lRn\B(0,R0) u =: u|Rn\B(0,R0) ∈ L2(Rn \B(0, R0)).

If χ ∈ L∞(Rn) and χ ≡ c0 ∈ C (is equal to a constant) on B(0, R0) then we
define

χu := c0

(
u|B(0,R0)

)
+
(
χ|Rn\B(0,R0)

) (
uRn\B(0,R0)

)
,

where the restriction of χ is the restriction of a function in L∞(Rn) to a
subset of Rn.

We define a smaller space of compactly supported elements of H as

(4.1.2) Hcomp :=
{
u ∈ H : u|Rn\B(0,R0) ∈ L2

comp(Rn \B(0, R0))
}
,

and a larger spaces of vectors locally in H:

(4.1.3) Hloc := HR0 ⊕ L2
loc(Rn \B(0, R0)).

We now assume that P (h), 0 < h ≤ 1, is a family of unbounded self-
adjoint operators, P (h) : H −→ H, with the domain D ⊂ H, independent
of h. We assume that

1lRn\B(0,R0)D ⊂ H2(Rn \B(0, R0)).(4.1.4)
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Outside of the “black box” B(0, R0) the operator is equal to the semiclassical
Laplacian in the following sense:

(4.1.5) 1lRn\B(0,R0)(P (h)u) = −h2∆(u|Rn\B(0,R0)), u ∈ D,

where the right hand side defines an element of L2(Rn \B(0, R0)) thanks to
(4.1.4).

Condition (4.1.4) is complemented by the condition

(4.1.6) v ∈ H2(Rn), v|B(0,R0+ε) ≡ 0 for some ε > 0 =⇒ v ∈ D.
(Since v = 1lRn\B(0,R0) v, v defines an element of H and hence this statement
makes sense.)

For vectors v satisfying the condition in (4.1.6) we have

(4.1.7) P (h)v = −h2∆v.

In fact, if u ∈ D then u|Rn\B(0,R0) ∈ H2(Rn \ B(0, R0)) and (recalling that

v ∈ H2(Rn) and that it vanishes in B(0, R0 + ε))

〈P (h)v, u〉H = 〈v, P (h)u〉H = 〈v, (P (h)u)|Rn\B(0,R0)〉L2(Rn\B(0,R0))

= 〈v,−h2∆(u|Rn\B(0,R0))〉L2(Rn\B(0,R0))

= 〈−h2∆v, u|Rn\B(0,R0)〉L2(Rn\B(0,R0))

= 〈−h2∆v, u〉H.

We equip D with (h-dependent) Hilbert space norms given by

(4.1.8) ‖u‖2Dh := ‖u‖2H + ‖P (h)u‖2H, u ∈ D,
using ‖u‖D when h = 1. Using the functional calculus of P (h) (see §B.2) we
can define more general spaces Dα with norms

(4.1.9) ‖u‖Dαh := ‖(P (h) + i)αu‖H, u ∈ D,

From (4.1.5) it follows that for ϕ ∈ C∞c (Rn \B(0, R0)),

(4.1.10) u ∈ Dαh =⇒ ϕu ∈ H2α
h (Rn)

The spaces Dcomp and Dloc are defined using (4.1.2) and (4.1.3)

Dcomp := D ∩ Hcomp,

Dloc := {u ∈ Hloc : χ ∈ C∞c (Rn), χ|B(0,R0) ≡ 1⇒ χu ∈ D}.
(4.1.11)

Since D is dense in H (P is a self-adjoint operator – see §B.1.2) we also see
that Dcomp is dense in Hcomp in the sense that for each u ∈ Hcomp there
exists uj ∈ Dcomp such that uj → u in H. The same conclusion holds for

Dkcomp where Dk is the domain of P k.

Finally we assume

(4.1.12) 1lB(0,R0)(P (h) + i)−1 is compact.
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DEFINITION 4.1 (Black box Hamiltonians). A family of unbounded
selfadjoint operators, P (h), 0 < h < 1, on a complex Hilbert H satisfying
(4.1.1) is called a semiclassical black box Hamiltonian if (4.1.4),(4.1.5),(4.1.6)
and (4.1.12) hold. If P satisfies (4.1.4),(4.1.5),(4.1.6) and (4.1.12) for h = 1
we call it a black box Hamiltonian.

REMARK. A black box formalism is also possible for other operators than
−h2∆ – see Sjöstrand [Sj96a] for the development of that theory and §4.7
for more references.

EXAMPLES. 1. Potential scattering. Let V ∈ L∞comp(Rn;R) with

suppV ⊂ B(0, R0). If H = L2(Rn), D = H2(Rn) and P (h) := −h2∆ +
V (x) then all the black box assumptions are satisfied. This is the case of
scattering by compactly supported potentials presented in Chapters 2 and 3.
Assumptions (4.1.1), (4.1.4), (4.1.5) and (4.1.6) are also satisfied for more
singular compactly supported potentials for which P (h) = −h2∆+V (x) has
self-adjoint extensions. For instance we can take V ≥ 0, V ∈ L2(B(0, R0)).
However, (4.1.12) may not hold.

2. Obstacle scattering. Suppose that O ⊂ B(0, R0) is an open set such
that ∂O is a smooth hypersurface in Rn. Let H = L2(Rn \ O), and

D = H2(Rn \ O) ∩H1
0 (Rn \ O) = {u ∈ H2(Rn \ O) : u|∂O = 0}

and P = −∆ (the self-adjoint Dirichlet Laplacian on Rn \ O). This is the
case of Dirichlet obstacle scattering.

We can also take the Neumann Laplacian in which case D = {u ∈
H2(Rn \ O) : ∂νu|∂O = 0}, where ∂ν is the normal derivative with respect
to ∂O.

3. Scattering on finite volume surfaces. Let (X, g) be a complete
Riemannian surface with the following decomposition

X = X1 ∪X0, ∂X0 = ∂X1, smooth.

and

(X1, g|X1) = (S1
θ × [a,∞)r, dr

2 + e−2rdθ2)), a > 0, S1 = R/2πZ.

We define

(4.1.13) H = Ha ⊕ L2([a,∞), dr), Ha = L2(X0)⊕H0
a,

where (with Z∗ := Z \ {0})

H0
a =

{
{an(r)}n∈Z∗ : an ∈ L2([a,∞)),

∑
n∈Z∗

∫ ∞
a
|an(r)|2dr <∞

}
.
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For

u = (u|X0 , {an(r)}n∈Z∗ , a0(r)) ∈ L2(X0)⊕H0
a ⊕ L2([a,∞)) = H,

the projections are defined by

1l[0,a) u = u|[0,a)u := (u|X0 , {an(r)}n∈Z∗) ∈ Ha, 1l[a,∞) = u[a,∞) = a0(r).

The norm on H is given by

(4.1.14) ‖u‖2H :=

∫
X0

|u|X0 |2dVolg +
∑
n∈Z

∫ ∞
a
|an(r)|2dr.

The space H1(X) is defined by requiring that |du|2g is integrable with

respect to dVolg, where | • |2g is defined using the dual metric
∑

i,j g
ij(x)ξiξj ,

(gij) = (gij)
−1. We can indentify H1(X) with the subset of H since for

u ∈ H1(X), the restriction of u to any circle {r0} × S1
θ, r0 > a, is in L2(S1

θ)
and can be expanded into Fourier series:

H1(X) 3 u ι7−→
(
u|X0 , {e−r/2un(r)}n∈Z∗ , e−r/2u0(r)

)
,

un(r) :=
1

2π

∫
S1
u(r, θ)e−inθdθ, r > a.

(4.1.15)

The factor e−r/2 comes from the change of the Riemannian volume dVolg |X1 =
e−rdrdθ to the volume drdθ used in (4.1.14).

Fubini’s theorem shows for u ∈ L2(X), un(r) in (4.1.15) exist for almost
every r > a and define a function in L2. Hence the map in (4.1.15) extends
to an isomorphism

ι : L2(X) ' H.
For u ∈ C∞c (X),

∆gu|X1 =
(
e−r∂re

r∂r + e−2r∂2
θ

)
u(r, θ)

=
∑
n∈Z

(∂2
r − 1

4 − e
2rn2)(e−r/2un(r))einθ+r/2.(4.1.16)

We now define P as the Friedrichs extension of −∆g− 1
4 on C∞c (X) ⊂ H1(X)

identified using (4.1.15) with a subset ofH, obtained from the quadratic form

Qg(u, u) =
∑
n∈Z∗

∫ ∞
a

(
|∂ran(r)|2 + n2e2r|an(r)|2

)
dr

+

∫ ∞
a
|∂ra0(r)|2dr +

∫
X0

(
|du|2g − 1

4 |u|
2
)
dVolg, .

(4.1.17)

where an(r) := e−r/2 1
2π

∫
S1 u(r, θ). This gives a self-adjoint operator with

the domain D which is the image of H2(X) under the map ι in (4.1.15).
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The spaces H and the operator P satisfy the black box assumptions
(4.1.1),(4.1.4),(4.1.5) and (4.1.6) with Rn \ B(0, R0) replaced by a half-line
[a,∞). To check the condition (4.1.12), that is the fact that

(4.1.18) 1l[0,a)(P + i)−1 is a compact operator on H,

we first note that on the first component of Ha, the operator is

(4.1.19) 1lX0(P + i)−1 = 1lX0(−∆g − 1
4 + i)−1ι−1 : H → H2(X0),

and hence it is compact on H ' L2(X). Denoting by 1lH0
a

the orthogonal

projection onto H0
a in (4.1.13) and using (4.1.16) we see that

1lH0
a
(P + i)−1u = {bn(r)}n∈Z∗ , 1lH0

a
u = {an(r)}n∈Z∗ ,

(−∂2
r + e2rn2 + i)bn(r) = an(r), n 6= 0, r > a.

(4.1.20)

Since ι−1(P + i)−1u ∈ H2(X) ⊂ H1(X), we see from (4.1.17) that∑
n∈Z∗

∫ ∞
a

(|∂rbn(r)|2 + n2e2r|bn(r)|2)dr ≤ C‖u‖2H

But this and an adaptation of the Rellich–Kondrachev criterion (Theorem
B.4, Exercise 4.2) shows that the map

(4.1.21) u 7−→ {bn(r)}n∈Z∗ ∈ H0
a

is compact. That completes the proof of (4.1.18) and shows that P satisfies
the assumptions of Definition 4.1.

The same procedure work for surfaces of the form

X = X0 ∪X1 ∪ · · ·XN , ∂X0 =
N⊔
j=1

∂Xj ,

(Xj , g|Xj ) ' ([aj ,∞)r × (R/bjZ)θ, dr
2 + e−2rdθ2),

(4.1.22)

aj ∈ R, bj > 0.

Example 3 shows that HR0 can be a genuinely abstract Hilbert space un-
like the geometrically simple spacesHR0 = L2(B(0, R0)) andHR0(B(0, R0)\
O) in Examples 1 and 2 respectively. We will use Example 3 to illustrate
other interesting facts such as the Fermi Golden Rule.

4.2. MEROMORPHIC CONTINUATION

In this section we will prove that for a black box Hamiltonians, P (h), defined
in §4.1, the resolvent

(P (h)− λ2)−1 : H −→ D, Imλ > 0, λ2 /∈ Spec(P (h)),
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continues meromorphically as an operator from Hcomp to Dloc. When n is
odd the continuation is to λ ∈ C and when n is even to the logarithmic cover
of C:

(4.2.1) Λ = exp−1(C \ {0}).

Since it does not require much additional work, we temporarily break our
simplifying assumption that n is odd.

To obtain meromorphic continuation the condition (4.1.12) is essential.
Our taking λ2 as the spectral parameter is discussed in §2.1. We recall that
Imλ > 0 corresponds to the spectral parameter λ2 in C \ [0,∞).

Since the statement about meromorphic continuation is purely func-
tional analytic in nature we consider P = P (1) only. We start with two
lemmas.

LEMMA 4.2 (Compactness with a larger cut-off). Suppose that P is
a black box Hamiltonian. For R > R0 let 1lB(0,R) be the orthogonal projection

onto HR0 ⊕ L2(B(0, R) \ B(0, R0)). Then for λ2 /∈ Spec(P ), Imλ > 0, the
operators

(4.2.2) 1lB(0,R)(P − λ2)−1, (P − λ2)−1 1lB(0,R), R ≥ R0,

are compact H → H.

Proof. 1. For R = R0 and the first operator in (4.2.2) compactness follows
from (4.1.12) and the resolvent identity:

1lB(0,R0)(P −λ2)−1 = 1lB(0,R0)(P + i)−1 +1lB(0,R0)(P + i)−1(i+λ2)(P −λ2)−1.

(A compact operator composed with a bounded operator gives a compact
operator.)

2. To handle the case of R > R0 we note that the inclusion

H2(B(0, R) \B(0, R0)) ↪→ L2(B(0, R) \B(0, R0)),

is compact. Since (P − λ2)−1 : H → D, (4.1.4) shows that

(1lB(0,R)− 1lB(0,R0))(P − λ2)−1 is compact.

Hence the first operator in (4.2.2) is compact.

3. For Imλ > 0 we have Im(−λ̄) > 0. Hence 1lB(0,R)(P − (−λ̄)2)−1 is
compact. By taking the adjoint we see that the second operator in (4.2.2)
is compact. �

The next lemma is a version of the free resolvent estimate (3.1.24). For
future reference we formulate it in the semiclassical version:
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LEMMA 4.3 (Estimates on the resolvent in the physical half plane).
Suppose that P (h) is a semiclassical black box Hamiltonian. Then for k =
0, 1, 2 and τ > 0, we have

(4.2.3) ‖ 1lRn\B(0,R0)(P (h)− iτ)−1‖H→Hk
h(Rn\B(0,R0)) ≤ C〈τ〉

k/2τ−1,

where ‖u‖2
Hk
h(Ω)

:=
∑
|α|≤k ‖(hD)αu‖2L2(Ω).

Proof. 1. Self-adjointness of P (h) implies that

‖(P (h)− iτ)−1‖H→H =
1

τ
.

This and (4.1.1) give (4.2.3) for k = 0. Since

P (h)(P (h)− iτ)−1 = I + iτ(P (h)− iτ)−1

we see that

‖(P (h)− iτ)−1‖H→Dh ≤ C
〈τ〉
τ
,

where the norm on Dh = D is given by (4.1.8). This and (4.1.4) give (4.2.3)
for k = 2.

2. From the interpolation estimate

‖u‖H1
h(Rn\B(0,R0)) ≤ C‖u‖

1
2

L2(Rn\B(0,R0)
‖u‖

1
2

H2
h(Rn\B(0,R0)

,

(see for instance [Ev98, §5.4]) we obtain (4.2.3) for k = 1 from the estimates
for k = 0, 2. �

We are now ready for the main result of this section. We state it for
h = 1:

THEOREM 4.4 (Meromorphic continuation for black box Hamil-
tonians). Suppose that P is a black box Hamiltonian in the sense of Defi-
nition 4.1. Then

(4.2.4) R(λ) := (P − λ2)−1 : H → D is meromorphic for Imλ > 0.

In particular, the spectrum of P in (−∞, 0) is discrete.

Moreover, when n is odd, the resolvent in (4.2.4) extends to a meromor-
phic family

(4.2.5) R(λ) : Hcomp → Dloc, λ ∈ C.

When n is even (4.2.5) holds with C replaced by the logarithmic plane Λ
defined in (4.2.1).
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Proof. 1. We first consider the case of Imλ > 0. We choose χ0 ∈ C∞c (Rn; [0, 1])
with the property that

χ0(x) ≡ 1 for x ∈ B(0, R0 + ε), ε > 0.

We then choose χj ∈ C∞c (Rn; [0, 1]), j = 1, 2, 3 so that

(4.2.6) χj(x) ≡ 1 for x ∈ suppχj−1, suppχj ⊂ B(0, R),

for some fixed R > R0.

We also choose λ0 with Imλ0 > 0, λ2
0 /∈ Spec(P ) and define

Q(λ, λ0) := Q0(λ) +Q1(λ0),

Q0(λ) := (1− χ0)R0(λ)(1− χ1), Q1(λ0) := χ2(P − λ2
0)−1χ1.

(4.2.7)

Here R0(λ) = (−∆− λ2)−1 is the free resolvent – see §3.1.

From (4.1.7) we deduce that P (1− χ0) = −∆(1− χ0), and hence

(4.2.8) (P −λ2)Q0(λ) = 1−χ1 +K0(λ), K0(λ) := −[∆, χ0]R0(λ)(1−χ1).

Since Imλ > 0 and suppχ0 ⊂ B(0, R), we have

[∆, χ0]R0(λ)(1− χ1) : L2 → H2(B(0, R) \B(0, R0)).

We conclude that K0(λ) is a compact operator on H.

The corresponding contribution of Q1(λ0) is

(P − λ2)Q1(λ0) = χ1 +K1(λ, λ0),

K1(λ, λ0) := (λ2
0 − λ2)χ2(P − λ2

0)−1χ1 + [P, χ2](P − λ2
0)−1χ1.

(4.2.9)

Since suppχ2 ⊂ B(0, R), compactness of operators (4.2.2) shows that

K1(λ, λ0) : H → H is a compact operator.

We remark that this conclusion is valid for any λ ∈ C for n odd and λ ∈ Λ
for n even.

2. Putting (4.2.7),(4.2.8) and (4.2.9) together gives

(4.2.10) (P −λ2)Q(λ, λ0) = I +K(λ, λ0), K(λ, λ0) := K0(λ) +K1(λ, λ0),

where Imλ > 0, K(λ, λ0) is a compact operator. By Theorem C.8, (I +
K(λ, λ0))−1 : H → H will form a meromorphic family of operators in Imλ >
0 if we show that that inverse exists for a suitably chosen λ. That will be
achieved after making a suitable choice of λ0.

We choose

(4.2.11) λ0 = eiπ/4µ, µ� 1,
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so that Lemma 4.3 (applied with h = 1) gives

‖[P, χ2](P − λ2
0)−1χ1‖H→H

≤ C‖ 1lRn\B(0,R0)(P − iµ2)−1‖H→H1(Rn\B(0,R0)) ≤
C

µ
� 1,

and

‖[∆, χ0]R0(λ0)(1− χ1)‖H→H

≤ C‖ 1lRn\B(0,R0)(−∆− iµ2)−1‖H→H1(Rn\B(0,R0)) ≤
C

µ
� 1.

Definitions of K0(λ), K1(λ, λ0) and K(λ, λ0) in (4.2.8),(4.2.9) and (4.2.10)
respectively then give

‖K(λ0, λ0)‖H→H ≤ ‖K0(λ0)‖H→H + ‖K(λ0, λ0)‖H→H � 1.

This implies that for our choice of λ0 and for λ = λ0, I+K(λ, λ0) is invertible
on H. Hence, Theorem C.8 implies that

(I +K(λ, λ0))−1 : H → H, Imλ > 0,

is a meromorphic family of operators. Hence (4.2.10) shows that for Imλ > 0
and λ2 /∈ Spec(P ),

(4.2.12) (P − λ2)−1 = Q(λ, λ0)(I +K(λ, λ0))−1.

That provides the meromorphy of the left hand side as an operator H → H
in Imλ > 0. Thus we have proved (4.2.4).

3. We now consider meromorphic extension to the lower half plane and start
with the case of n odd. We will use (4.2.10) with λ0 given by (4.2.11).

For χ3 with the property (4.2.6) and K(λ, λ0) given in (4.2.10) we have

(1− χ3)K(λ, λ0) = 0.

Hence

I +K(λ, λ0) = (I +K(λ, λ0)(1− χ3))(I +K(λ, λ0)χ3),

(I +K(λ, λ0)(1− χ3))−1 = I −K(λ, λ0)(1− χ3).
(4.2.13)

From (4.2.12) we see that for Imλ > 0 (as meromorphic families of opera-
tors)

(4.2.14) (P − λ2)−1 = Q(λ, λ0)(I +K(λ, λ0)χ3)−1(I −K(λ, λ0)(1− χ3)).

4. To conclude the proof of (4.2.5) we observe the following facts valid for
n odd:

C 3 λ 7−→ K0(λ)χ3, C 3 λ 7−→ K1(λ, λ0)

are meromorphic families of compact operators on H.
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We note that if n ≥ 3 then the families are in fact holomorphic – see §3.1.
When n = 1 the only pole is at λ = 0, see §2.2.

In Step 2 of the proof we showed that I +K(λ0, λ0) is invertible on H.
The first equation in (4.2.13) gives

(I +K(λ0, λ0)χ3)−1 = (I +K(λ0, λ0))−1(I +K(λ0, λ0)(1− χ3)).

Consequently Theorem C.8 shows that

(4.2.15) λ 7→ (I +K(λ, λ0)χ3)−1 : H → H

is a meromorphic family of operators on C. We then note that

C 3 λ 7→ Q(λ, λ0) is a meromorphic family of operators H → Dloc,

and

λ 7→ I −K(λ, λ0)(1− χ3) : Hcomp → Hcomp ⊂ H.

In the last mapping property, the only term which is not bounded on H
comes from K0(λ). But we do have [−∆, χ0]R0(λ)(1−χ1) : Hcomp → Hcomp.

Using (4.2.15) we conclude that

λ 7→ R(λ) := Q(λ, λ0)(I +K(λ, λ0)χ3)−1(I −K(λ, λ0)(1− χ3)),

is a meromorphic family of operators Hcomp → Dloc for λ ∈ C. In view
of (4.2.14) this gives the meromorphic extension of (P − λ2)−1, Imλ > 0,
acting between these spaces.

5. For n even we use the fact that for the logarithmic plane Λ,

Λ 3 λ→ R0(λ) : L2
comp(Rn)→ H2

loc(Rn),

is a holomorphic family of operators. Hence all the statement in steps 3 and
4 of the proof hold if C is replaced by Λ and lead to the construction of the
meromorphic extension R(λ) : Hcomp → Dloc, λ ∈ Λ. �

As an immediate consequence of Theorem 4.4 we have a general result
about spectra of black box Hamiltonians:

THEOREM 4.5 (Spectrum of black box Hamiltonians). Let P sat-
isfy the assumptions of Theorem 4.4 and let n be odd. Then

Spec(P ) = Speccont(P ) ∪ Specpp(P ), Speccont(P ) = [0,∞),

Specpp(P ) = {zj}N+

j=N−
, zj ≤ zj+1,

(4.2.16)

where N± can take values ±∞, the multiplicities are finite, and the set

{zj}N+

j=N−
is discrete.



4.2. MEROMORPHIC CONTINUATION 237

REMARK. The theorem is also valid for n even but a more detailed anal-
ysis is needed near 0 – see Vodev [Vo94a],[Vo94b].

EXAMPLES. 1. Potential scattering. For P (h) = −h2∆ + V , V ∈
L∞comp(Rn) we obtain meromorphic extensions of (P (h)−λ2)−1 : L2

comp(Rn)→
H2

loc(Rn) to λ ∈ C for n odd and to λ ∈ Λ for n even. The proof of Theorem
4.4 is a generalization of the proofs of Theorems 2.2 and 3.8.

2. Obstacle scattering. Denote by −∆O the Dirichlet realization of −∆
on Rn \ O – see Example 2 in §4.2. Then Theorem 4.4 shows that

(−∆O − λ2)−1 : L2(Rn \ O)→ H2(Rn \ O) ∩H1
0 (Rn \ O),

continues meromorphically to C when n is odd, and to Λ when n is even.

One can formulate this result in terms of Green’s function of −∆O. For
Imλ > 0 we consider the Schwartz kernel G(λ, x, y) defined by

(−∆O − λ2)−1f(x) =

∫
Ω
G(λ, x, y)f(y)dy, f ∈ C∞c (Ω), Ω := Rn \ O,

where by local elliptic theory (see for instance [TaI, §5.11])

G(λ, x, y) ∈ C(Ωx, L
1
loc(Ω)), G(λ, x, y) = G(λ, y, x),

G(λ, x, y) ∈ C∞(Ω× Ω \∆(Ω)), ∆(Ω) := {(x, x) : x ∈ Ω}.
(4.2.17)

Theorem 4.4 shows that for fixed x 6= y the function λ 7→ G(λ, x, y) extends
to a meromorphic function on C or Λ depending on n being odd or even.
There are no poles for Imλ > 0. Since for fixed y, u(x) := G(λ, x, y) −
G(−λ, x, y) solves the equation (−∆O−λ2)u = 0, it follows that u ∈ C∞(Ω)
and that the properties (4.2.17) hold for all λ.

In the case of obstactle scattering a direct approach to meromorphic
continuation can be given using boundary layer potentials –see [TaII, §9.7].

3. Scattering on finite volume surfaces. Let (X, g) be a Riemann-
ian surface with finitely many cusps – see Example 3 in §4.1 and (4.1.22).
Theorem 4.4 shows that the resolvent of the Laplacian

(−∆g − 1
4 − λ

2)−1 : L2(X)→ H2(X), Imλ > 0,

continues meromorphically to C as an operator L2
comp(X)→ H2

loc(X). (Strictly
speaking we should use for R0(λ) the resolvent for, say, Dirichlet realization
of −∂2

s on [a − 1,∞) – the straightforward modifications are left to the
reader.) Since −∆g ≥ 0, Theorem 4.5 show that there are only finitely

many eigenvalues of −∆g in [0, 1
4 ] and hence

Speccont(−∆g) = [1
4 ,∞), Specpp(−∆g) = {Ej}Nj=0 ∪ {zj}Mj=1,
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0 = E0 < E1 ≤ · · · ≤ EN ≤
1

4
,

1

4
< z1 ≤ z2 ≤ · · · ,

and M can take the value +∞ (infinitely many eigenvalues embedded in the
continuous spectrum) or 0 (no embedded eigenvalues). A famous example
for which M = +∞ is given by the modular surface X = SL2(Z)\SL2(R) –
see [LP76]. As we will see for a generic metric g, M = 0.

The significance of the poles of the continuation of (−∆g − 1
4 − λ

2)−1 :

L2
comp(X) → H2

loc(X) will be discussed in §4.4 when we define distorted
plane waves and the scattering matrix.

DEFINITION 4.6 (Resonances for black box Hamiltonians). Let
P be a black box Hamiltonian (P = P (h) or is independent of h). Then
λ ∈ C for n odd and λ ∈ Λ (the logarithmic plane (4.2.1)) for n even is a
resonance of P if λ is a poles of the meromophic extension of (P − λ2)−1

given in Theorem 4.4. The multiplicity of a pole at λ is defined as

(4.2.18) mR(λ) := rank

∮
λ
R(ζ)dζ,

where the integral is over a circle containing no other pole of R(ζ) than λ.

The set of resonances will be denoted by Res(P ).

REMARKS. 1. The convention of meromorphically extending (P −λ2)−1,
that is taking λ2 as a spectral parameter, is useful when global extensions
are considered and is motivated by the wave equation – see 2.1. Sometimes,
especially when considering problems motivated by quantum mechanics and
the Schrödinger equation, it is more convenient to use z = λ2 as spectral
parameter. Away from 0 the two conventions are clearly equivalent. When
confusion is unlikely we will sometimes write Res(P ) for the image of the
set of resonances under the map λ 7→ z = λ2. As we will see in Theorem 4.7

λ 6= 0 =⇒ mR(λ) = rank

∮
λ
R(ζ)2ζdζ,

so the multiplicities agree when consider R as a function of λ or λ2.

We remark that the different conventions are unavoidable in a subject
touching different disciplines – see §1.1.

2. Self-adjointness of PV shows that for Imλ = − Im λ̄ > 0, (PV − λ2)−1 =
(PV − (−λ̄)2)−1. Hence by meromorphic continuation,

(4.2.19) R(λ) = R(−λ̄)∗, mR(λ) = mR(−λ̄).

The next result describes the structure of the singular part of the resol-
vent.
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THEOREM 4.7 (Singular part of RV (λ) for black box Hamiltoni-
ans). In the notation of the definition above suppose that mR(λ) > 0, λ 6= 0.
Then there exists Mλ ≤ mR(λ) such that

(4.2.20) R(ζ) = −
Mλ∑
k=1

(P − λ2)k−1

(ζ2 − λ2)k
Πλ +A(ζ, λ) ,

where ζ 7→ A(ζ, λ) is holomorphic near λ,

(4.2.21) Πλ := − 1

2πi

∮
λ
R(ζ) 2ζdζ , (P − λ2)MλΠλ = 0,

and

(4.2.22) mR(λ) = rank Πλ := dim Πλ(Hcomp).

In addition for any χ ∈ C∞c (Rn), χ ≡ 1 in a neighbourhood of B(0, R0),
we have

(4.2.23) mR(λ) = rank

∮
λ
R(ζ)χ 2ζdζ,

where the integral is over a circle containing no other pole of R(ζ) than λ.

Proof. 1. The first two statements (4.2.20) and (4.2.21) follow from steps 1
and 2 of the proof of Theorem 2.5. These can be read without referring to
the material of Chapter 2 so we do not reproduce them here.

2. We now prove (4.2.22). The operator Πλ has finite rank and hence, for
any k ∈ N,

(4.2.24) Πλ(Hcomp) = Πλ(Dkcomp).

(See the comment after (4.1.11).) If the rank of Πλ is Nλ then there exist

Vλ ⊂ DNλcomp, Wλ ⊂ DNλ , dimVλ = dimWλ = Nλ,

Wλ = Πλ(Hcomp) = Πλ(Vλ), (P − λ2) : Wλ →Wλ.

We then put

Bλ := (Πλ|Vλ)−1(P − λ2)Πλ, Bλ : Hcomp → Vλ,

and note that in the notation of (4.2.21)

BMλ
λ = 0.

The residue theorem and (4.2.20) give

1

2πi

∮
λ
R(ζ)dζ = Πλ

(
Mλ∑
k=1

(−1)k−1 (2k − 2)!

(k − 1)!
(2λ)−2k+1Bk−1

λ

)

=
1

2λ
Πλ(IVλ +Nλ),

(4.2.25)
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Nλ : Hcomp → Vλ, NMλ
λ = 0.

Since IVλ + Nλ : Vλ → Vλ is invertible (for instance by a finite Neumann
series) it follows that

dim

(
1

2πi

∮
λ
R(ζ)dζ

)
(Hcomp) ≥ dim Πλ(Vλ)

= dim Πλ(Hcomp) = rank Πλ.

The opposite inequality is clear from (4.2.25). The two give (4.2.22).

3. To obtain (4.2.23) we will use the proof of Theorem 4.4. In the notation
of (4.2.10) we put Q(ζ) := Q(ζ, λ0) and K(ζ) := K(ζ, λ0) (since λ0 is fixed
in (4.2.11)). That gives

R(ζ) = Q(ζ)−R(ζ)K(ζ).

For χ ∈ C∞c (Rn, [0, 1]), χ ≡ 1 in a neighbourhood of B(0, R0), we can choose
χj , j = 0, 1, 2 in the definition of K – see (4.2.8), (4.2.9) and (4.2.10) – so
that χK(ζ) = K(ζ). Hence

R(ζ) = Q(ζ)−R(ζ)χK(ζ).

We now use the holomorphy of ζ 7→ Q(ζ) to write

1

2πi

∮
λ
R(ζ)2ζdζ = − 1

2πi

∮
λ
R(ζ)χK(ζ)2ζdζ

= Πλχ

(
1

2πi

Mλ∑
k=1

∮
λ

(P − λ2)k−1K(ζ)2ζ

(ζ2 − λ2)k
dζ

)

= ΠλχK2(λ) =

(
1

2πi

∮
λ
R(ζ)χ 2ζdζ

)
K2(λ),

where

K2(λ) := − 1

2πi

Mλ∑
k=1

∮
λ

(P − λ2)k−1K(ζ)2ζ

(ζ2 − λ2)k
dζ.

Since ∂`λK(λ) : Hcomp → Hcomp, the residue calculus implies that

K2(λ) : Hcomp → Hcomp.

Using (4.2.22) it follows that

mR(λ) ≤ dim

(∮
λ
R(ζ)χ 2ζdζ

)
(Hcomp)

≤ dim

(∮
λ
R(ζ) 2ζdζ

)
(Hcomp) = mR(λ),

completing the proof of (4.2.23). �
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DEFINITION 4.8 (Resonant states). Let λ 6= 0 be a resonance of P and
let Πλ be given by (4.2.21). Then, in the notation of (4.2.20), an element
of Dloc

u ∈ Πλ(Hcomp), (P − λ2)u = 0,

is called a resonant state. Also,

v ∈ Πλ(Hcomp)

is call a generalized resonant state.

We note that in the notation of (4.2.20) (P − λ2)Mλv = 0.

THEOREM 4.9 (Characterization of resonant states). A vector u ∈
Dloc is a resonant state corresponding to λ ∈ C\{0} if and only if (P−λ2)u =
0 and there exist g ∈ L2

comp(Rn) and R > 0 such that

(4.2.26) u|Rn\B(0,R) = R0(λ)g|Rn\B(0,R).

INTERPRETATION. The theorem provides a stationary characteriza-
tion of resonant states as outgoing functions. A dynamical interpretation of
the outgoing property (4.2.26) in the spirit of Lax–Phillips [LP68] is given
as follows. Suppose that

(4.2.27) u0 := R0(λ)f, f ∈ D′(R3), supp f ∈ B(0, R), λ ∈ C,

and that u(t, x) ∈ C(R;D′(Rn), n ≥ 3, odd satisfies

(4.2.28)
�u(x, t) = 0, (t, x) ∈ R× Rn,

u(0, x) = u0(x), ∂tu(0, x) = −iλ0u0(x), x ∈ Rn \B(0, R),

Then

(4.2.29) suppu ⊂ {(t, x) : t < |x|+R}.

This means that outgoing initial data in the sense of (4.2.26) gives outgoing
solutions of the free wave equation in the sense of (4.2.29) – see Exercise 4.3
for an outline of the proof.

Proof of Theorem 4.9. 1. Suppose that χ1 ∈ C∞c (Rn) is equal to 1 in
B(0, R0) and χ ∈ C∞c (Rn) is equal to 1 on suppχ1. Then for Im ζ > 0,

(−∆− ζ2)(1− χ)R(ζ)χ1 = (P − ζ2)(1− χ)R(ζ)χ1

= (1− χ)χ1 − [P, χ]R(ζ)χ1

= −[P, χ]R(ζ)χ1.

This implies that for Im ζ > 0

(4.2.30) R0(ζ)[P, χ]R(ζ)χ1 = −(1− χ)R(ζ)χ1.

By analytic continuation (4.2.30) holds for ζ ∈ C.
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2. Using (4.2.21) we have from (4.2.30)

(1− χ)Πλχ1 =
1

2πi

∮
λ
R0(ζ)[P, χ]R(ζ)χ12ζdζ

=
1

2πi

∮
λ

Mλ∑
j=1

R0(ζ)

(ζ2 − λ2)j
2ζdζ [P, χ](P − λ2)j−1Πλχ1

=

Mλ∑
j=1

Tj(λ) [P, χ](P − λ2)j−1Πλχ1,

(4.2.31)

where

Tj(λ) :=
1

(j − 1)!
((2ζ)−1∂ζ)

j−1R0(ζ)|ζ=λ, T1(λ) = R0(λ).

3. Now suppose that u = Πλv, v ∈ Hcomp, is a resonant state. Choose χ
and χ1 in Step 1 so that χ1v = v. Since (P −λ2)j−1u = 0 for j > 1, (4.2.31)
gives

(1− χ)u = (1− χ)Πλv = (1− χ)Πλχ1v = T1(λ)[P, χ]Πλχ1v.

Since T1(λ) = R0(λ) we obtain (4.2.26) with g := [P, χ]Πλv.

4. We now assume that

u|Rn\B(0,R) = (R0(λ)g)|Rn\B(0,R) for some g ∈ L2
comp,

and that (P − λ2)u = 0. By applying −∆ − λ2 to both sides we see that
supp g ⊂ B(0, R).

We have R(ζ)(P−ζ2)χ = χ, again by meromorphic continuation. Hence,
using (P − λ2)u = 0,

χu = R(ζ)(P − λ2 + λ2 − ζ2)χu

= R(ζ)[−∆, χ]u+ (λ2 − ζ2)R(ζ)χu.
(4.2.32)

To analyse (1−χ)u we note that by reversing the roles of P and −∆ in the
derivation of (4.2.30) we obtain

R(ζ)[∆, χ]R0(ζ)χ1 = (1− χ)R0(ζ)χ1.

In particular by choosing χ1 = 1 on a neighbourhood of B(0, R) we see that

R(ζ)[∆, χ]R0(ζ)g = (1− χ)R0(ζ)g.

Hence,

(1− χ)R0(ζ)g = R(ζ)[∆, χ]R0(ζ)g

= R(ζ)[∆, χ] (R0(λ)g +R0(ζ)g −R0(λ)g)

= R(ζ)[∆, χ]u+R(ζ)[∆, χ] (R0(ζ)g −R0(λ)) g.

(4.2.33)
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We then define

u(ζ) := (1− χ)R0(ζ)g + χu, u(λ) = u.

Adding (4.2.32) and (4.2.33) gives

u(ζ) = R(ζ)
(
[∆, χ] (R0(ζ)−R0(λ)) g + (λ2 − ζ2)χu

)
.

Dividing by ζ2 − λ2 and integrating over a small positively oriented circle
centered at λ we obtain

u = u(λ) =
1

2πi

∮
λ

u(ζ)

ζ2 − λ2
2ζdζ

= − 1

2πi

∮
λ
R(ζ)

(
χu− [∆, χ]

R0(ζ)−R0(λ)

ζ2 − λ2
g

)
2ζdζ

=
Πλ

2πi

∮
λ

Mλ∑
k=1

(P − λ2)k−1

(ζ2 − λ2)k

(
χu− [∆, χ]

R0(ζ)−R0(λ)

ζ2 − λ2
g

)
2ζdζ

= Πλv,

where

v := χu−
Mλ∑
k=1

1

k!
(−∆− λ2)k−1[∆, χ]

(
(2λ)−1∂λ

)k
R0(λ)g ∈ Hcomp.

This proves the claim that u is a resonant state in the sense of Definition
4.8. �

4.3. UPPER BOUNDS ON THE NUMBER OF
RESONANCES

In this section we will obtain a far reaching generalization of Theorem 3.27
which gave upper bounds on the number of resonances for P = −∆ + V ,
V ∈ L∞comp(Rn), n odd.

To formulate the result in the black box setting we introduce a reference
operator P#(h). It is defined as follows. Let

TnR1
:= Rn/R1Z, R1 > R0.

In the notation of (4.1.1) we then put

(4.3.1) H#
R1

:= HR0 ⊕ L2(TnR1
\B(0, R0)),

where we identified B(0, R0) ⊂ Rn with its image under the projection
Rn → TnR1

. (We will use the same convention for B(0, R1) as well.) The
corresponding orthogonal projections are denoted by

u 7→ 1lB(0,R0) u = u|B(0,R0), u 7→ 1lTnR1
\B(0,R0) u = u|TnR1

\B(0,R0).
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If P (h) is a black box Hamiltonian in the sense of §4.1 with domain D
we define

D#
R1

:={u ∈ H#
R1

: χ ∈ C∞c (B(0, R1)), χ = 1 near B(0, R0) =⇒

χu ∈ D, (1− χ)u ∈ H2(TnR1
)}

(4.3.2)

and, for any χ with the property in (4.3.2),

P#
R1

(h) : D#
R1
→ H#

R1
,

P#
R1

(h)u := P (h)(χu) + (−h2∆)((1− χ)u).
(4.3.3)

Assumptions (4.1.4) and (4.1.5) show that this definition is independent of
the choice of χ.

DEFINITION 4.10 (The reference operator). For a black box Hamil-

tonian P (h) the operator P#
R1

(h) is called a reference operator. Once we fix
R1 > R0 we use notation

P#(h) : H# → D#.

The spaces spaces D#
h

α
are defined as in (4.1.8) and (4.1.9):

(4.3.4) ‖u‖D]h
α = ‖(P#(h) + i)αu‖H# .

REMARK. There are many possible choices for a reference operator. For
instance, instead of (4.3.1), (4.3.2) we can take

H# := HR0 ⊕ L2(B(0, R1) \B(0, R0)),

D# := {u ∈ H# : χ ∈ C∞c (B(0, R1)), χ = 1 near B(0, R0)⇒

χu ∈ D, (1− χ)u ∈ H2(B(0, R1)) ∩H1
0 (B(0, R1))}.

(4.3.5)

This means that we introduce the Dirichlet boundary condition on at ∂B(0, R1).
This will be useful in Example 2 below.

LEMMA 4.11 (Properties of the reference operator). Suppose P#(h)
is a reference operator defined by (4.3.3) for some R1 > R0. Then, with H#

given by (4.3.1),

(4.3.6) P#(h) : H# −→ H#,

is a self-adjoint operator with domain given by D# defined in (4.3.2).

The resolvent (P#(h)+i)−1 is compact and hence the spectrum of P#(h)
is discrete.
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Proof. In the proof we consider P = P (1) as h > 0 is a harmless parameter.

1. The symmetry of P# will follow from the definition (4.3.3) and from
(4.1.5). To see it, choose χj ∈ C∞c (B(0, R1)), χj = 1 near B(0, R0), so that,
with χ from (4.3.2),

(4.3.7) χ1 ≡ 1 near suppχ, χ ≡ 1 near suppχ2.

For u, v ∈ D#,

〈P#u, v〉H# = 〈P (χu), χ1v〉H + 〈−∆((1− χ)u), (1− χ2)v〉L2(Tn)

= 〈χu, P (χ1v)〉H + 〈(1− χ)u,−∆((1− χ2)v)〉L2(Tn)

= 〈u, P (χ1v)−∆((1− χ1)v)〉H# − 〈(1− χ)u, P (χ1v)〉H#

− 〈χu,−∆((1− χ2)v)〉H# + 〈u,−∆(χ1 − χ2)v〉H#

= 〈u, P#v〉H# + 〈u,Qv〉H# ,

where, using (4.3.7) (and our convention of multiplication operators),

Q := (1− χ)∆χ1 + χ∆(1− χ2)−∆(χ1 − χ2)

= (χ1 − χ)∆ + [∆, χ1] + (χ− χ2)∆− [∆, χ2]

− (χ1 − χ2)∆− [∆, χ1] + [∆, χ2] ≡ 0,

It follows that for u, v ∈ D#, 〈P#u, v〉H# = 〈u, P#v〉H# , that is P#, is
symmetric.

2. According to Theorem B.6 and the definitions following it, self-adjointness
of P# will follow from showing that D((P#)∗) ⊂ D#. Hence, suppose that
v ∈ H# and that for all u ∈ D#,

(4.3.8) 〈P#u, v〉H# ≤ C‖u‖H# ,

That is a characterization of v ∈ D((P#)∗) and it implies that there exists
w ∈ H# such that 〈u,w〉H# = 〈P#u, v〉H# for all u ∈ D#. We then have
w := (P#)∗v ∈ H#.

Taking u ∈ C∞c (Tn \ B(0, R0)), we have 〈u,w〉H# = 〈−∆u, v〉H# , and
hence

L2(Tn \B(0, R0)) 3 w|Tn\B(0,R0) = −∆(v|Tn\B(0,R0)).

It follows that v|Tn\B(0,R0) ∈ H2(Tn \ B(0, R0)). With χ as in step 1 this
gives

(4.3.9) (1− χ)v ∈ H2(Tn).

3. From (4.3.8) we also see that if χ2v1 = 0 (χj are as in (4.3.7)) and

(1− χ2)v1 ∈ H2(Tn) then v1 ∈ D((P#)∗). As χ2(1− χ)v = 0, (4.3.9) shows

v ∈ D((P#)∗) =⇒ v1 := χv = v − (1− χ)v ∈ D((P#)∗).
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We now apply (4.3.8) with this v1 (noting that v1 ∈ H) and u ∈ χ1D ⊂ D#:

〈Pu, v1〉H = 〈P#u, v1〉H ≤ ‖u‖H.
This implies that v1 ∈ D(P ∗) = D(P ) showing that

χv = v1 ∈ D.
Combined with (4.3.9) and the definition (4.3.2) we obtain v ∈ D#. We
proved that D((P#)∗) ⊂ D# and as P# is symmetric (step 1), it follows
that P# is self-adjoint.

4. To prove compactness of (P# + i)−1 we consider a bounded sequence
uj ∈ H# and vj := (P# + i)−1uj ∈ D#,

‖vj‖H# + ‖P#vj‖H# ≤ C.
It follows that (1 − χ)vj is a bounded sequence in H2(Tn) which then (see

Theorem B.4) has a convergent subsequence in L2(Tn), and hence in H#.

On the other hand, χvj ∈ D and

(P + i)χvj = [−∆, χ]vj + χ(P# + i)(P# + i)−1uj =: wj + χuj .

The wj ’s can be considered as elements of L2(B(0, R1) \ B(0, R0)) and,
since (1− χ2)vj ’s are bounded in H2(Tn), wj are bounded in L2(B(0, R1) \
B(0, R0)), and hence in H. Also χuj form a bounded sequence in H. Hence,

χvj = 1lB(0,R1) χvj = 1lB(0,R1)(P + i)−1(wj + χuj).

Lemma 4.2 shows that 1lB(0,R1)(P + i)−1 is a compact operator which shows
that χvj has a convergent subsequence in H. It follows that vj has a con-

vergent subsequence in H#. �

The lemma shows that the spectrum of P#(h) is discrete. To count
resonances we make the following assumption about the counting function
for the eigenvalues of P#(h):

(4.3.10) |Spec(P#(h)) ∩ [−r2, r2]| ≤ C0r
n#
h−n

#
, r ≥ 1, 0 < h < h0,

for some n# ≥ n.

REMARK. The upper bound in terms t 7→ tn
#

can be replaced by a more
general bound t 7→ Φ(t) where Φ is increasing and satisfies some natural

conditions. The conclusion (4.3.17) below then holds with tn
#

replaced by
Φ(t) – see [SZ91],[Sj02], and [Vo92].

EXAMPLES. 1. Elliptic perturbations of the semiclassical Lapla-
cian. Suppose that

P (h)u :=

n∑
i,j=1

hDxj (aij(x)hDxiu) + c(x)u,
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where aij − δij , cj ∈ C∞c (B(0, R0),R),

n∑
i,j=1

aij(x)ξjξi ≥ c0|ξ|2, c0 > 0,

and H = L2(Rn) and D = H2(Rn). This operator satisfies all the black
box assumptions from §4.1. Theorem 4.4 then provides the meromorphic
continuation of the resolvent.

The reference operator P#(h) is the same elliptic operator acting on

D# = H2(T#
R1

), R1 > R0. Standard estimates for the number of eigenvalues

of elliptic operators (see for instance [Zw12, Theorem 14.11]) show that
(4.3.10) holds with n# = n.

2. Pseudo-Laplacian for finite volume surfaces. In Example 3 of §4.1
(see (4.1.22)) the Hilbert spaces is given by H = Ha ⊕ L2([a,∞)) In that
case it is more useful to consider the reference operator defined using (4.3.5).
For b > a we put

H#
b := Ha ⊕ L2([a, b]).

The operator P#
b is then pseudo-Laplacian of Lax–Phillips and Colin de

Verdière [CdV83]. We claim that (4.3.10) holds with n# = 2 (note that
now n = 1 and we do not have a semiclassical parameter):

(4.3.11) |Spec(P#
b ) ∩ [0, r2]| ≤ Cr2, r > 1.

Since P#
b ≥ 0 this is the same as (4.3.10).

REMARK. One can improve (4.3.11) to obtain an asymptotic formula for

the number of eigenvalues of P#
b – see [CdV83, §4]. That proceeds through

an improved version of the following lemma – see [CdV83, Lemma 4.2].

To prove the bound (4.3.11) we use

LEMMA 4.12. Let (Cα,β, g0) be the cylinder [α, β]×S1, S1 = R/Z, α > 0,
equipped with the metric g0 = dr2 + e−2rdθ2. We say that ϕ ∈ H2(Cα,β) is
a Neumann eigenfuction of the Laplacian on Cα,β with eigenvalue E if

(4.3.12)

−∆ϕ = Eϕ, E ≤ k2, ∂yϕ(α, θ) = ∂yϕ(β, θ) = 0,∫ 2π

0
ϕ(y, θ)dθ = 0, α < y < β.

Let Nα,β(k) be the number of independent Neumann eigenfunctions with
E ≤ k2. Then, with C independent of α and β,

Nα,β(k) ≤ eβ − eα

e2α
k2 +

C

eα
k.(4.3.13)
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Proof. 1. An explicit calculation gives the result for the counting function
M`(k) for the same class of of eigenfunctions but for the cylinder K`,A :=
[A,A + `] × S1, A > 0, with the metric g1 = dr2 + dθ2: the eigenfunctions
are given by

ϕ(r, θ) = cos

(
mπ(y −A)

`

)
einθ, m ∈ N0, n ∈ Z \ {0},

E =
(mπ
`

)2
+ n2.

The counting function of E ≤ k2 satisfies

(4.3.14) M`(k) ≤ `k2 + Ck.

2. We now introduce a diffeomorphism κ : Cα,β → K`,A, ` = eβ−eα, A = eα,
given by κ(r, θ) = (er, θ). Then

(4.3.15) κ∗g1 = e2rg0, κ∗dVolg1 = e2rdVolg0 ,

and ∫
K`,A

|df |2g1dVolg1 =

∫
Cα,β

|dκ∗f |2κ∗g0κ
∗dVolg1

=

∫
Cα,β

|dκ∗f |2g0dVolg0 .

(4.3.16)

(We note that |df(r, θ)|2g1 is calculated using the dual metric on T ∗(r,θ)K`,M

so that the two factors e2r cancel.)

From (4.3.15) we see that

dVolg0 |Cα,β = e−2rκ∗dVolg1 |Cα,β ≤ e
−2ακ∗dVolg1 |Cα,β ,

which combined with (4.3.16) gives∫
Cα,β
|dκ∗f |2g0dVolg0∫

Cα,β
|κ∗f |2dVolg0

≥ e2α

∫
K`,A
|df |2g1dVolg1∫

K`,A
|f |2dVolg1

.

This provides a comparison for Rayleigh quotients used in the min-max
characterization of eigenvalues (see Theorem B.12): from (B.1.14) we see
that eigenvalues of each metric satisfy λk(g0) ≥ e2αλk(g1). This leads to a
comparison of the counting function (see (4.3.12)):

Nα,β(k) ≤Meβ−eα(k/eα).

Using (4.3.14) we then obtain (4.3.13). �
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Proof of (4.3.11). The operator P#
b with domain given by (4.3.5) is obtained

(just as P was) from the quadratic form (4.1.17) restricted to the domain
(in the notation of (4.1.17))

D#
Q = {u ∈ H1(X) : a0(r) = 0 for r > b}.

Here we used the fact that

{u ∈ H1((−∞,∞)) : u(r)|r>b = 0} 3 u 7→ u|r≤b ∈ H1
0 ((−∞, b]),

is an isomorphism.

We now see that

D#
Q ⊂ H

1(X0)⊕
∞⊕
p=0

{
u ∈ H1(Cb+p,b+p+1),

∫ 2π

0
u(r, θ)dθ ≡ 0

}
.

Let NX0(k) be the counting function for eigenvalues less than k2 of the
Neumann realization of −∆g on X0. By the standard Weyl law we have

NX0(k) ' Vol(X0)

4π
k2.

It now follows from Theorem (B.1.14) and Lemma 4.12 that, for r ≥ 1,

| Spec(P#
b ) ∩ [0, r2]| ≤ NX0(r) +

∞∑
p=0

NCb+p,b+p+1
(r)

≤ Cr2 + C
∞∑
p=0

r2e−p ≤ C ′r2,

which is (4.3.11). �

We now come to the main result of this section. As remarked after
(4.3.10) a more general counting functions are possible.

THEOREM 4.13 (Upper bounds on the number of resonances).
Suppose that P (h) is a semiclassical black box Hamiltonian with n ≥ 1 odd,
and that (4.3.10) hold. Then for some constant C1

(4.3.17)
∑
{mR(λ) : |λ| ≤ r} ≤ C1r

n#
h−n

#
, r > 1.

REMARK. When n is even or when perturbations have long range, global
bounds are more complicated – see §4.7. Semiclassical bounds in compact
sets away from 0, for compactly supported perturbations, can be proved by
the methods presented here – see Theorem 7.4 for a simple version.

Before starting the proof of Theorem 4.13 we modify some notation from
the proof of Theorem 4.4. First, we define the semiclassical free resolvent

(4.3.18) R0(λ, h) = (−h2∆− λ2)−1 = h−2R0(λ/h), Imλ > 0,
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and the meromorphic extension of the resolvent of P (h).

R(λ, h) = (P (h)− λ2)−1, Imλ > 0.

Step 4 in the proof Theorem 4.4 shows that

R(λ, h)χ = (Q0(λ, h) +Q1(h))(I +K(λ, h))−1,

where

Q0(λ, h) := (1− χ0)R0(λ, h)(1− χ1),

Q1(h) := χ2(P (h)− λ2
0)−1χ1,

K(λ, h) := K0(λ, h) +K1(λ, h),

K0(λ, h) := [−h2∆, χ0]R0(λ, h)(1− χ1)χ,

K1(λ, h) := (λ2
0 − λ2)χ2(P (h)− λ2

0)−1χ1

+[−h2∆, χ2](P (h)− λ2
0)−1χ1

(4.3.19)

We use the cut-off functions (4.2.6) and χ = χ3.

Step 2 in the proof of Theorem 4.4 shows that λ0 can be chosen inde-
pendently of h. We recall that λ0 has to be chosen so that I + K(λ0, h) is

invertible. With λ0 given by (4.2.11), λ0 = eiπ/4µ, we apply Lemma 4.3 to
obtain

‖[−h2∆, χ2](P (h)− λ2
0)−1χ‖H→H ≤ Ch/µ,

and

‖[−h2∆, χ0]R0(λ0, h)(1− χ1)χ‖H→H ≤ Ch/µ.
Since 0 < h < 1, we can take µ fixed and large and conclude that

(4.3.20) K(λ0, h) ≤ 1

2
,

obtaining invertibility of I +K(λ0, h).

We have two lemmas related to K(λ, h):

LEMMA 4.14 (Estimates on singular values). With the notation of

(4.3.19) and for λ0 = eiπ/4µ with µ ≥ 1 fixed and large, we have the following
characteristic value estimates:

sj
(
χ2(P (h)− λ2

0)−1χ
)
≤ C

(
µ2 + (hj1/n#

)2
)−1

,

sj
(
[−h2∆, χ2](P (h)− λ2

0)−1χ
)
≤ Ch

(
µ2 + (hj1/n#

)2
)−1/2

.

(4.3.21)

Proof. 1. For P (h) replaced by P#(h) the first estimate in (4.3.21) follows
from (4.3.10). To see that let {µ2

j}∞j=0, 0 ≤ µj ≤ µj+1, be the eigenvalues of

(P (h)#)2. Then (4.3.10) means that for 0 < h < h0,

µj < r2 =⇒ j < C0(max(r, 1)/h)n
#
.
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This implies that

j = C0(r/h)n
#
, r ≥ 1 =⇒ µj ≥ r2 = ((j/C0)1/n#

h)2.

If ((j/C0)1/n#
h)2 < 1 then we only conclude µj ≥ 0. Thus for all j,

µj ≥ ((j/C0)1/n#
h)2 − 1.

Since µ ≥ 1,

µj + µ2 ≥ 1
2µ

2 + (h(j/C0)1/n#
)2,

and

sj

(
(P#(h)− λ2

0)−1
)
≤ C/(µ2 + (hj1/n#

)2).

Since we are taking singular values of self-adjoint operators we also have

(4.3.22) sj

(
(P#(h)− λ2

0)−
1
2

)
≤ C/(µ2 + (hj1/n#

)2)−
1
2 .

We then consider multiplication by χ and χ2 as bounded function on
L2(Tn) and obtain the first estimate in (4.3.21) with P#(h) in place of
P (h).

2. To obtain the second estimate in (4.3.21) we note that

sj

(
[−h2∆, χ2](P#(h)− λ2

0)−1
)

≤ Ch‖(1− χ0)(P#(h)− λ2
0)−

1
2 ‖H#→H1

h(Tn)sj

(
(P#(h)− λ2

0)−
1
2

)
,

where the last factor on the right is estimated by (4.3.22). The estimate the
first term we write

‖(1− χ0)(P#(h)− λ2
0)−

1
2 ‖H#→H1

h(Tn) ≤ C‖(P#(h)− λ2
0)−

1
2 ‖
H#→D#

h

1
2

= C‖(P#(h) + i)
1
2 (P#(h)− λ2

0)−
1
2 ‖H#→H#

= C‖(I + (λ2
0 + i)(P#(h)− λ2

0)−1)
1
2 ‖H#→H# ≤ C ′,

where we used definition (4.3.4) and (4.1.10) and the fact that ‖(P#(h) −
λ2

0)−1‖ = ‖(P#(h) + µ2i)−1‖ = µ−2.

We reiterate the conclusions of Steps 1 and 2:

sj(χ2(P#(h)− λ2
0)−1χ) ≤ C(µ2 + (hj1/n#

)2)−1,

sj([−h2∆, χ2](P#(h)− λ2
0)−1χ) ≤ Ch(µ2 + (hj1/n#

)2)−1/2.
(4.3.23)

3. We now compare the resolvents of P#(h) and P (h). We claim that for
χ ∈ C∞c (B(0, R1) which is equal to 1 in a neighbourhood of B(0, R0) we
have, for any N ,

(4.3.24) χ(P#(h)− λ2
0)−1χ− χ(P (h)− λ2

0)−1χ = ON (h∞)H→DNh
.
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We note that although operators P# and P act on different spaces, the
cut-off functions produce operators acting on H or H#.

To see (4.3.24) we choose χ4 ∈ C∞c (B(0, R1)) such that χ4 = 1 in suppχ.
The estimate (4.3.24) follows from the same estimate for

(4.3.25) Q(h) := χ4(P#(h)− λ2
0)−1χ− χ4(P (h)− λ2

0)−1χ.

Since χ4P
# = χ4P (see (4.1.5)) we have

(P (h)− λ2
0)Q(h) = [−h2∆, χ4] (A(h)−B(h)) ,

A(h) := ψ(P#(h)− λ2
0)−1χ, B(h) := ψ(P (h)− λ2

0)−1χ,

where

ψ ∈ C∞c (B(0, R1)), [−∆, χ4]ψ = [−∆, χ4], suppψ ∩ suppχ = ∅.

4. Since

Q(h) = (P (h)− λ2
0)−1[−h2∆, χ4] (A(h)−B(h)) ,

the estimate for Q(h), and hence (4.3.24), follow from

(4.3.26) A(h), B(h) = ON (h2N )H→DNh
.

To establish this we choose ϕj ∈ C∞c (B(0, R1)), j = 1, · · · , N , with the
following properties

ϕ1χ = 1, ϕj |suppϕj−1 = 1, ϕ2Nψ = 0.

That is possible since the supports of ψ and χ are disjoint. Note that ϕj
are equal to 1 near B(0, R0) as χ is equal to 1 there.

The properties of the supports give

ψ(P (h)− λ2
0)−1ϕ2N (P (h)− λ2

0) = ψ(P (h)− λ2
0)−1[ϕ2N , P (h)],

and

[ϕj , P (h)](P (h)−λ2
0)−1ϕj−1(P (h)−λ2

0) = [ϕj , P (h)](P (h)−λ2
0)−1[ϕj−1, P (h)].

These can be re-written as

ψ(P (h)− λ2
0)−1ϕ2N = ψ(P (h)− λ2

0)−1[ϕ2N , P (h)](P (h)− λ2
0)−1,

[ϕj , P (h)](P (h)− λ2
0)−1ϕj−1 = [ϕj , P (h)](P (h)− λ2

0)−1[ϕj−1, P (h)](P (h)− λ2
0)−1.

Hence

B(h) = ψ(P (h)− λ2
0)−1χ = ψ(P (h)− λ2

0)−1ϕ2N · · ·ϕ1χ

= ψ(P (h)− λ2
0)−1[ϕ2N , P (h)](P (h)− λ2

0)−1

[ϕ2N−1, P (h)](P (h)− λ2
0)−1 · · · [ϕ1, P (h)](P (h)− λ2

0)−1χ.

With the norms defined in (4.1.9) we have

[ϕj , P (h)](P (h)− λ2
0)−1 = O(h) : Dkh → D

k+ 1
2

h ,
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which gives

B(h) = O(h2N ) : H → DNh .

The proof for A(h) is similar. We note that Dh can be replaced by D#
h in the

estimate. This gives (4.3.26). By going back to (4.3.25) we obtain (4.3.24).

5. We can now prove (4.3.21) using (4.3.23) and (4.3.24): with Q(h) defined
by (4.3.25) we have (see (B.3.5))

sj(χ2(P (h)− λ2
0)−1χ) ≤ s[j/2](χ2(P#(h)− λ2

0)−1χ) + s[j/2](Q(h))

≤ C

µ2 + (hj1/n#)2

+ s[j/2]((P
#(h)− λ2

0)−N )‖Q(h)‖H→DNh

≤ C

µ2 + (hj1/n#)2
+

Ch2N

(µ2 + (hj1/n#)2)N

≤ C ′

µ2 + (hj1/n#)2
.

The argument for the second estimate in (4.3.21) is similar. �

LEMMA 4.15 (Upper bound on multiplicities of resonances). With

the notation of (4.3.19) and for λ0 = eiπ/4µ with µ > 0 fixed and large,

K(λ, h)n
#+1 ∈ L1(H,H), and

mR(λ) ≤ mH(λ) :=
1

2πi

∮
λ

∂ζH(ζ, h)

H(ζ, h)
dζ,

H(ζ, h) := det(I − (−K(ζ, h))n
#+1).

(4.3.27)

where mR(λ) is the multiplicity of the resonance at λ given by (4.2.18) and
the integral is over a positively oriented circle containing no other resonances
than λ.

Proof. 1. The trace class property of K(λ, h)n
#+1 follows from the estimates

on the singular values: from Proposition B.15 we have

sj(K(λ, h)n
#+1) ≤

(
s[j/(n#+1)](K(λ, h))

)n#+1
,

s`(K(λ, h)) ≤ (|λ|2 + µ2)s[`/3](χ2(P (h)− λ2
0)−1χ)

+ s[`/3]([−h2∆, χ2](P (h)− λ2
0)−1χ)

+ s[`/3]([−h2∆, χ0]R0(λ, h)χ).

(4.3.28)

To estimate the last term we consider

[−h2∆, χ0]R0(λ, h)χ = Oλ,h(1) : L2(Tn)→ H1(Tn), Tn := Rn/(R2Z)n,
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for some large R2. Hence, using (B.3.6),

sk([−h2∆, χ0]R0(λ, h)χ) ≤

sk((−∆Tn + i)−1/2)‖[−h2∆, χ0]R0(λ, h)χ‖L2(Tn)→H1(Tn) ≤ Cλ,hk−1/n.

Using this and (4.3.21) in (4.3.28) we conclude that for j ≥ 1,

sj(K(λ, h)) ≤ C ′λ,h(j−2/n#
+ j−1/n#

+ j−1/n)n
#+1 ≤ C ′′λ,hj−(n#+1)/n#

.

Thus the singular values are summable and definition (B.4.2) shows that
K(λ, h) is of trace class.

(The main effort in the proof of Theorem 4.13 will be to improve this
rough estimate on characteristic values.)

2. The proof of (4.3.27) is based on the Gohberg-Sigal theory reviewed in

§C.4 and the identity based (4.2.13) and (1− q)−1 = (1 + q+ · · ·+ qn
#

)(1−
qn

#+1)−1:

R(λ, h)χ = Q(λ, h)χW (λ, h)(I − (−K(λ, h))n
#+1)−1(I +K(λ, h)(1− χ)).

W (λ, h) := (I −K(λ, h) + · · ·+ (−1)n
#
K(λ, h)n

#
).

Theorems 4.7 (specifically (4.7)) and C.11 (apply (C.4.3) with A(λ) = I +

(−K(λ, h))n
#+1) give the estimate on the multiplicities. �

Proof of Theorem 4.13. 1. In view of (4.3.27) we need to estimate the num-
ber of zeros of H in the disc of D(0, r), r > 1. We can assume that r is large
enough so that r � |λ0|. The Jensen formula (D.1.10) gives the estimate
(D.1.11):

(4.3.29)
∑
{mH(λ) : |λ| ≤ r} ≤ C max

|λ|≤2r
log |H(λ, h)| − C log |H(λ0, h)|.

2. We start with the upper bound on H(λ, h). The estimate (4.3.28) and
the Weyl inequalities of Proposition B.25 show that

(4.3.30) log |H(λ, h)| ≤ C(logP1 + logP2 + logP3),

where

P1 :=
∞∏
j=0

(
1 + sj

(
(|λ|2 + |λ0|2)χ2(P (h)− λ2

0)−1χ
)n#+1

)
,

P2 :=

∞∏
j=0

(
1 + sj([−h2∆, χ2](P (h)− λ2

0)−1χ)n
#+1

)
,

P3 :=
∞∏
j=0

(
1 + sj([−h2∆, χ0]R0(λ, h)χ)n

#+1
)
.

(4.3.31)
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To estimate P1 and P2 we use (4.3.21): since λ0 = eπi/4µ is fixed we drop
the dependence on µ:

logP1 ≤
∞∑
j=0

log

(
1 +

(
C〈λ〉2

1 + (hj1/n#)2

)n#+1
)

≤ C log〈λ〉+
∞∑
j=2

log

(
1 +

(
C〈λ〉h−1j−1/n#

)2(n#+1)
)

≤ C log〈λ〉+

∫ ∞
1

log

(
1 +

(
Ch−1〈λ〉x−1/n#

)2(n#+1)
)
dx

≤ C log〈λ〉+ C ′h−n
#〈λ〉n#

∫ ∞
1

log
(

1 + y−2(n#+1)/n#
)
dy

≤ C ′′h−n#〈λ〉n#
.

(The integral comparison is justified as x 7→ log(1 + αx−β), α, β > 0, is a

decreasing function.) A similar argument shows that logP2 ≤ Ch−n
#

: using
the second estimate in (4.3.21) and dropping the dependence on the fixed
constant µ,

logP2 ≤
∞∑
j=0

log

(
1 + Ch

(
1 + (hj1/n#

)2
)− 1

2
(n#+1)

)

≤ C +

∫ ∞
1

log
(

1 + Ch(h−1x−1/n#
)(n#+1)

)
dx

≤ C + C ′h−n
#〈λ〉n#

∫ ∞
1

log
(

1 + y−(n#+1)/n#
)
dy

≤ C ′′h−n#
.

3. We now need to estimate logP3 in (4.3.31). We will use the following
estimate proved in Steps 6 and 7 below:

sj([−h2∆, χ0]R0(λ, h)χ) ≤ C〈λ〉h−1j−1/n

+ exp
(
〈λ〉/h− j1/n−1/C

)
.

(4.3.32)

Assuming (4.3.32) we obtain,

logP3 ≤ C
∞∑
j=1

(
log
(

1 + C(〈λ〉h−1j−1/n)n
#+1

)
+ log

(
1 + e〈λ〉/h−j

1/n−1/C
))

≤ C(〈λ〉/h)n +

C(〈λ〉/h)n−1∑
j=1

〈λ〉/h+

∞∑
C〈λ〉/h

e−j
1/n−1/C′

≤ C(〈λ〉/h)n.
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Here we used the same argument as in Step 2 to estimate the sum of log(1+

C(〈λ〉j1/n)n
#+1). This estimate and the estimates on logP1 and logP2 in

Step 2, show that (see (4.3.31)) that

(4.3.33) logH(λ, h) ≤ C(〈λ〉/h)n
#

4. Going back to (4.3.29) we need a lower bound on log |H(λ0, h)|. For that
we write

H(λ0, h)−1 = det
(

(I − (−K(λ0, h))n
#+1)−1

)
Now,

(I − (−K(λ0, h))n
#+1)−1 = I − (I − (−K(λ0, h))n

#+1)−1K(λ0, h))n
#+1.

From (4.3.20) we see that

‖(I − (−K(λ0, h))n
#+1)−1‖H→H ≤ 2,

and hence, using Weyl inequalities again (see Proposition B.25), we see that

| det
(

(I − (−K(λ0, h))n
#+1)−1

)
| ≤

∞∏
j=0

(
1 +

(
s[j/(n#+1)](K(λ0, h))

)n#+1
)

≤
∞∏
j=0

(
1 + (sj(K(λ0, h)))n

#+1
)n#+1

.

From the estimates in Steps 2 and 3 we see that

|H(λ0, h)−1| ≤ Ch−n#
.

This, (4.3.33) and (4.3.29) show that∑
{mH(λ) : |λ| ≤ r} ≤ Crn#

h−n
#
, r > 1.

In view of (4.3.27) this proves the theorem.

5. It remains to establish (4.3.32). Since R0(λ, h) = h−2R0(λ/h) (see
(4.3.18)) it is enough to show that

(4.3.34) sj([∆, χ0]R0(λ)χ) ≤ C〈λ〉j−1/n + exp(C〈λ〉 − j1/n−1/C).

(We remark that the proof of Theorem 3.28 contains a slightly simpler ver-
sion of this estimate.)

We start with the estimate for Imλ ≥ 0. Then considering the operator
[∆, χ0]R0(λ)χ as acting on L2(Tn), Tn := Rn/R2Zn for some large R2,

sj([∆, χ0]R0(λ)χ) ≤ sj((−∆Tn + I)−1/2)‖χR0(λ)χ‖L2(Tn)→H2(Tn)

≤ Cj−1/n〈λ〉,
(4.3.35)
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where we used the estimate (3.1.12) for the norm of χR0(λ)χ. This gives
the estimate (4.3.34) for Imλ ≥ 0.

6. To obtain estimates for Imλ < 0 we use Stone’s formula (3.1.19) and
write

χ(R0(λ)−R0(−λ))χ = anλ
n−2Eχ(λ̄)∗Eχ(λ) ,

Eχ(λ)u(ω) :=

∫
Rn
e−iλ〈ω,y〉χ(y)u(y)dy ,

Eρ(λ) : L2(Rn)→ L2(Sn−1) .

(4.3.36)

Then (B.3.5) gives

sj([∆, χ0]R0(λ)χ) ≤ C〈λ〉n−2‖[−∆, χ0]Eρ(λ)‖s[j/2](Eχ(λ))

+ s[j/2]([∆, χ0]R0(−λ)χ)

≤ C exp(C〈λ〉)s[j/2](Eχ(λ)) + C〈λ〉j−1/n .

(4.3.37)

7. To estimate sj(Eχ(λ)) we repeat the argument of Step 4 of the proof of
Theorem 3.28. If −∆Sn−1 is the Laplacian on Sn−1 then (B.3.6) gives

sj(Eχ(λ)) ≤ sj((−∆Sn−1 + 1)−`)‖(−∆Sn−1 + 1)`Eχ(λ)‖

≤ C`j−2`/(n−1)‖(−∆Sn−1 + 1)`Eχ(λ)‖

≤ C`1j−2`/(n−1) exp(C1|λ|)(2`)! .

(4.3.38)

An optimization of this estimate in ` gives

sj(Eχ(λ)) ≤ C2 exp
(
C2|λ| − j

1
n−1 /C2

)
.

Combined with (4.3.37) this gives (4.3.32) completing the proof of theorem.
�

Theorem 4.13 applies to Examples 1 and 2 presented earlier in this sec-
tion. In the case of Example 2 the fact that n# > n gives asymptotics for
the number of resonances. We conclude this section with a classical scatter-
ing problem in which the first polynomial, and optimal, bound was given by
Melrose [Me84b]:

EXAMPLE. Consider scattering by an obstacle O in odd dimensions (Ex-
ample 2 in §4.1) with any self-adjoint boundary condition. Let mO(λ) be
the multiplicity of a resonance λ of the corresponding Laplacian. Eigenvalue
counting estimates for the Laplacian on a compact manifold with boundary
Tn \ O, Tn := Rn/R2Zn show that (4.3.10) holds with n# = n. Hence,
Theorem 4.13 applied with h = 1 gives∑

{mO(λ) : |λ| ≤ r} ≤ Crn, r > 1.



258 4. BLACK BOX SCATTERING IN Rn

This bound is optimal as shown by the example of the sphere – see Stefanov
[St06] and references given there.

4.4. PLANE WAVES AND THE SCATTERING MATRIX

In this section we define the scattering matrix for a black box operator.
Since we will deal with exact formulas and not asymptotic properties we
only consider the case h = 1. All the formulas remain valid for operator
P (h) with the obvious rescaling:

−h2∆ −∆, P (h) h−2P (h), λ λ/h.

Our presentation will be close to that in §§3.6 and 3.7. As did previ-
ous section of this chapter it will also depend on the properties of the free
resolvent from §3.1.

4.4.1. Outgoing solutions. The plane waves,

e0(λ, ω) = e0(λ, ω, x) = e−iλ〈x,ω〉, (−∆− λ2)e0 = 0,

are important from both physical and mathematical points of view – see for
instance the spectral decomposition of −∆ in (3.4). Motivated by Figure 3.4
we now want to consider solutions to (P −λ2)w = 0 which are sums of plane
wave (away from the black box) and of an outgoing wave.

In the notation of §4.1 let χ ∈ C∞c (Rn, [0, 1]) be equal to 1 near B(0, R0).
Let

R(λ) : Hcomp → Dloc

be the extension of (P − λ2)−1 from Imλ > 0, given in Theorem 4.4.

For λ ∈ R \ {0} we then define distorted plane waves

e(λ, ω) = (1− χ)e0(λ, ω) + w,

w := R(λ)
(

[−∆, χ]e−iλ〈•,ω〉
)
∈ D∞loc.

(4.4.1)

Note that in principle e could have poles in λ at places where R(λ) has real
poles. As we will see that cannot happen. The definition (4.4.1) should be
compared to the definition (3.8.1) in the case of potential scattering.

The regularity of w comes from (4.1.6):

(P + i)NR(λ)
(

[∆, χ]e−iλ〈•,ω〉
)

= R(λ)
(

(−∆ + i)N [∆, χ]e−iλ〈•,ω〉
)

∈ R(λ)(Hcomp).

For λ ∈ R \ ({0} ∪Res(P )) (and, as we will see for λ ∈ R \ {0}) we have

(4.4.2) (P − λ2)e(λ, ω) = 0, e(λ, ω)− (1− χ)e0(λ, ω) is outgoing.
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Here the meaning of outgoing is the same as in definition (3.32) and Theorem
3.37 modified to the black box setting.

DEFINITION 4.16 (Outgoing solutions). Suppose P is a black box
Hamiltonian in the sense of Definition (4.1). For λ ∈ R\{0} and f ∈ Hcomp,
a solution to

(4.4.3) (P − λ2)u = f,

is called outgoing if and only if there exists g ∈ L2
comp(Rn) and R > R0 such

that
u|Rn\B(0,R) = (R0(λ)g) |Rn\B(0,R),

where R0(λ) is the free outgoing resolvent given in 3.1.

A solution u to (4.4.3) is called incoming if there exist g1 ∈ L2
comp(Rn)

and R > 0 such that,

u|Rn\B(0,R) = (R0(−λ)g1) |Rn\B(0,R).

INTERPRETATION. From the asymptotics of the free resolvent given
in (3.1.20) if u is outgoing then

(4.4.4) u(x) =
eiλ|x|

|x|
n−1
2

(
h

(
x

|x|

)
+O

(
1

|x|

))
,

with a full asymptotic expansion. Theorem 3.37 is easily adapted to the
black box case and it gives equivalent conditions for being an outgoing so-
lution.

The next result is the black box version of the Rellich uniqueness the-
orem. The proof is an adaptation of the proof of Theorem 3.35 (and that
proof can be read independently of the rest of §3.6 – see Exercise 4.4).

THEOREM 4.17 (Rellich’s uniqueness theorem). Suppose that P is
a black box Hamiltonian in the sense of Definition 4.1. Suppose that λ ∈
R \ {0} and that u ∈ Dloc satisfies

(4.4.5) (P − λ2)u = 0, lim
R→∞

∫
∂B(0,R)

|(∂r − iλ)u|2dS = 0.

where the last integral makes sense for R > R0 as u|Rn\B(0,R0) ∈ H2
loc(Rn \

B(0, R0)).

Then

(4.4.6) u|Rn\B(0,R0) ≡ 0

We conclude from Theorem 4.17 that outgoing solutions to the homo-
geneous equation have to compactly supported and that the resonances on
R \ {0} are given by embedded eigenvalues.
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We say that E > 0 is an embedded eigenvalue of P if

(4.4.7) (P − E)v = 0, v ∈ D, v 6= 0.

The multiplicity of that eigenvalue is the dimension of the spaces of solutions
of (4.4.7).

THEOREM 4.18 (Outgoing solutions at positive energies). Suppose
that P is a black box Hamiltonian and λ ∈ R \ {0}. We have:

(i) if u satisfies (4.4.3) with f = 0 and is outgoing then uRn\B(0,R0) ≡ 0;

(ii) if λ is a pole of R(λ) then λ2 is an embedded eigenvalue of P and
mR(λ) is the multiplicity of that eigenvalue;

(iii) the distorted plane waves defined in (4.4.1) are defined for all λ ∈
R \ {0} and the the map

R \ {0} × Sn−1 3 (λ, ω) 7→ e(λ, ω) ∈ D∞loc

is real analytic.

Proof. 1. Part (i) is an immediate consequence of Theorem 4.17: if u =
R0(λ)f then (4.4.4) holds and the condition (4.4.5) is satisfied.

2. Self-adjointness of P shows that

R(ζ) = O(1/ Im ζ)H→H, for Im ζ > 0, |Re ζ| > c > 0.

Hence the pole at λ must be simple, that is (P − λ2)Πλ = 0. Theorem 4.9
shows that all resonant states are outgoing and hence compactly supported.

More precisely, for χ0 ∈ C∞c (Rn) equal to 1 near B(0, R0) and χ ∈
C∞c (Rn) equal to 1 on suppχ0 we use (4.2.31) to write

(1− χ)Πλχ0 = R0(λ)[P, χ]Πλχ0.

This means that every element of Πλ(Hcomp) is outgoing and hence by part
(i) compactly supported. We conclude that

Πλ(Hcomp) ⊂ D,

and each element is an eigenvector of P . The rank of Πλ is the the dimension
of the eigenspace.

3. Part (iii) of the theorem follows from part (ii) and (4.4.1): the singular
part R(λ) near a pole λ0 ∈ R \ {0} is the projection onto an eigenspace and
all eigenvectors vanish in Rn \B(0, R0). Hence, if

R(λ) =
Πλ0

λ2 − λ2
0

+A(λ)

where A(λ) is holomorphic near λ0. It follows that

R(λ)
(

[−∆, χ]e−λ〈•,ω〉
)

= A(λ)
(

[−∆, χ]e−λ〈•,ω〉
)
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is well behaved in λ. �

EXAMPLES 1. Obstacle scattering. Suppose P is the Dirichlet (or
Neumann) realization of−∆ on a connected set Rn\O, whereO is a bounded
open set with a smooth boundary. Theorem 4.18 shows that there are no
resonances in R \ {0}: unique continuation for −∆ − λ2 (see Lemma 3.34
for a proof which can be adapted to this situation) shows that any resonant
state would have to vanish on Rn \ O. Unlike in potential scattering (see
§3.3) there is also no resonance at 0 but that requires another argument:

THEOREM 4.19 (No zero resonance in obstacle scattering). Sup-
pose that P = −∆g is the Dirichlet or Neumann Laplacian for a metric g
on a connected set Rn \ O, n odd, where O is bounded and has a smooth
boundary. We assume that gij − δij ∈ C∞c (Rn \ O), that is P is a compact
metric perturbation of the Euclidean Laplacian.

Then the meromorphic extension of

R(λ) = (P − λ2)−1 : L2
comp(Rn \ O)→ H2

loc(Rn \ O)

is holomorphic near 0. In other words, 0 is not a resonance in obstacle
scattering.

Proof. 1. Let R(λ) := (−∆g−λ2)−1 where −∆g is the Dirichlet or Neumann
realization of the Laplacian on Rn \O. We will consider the Neumann case,
the other one being similar.

Since

‖R(λ)‖L2→L2 =
1

d(λ2, [0,∞))
, Imλ > 0,

we see that the pole 0 can have at most order 2:

R(λ) =
A1

λ
+
A2

λ2
+A(λ),

where Aj are finite rank operators,

Aj : L2
comp(Rn \ O)→ (H2

loc ∩H1
0,loc)(Rn \ O), −∆Aj = 0,

and

A(λ) : L2
comp(Rn \ O)→ (H2

loc ∩H1
0,loc)(Rn \ O)

is holomorphic near 0.

2. We now recall (4.2.30),

(1− χ)R(λ)χ0 = R0(λ)[∆, χ]R(λ)χ,
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where χ0, χ ∈ C∞c (Rn), χ0 = 1 near O and χ = 1 on suppχ. Hence
comparing the singular parts on each side we obtain

(1− χ)A2χ0 = R0(0)[∆, χ]A2χ0

(1− χ)A1χ0 = R0(0)[∆, χ]A1χ0 + ∂λR0(0)[∆, χ]A2χ0.
(4.4.8)

We note that if Aj 6= 0 then [∆, χ]Ajχ0 6= 0 by the unique continuation
property of −∆ (see Lemma 3.34).

We conclude that if 0 is a pole of R(λ) then there exists u ∈ H2
loc, u 6= 0,

(obtained using the first equation in (4.4.8) if A2 6= 0, and the second one if
A2 = 0) such that

(4.4.9)
−∆gu = 0, ∂νu|∂O = 0,

u(x) = O(r2−n), ∂ru(x) = O(r1−n), r := |x| → ∞,

where ∂νu is the outward normal derivative of u for O. The behaviour as
r →∞ comes from the asymptotics of R0(0) – see Theorem 3.3.

3. We now apply the divergence theorem to ūu: writing BR = B(0, R),∫
BR\O

|∇u|2dx = −
∫
BR\O

∆uū−
∫
∂O
∂νuūdS +

∫
∂BR

∂ruūdS

= O(R3−2n)

∫
∂BR

dS = O(R2−n)→ 0, R→∞.

Since n ≥ 3, ∇u ≡ 0 and as u → 0, r → ∞, u ≡ 0. (In the case of the
Dirichlet boundary condition we could simply invoke the maximum princi-
ple.) �

2. Scattering on finite volume surfaces. This is the case of scattering
on X given by (4.1.22). Then n = 1 and outside of the black box P = −∂2

s

on L2([a,∞)) – see (4.1.13). It is clear that for λ2 > 0 any solution to
(−∂2

s−λ2)a0(s) = 0 (we use the notation preceding (4.1.14)), a0 ∈ L2([a,∞))
has to be identically 0. Hence, in agreement with Theorem 4.18, 1l[a,∞) u = 0.

The next result is a an adaptation of Theorem 3.47 to the black box
setting. The proof is left as Exercise 4.5.

For simplicity we make the reality assumption (4.4.11). To formulate it
we assume that there exists an involution of H (see (4.1.1)), u 7→ ū such
that

(4.4.10) zu = z̄ū, (ū)|Rn\B(0,R0) = u|Rn\B(0,R0), 〈ū, v̄〉H = 〈v, u〉H.

THEOREM 4.20 (Stone’s formula for black box Hamiltonians).
Suppose that P is a black a box Hamiltonian satisfying

(4.4.11) P (ū) = Pu,
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where u 7→ ū is an involution satisfying (4.4.10).

For λ ∈ R \ {0} and ω ∈ Sn−1 define e(λ, ω) by (4.4.1) (see (iii) of

Theorem 4.18). Then e(λ, ω) = e(−λ, ω), and for f ∈ Hcomp,

(4.4.12) (R(λ)−R(−λ))f =
i

2

λn−2

(2π)n−1

∫
Sn−1

e(λ, ω)〈f, e(λ, ω)〉dω.

The spectral measure of P corresponding the continuous spectrum is given
by

〈dEλ f, g〉 =
λn−1

(2π)n

∫
Sn−1

〈e(λ, ω), g〉〈e(λ, ω), f〉dω,(4.4.13)

and

P =

K+∑
k=K−

Ekuj〈•, uj〉+

∫ ∞
0

λ2dEλ, I =

K∑
k=1

uk〈•, uk〉+

∫ ∞
0

dEλ,

where uk’s are normalized eigenfunctions of P corresponding to eigenvalues
Ek, Ek ≤ Ek+1, where K± can take values ±∞.

4.4.2. The Fermi Golden Rule. We now present a result about per-
turbation of embedded eigenvalues in the black box setting. Our principal
example is that of scattering on finite volume surfaces (4.1.22) which is a
black box perturbation of −∂2

s on a a half-line. Other examples can be
constructed using hypoelliptic operators, see also Exercise 4.1.

We consider a smooth family of black box Hamiltonians acting on a fixed
Hilbert space H and self-adjoint with the same domain D:

P (s) ∈ C∞((−s0, s0);L(D,H)),

P (s)∗ = P (s), P (s)(ū) = (P (s)u).
(4.4.14)

Here u 7→ ū is an involution satisfying (4.4.10). We will denote

P := P (0), Ṗ := ∂sP (s)|s=0 : D → HR0 .

The fact that the image of the derivative is in HR0 follows from (4.1.5).

We start with a lemma which will be proved in §4.5.5:

LEMMA 4.21 (Smoothness of simple resonances). Suppose that P (s)
is a family of black box Hamiltonians (4.4.14) and that λ ∈ R\{0} is a simple
eigenvalue of P = P (0). Let u be the eigenstate corresponding to λ. Then
there exist s1 > 0, ε1 > 0 and

u(s) ∈ C∞((−s1, s1);Dloc), λ(s) ∈ C∞((−s1, s1);C),

u(0) = u, λ(0) = λ,
(4.4.15)

such that λ(s), is the unique resonance of P (s) in D(λ, ε1) and u(s) is a
corresponding resonance state.
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REMARK. The statement remains true for resonances λ 6= 0 – see the
proof in §4.5.5 and [St94] for a yet more general version. One can also
study the perturbation of the zero resonance or zero eigenvalue but that
involves more analysis – see §3.3.

We now present a condition which guarantees dissolution of an embedded
eigenvalue to a resonance under a perturbation:

THEOREM 4.22 (The Fermi Golden Rule for embedded eigenval-
ues). Suppose that λ2 > 0 is an embedded eigenvalue of P = P (0) where
s 7→ P (s) satisfies (4.4.14) and (P − λ2)u = 0, ‖u‖H = 1.

Then in the notation of (4.4.15),

(4.4.16) Im λ̈ = − λn−3

4(2π)n−1

∫
Sn−1

|〈Ṗ u, e(λ, ω)〉|2dω,

where e(λ, ω) is the distorted plane wave defined in (4.4.1).

Proof. 1. Let HR := HR0 ⊕ L2(B(0, R) \ B(0, R0)) for some R > R0. Let
z(s) = λ(s)2 and u(s) be given by Lemma 4.21. Then

(4.4.17) Im z(s)‖u(s)‖2HR = − Im

∫
∂B(0,R)

u(s)∂ru(s)dS.

We have already seen this in (2.8.17) for one dimensional problems. In the
black box case, choose χ ∈ C∞c (B(0, R)) such that χ = 1 near B(0, R0).
Dropping the dependence on s and using self-adjointness of P we see that
for any v ∈ Dloc,

Im〈(P − z)v, v|B(0,R)〉 = Im〈Pv, v|B(0,R)〉 − Im z‖v‖2HR
= Im〈Pχv, χv〉+ Im (〈Pχv, (1− χ)v〉+ 〈P (1− χ)v, χv〉)

+ Im〈P (1− χ)v, (1− χ)v|B(0,R)〉 − Im z‖v‖2HR
= Im〈P (1− χ)v, (1− χ)v|B(0,R)〉 − Im z‖v‖2HR

= − Im

∫
B(0,R)

∆((1− χ)v)(1− χ)v̄dx− Im z‖v‖2HR

= − Im

∫
∂B(0,R)

∂rvv̄dS − Im z‖v‖2HR .

(4.4.18)

Putting v = u gives (4.4.17) since the the left hand side vanishes.

2. Since Im z(s) ≤ 0 it follows that Im ż = 0 (ż := ∂sz(s)|s=0 and Im z(0) =
0). Also, from Theorem 4.18,

(4.4.19) u(0)|Rn\B(0,R0) = 0 and ‖u(0)‖HR = ‖u(0)‖H = 1.

We now differentiate (4.4.17) twice with respect to s. Using Im z(0) =
Im ż(0) = 0, u(0)|Rn\B(0,R0) = 0 and (4.4.18) with v = u̇, we obtain (at
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s = 0),

Im z̈ = Im z ∂2
s‖u(s)‖2HR |s=0 + 2 Im ż ∂s‖u(s)‖2HR |s=0

− Im

∫
∂B(0,R)

(
2∂ru̇u̇+ ∂rüū+ ∂ruü

)
dS

= −2 Im

∫
∂B(0,R)

∂ru̇¯̇udS

= 2 Im〈(P − z)u̇, u̇|B(0,R)〉.

(4.4.20)

Also, differentiating (P (s)− z(s))u(s) = 0 gives

(4.4.21) (P − z)u̇ = żu− Ṗ u.

Since u ∈ HR0 and Ṗ : D → HR0 we see that the right hand side in (4.4.21)
is in HR0 . In particular, we can drop the restriction to B(0, R) on the right
hand side of (4.4.20).

3. We now claim that u̇ is outgoing in the sense of Definition 4.16. To see
that we observe from (4.2.31) (applied with Mλ(s) = 1 as our resonances are
simple) that

(1− χ)u(s) = R0(λ)[P, χ]u(s), z = λ2,

where χ as in (4.4.18). From (4.4.19) we see that [P, χ]u(0) = 0 and

[Ṗ , χ]u(0) = 0. Hence

(1− χ)u̇ = R0(λ)[P, χ]u̇.

To find an expression for u̇ we first observe that żu−Ṗ u = 0 is orthogonal
to u. In fact, if χ is as in (4.4.18) then χu̇ ∈ D and χ ≡ 1 near suppu. Then,

〈żu− Ṗ u, u〉 = 〈(P − z)u̇, u〉
= 〈(P − z)(χu̇), u〉
= 〈χu̇, (P − z)u〉 = 0.

(4.4.22)

In view of this orthogonality property we define v := R(λ)(żu − Ṗ u)
which is another outgoing solution to (4.4.21). Theorem 4.18 shows that
v− u̇ must be compactly supported and from the simplicity of the eigenvalue
it follows that v − u̇ = αu, α ∈ C. Because of(4.4.22) this means that we
can replace u̇ with v in (4.4.20) which gives

Im z̈ = 2 Im〈żu− Ṗ u,R(λ)(żu− Ṗ u)〉, z = λ2.

Noting that

(R(λ)−R(−λ))u = 0, R(λ)∗ = R(−λ),

we obtain

Im〈żu, R(λ)żu〉 = |ż|2〈u, (R(λ)−R(−λ))u〉/2i = 0.
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Since Im ż = 0 we also have

Im(〈żu, R(λ)Ṗ u〉+ 〈Ṗ u, żR(λ)u〉) = ż Im(−〈R(λ)Ṗ u, u〉+ 〈Ṗ u,R(λ)u〉)

= ż Im〈Ṗ u, (R(λ)−R(−λ)u〉
= 0.

Hence (4.4.12) gives

2λ Im λ̈ = 2 Im〈Ṗ u,R(λ)Ṗ u〉

=
1

i

(
〈Ṗ u,R(λ)Ṗ u〉 − 〈Ṗ u,R(−λ)Ṗ u〉

)
= −1

2

λn−2

(2π)n−1

∫
Sn−1

|〈Ṗ u, e(λ, ω)〉|2dω.

This proves (4.4.16). �

REMARK. Formally (4.4.20) follows from differentiating 0 = 〈(P (s) −
z(s))u(s), u(s)〉 but we have to be careful as for s 6= 0, u(s) will not, typically,
be in H. The use of (4.4.17) (and of its derivation (4.4.18) based on Green’s
formula) remedies this problem. The complex scaling method described in
§4.5 allows a more direct argument which can be adapted to the case of long
range perturbations.

EXAMPLE. Suppose that (X, g) is the manifold given by (4.1.22). As
explained before that definition, we put the scattering problem for −∆g in
the black box formalism with n = 1 (and Rn replaced by a finite union of
half lines). We then define the analogues of e(λ, ω) (the sphere at infinity,
Sn−1, is replaced by Z/NZ), ej(λ, x), j = 1, · · · , N ,

(−∆g − 1
4 − λ

2)ej(λ, x) = 0,

1

b`

∫ b`

0
ej |X`dθ = er/2

(
e−iλrδ`j + s`j(λ)eiλr

)
.

(4.4.23)

Let us consider a conformal change of the metric which results in the
family

P (t) = e
1
2
tf (−∆g − 1

4)e
1
2
tf , f ∈ C∞c (X0;R).

The conjugation of the Laplacian, e−
1
2
tf (etf∆g)e

1
2
tf , was introduced to fix

the Hilbert space on which the operators P (t) are self-adjoint. We then see
that the assumption (4.4.14) are satisfied.
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Suppose that E = λ2 + 1
4 >

1
4 is an embedded eigenvalue of −∆g and u

is the corresponding normalized eigenfunction. Then (4.4.16) gives

Im λ̈ = − 1

4λ2

N∑
`=1

∣∣〈12(f(∆g + 1
4) + (∆g + 1

4)f)u, e`(λ)〉
∣∣2

= −1
4λ

2
N∑
`=1

|〈fu, e`(λ)〉|2.

(4.4.24)

This can be used to show that for a generic f ∈ C∞c (Ω;R), where ∅ 6= Ω ⊂ X0

is an open set, there are no embedded eigenvalues. First one shows that for
a generic f all the embedded eigenvalues are simple and that follows from
showing generic simplicity of eigenvalues for the reference operator, that is
for the pseudo-Laplacian in Example 2 in §4.3. Then (4.4.24) can be used
to show that any finite number of eigenvalues become resonances under a
perturbation – see [CdV83] for details (a less direct argument than (4.4.24)
is used there). See also the proof Theorem 2.25 for an example of the scheme
for proving generic results.

4.4.3. Definition of the scattering matrix. We now use the plane waves
(4.4.1) to define the scattering matrix and to obtain its representation. This
is very similar to what has been done in §3.7 and we leave the proofs as
exercises for the reader. The first result is an adaptation of the boundary
pairing result of Theorem 3.39. The proof is left as an exercise.

THEOREM 4.23 (Boundary pairing for black box Hamiltonians).
Let P be a black box Hamiltonian in the sense of Definition 4.1.

Suppose that u` ∈ Dloc, ` = 1, 2 satisfy

(P − λ2)u` = F` ∈ Hcomp, λ ∈ R \ {0},

1lRn\B(0,R0) u`(rθ) = r−
n−1
2

(
eiλrf`(θ) + e−iλrg`(θ)

)
+O(r−

n+1
2 ), θ ∈ Sn−1,

with f`, g` ∈ C∞(Sn−1), and the expansion valid also for derivatives with
respect to ∂r. Then

(4.4.25) 2iλ

∫
Sn−1

(
g1ḡ2 − f1f̄2

)
dω = 〈F1, u2〉H − 〈u1, F2〉H.

The interesting case comes from considering F` ≡ 0 in which case the in-
coming or outgoing data can be prescribed. The proof again follows directly
from the proof of Theorem 3.42.

THEOREM 4.24 (Prescribing incoming data in black box scatter-
ing). Let P be a black box Hamiltonian in the sense of Definition 4.1. Then
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for λ ∈ R \ {0} and any g ∈ C∞(Sn−1) there exist unique f ∈ C∞(Sn−1)
and v ∈ Dloc such that

(P − λ2)v = 0,

1lRn\B(0,R0) v(rθ) = r−
n−1
2

(
eiλrf(θ) + e−iλrg(θ)

)
+O(r−

n+1
2 ).

(4.4.26)

Using this two theorems we can now defined the absolute and relative
scattering matrices for black box scattering – see Definition 3.40 for more
motivation.

DEFINITION 4.25 (Scattering matrix). In the notation of Theorem
4.24, the map

(4.4.27) Sabs(λ) : C∞(Sn−1)→ C∞(Sn−1), Sabs(λ) : g 7−→ f,

is called the absolute scattering matrix. By Theorem 4.23 it extends to a
unitary transformation

Sabs(λ) : L2(Sn−1)→ L2(Sn−1).

The scattering matrix is defined as

(4.4.28) S(λ) = in−1Sabs(λ)J, Jg(θ) := g(−θ).

Representation of the Schwartz kernel of S(λ) in terms of the resolvent
is again the same as in §3.7:

THEOREM 4.26 (Description of the scattering matrix). Let P be a
black box Hamiltonian. For ρ ∈ C∞c (Rn) define

Eρ : L2(Rn)→ L2(Sn−1) , Eρ(λ)(x, ω) := ρ(x)e−iλ〈x,ω〉 .

Choose χi ∈ C∞c (Rn; [0, 1]), i = 1, 2, 3, such that for some R1 > R0,

χi|B(0,R1) = 1, χi+1|supp χi = 1, i = 1, 2.

Then the scattering matrix is given by

(4.4.29) S(λ) = I + anλ
n−2Eχ3(λ)[∆, χ1]R(λ)[∆, χ2]Eχ3(λ̄)∗ ,

where R(λ) is the extension of (P − λ2)−1 and an := (2π)−n+1/2i.

EXAMPLES. 1. Obstacle scattering. Suppose P = −∆O, the Dirichlet
Laplacian on a connected set Rn \O where O is bounded and ∂O is smooth.
Then comparison of (4.4.29) with (4.4.1) (used with χ = χ2 and noting that
(1− χ2)[∆, χ1] ≡ 0 shows that

SO(λ) = I +AO(λ),

AO(λ, ω, θ) = anλ
n−2

∫
Rn
e−iλ〈x,ω〉[−∆, χ1]e(λ,−θ, x)dx,

(4.4.30)
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where e(λ, θ, x) is the unique function satisfying

(−∆− λ2)e(λ, θ, x) = 0, e(λ, θ, •)|∂O = 0,

e(λ, θ, x) = e−iλ〈x,θ〉 +
eiλ|x|

|x|(n−1)/2

(
h( x
|x|) +O( 1

|x|)
)
.

We now apply Green’s formula in (4.4.30) noting that, because of support
properties of χ1, we can change the domain of integration to Rn \ O:∫

Rn\O
e−iλ〈x,ω〉[−∆, χ1]e(λ,−θ, x)dx

=

∫
Rn\O

e−iλ〈x,ω〉 (χ1(x)∆e(λ,−θ, x)−∆(χ1(x)e(λ,−θ, x))) dx

=

∫
Rn\O

(
−λ2e−iλ〈x,ω〉χ1e(λ,−θ, x)− e−iλ〈x,ω〉∆(χ1(x)e(λ,−θ, x)

)
dx

=

∫
Rn\O

(
∆e−iλ〈x,ω〉χ1e(λ,−θ, x)− e−iλ〈x,ω〉∆(χ1(x)e(λ,−θ, x))

)
dx.

Applying Green’s formula gives the following representation of AO in terms
of the normal derivative of the plane wave at the boundary:

AO(λ, ω, θ) =
iλn−2

2(2π)n−1

∫
∂O
e−iλ〈x,ω〉∂νe(λ,−θ, x)dS(x).

2. Surfaces with cusps. We now consider the case of scattering on sur-
faces (4.1.22). We will also compute the scattering explicitly in the case of
scattering on the modular surface X = SL2(Z)\H2.

In the case of surface with N cusps the scattering matrix appears in
(4.4.23). If we compare that expansion with the expansion in Theorem 4.24
we see that we need to replace Sn−1 with the discrete set of points, Z/NZ:
the boundaries of the cusps at infinity. Then the scattering matrix acts on
L2(Z/NZ) ' CN is in fact a matrix:

(4.4.31) S(λ) : CN → CN , S(λ)uj =

N∑
`=1

sj`(λ)u`,

with sj`(λ)’s given by (4.4.23).

3. The modular surface. The discrete group

SL2(Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− cb = 1

}
acts on

(H2, g) :=

(
{(x, y) : x, y ∈ R, y > 0} , dx

2 + dy2

y2

)
,
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0 1−1

Figure 4.2. The shaded region is the fundamental domain (4.4.33)
of SL2(Z) used in Example 3. Every region determined by circles and
lines is a fundamental domain.

by linear fractional transformations

x+ iy = z 7→ az + b

cz + d
.

The action of SL2(Z) is then generated by two transformations

(4.4.32) S(z) := −1

z
, T (z) := z + 1,

and the famous fundamental domain of its action is given by

{(x, y) : −1
2 < x < 0, (1− x2)

1
2 < y} ∪

{(x, y) : 0 ≤ x ≤ 1
2 , (1− x

2)
1
2 ≤ y},

(4.4.33)

see Figure 4.2 and [Ah78, §7.2] for an elementary presentation. The surface
X is given by SL2(Z)\H2. (The compact part X0 is not smooth as there
are two conic singularities but that does not cause trouble in the analysis
and we neglect this point.) Functions on X can be identified with functions
on H2 invariant under the action of SL2(Z). That only needs to be checked
for the two generators (4.4.32).

We now want to give a (relatively) explicit construction of the general-
ized plane waves e(x, λ) given by (4.4.1) in general (with no dependence on
ω) and (4.4.23) (with N = 1) for the case of surfaces with cusps. In keeping
with traditional notation we will put

(4.4.34) s = 1
2 − iλ, ys = er/2e−iλr, y1−s = er/2eiλr, y = er.
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We then define, for c, d ∈ Z,

B(z, s) :=
∑

(c,d)6=(0,0)

ys

|cz + d|2s
, z = x+ iy ∈ H2.

We first note that the sum converges for Re s� 1 and that

ys

|cz + d|2s
= γ∗(ys), γ =

(
a b
c d

)
.

Since −∆g(y
s) = −y2∂2

y(ys) = s(s− 1)ys, it follows that

−∆gB(z, s) = s(1− s)B(z, s), Re s� 1.

We also see that

B(z + 1, s) = B(z, s), B(−1/z, s) = B(z, s).

In fact, the first identity is obvious and for the second we note that

B(−1/z, s) =
∑

(c,d)6=0

(Im(−1/z))s

| − c/z + d|2s
=

∑
(c,d)6=0

ys

|dz − c|2s
= B(z, s).

Hence, B(z, s) defines a function on X = SL2(Z)\SL2(R).

We now look at B(z, s) in

X0 ' {(x, y) : −1
2 < x ≤ 1

2 , y > 2}

We write

B(z, s) =
∑
d6=0

|d|−2sys +
∑
c 6=0

ys

|cz + d|2s
=: 2ζ(2s)ys + w(x, y, s).

As in (4.4.23), we calculate the “scattering” component of w:∫ 1
2

− 1
2

w(x, y, s)dx =

∫ 1
2

− 1
2

∑
c6=0

ys

|cz + d|2s

=

∫ 1
2

− 1
2

∑
c6=0

∑
k∈Z

|c|−1∑
`=0

ys

((c(x+ k) + `)2 + c2y2)s

=
∑
c 6=0

|c|−1∑
`=0

∫
R

ys

c2s((x+ `)2 + y2)s
dx

=
∑
c 6=0

1

|c|2s−1
y1−s

∫
R

1

(1 + x2)s
dx

= 2ζ(2s− 1)
π

1
2 Γ(s− 1

2)

Γ(s)
y1−s.

(4.4.35)
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Here we used some facts about beta functions: with the substitution t =
x2/(1 + x2), dx = 1

2 t
−1/2(1− t)−3/2dt,∫

R

1

(1 + x2)s
dx = 2

∫ ∞
0

1

(1 + x2)s
dx =

∫ 1

0
t−

1
2 (1− t)−

3
2

+sdt

=
Γ(1

2)Γ(s− 1
2)

Γ(s)
=
π

1
2 Γ(s− 1

2)

Γ(s)
,

see for instance [HöI, (3.4.8),(3.4.9)].

Putting,

e(z, s) :=
1

2ζ(2s)
B(z, s), Re s� 1

we have found a function on X such that

(4.4.36)

(−∆g − s(1− s))e(z, s) = 0, Re s� 1,∫ 1
2

− 1
2

e(z, s)|X1dx = ys +
ζ(2s− 1)

ζ(2s)

π
1
2 Γ(s− 1

2)

Γ(s)
y1−s.

The second term on the right hand side of the last equality is in L2(X1, dVolg),
dVolg = y−2dxdy for Re s � 1. If χ ∈ C∞c ([0,∞)) is equal to 1 for y < 2
then proceeding as in (4.4.35) we see that

e(z, s)− (1− χ(y))ys ∈ L2(X, dVolg), Re s� 1.

But, as in the construction of e(y, λ) in (4.4.1) this means that

e(z, s) = (1− χ(y))ys + (−∆g − s(1− s))−1([−∆g, χ]ys).

The meromorphic continuation of (−∆g − s(1− s))−1 = (−∆g − 1
4 − λ

2)−1

shows that e(z, s) is meromorphic in C with no poles for Re s = 1
2 , s 6= 1

2 .

Returning to (4.4.23) and (4.4.31) (and keeping in mind the change of
convention (4.4.34)) we obtain the scattering matrix for the modular surface
– in this case a number:

S(λ) = π
1
2

Γ(−iλ)ζ(2iλ)

Γ(1
2 − iλ)ζ(1− 2iλ)

.

The unitarity (modulus one) on the real axis follow from general scattering
theory or from the properties of the Riemann zeta function and the Gamma
function.

Theorem 4.27 below shows that the resonances of P = −∆g − 1
4 are

given by λ such that

λ2 ∈ Specpp(P ) or Γ(1
2 − iλ)ζ(1− 2iλ) = 0.
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The latter condition means that 1 − 2iλ is a non-trivial zero of the zeta
function. Hence, the Riemann hypothesis states that all resonances which
do not come from eigenvalues lie on the line

Imλ = −1
4 .

4.4.4. Resonance multiplicities. The representation of the scattering
matrix given in Theorem 4.26 and the meromorphy of R(λ) show that S(λ)
forms a meromorphic family of operators on C (we assume here, as elsewhere,
that n is odd – otherwise we have to work with the logarithmic plane). The
unitarity relation shows that

S(λ)−1 = S(λ̄)∗, λ ∈ C.

We note that unitarity of S(λ) is valid for λ ∈ R \ {0} by Theorem 4.23 and
remains valid at λ = 0 by continuity which follows from the fact that S(λ)
is meromorphic.

Definition 4.25 gives Sabs(λ) = Sabs(−λ)−1 and hence (see Theorem
3.43)

S(λ)−1 = JS(−λ)J, Jf(θ) = f(−θ), λ ∈ C.

The set of poles is contained in the set of poles of R(λ) and the mul-
tiplicity is defined using the Gohberg–Sigal theory in (4.4.37) below. The
precise relation between the multiplicities of the poles of S(λ) and R(λ) is
given as follows:

THEOREM 4.27 (Equivalence of multiplicities). Suppose P is a black
box Hamiltonian and S(λ) is its scattering matrix. Then

mS(λ) = m̃R(λ)− m̃R(−λ),

mS(λ) := − 1

2π

∮
λ

tr ∂ζS(ζ)S(ζ)−1dζ,

m̃R(λ) = rank 1lRn\B(0,R0) Πλ,

(4.4.37)

where the integral is over a positively oriented circle enclosing λ and not
other pole of S(λ) or S(λ)−1, and Πλ is given by (4.2.21).

REMARKS. 1. As always high multiplicities cause problems in the analy-
sis. We will prove the theorem under the assumption that mR(λ) = 1 when
λ /∈ R. To get the general statement we can use the approach from Theorem
3.14 to perturb resonances or Theorem 4.39 in §4.5. A direct proof using
the method of complex scaling can be found in Nedelec [Ne04].

2. We note that m̃R(λ) = mR(λ) for λ2 /∈ R – any compactly supported
resonant states have to be eigenfunctions. (See also Exercise 4.7). Hence
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(4.4.37) really means that

mS(λ) =

{
mR(λ) Imλ < 0
−mR(λ) Imλ > 0

, λ2 /∈ R,

and the difference is relevant only on the imaginary axis.

An artificial example in which m̃R(λ) < mR(λ), λ ∈ i(0,∞) is given as
follows. Consider the Dirichlet realization of P = −∆ + V on Ω = Rn \ O,
where we assume that Ω has two connected components, Ω1, Ω2, with Ω1

unbounded, Ω2 bounded and ∂Ωj smooth. We can find V ∈ C∞c (Ω2) such
that that −∆+V with Dirichlet boundary conditions has an eigenvalue −t2,
t > 0. Then 0 = m̃R(it) < mR(it).

Proof. 1. Since S(λ) is unitary for λ ∈ R we have mS(λ) = 0 for λ ∈ R.
On the other hand for λ2 > 0 the only poles of R(λ) come from embedded
eigenvalues – see part (ii) of Theorem 4.18 and hence m̃R(λ) = m̃R(λ) = 0.

This means that we only need to establish (4.4.37) for λ ∈ C \ R.

2. We now prove the theorem under the assumption that mR(λ) = 1 –
see Remark 1 after the statement of the theorem on how to remove that
hypothesis.

3. From Theorem C.11 we recall that

mS(λ) = Nλ(S−1)−Nλ(S),

where, near λ, with invertible and holomorphic U(ζ), V (ζ),

S(ζ) = U(ζ)(P0 +

M∑
m=1

(ζ − λ)kmPm)V (ζ),

PmP` = δkm, rank(I − P0) = M, rankPm = 1, m 6= 0,

Nλ(S−1) = −
∑
k`<0

k`, Nλ(S) =
∑
k`>0

k`.

(4.4.38)

Hence to prove (4.4.37) it is enough to show that

(4.4.39) Nλ(S−1) = m̃R(λ).

From the discussion in Step 2, we can assume that m̃R(λ) ≤ 1. From (4.4.29)
and (4.4.38) we see that, under the simplicity assumption m̃R(λ) ≥ Nλ(S−1).

4. To see that m̃R(λ) = 1 implies that S(ζ) has a pole at λ we write

1lRn\B(0,R0) Πλ 1lRn\B(0,R0) ϕ = u|Rn\B(0,R0)〈ϕ, v|Rn\B(0,R0)〉H, ϕ ∈ Hcomp,

where (P − λ2)u = 0, (P ∗ − λ̄2)v = 0. From (4.4.29) we see that

S(ζ) = anζ
n−2 F ⊗G

ζ2 − λ2
+ T (ζ),
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where T is holomorphic hear λ and

F (ω) = f̂(λω), f(x) := [∆, χ1]u(x),

G(θ) = ĝ(−λ̄θ), g(x) := [∆, χ2]v(x).

We also note that

(−∆− λ2)(1− χ1)u = f, (−∆− λ̄2)(1− χ2)v = g.

5. To prove that S(ζ) has a pole at ζ = λ we need to show that F 6= 0 and

G 6= 0. We note that f ∈ C∞c (Rn) and hence f̂ is an entire function on Cn.
If F ≡ 0 then

f(eiθη) ≡ 0 for η ∈ Σ ∩ Rn,

where

λ = eiθ|λ|, Σ := {η · η = |λ|2} ⊂ Cn, η · η =
n∑
j=1

η2
j , η ∈ Cn.

Since Σ∩Rn is a totally real submanifold of the complex variety Σ, f(eiθη) ≡
0 for η ∈ Σ. This implies that

W (ξ) =
f(ξ)

ξ · ξ − λ2
=
e−2iθf(eiθη)

η · η − |λ|2
, ξ = eiθη, ξ ∈ Cn,

is an entire function. Paley-Wiener theorem as applied in [HöI, Theorem
7.3.2] shows that W = ŵ, w ∈ C∞c (Rn). By Theorem 4.9

(−∆− λ2)((1− χ1)u− w) = 0,

((1− χ1)u− w) |Rn\B(0,R) = (R0(λ)g)|Rn\B(0,R),

where g ∈ L2
comp(Rn \B(0, R0)). Applying the opposite implication in The-

orem 4.9 with P = −∆ we conlude that (1− χ1)u−w would be a resonant
state for −∆. Hence (1 − χ1)u = w ∈ C∞c (Rn) which contradicts the fact
that u is a nontrivial element of 1lRn\B(0,R0) Πλ(Hcomp). We conclude that
F 6= 0.

A similar argument shows that G 6= 0 and hence m̃R(λ) = 1 implies that
Nλ(S−1) = 1, completing the proof. �

4.5. COMPLEX SCALING

So far resonances for black box perturbations were defined as poles of the
meromorphic continuation of the resolvent. The structure of that continua-
tion near the poles given in Theorem 4.7 shows that it behaves like a resol-
vent of a non-self-adjoint operator. The method of complex scaling allows
an equivalent definition: instead continuing the resolvent, the Hamiltonian
P is deformed to a non-self-adjoint Hamiltonian Pθ and the resonances λ2
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with arg λ2 > −2θ are the eigenvalues of Pθ: for −2θ < arg z < 2π − 2θ,
Pθ − z is a Fredholm operator on suitable spaces. The advantage of this
method is both practical and theoretical. It allows numerical calculation of
resonances by discretizing Pθ and it provides access to method from spectral
theory of non-self-adjoint operators. That will become particulary apparent
in Part 3.

In the simple but instructive setting of dimension one the method was
described in Section 2.7.

4.5.1. The complex scaled operator. For 0 ≤ θ < π, let Γθ ⊂ Cn be
the following deformation of Rn ⊂ Cn:

Γθ ∩BCn(0, R1) = BRn(0, R1) ,

Γθ ∩ Cn \BCn(0, R2) = eiθRn ∩ Cn \BCn(0, R2) ,

Γθ = fθ(Rn), fθ : Rn → Cn is injective.

(4.5.1)

Here we take R0 < R1 < R2 where R0 is the same as in (4.1.1). Since no
deformation is performed in B(0, R1) we can consider Γθ \ B(0, R1) as a
deformation of Rn \B(0, R1).

The next definition and lemma will allow us to define the deformation
of P to an operator on C∞(Γθ) in a coordinate free way.

DEFINITION 4.28 (Totally real submanifolds). (i) An n-dimensional
smooth submanifold M of Cn ' R2n is called (maximally) totally real if for
any m ∈M ,

(4.5.2) TmM ∩ iTmM = {0},

where we identify the tangent space TmM with a subspaces of R2n ' Cn.

(ii) If u ∈ C∞(M) then ũ ∈ C∞(Cn) is called an almost analytic extension

of u if

(4.5.3) ∂̄zj ũ(z) = O(d(z,M)∞), z ∈ Cn.

We first see that it is easy to find totally real submanifolds of the form
(4.5.1):

LEMMA 4.29 (Totally real deformations of Rn). Suppose that Γθ ⊂
Cn is given by (4.5.1). Then it is totally real if and only if

(4.5.4) det(∂xfθ) 6= 0.

In particular, if 0 ≤ θ < π/2 and

(4.5.5) fθ(x) = x+ i∂xFθ : Rn → Cn

where Fθ : Rn → R is a convex function then Γθ is totally real.
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Proof. 1. Since (4.5.4) is a statement about derivatives we can assume that
fθ =: A ∈ Mn×n(C) is a linear function and M := Γθ is a (real) linear
subspace of Cn ' R2n, M = A(Rn).

2. The condition that M ∩ iM 6= 0 is equivalent to the existence of
an invertible B ∈ Mn×n(C) (a complex linear transformation) such that
B(M) = Rn ⊂ Cn. Indeed, if M is totally real and e1, . . . , en is a real basis
of M , then it is a complex basis of Cn. We then define by B as mapping
e1, . . . , en to the canonical basis of Cn. Since B(ix) = iB(x) the converse is
clear.

3. Hence, if detA 6= 0 we can take B = A−1 and M is totally real. If M
is totally real then B ◦ A : Rn → Rn is an invertible (real) matrix, and in
particular detA 6= 0. �

For simplicity we will restrict our attention to the case of Γθ given by

(4.5.6) 0 ≤ θ < π/2, fθ given by (4.5.5) where Fθ is convex.

For scaling for angles greater than π/2 (which, as we will see, would recover
all resonances in odd dimension case) see [SZ91].

EXAMPLE. We can construct a convex Fθ so that Γθ = fθ(Rn) with fθ
given by (4.5.5) satisfies (4.5.1) as follows. Take g ∈ C∞(R; [0, 1]) such that

g(t) = 0 for t ≤ R1 , g(t) = 1
2 t

2 for t ≥ 2R1, g′′(t) ≥ 0.

We note that these assumptions imply that g′ is non-decreasing and hence
g′ ≥ 0. We then put

Fθ(x) = tan θ g(|x|), 0 ≤ θ < 1
2π.

It follows that

∂2
xFθ(x) = tan θ

(
g′(|x|)
|x|3

(|x|2I − x⊗ x) +
g′′(|x|)
|x|2

x⊗ x
)

is positive definite and ∂2
xFθ = tan θI for |x| > 2R1.

We now show that smooth functions on totally real submanifolds have
almost analytic extensions which can use to define restrictions of holomor-
phic differential operotors:

LEMMA 4.30 (Totally real submanifolds and almost analytic ex-
tensions). Suppose that M is a totally real submanifold of Cn. Then every
u ∈ C∞(M) has an almost analytic extension to Cn in the sense of (4.5.3).

If P̃ =
∑
|α|≤m aα(z)∂αz is a holomorphic differential operator near M

(aα are holomorphic in Cn near M) then P̃ defines a unique differential
operator PM whose action on C∞(M) is given by

(4.5.7) PMu = P̃ (ũ)|M .
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Proof. 1. We recall that for any v ∈ C∞c (Rn) and an open set Ṽ ⊂ Cn,
supp v ⊂ V , we can find ṽ ∈ C∞c (Cn) such that

(4.5.8)
ṽ|Rn = u, ∂̄zj ṽ(z) = O(| Im z|∞), supp ṽ ⊂ Ṽ ,

∂z̄j := 1
2(∂xj + i∂yj ), z = x+ iy, x, y ∈ Rn,

see for instance [DS99, (8.1),(8.2)]. That gives almost analytic extensions
in the case of M = Rn.

2. Using a partition of unity we only need to construct extensions of u ∈
C∞c (U), where U ⊂M is given by U = f(B(0, r)), B(0, r) = {x ∈ Rn : |x| <
r}, f : Rn → Cn. From Lemma 4.29 we see that ∂xf(x) is non-degenerate

for x in a neighbourhood of B(0, r) (we can decrease r). Let f̃ : Cn → Cn be

an almost analytic extension of f . Then, ∂z f̃ |B(0,r) = ∂xf is non-degenerate.

Hence for some neighbourhoods Ṽ , Ũ ⊂ Cn of B(0, r) and U respectively,

f̃ : Ṽ → Ũ is a diffeomorphism. In addition, f̃−1 is almost analytic as well.

To see this we write z = x + iy, ζ = ξ + iη, x, y, ξ, η ∈ Rn, z = f̃(ζ, ζ̄) and

ζ = g̃(z, z̄), g̃ := f̃−1. Then, since d(z,M) ∼ | Im ζ|,[
∂zζ ∂z̄ζ
∂z ζ̄ ∂z̄ ζ̄

]
=

[
∂ζz ∂ζ̄z

∂ζ z̄ ∂ζ̄ z̄

]−1

=

[
∂ζz O(| Im ζ|∞)

O(| Im ζ|∞) ∂ζz

]−1

=

[
(∂ζz)

−1 O(| Im ζ|∞)

O(| Im ζ|∞) (∂ζz)
−1

]
=

[
∂zζ O(d(M, z)∞)

O(d(M, z)∞) ∂z̄ ζ̄

] .

3. Using (4.5.8) we now define

(4.5.9) ũ = ṽ ◦ f̃−1, v := u ◦ f ∈ C∞c (B(0, r)), supp ṽ ⊂ Ṽ .

Using almost analyticity of ṽ and f̃−1 we obtain

∂̄zj ũ =
∂ζ

∂z̄j
· ∂ṽ
∂ζ

+
∂ζ̄

∂z̄j
· ∂ṽ
∂ζ̄

= O(d(M, z)∞),

which shows that ũ is an almost analytic continuation of u.

4. Arguing as in Steps 2 and 3, we can assume that M = Rn and that the

coefficients of P̃ satisfy ∂z̄aα(z) = O(| Im z|∞). To define PRn , we then to

show that if ũ is almost analytic and u|Rn = 0 then P̃ ũ|Rn = 0. But this
follows by induction from showing that ∂zũ|Rn = 0, which is obvious since
∂zũ = ∂xũ+O(| Im z|∞).

�

We can now define the complex scaled operator, Pθ:
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DEFINITION 4.31 (The complex scaled operator). Suppose that Γθ
is given by (4.5.1) with fθ satisfying (4.5.6). Suppose that P is a black box
Hamiltonian in the sense of Definition 4.1. With χ ∈ C∞c (B(0, R1)) equal
to 1 on B(0, R0), (so that 1−χ is a smooth function on Rn and Γθ), define

Hθ = HR0 ⊕ L2(Γθ \B(0, R0)),

Dθ = {u ∈ Hθ : χu ∈ D, (1− χ)u ∈ H2(Γθ),

Pθu = P (χu) + (−∆θ)((1− χ)u),

(4.5.10)

where

(4.5.11) ∆θ := ∆Γθ

is defined using (4.5.7).

Using Fθ in (4.5.6) we calculate −∆θ. First we note that for z = x +
i∂xFθ(x) we have

(4.5.12)
∂

∂z
=

(
∂x

∂z

)T ∂

∂x
= (I + iF ′′θ (x))−1 ∂

∂x
,

where F ′′θ (x) := ∂2
xFθ : Rn → Rn is a symmetric matrix.

Since −∆θ = ∂z · ∂z (see (4.5.7)) we obtain, in the coordinates x ∈ Rn
on Γθ,

(4.5.13) −∆θu =
(
(I + iF ′′θ (x))−1∂x

)
·
(
(I + iF ′′θ (x))−1∂xu

)
, u ∈ C∞(Γθ).

The symbol of this operator is given by

(4.5.14) σ(∆θ)(x, ξ) = ((I + iF ′′θ (x))−1ξ) · ((I + iF ′′θ (x))−1ξ).

Here we used (x, ξ) as coordinates on T ∗Γθ ' T ∗Rn.

We now have

THEOREM 4.32 (Ellipticity of ∆θ). The operator ∆θ defined in (4.5.11)
is an elliptic differential operator of order two:

(4.5.15) |ξ|2/C ≤ |σ(∆θ)(x, ξ)| ≤ C|ξ|2

Proof. By homogeneity in ξ we need to show that for ξ 6= 0,

((I + iF ′′θ (x))−1ξ) · ((I + iF ′′θ (x))−1ξ) 6= 0.

Noting that I + (F ′′θ (x))2 is invertible (F ′′θ (x) is real and symmetric) it is
enough to show that for η 6= 0,

((I − iF ′′θ (x))η) · ((I − iF ′′θ (x))η) 6= 0, η := (I + (F ′′θ (x))2)−1ξ 6= 0.

The left hand side is equal to

(4.5.16) |η|2 − |F ′′θ (x)η|2 − 2i〈F ′′θ (x)η, η〉.
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Since F ′′θ (x) is positive semidefinite (our convexity assumption),

〈F ′′θ (x)η, η〉 = 0 =⇒ F ′′θ (x)η = 0.

This concludes the proof as then the real part is equal to |η|2. �

Using invertibility of

−e−2iθ∆− λ2 = e−2iθ(−∆− (eiθλ)2) : H2(Rn)→ L2(Rn),

for Im(eiθλ) > 0 and the ellipticity of ∆θ it is easy to show that

−∆θ − λ2 : H2(Γθ)→ L2(Γθ) is a Fredholm operator for Im(eiθλ) > 0,

see Exercise 4.8. Instead we will show that −∆θ − λ2 is invertible for this
range of λ’s and describe the inverse using the kernel of R0(λ).

4.5.2. The resolvent of −∆θ. We will construct explicitly the inverse of
−∆θ − λ2 where ∆θ is given by (4.5.11):

Rθ(λ) := (−∆θ − λ2)−1 : L2(Γθ)→ H2(Γθ), Im(eiθλ) > 0.

The operators Rθ(λ) will then form a holomorphic family of operators in
the half plane −θ < arg λ < π − θ.

The idea is to extend |x− y| = ((x− y) · (x− y))
1
2 holomorphically from

Rn × Rn to a complex neighbourhood of⋃
0≤θ≤θ0

Γθ × Γθ ⊂ Cn × Cn.

Hence we start with:

LEMMA 4.33 (Well defined square root). Suppose that Γθ is given by
(4.5.1) with fθ given by (4.5.6), 0 ≤ θ < π/2. Then for z, w ∈ Γθ,

(4.5.17) Im(z − w) · (z − w) ≥ 0,

where for v, v′ ∈ Cn, v · v′ := v1v
′
1 + · · ·+ vnv

′
n. Moreover,

(4.5.18) (z − w) · (z − w) = 0 =⇒ z = w.

In particular, the branch of the square root

(4.5.19) ((z − w) · (z − w))
1
2 , z, w ∈ Γθ,

which is positive for positive arguments is well defined and

(4.5.20)

{
Im
Re

}
((z − w) · (z − w))

1
2 ≥ 0, z, w ∈ Γθ.
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Proof. 1. For z = x+ i∂xFθ(x) and w = y + i∂xF (y)

Im(z − w) · (z − w) = 2〈F ′θ(x)− F ′θ(y), x− y〉.(4.5.21)

2. Define

A(x, y) :=

∫ t

0
F ′′θ (tx+ (1− t)y)dt,

which, by the convexity assumption on Fθ is a positive semidefinite matrix.
Since F ′θ(x)− F ′θ(y) = A(x, y)(x− y),

〈F ′θ(x)− F ′θ(y), x− y〉 = 〈A(x, y)(x− y), x− y〉 ≥ 0,

proving (4.5.17).

3. To see (4.5.18) we note that 〈A(x, y)(x−y), x−y〉 = 0 implies A(x, y)(x−
y) = 0, that is F ′θ(x)−F ′θ(y) = 0. Hence 0 = (z−w) ·(z−w) = 〈x−y, x−y〉,
implies x = y. �

We can now proceed with the following definition:

DEFINITION 4.34 (Complex scaling of the free resolvent). For
Im(λeiθ) > 0, 0 ≤ θ < π/2, we define the following operator C∞c (Γθ) →
C∞(Γθ):

Rθ(λ)ϕ(z) =

∫
Γθ

R0(λ, z − w)ϕ(w)dw, ϕ ∈ C∞c (Γθ),(4.5.22)

where, in the notation of (3.1.16) and (4.5.19),

(4.5.23)
R0(λ,w) =

eiλ(w·w)
1
2

((w · w))
1
2 )n−2

Pn(λ (w · w)
1
2 ),

dw := det(I + iF ′′θ (y))dy.

INTERPRETATION. The element of integration, dw, is given by

dw = dw1 ∧ · · · dwn = det(I + iF ′′θ (y))dy,

w = y + i∂yFθ(y) ∈ Γθ.
(4.5.24)

The integral in (4.5.22) should then be considered as a contour integral
– see [Zw12, §13.2] for a down-to-earth review. For u, v ∈ C∞c (Γθ), let
ũ, ṽ ∈ C∞c (Cn) be their almost analytic extensions. We have

∂wj ũ(w) dw1 ∧ · · · dwn = (−1)j−1d(ũ(w) dw1 · · · dwj−1 ∧ dwj+1 · · · dzn)

−
n∑
k=1

∂̄wk ũ dw̄k ∧ dw1 · · · dwj−1 ∧ dwj+1 · · · dwn,
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and the second term on the right vanishes on Γθ. Hence by Stokes’s theorem

(4.5.25)

∫
Γθ

∂wj ũ(w)v(w)dw = −
∫

Γθ

u(w)∂wj ṽ(w)dw.

The next result shows that Rθ(λ) is in fact the inverse of −∆θ − λ2:

THEOREM 4.35 (Resolvent of ∆θ). For Im(eiθλ) > 0, 0 ≤ θ < π/2,
Rθ(λ) : C∞c (Γθ)→ C∞(Γθ) given by (4.5.22) extends to an operator

(4.5.26) Rθ(λ) : L2(Γθ)→ H2(Γθ),

which is the two sided inverse of −∆θ − λ2. Moreover, for δ > 0

(4.5.27)
Imλ > δReλ ≥ 0 =⇒

Rθ(λ) = Oδ((Imλ)−2) : L2(Γθ)→ L2(Γθ).

Proof. 1. We first refer to Theorem 3.3 for the properties of Pn appearing
in (4.5.23). They give

(4.5.28) |R0(λ,w)| ≤ CeRe(iλ(w·w)
1
2 (|(w · w)

1
2 |2−n + λ

n−3
2 |(w · w)

1
2 |−

n−1
2 ).

In fact,

|ζ2−nPn(λζ)| ≤ an|ζ|2−n(1 + |λζ|+ · · ·+ |λζ|
n−3
2 )

≤ an n−1
2 |ζ|

2−n(1 + |λζ|
n−3
2 ) ≤ bn(|ζ|2−n + |λ|

n−3
2 |ζ|−

n−1
2 ).

2. Let δ := Im(eiθλ)/|λ|. Since Γθ ∩ Cn \B(0, R2) = eiθRn \B(0, R2),

Re
(
iλ ((z − w) · (z − w))

1
2

)
= Re

(
iλ(eiθ +O((1 + |z|+ |w|)−1))

)
|z − w|

= − Im(eiθλ)|z − w|+O((1 + |z|+ |w|)−1)|λ|)|z − w|

= − Im(eiθλ)
(
1 +O(δ−1(1 + |z|+ |w|)−1)

)
|z − w|, z, w ∈ Γθ.

From (4.5.18) and again from the fact that Γθ agrees with eiθR outside of a
ball in Cn, we deduce that

(4.5.29) |((z − w) · (z − w)
1
2 | ≥ |z − w|/C, z, w ∈ Γθ.

We also trivially have

Re
(
iλ ((z − w) · (z − w))

1
2

)
≤ |λ||z − w|.
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Using these three inequalities in (4.5.23) and (4.5.28) gives, with Cj ’s de-
pending on λ and δ,∫

Γθ

|R0(λ, z − w)||dw| ≤ C0

∫
Γθ∩{|z−w|≥C0}

e−|z−w|/C0

|z − w|
n−1
2

|dw|

+ C0

∫
Γθ∩{|z−w|≤C0}

|z − w|2−n|dw|

≤ C1

∫ ∞
0

e−r/C0r
n−1
2 dr + C1 ≤ C2,

where |dw| = |det(I + iF ′′θ (y))|dy. The same estimate holds when we in-
tegrated with respect to |dz|. Hence the boundedness on L2(Γθ) follows
from Schur’s criterion (A.5.3). Since Theorem 4.32 gave us ellipticity of ∆θ,
(4.5.26) follows.

3. Now suppose that for 0 < δ ≤ 1, Imλ > δReλ ≥ 0. Then for ζ ∈ C
satisfying Re ζ, Im ζ ≥ 0,

Re(iλζ) = − ImλRe ζ − Reλ Im ζ

≤ − Imλ(Re ζ + δ Im ζ) ≤ −δ Imλ|ζ|.

In view of (4.5.20) we can apply this inequality with ζ := ((z−w) ·(z−w))
1
2

to obtain

Re(iλ((z − w) · (z − w))
1
2 ) ≤ −δ Imλ|((z − w) · (z − w)

1
2 |, z, w ∈ Γθ.

Hence, under our assumption on λ, this and (4.5.29) give

exp(iλ((z − w) · (z − w))
1
2 ) ≤ exp(−δ Imλ|z − w|/C), z, w ∈ Γθ.

We now proceed as in Step 2 and use (4.5.28). However we keep track of
the dependence on λ with the constants depending on δ and changing from
line to line:∫

Γθ

|R0(λ, z − w)||dw| ≤ C| Imλ|
n−3
2

∫
Γθ

e− Imλ|z−w|/C

|z − w|
n−1
2

|dw|

+ C

∫
Γθ

e− Imλ|z−w|/C

|z − w|2−n
|dw|

≤ C| Imλ|
n−3
2

∫ ∞
0

e− Imλrr
n−1
2 dr + C

∫ ∞
0

e− Imλrrdr

= C(Imλ)−2.

This proves (4.5.27).

4. Suppose that ϕ,ψ ∈ C∞c (Γθ), with ϕ̃ and ψ̃ being the corresponding
almost analytic extensions.
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Since

∆θψ =
( n∑
j=1

∂2
zj ψ̃

)
|Γθ ,

integration by parts using (4.5.25) shows that

(4.5.30)

∫
Γθ

∆θϕ(w)ψ(w)dw :=

∫
Γθ

ϕ(w)∆θψ(w)dw.

Hence to show that Rθ(λ) given by (4.5.22) is the left and right inverse
of −∆θ − λ2 it is enough to show that for ϕ ∈ C∞c (Γθ) we have∫

Γθ

((−∆θ)z − λ2)R0(λ, z − w)ϕ(w)dw = ϕ(z),∫
Γθ

((−∆θ)w − λ2)R0(λ, z − w)ϕ(w)dw = ϕ(z).

(4.5.31)

Since (∆θ)zR0(λ, z − w) = (∆θ)wR0(λ, z − w), we only need to prove the
first identity.

5. We first show that

(4.5.32) ((−∆θ)z − λ2)R0(λ, z − w) = 0 z 6= w, z, w ∈ Γθ.

In fact, let Ω, be an open set such that⋃
0≤θ′≤θ

Γθ′ × Γθ′ \∆(Cn) ⊂ Ω ⊂ Cn × Cn \∆(Cn),

where ∆(Cn) := {(z, z) : z ∈ Cn}. By taking Ω small enough we can assume
that its connected components intersect Rn×Rn \∆(Rn) ⊂ Cn×Cn \∆(Cn)
and that R0(λ, z − w) for (z, w) ∈ Ω.

We note that Rn×Rn \∆(Rn) ⊂ Ωθ \∆(Cn) is (maximally) totally real
and

(−
n∑
j=1

∂2
zj − λ

2)R0(λ, z − w)|Rn×Rn\∆(Rn) = 0.

This implies that the Taylor series vanishes on that submanifold and we
have

(−
n∑
j=1

∂2
zj − λ

2)R0(λ, z − w)|Ω = 0,

Since ((−∆θ)z − λ2)R0(λ, z, w) = (−
∑n

j=1 ∂
2
zj − λ

2)R0(λ, z−w)|z,w∈Γθ , the

equations (4.5.32) follows.

6. For a fixed z ∈ Γθ, (4.5.23) shows that R0(λ, z −w) ∈ H−n/2+2−
loc ((Γθ)w).

On the other hand (4.5.32) shows that the support of

((−∆θ)z − λ2)R0(λ, z−w) = ((−∆θ)w − λ2)R0(λ, z−w) ∈ H−n/2−loc ((Γθ)w),
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is contained in {z}. Since as a function of z ∈ Γθ, R0(λ, z − w) is a smooth
family of distributions in w, Schwartz’s Lemma [HöI, Theorem 2.3.4] shows
that

((−∆θ)z − λ2)R0(λ, z, w) = cθ(z)δz(w), cθ ∈ L∞(Γθ),

δz ∈ S ′(Γθ),

∫
Γθ

ϕ(w)δz(w)dw = ϕ(z), ϕ ∈ S (Γθ).

We need to show that cθ(z) ≡ 1. For that put

ϕ(z) := exp(−e−i2θz · z), z ∈ Cn, ϕθ′ := ϕ|Γθ′ , 0 ≤ θ′ < π/2.

Then ϕθ′ ∈ S (Γθ′) for |θ′ − θ| < π/4, 0 ≤ θ′ < π/2.

A contour deformation and the decay and holomorphy of ϕ show that∫
Γθ

R0(λ, z − w)ϕ(w)dw =

∫
−z+Γθ

R0(λ,w)ϕ(z + w)dw

=

∫
Γθ

R0(λ,w)ϕ(z + w)dw.

(We use Stokes’s theorem – see for instance [Zw12, §13.2.1] – and note that
Γθ can be deformed to Γθ − z using totally real submanifolds all passing
through w = 0 on which R0(λ,w) is holomorphic for w 6= 0.) Hence

z 7→
∫

Γθ

R0(λ, z − w)ϕ(w)dw,

and

z 7→ G(z) := (−
n∑
j=1

∂2
zj − λ

2)

∫
Γθ

R0(λ, z − w)ϕ(w)dw,

are holomorphic in a neighbourhood V of
⋃

0≤θ′<π/2−ε Γθ′ .

On the other hand G(z) = cθ′(z)ϕ(z) for z ∈ Γθ′ . It follows that cθ′ =
c|Γθ′ where c is a holomorphic function in V . Since c|Γ0 = cRn = 1 it follows
that c ≡ 1 proving (4.5.31).

7. We have shown thatRθ(λ) : L2(Γθ)→ L2(Γθ) and that (−∆θ−λ2)Rθ(λ) =
I. Theorem 4.32 and the fact that

−∆θ = −e−2iθ∆x, z = x+ iF ′θ(x) ∈ Γθ,

show that Rθ : L2(Γθ)→ H2(Γθ) completing the proof. �

4.5.3. Fredholm properties of Pθ. Using the invertibility of −∆θ − λ2,
for Im(eiθλ) > 0 established in Theorem 4.35 we now show that for the same
range of λ’s, Pθ − λ2 is a Fredholm operator:



286 4. BLACK BOX SCATTERING IN Rn

THEOREM 4.36 (Fredholm property of the scaled operator). Let
Pθ, Dθ and Hθ, 0 ≤ θ < π/2, be given in Definition 4.31.

If Im(eiθλ) > 0 then

Pθ − λ2 : Dθ → Hθ,

is a Fredholm operator of index 0. In particular the spectrum of Pθ in C \
e−2iθ[0,∞) is discrete.

REMARK. The condition for the Fredholm property is formulated in terms
of λ though of course in terms of λ2 it means that λ2 ∈ C \ e−2iθ[0,∞).

Proof. The strategy of the proof is to construct Qθ(λ) and Sθ(λ) such that
for λ2 /∈ e−2iθ[0,∞),

(Pθ − λ2)Qθ = I +Kθ(λ), Sθ(λ)(Pθ − λ2) = I + Lθ(λ),

where Kθ(λ) : Hθ → Hθ, Lθ(λ) : Dθ → Dθ are compact operators. That
will show the Fredholm property (see Remark 1 at the end of §C.3). To see
that the index is 0 we will show that for some λ0, I+Kθ(λ0) and I+Lθ(λ0)
are invertible. That means that P − λ2

0 : Dθ → Hθ is invertible. Hence, for
all λ /∈ e−2iθ[0,∞) the index is 0 – see Theorem C.5.

1. To find Qθ We follow the proof of Theorem 4.4. Let Rj , j = 0, 1 be as in
(4.5.1) and let χj ∈ C∞c (B(0, R1)) satisfy χ0 ≡ 1 on B(0, R0 + ε)), ε > 0,

χj(x) ≡ 1 for x ∈ suppχj−1, j = 1, 2.

For λ and λ0 satisfying Im(eiθλ0) > 0, Imλ0 > 0 and Im(eiθλ) > 0 (λ0 will
be chosen later) we put

(4.5.33) Qθ(λ, λ0) := (1− χ0)Rθ(λ)(1− χ1) + χ2(P − λ2
0)−1χ1.

Then

(Pθ − λ2)Qθ(λ, λ) = I +Kθ(λ, λ0),

Kθ(λ, λ0) := [∆, χ0]Rθ(λ)(1− χ1)− [∆, χ2](P − λ2
0)−1χ1

+ (λ2
0 − λ2)χ2(P − λ2

0)−1χ1.

(4.5.34)

2. We now show that Kθ(λ, λ0) : Hθ → Hθ forms a family of compact
operators and we do this by analysing individual terms.

First, compactness of the terms involving (P−λ2
0)−1 follows from Lemma

4.14: the singular values of these operators go to 0. Theorem 4.35 shows
that

[∆, χ0]Rθ(λ)(1− χ1) : Hθ → H1(B(0, R1) \B(0, R0)).

SinceH1(B(0, R1)\B(0, R0)) embeds compactly in L2(B(0, R1)\B(0, R0)) ⊂
Hθ (see Theorem B.4) the term involving Rθ is also compact.
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3. It remains to show that we can find λ0 satisfying Imλ0 > 0 and Im(eiθλ0) >

0 for which I+Kθ(λ0, λ0) is invertible. For that we note that if λ0 = eπi/4µ,
µ � 1, then the conditions are satisfied and in addition Reλ > 0. Hence
the argument in Step 2 of the proof of Theorem 4.4 applies using (4.5.27)
in Theorem 4.35. That completes the analysis of Qθ.

4. The construction of Sθ is similar and we use the same notation:

(4.5.35) Sθ(λ, λ0) := (1− χ1)Rθ(λ)(1− χ0) + χ1(P − λ2
0)−1χ2,

so that

Sθ(λ, λ)(Pθ − λ2) = I + Lθ(λ, λ0),

Lθ(λ, λ0) := (1− χ1)Rθ(λ)[∆, χ0]− χ1(P − λ2
0)−1[∆, χ2]

+ (λ2
0 − λ2)χ1(P − λ2

0)−1χ2.

(4.5.36)

Since Sθ(λ, λ0) : Hθ → Dθ, we see that Lθ(λ, λ0) : Dθ → Dθ.
5. Same argument as in Step 2 shows that Lθ(λ, λ0) is compact as an
operator from Hθ to Hθ. This implies that it is enough to show that

(Pθ − λ2
0)Lθ(λ, λ0) : Dθ → Hθ is compact.

We expand the operator on the left (using the support properties of χj ’s
given in Step 1):

(4.5.37)

(Pθ − λ2
0)Lθ(λ, λ0) = L̃θ(λ, λ0) + (λ2

0 − λ2)χ1,

L̃θ(λ, λ0) := [∆, χ1]Rθ(λ)[∆, χ0] + [∆, χ1](P − λ2
0)−1[∆, χ2]

−(λ2
0 − λ2)[∆, χ1](P − λ2

0)−1χ2.

Arguing as in Step 2 shows that

L̃θ(λ, λ0) : Dθ ↪→ Hθ → Hθ,

is compact. It remains to show that multiplication by χ1 from Dθ → Hθ is
compact. But Definition 4.31 gives

χ1Dθ = χ1D = χ1(P + i)−1H ↪→ χ1H = χ1Hθ,

and the second inclusion is compact by (4.1.12).

6. It remains to show that for λ0 chosen in Step 3, (I + Lθ(λ0, λ0))−1 :
Dθ → Dθ exits. Same argument as in Step 3 shows that the inverse exists
as a maps Hθ → Hθ. Then in the notation of (4.5.37),

(Pθ − λ2
0)(I + Lθ(λ0, λ0))−1 = Pθ − λ2

0

+ (Pθ − λ2
0)Lθ(λ0, λ0)(I + Lθ(λ0, λ0))−1

= Pθ − λ2
0 + L̃θ(λ0, λ0)(I + Lθ(λ0, λ0))−1

= O(1)Dθ→Hθ +O(1)Hθ→Hθ = O(1)Dθ→Hθ ,
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which concludes the proof: we have found left and right inverses of Pθ−λ2
0 :

Dθ → Hθ, and approximate inverses at any λ. �

4.5.4. Resonances as eigenvalues of Pθ. We established the fact that
the spectrum of Pθ in C \ e−iθ[0,∞) is discrete. It is remarkable that the
spectrum does not depend on θ and coincides, with agreement of multi-
plicities, with the squares of resonances with −θ < arg λ < π − θ (that is
satisfying Im(eiθλ) > 0). In an equivalent convention we would simply say
that the spectrum coincides with the resonances – see §2.1.

For Im(eiθλ) > 0, Theorems 4.36 and C.9 show that

Πθ
λ2 :=

1

2πi

∮
λ
(ζ2 − Pθ)−1 2ζ dζ,

is a finite rank projection. The multiplicity of the eigenvalue of Pθ at λ2 is
given by the trace of this projection:

(4.5.38) mθ(λ) := tr Πθ
λ2 , Im(eiθλ) > 0.

The agreement with resonances follows from the agreement of resolvents
in the interaction region:

THEOREM 4.37 (Agreement of the resolvents away from scaling).
Let R0 < R1 be as in the definition of the black box Hamiltonian (§4.1) and
Γθ (4.5.1).

If χ ∈ C∞c (B(0, R1)) is equal to one near B(0, R0) then

(4.5.39) χ(P − λ2)−1χ = χ(Pθ − λ2)−1χ for Im(eiθλ) > 0.

Proof. 1. From the proof of Theorem 4.36 we see that, if we choose χ3 (in
the notation of (4.5.33)) so that χ3 = 1 on suppχj , j = 0, 1, 2 then,

(1− χ3)Kθ(λ) = 0, Kθ(λ)χ3 = K0(λ)χ3, Kθ(λ) := Kθ(λ, λ0),

where we used Definition 4.34. Then as in Step 3 of the proof of Theorem
4.4,

(Pθ − λ2)−1 = Qθ(λ)(I +Kθ(λ))−1

= Qθ(λ)((I +Kθ(λ)(1− χ3))(I +Kθ(λ)χ3))−1

= Qθ(λ)(I +Kθ(λ)χ3)−1(I +Kθ(λ)(1− χ3))

= Qθ(λ)(I +K0(λ)χ3)−1(I +Kθ(λ)(1− χ3)).

(4.5.40)

We also recall from (4.2.14) in the proof of Theorem 4.4 that

(4.5.41) (P − λ2)−1 = Q0(λ)(I +K0(λ)χ3)−1(I +K0(λ)(1− χ3)).
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z = λ2

2θ

Figure 4.3. The resonances as eigenvalues the scaled operator Pθ,
pictured on the z-plane. (On the λ-plane the angle would be θ rather

than 2θ.)

2. For χ in the statement of the theorem we choose χ0 ∈ C∞c (B(0, R1)) in
the definition of Qθ and Kθ so that χ0 = 1 (and hence χj = 1, j = 1, 2, 3)
on suppχ.

For |λ− λ0| � |λ0|−2 the Neumann series argument shows that

χ3(I +K0(λ))−1χ = (I +K0(λ))−1χ,

and hence this holds for all λ. Also,

χQθ(λ)χ3 = χQ0(λ)χ3, (1− χ3)χ = 0.

Applying χ on both sides of (4.5.40) and (4.5.41) and using these two for-
mulas proves (4.5.39). �

It is now easy to prove

THEOREM 4.38. The spectrum of Pθ in C \ e−2iθ[0,∞) agrees with res-
onances satisfying Im(eiθλ) > 0. More precisely,

(4.5.42) mR(λ) = mθ(λ), Im(eiθλ) > 0,

where mR(λ) is the multiplicity of the resonance at λ given in (4.2.18) and
mθ(λ) is the multiplicity of the eigenvalue of Pθ at λ2 – see (4.5.38).

Proof. 1. Since Πθ
λ2 is a projection we see that

mθ(λ) = tr Πθ
λ2 = rank Πθ

λ2 .

Arguing as in the proof of (4.2.23) we see that

mθ(λ) = rank Πθ
λ2χ.

where χ ∈ C∞c (B(0, R1)) is equal to 1 near B(0, R0).

2. We now claim that

(4.5.43) mθ(λ) = rankχΠθ
λ2χ.
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Otherwise there would exist solutions v ∈ Dθ to (Pθ − λ2)kv = 0, u :=
(Pθ − λ2)k−1v 6= 0, satisfying χv = 0. But that would mean that u can be
indetified with an element of H2(Γθ) satisfying

(−∆θ − λ2)u = 0, u|B(0,R0) ≡ 0.

Since −∆θ − λ2 : H2(Γθ)→ L2(Γθ) is invertible (Theorem 4.35), u ≡ 0.

3. Combining (4.5.43) with (4.5.39) we see that

mθ(λ) = rank

∮
λ
χ(P − ζ2)−1χ2ζdζ.

We need to show that this is the same as

mR(λ) = rank

∮
(P − ζ2)−1χ2ζdζ.

We now argue as in Step 2, to see that otherwise we would have solutions
to (−∆− λ2)u = 0 equal to 0 in B(0, R0). But unique continuation results
for second order elliptic differential equations show that u ≡ 0. �

4.5.5. Applications. As the first application we provide

Proof of Lemma 4.21. 1. Since λ ∈ R \ {0} we can take any θ > 0 and use
(4.5.38) and Theorem 4.38 to see that

Π(0) :=
1

2πi
tr

∫
γ
(ζ2 − Pθ(0))−1 2ζ dζ,

1 = m0(λ) := tr Π(0), γ : t→ λ+ εe2πit, t ∈ [0, 1),

where we write Pθ(s) := (P (s))θ, for the complex scaled operators in our
family.

2. We now pose a Grushin problem for the operator Pθ(0) – see §C.1. For
that let we write the rank one projection Π(0) as

(4.5.44)
Π(0)f = w〈f, w̃〉Hθ , w, w̃ ∈ Dθ, 〈w, w̃〉Hθ = 1,

(Pθ(0)− λ2)w = 0, (Pθ(0)∗ − λ̄2)w̃ = 0.

The equation for w̃ follows from the fact that Π(0) commutes with Pθ(0)
and hence for all f ∈ Dθ,

0 = (Pθ(0)− λ2)Π(0)f = Π(0)(Pθ(0)− λ2)f = w〈(Pθ(0)− λ2)f, w̃〉

= w〈f, (Pθ(0)∗ − λ̄2)w̃〉.

We then define

Pθ(s, ζ) :=

(
Pθ(s)− ζ2 R−

R+ 0

)
: Dθ × C→ Hθ × C,

R− := u−w, R+u := 〈u, w̃〉.
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Writing

(Pθ(0)− ζ2)−1 =
Π(0)

λ2 − ζ2
+Q(ζ),

where Q(ζ) is holomorphic near ζ = λ, we check that

Eθ(0, ζ) :=

(
Q(ζ) E+

E− ζ2 − λ2

)
, E+v+ := v+w, E−v := 〈v, w̃〉,

satisfies

Pθ(0, ζ)E (0, ζ) = IHθ×C, E (0, ζ)Pθ(0, ζ) = IDθ×C.

The only computation that requires some reflection is checking thatR+Q(ζ) =
0Dθ→C. But using (4.5.44),

R+Q(ζ)v = 〈Q(ζ)v, w̃〉 = 〈(Pθ(0)− ζ2)−1v, w̃〉 − (λ2 − ζ2)−1〉Π(0)v, w̃〉

= 〈v, (Pθ(0)∗ − ζ̄2)−1w̃〉 − (λ2 − ζ2)−1〈v, w̃〉 = 0.

3. The assumption (4.4.14) shows that for |s| ≤ σ0 � 1

‖(Pθ(s)− Pθ(0))Q(ζ)‖Hθ→Hθ ≤ ‖P (s)− P (0)‖D→HR0
‖Q(ζ)‖Hθ→Dθ < 1,

‖Q(ζ)(Pθ(s)− Pθ(0))‖Dθ→Dθ ≤ ‖P (s)− P (0)‖D→HR0
‖Q(ζ)‖Hθ→Dθ < 1,

that is, the assumptions of Lemma C.3 are satisfied. We conclude that we
have an inverse depending smoothly on s (and holomorphic in ζ near λ):

Eθ(s, ζ) =

(
Q(s, ζ) E+(s, ζ)
E−(s, ζ) E−+(s, ζ)

)
,

E+(s, ζ)v+ := v+w(s, ζ), E−v := 〈v, w̃(s, ζ̄)〉, E−+(0, ζ) = ζ2 − λ2.

4. Since ∂ζE−+(0, ζ) 6= 0, we see that for small s, E−+(s, ζ) = 0 has a unique
smooth solution ζ = λ(s), λ(0) = 0. The Schur complement formula (C.1.1)
then shows that λ(s) is the unique simple eigenvalue of Pθ(s) near λ. The
eigenfunction is then given by w(s) := w(s, λ(s)) and it depends smoothly
on s. In the notation of (4.5.1) the resonant state of P (s), u(s) satisfies
1lB(0,R1) u(s) = 1lB(0,R1)w(s, λ(s)). Since we can choose R1 arbitrarily large,
the smoothness of s 7→ u(s) ∈ Dloc follows. This completes the proof of
Lemma 4.21. �

The next application is the higher dimensional version of Theorem 2.25.
By a generic set we again mean an intersection of open dense sets. The
space of perturbations we will consider is

Ċ∞(B(0, R1) \B(0, R0);R) :={
u ∈ C∞(Rn) : suppu ⊂ B(0, R1) \B(0, R0)

}
.
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(This definition is self explanatory but we mention that the general notation
comes from [HöIII, §B.2].)

THEOREM 4.39. Suppose that P is a black box Hamiltonian in the sense
of Definition 4.1. Then for any R1 > R0 there exists a generic set V ⊂
Ċ∞(B(0, R1) \B(0, R0);R) such that all resonances of P + V , V ∈ V, with

(4.5.45) − π

2
< arg λ < 0 are simple.

REMARKS. 1. The condition arg λ > −π/2 can be eliminated in odd
dimensions using large angle complex scaling of [SZ91] (and to arg λ >
−2π + ε in odd dimensions.) One can replace complex scaling by Agmon’s
theory of resonance perturbation [Ag98] as in Borthwick–Perry [BP02].

2. The reason for demanding that arg λ < 0 is the fact that compactly sup-
ported embedded eigenvalues cannot be split using perturbations supported
away from the black box. The positive eigenvalues are typically unstable
and can be perturbed to become resonances – see Theorem 4.22 and the
example after its proof.

3. It is not clear how to prove this theorem following the same strategy as
that in the proof of Theorem 2.25 as the situation in Step 4 of the proof is
more complicated in higher dimensions.

Before proving Theorem 4.39 we state the following lemma.

LEMMA 4.40. For 0 < θ < π/2 let Pθ be the complex scaled operator of
a black box Hamiltonian (see Definition 4.31). If z0, arg z0 > −2θ is an
eigenvalue of Pθ (that is z0 = λ2 where λ is a resonance of P ), then for
some K and ε sufficiently small,

(4.5.46)

(Pθ − z)−1 =

K∑
k=1

(Pθ − z0)k−1Π

(z0 − z)k
+G(z),

Π :=
1

2πi

∫
γ
(z − P )−1dz, γ(t) = z0 + iεeit, t ∈ [0, 2π),

where G(z) : Hθ → Dθ is a holomorphic family of operators for z near z0.

In addition there exist wj , w̃j ∈ D∞θ , j = 1, · · · , N = tr Π, such that

(4.5.47)
Πv =

N∑
j=1

wj〈v, w̃j〉, 〈wk, w̃j〉 = δkj ,

(Pθ − z)Kwj = 0, (P ∗θ − z̄)Kw̃j = 0.

Proof. 1. The expansion (4.5.46) follows as in the proof of Theorem 4.7:
everything is easier now as we deal with a genuine resolvent, (Pθ − z)−1.
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2. We only need to check (4.5.47). Since Π is an operator of rank N , there
exist a basis {wj}j=1N of ΠHθ. Also, there exist w̃j ∈ Hθ such that the first
formula in (4.5.47) holds. The projection property, Πwk = wk, then shows
that 〈wk, w̃j〉 = δjk.

3. Since Pθ commutes with Π it follows that wj ∈ D∞θ . Since P ∗θ commutes

with Π∗ it also follows that w̃j are in the domain of (P ∗θ )k which is the same

as the domain of P kθ , for any k. Since (Pθ − z)KΠ = 0 the last part of
(4.5.47) follows. �

Proof of Theorem 4.39. 1. We identify resonances λ with 0 > arg λ > −θ
with eigenvalues of z ∈ Spec(Pθ), 0 > arg z > −2θ, z = λ2. We recall (and
rename) the definition of multiplicity:

mV (z) :=
1

2πi
tr

∮
z
(ζ − (Pθ + V ))−1dζ,

where the integral is over a sufficiently small positively oriented circle around
z. We then define

(4.5.48)

Erθ := {W ∈ CR0,R1 : mW (z) ≤ 1, z ∈ Γr},

CR0,R1 := Ċ∞(B(0, R1) \B(0, R0);R).

Γr := {z : −θ + 1/r ≤ arg z ≤ −1/r, 1/r ≤ |z| ≤ r}.

We want to show that for r > 0, Erθ is open and dense. That will show that
the set

Eθ := {W ∈ CR0,R1 : mW (z) ≤ 1 for arg z > −θ} =
⋂
n∈N

Enθ

is generic (and in particular, by the Baire category theorem, it has a nowhere
dense complement). By taking

V :=
⋂
n∈N

Eπ/2−1/n,

we obtain the generic set in the statement of the theorem.

2. Suppose that Pθ + W has exactly one resonance z0 in D(z0, 2r). For
Ω := D(z0, r) we then define

(4.5.49) ΠW (Ω) :=
1

2πi

∫
∂Ω

(ζ − (Pθ +W ))−1dζ, mW (Ω) := tr ΠW (Ω).

If V ∈ CB0,B1 and ‖V ‖∞ is sufficiently small then for ζ ∈ ∂Ω,

(Pθ +W + V − ζ)−1 = (Pθ +W − ζ)−1(I + V (Pθ +W − ζ)−1)−1,

exists and we can define ΠW+V . This also shows that if ‖V ‖∞ < ε for
sufficiently small ε then for ζ ∈ ∂Ω,

(Pθ +W − ζ)−1 − (Pθ +W + V − ζ)−1 = Oε(‖V ‖∞)Hθ→Hθ .
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Hence,

‖ΠW (Ω)−ΠW+V (Ω)‖Hθ→Hθ ≤ Cε‖V ‖∞.
If we take ‖V ‖∞ < min(ε, 1/Cε) then ΠW (Ω) and ΠW+V (Ω) have the same
rank. (If for two finite rank projections P1 and P2, ‖P1 − P2‖ < 1 then the
ranks are the same. Indeed, we have ‖P1 − P1P2P1‖ < 1 and hence P1P2P1

is invertible on the range of P1 and rankP1 ≤ rankP2.)

We restate this as follows:

(4.5.50) mW+V (Ω) is constant for ‖V ‖∞ sufficiently small.

3. The statement (4.5.50) immediately implies that Erθ is open: if z is
a simple resonance then mW (Ω) = 1 and it stays constant under small
changes in the potential. (We could have also used the argument in the
proof of Lemma (4.21) to see that but (4.5.50) will be needed later.)

4. Now we want to show that Erθ is dense. This follows from the following
statement

(4.5.51)
∀W ∈ CB0,B1 , ε > 0 ∃ V ∈ CB0,B1

W + V ∈ Erθ , ‖V ‖∞ < ε.

Since the number of eigenvalues of Pθ +W in Γr (see (4.5.48)) is finite it is
enough to prove a local statement as it can be applied successively to obtain
(4.5.51) (once an eigenvalue is simple it stays simple for sufficiently small
perturbations by Step 3).

Hence to obtain (4.5.51) it suffices to prove, in the notation of Step 2,

(4.5.52)
∀W ∈ CB0,B1 , ε > 0 ∃ V ∈ CB0,B1 ∀ z ∈ Ω

mW+V (z) ≤ 1, ‖V ‖∞ < ε.

5. To establish (4.5.52) we proceed by induction. One of the following cases
has to occur:

(4.5.53)
∀ ε > 0 ∃V ∈ CR0R1 , z ∈ Ω

1 ≤ mW+V (z) < mW+V (Ω), ‖V ‖∞ < ε,

or

(4.5.54)
∃ ε > 0 ∀V ∈ CR0R1 , ‖V ‖∞ < ε ∃ z = z(V ) ∈ Ω

mW+V (z) = mW+V (Ω).

The first possibility means that by adding an arbitrarily small V to W we
can obtain at least two distinct eigenvalues of Pθ + V + W . The second
possibility means that for any small perturbation the maximal multiplicity
persists.
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6. We will show that (4.5.54) cannot occur. Assuming (4.5.53) we prove
(4.5.52) by induction on mW (z0) (where z0 is the unique eigenvalues of
Pθ + W in D(z0, 2r), Ω := D(z0, r) – see Step 2). If mW (z0) = 1 there
is nothing to prove. Assuming that we proved (4.5.52) for mW (z0) < M
assume that mW (z0) = M . Using (4.5.53) we see that we can find V0,
‖V0‖∞ < ε/2 such that mW+V0(Ω) = mW (Ω) (using (4.5.50)) and such that
all eigenvalues in Ω, z1, · · · , zk, satisfy mW+V0(zj) < M . We now find rj
such that,

D(zj , 2rj) ⊂ Ω, D(zj , 2rj) ∩D(zk, 2rk) = ∅, j 6= k,

{zj} = D(zj , 2rj) ∩ Spec(Pθ +W + V0).

We put Ωj := D(zj , rj) and apply (4.5.52) successively to W +V0 + · · ·Vj−1,
j = 1, · · · , k, in Ωj with ‖Vj‖∞ < ε/2j+1. That gives the desired V =∑k

j=0 Vj .

6. It remains to show that (4.5.54) is impossible. Hence, assume that
mW (z) = M and that (4.5.54) holds. For V ∈ CR0R1 , ‖V ‖∞ < ε, put

k(V ) := min{k : (Pθ +W + V − z(V ))kΠW+V (Ω) = 0}.

Then 1 ≤ k(V ) ≤M and BCM (0, ε) 3 V 7→ k(V ) is a lower semi-continuous
function. In fact, if ‖Vj − V ‖CM → 0 and then, from (4.5.49), we see that

(Pθ+W+Vj−z(Vj))kΠW+Vj (Ω) = 0, then (Pθ+W+V −z(V ))kΠW+V (Ω) =
0.

Defining

k0 := max{k(V ) : V ∈ VR0R1 , ‖V ‖∞ < ε/2},

we see that if k(V ′) = k0, k(V +V ′) = k0 for ‖V ‖CM < δ, with a sufficiently
small δ. Hence we can replace W by W + V ′, decrease ε and assume that

(4.5.55)

(Pθ +W + V − z(V ))k0ΠV+W (Ω) = 0,

(Pθ +W + V − z(V ))k0−1ΠV+W (Ω) 6= 0,

mW+V (z(V )) = tr ΠV+W = M > 1, ∀V, ‖V ‖CM < ε.

7. To see that (4.5.55) is impossible we first assume that k0 > 1. Take
V = V (t) = W + tV , ‖V ‖CM < ε, t ∈ [−1, 1]. For h, g ∈ Dθ we define
(dropping Ω in Π•(Ω))

w(t) := (Pθ +W + tV − z(t))k0−1ΠW+tV h,

w̃(t) := (P ∗θ +W + tV − z(t))k0−1Π∗W+tV g.

By our assumption (4.5.55) we can choose g and h so that

(4.5.56) w := w(0) 6= 0, w̃ := w̃(0) 6= 0.
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From Step 2 (or arguments presented in the proof of Lemma 4.40) we
see that t 7→ z(tV ),ΠW+tV , w(t) are are smooth functions of t. We then
differentiate

0 =
d

dt
(Pθ +W + tV − z(t))k0ΠW+tV h

= V (Pθ +W + tV − z(t))k0−1ΠW+tV h+ (Pθ +W + tV − z(t))H(t)

where H(t) ∈ D∞θ . We now put t = 0 and take the Hθ inner product with

w̃: the term with H(0) disappears as (P ∗θ +W+tV )k0Π∗W ≡ 0 and we obtain

∀V ∈ CR0,R1 〈V w, w̃〉 = 0.

This shows that

w|B(0,R0)\B(0,R1) w̃|B(0,R0)\B(0,R1) ≡ 0.

Since w and w̃ solve (−∆θ − z)w = 0 and (−∆∗θ − z̄)w̃ = 0 in B(0, R0) \
B(0, R1), the unique continuation property of the equations shows that w =
w̃ = 0 in Γθ \B(0, R0). But then z has to be an eigenvalue of P +W (there
is no scaling near B(0, R0)) and arg z = 0, a contradiction.

8. It remains to consider the case of k0 = 1 in (4.5.55). We then use the
notation of Lemma 4.40 and have

0 =
d

dt
(Pθ +W + tV − z(tV ))ΠW+tV wk

= VΠW+tV wk −
d

dt
z(tV )ΠW+tV wk + (Pθ +W + tV − z(tV ))

d

dt
ΠW+tV wk.

We then put t = 0 and take an inner product with w̃j . That gives:

d

dt
z(tV )(0)δkj = 〈V wk, w̃j〉, k, j = 1, · · · ,M.

Taking k 6= j and arguing as at the end of Step 7 we again obtain a contra-
diction. �

4.6. SINGULARITIES AND RESONANCE FREE
REGIONS

In this section we present an abstract non-trapping condition which guaran-
tees the presence of resonance free regions for black box Hamiltonians. This
generalizes Theorem 3.10 and provides an expansion of scattered waves for
“non-trapping black boxes”. In §6.2 we will present a semiclassical version
of the non-trapping resolvent estimates, see also §6.6.

To explain the idea of the proof we first present the result in the simpler
case of potential scattering. It improves Theorem 3.10 in the case of smooth
potential since the logarithmic region is now arbitrarily large:
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THEOREM 4.41 (Non-trapping estimates for smooth potentials).
Suppose that V ∈ C∞c (Rn;R), n ≥ 3, odd, and RV (λ) := (−∆ + V − λ2)−1,
Imλ > 0. For any M > 0 there exists C0 such that RV (λ) : L2

comp → L2
loc

continues holomorphically to

(4.6.1) ΩM := {λ ∈ C : Imλ > −M log |λ|, |λ| > C0}.

Moreover, for any χ ∈ C∞c (Rn) there exist C1 and T such that

(4.6.2) ‖χRV (λ)χ‖L2→L2 ≤ C1|λ|−1eT (Imλ)− , λ ∈ ΩM .

Proof. 1. Let

UV (t) :=
sin t
√
−∆ + V√
−∆ + V

,

where functions of −∆ + V are defined using the spectral theorem.

Then UV (t) : L2(Rn)→ H1(Rn) solves the wave equation

�V UV (t) = 0, UV (0) = 0, ∂tUV (0) = I, �V := ∂2
t −∆ + V.

We use the same notation for the Schwartz kernel of the operator UV (t):

UV (t)f(x) =

∫
Rn
UV (t, x, y)f(y)dy, f ∈ C∞c (Rn),

UV ∈ C∞(Rt,D′(Rnx × Rny )).

The sharp Huyghens principle in odd dimensions states

(4.6.3) suppU0(t, •) = {(x, y) : |x− y| = |t|},

and singsuppU0(t) = suppU0(t).

The Huyghens principle/finite speed of propagation holds for UV :

suppUV (t, •) ⊂ {(x, y) : |x− y| ≤ |t|}.

The key to the proof is the following result about the singular support (see
Exercise E.15) of UV (t):

singsuppUV (t, •) = {(x, y) : |x− y| = |t|}.(4.6.4)

This follows from general results presented in Theorem E.47 but in this
simple case can also be deduced from an explicit parametrix construction
for ∂2

t −∆ + V – see for instance [MU, §§1,4].

2. Property (4.6.4) implies the following statement. Suppose ψa ∈ C∞(R×
Rn) satisfies

suppψa ⊂ {(t, x) : |x|+ Ta ≤ t ≤ |x|+ Ta + 1}, Ta ≥ a,

(we can take Ta = a but this generality will be useful in later) with a large
enough so that

suppV ⊂ B(0, a).
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We claim that for χ ∈ C∞c (B(0, a))

(4.6.5) ψaUV (t)χ ∈ C∞(R;L(L2, H1)).

Since

t ≥ |x|+ Ta, |x− y| = t =⇒ |y| ≥ t− |x| ≥ Ta ≥ a,
we see that if (t, x) ∈ suppψa and y ∈ suppχ then |x−y| 6= t so that (4.6.4)
implies that

ψa(t, x)UV (t, x, y)χ(y) ∈ C∞(Rt × R2n
(x,y)),

and that implies a stronger statement than (4.6.5).

3. Just as in (3.1.11), we can use spectral theorem to relate the propagator
UV to the resolvent by the formula

(4.6.6) RV (λ) := F∗t→λ(H(t)UV (t)) :=

∫ ∞
0

eiλtUV (t)dt, Imλ > 0,

where H(t) is the Heaviside function. We will use related formulas to obtain
an effective expression for RV (λ).

4. For ζ ∈ C∞(R) equal to 1 for s ≤ 1
3 and 0 for s ≥ 2

3 we put

(4.6.7) ζa(x, t) := ζ(t− Ta − |x|),

so that

ζa(x, t) =

{
1 t ≤ |x|+ Ta
0 t ≥ |x|+ Ta + 1.

Suppose that

suppχa ⊂ B(0, a), χa|suppV ≡ 1

and write

�V ζaUV (t)χa = [�V , ζa]UV (t)χa =: Fa(t),

ζaUV (t)χa|t=0 = 0, ∂t(ζaUV (t)χa)|t=0 = χa.
(4.6.8)

From (4.6.5) we deduce that

(4.6.9) Fa(t) ∈ C∞(R;L(L2, L2)).

5. Putting

(4.6.10) R̃a(λ)g := F∗t→λ(ζaH(t)UV (t)χag), g ∈ L2

we obtain

(4.6.11) (−∆ + V − λ2)R̃a(λ)g = χag + F∗t→λ(Fa(t))g).

We note that the Fourier transforms are well defined because of the ζa(t, x)
factor and (4.6.7).

6. We will modify R̃a(λ) to obtain R#
a (λ) such that

(4.6.12) (−∆ + V − λ2)R#
a (λ) = χa(I +Ka(λ)),
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Figure 4.4. Support properties of operators appearing in the proof
of Theorem 4.41: ζaUV (t)χa, Fa(t) and Wa(t), applied to g ∈ L2 –
the support of Fa(t)g is contained in the intersection of the supports of
ζaUV (t)χa and Wa(t)g. Condition (4.6.2) implies that Fa(t)g,Wa(t)g ∈
C∞. An approximation of R(λ)χa is obtained by taking R#(λ) =
F∗t→λ (ζaU(t)χa +Wa(t)) which is well defined because of the support
properties shown in the figure.

where K(λ) has small norm for λ ∈ ΩM (see (4.6.1) for the definition of

ΩM ) and R#
a (λ) satisfies the estimate (4.6.2). We will then have

(4.6.13) R(λ)χa = R#
a (λ)(I +Ka(λ))−1,

from which (4.6.2) will follow.

7. The modification is achieved by solving the free wave equation:

(4.6.14) �0Wa(t) = −Fa(t), Wa(0) = 0, ∂tWa(0) = 0.

We will use Wa(t) to cancel most of the second term on the right in (4.6.11).

We first observe that (4.6.9) shows that for any g ∈ L2,

Fa(t)g(x) ∈ C∞(Rt, L2(Rnx)), suppFa(t)g(x) ⊂ {(t, x) : |x|+Ta ≤ |x|+Ta+1}.

Consequently, the Duhamel formula

(4.6.15) [Wa(t)g](x) = −
∫ t

0
U0(t− s, x, y)[Fa(s)g](y)dyds,
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and (4.6.3) show that

(4.6.16) [Wa(t)g](x) ∈ C∞(Rt, L2(Rn)).

(In fact [Wa(t)g(x)] is smooth but that is not important here.) We claim
that

(4.6.17) supp[Wa(t)g](x) ⊂ {(x, t) : |x|+ Ta ≤ t ≤ |x|+ Ca}.

The lower bound on t in the support comes from the support properties of
Fa and the finite speed of propagation. Hence we only need to check the
upper bound.

8. To establish (4.6.17) we rewrite Wa(t) as follows

(4.6.18) Wa(t) = ζaH(t)UV (t)χa −H(t)U0(t)χa +Qa(t).

The first two terms satisfy the support property (4.6.17) with Ca = Ta + 1
and Ca = |a| respectively.

The last term satisfies Qa(t) ≡ 0 for t ≤ 0, and

�0Qa(t) = �0Wa(t)−�V (ζaH(t)UV (t)χa) + V ζaH(t)UV (t)χa

−�0(H(t)U0(t)χa)

= −Fa(t) + [�V , ζa]UV (t)χa + V ζaH(t)UV (t)χ0

= V ζaH(t)UV (t)χa.

(4.6.19)

Here we used the definition of Fa(t) in (4.6.8) and the fact that

�V (H(t)UV (t)χag) = �0(H(t)U0(t)χag) = δ(t)χag, g ∈ L2.

In view of (4.6.7) the right hand side of (4.6.19) is compactly supported
in both x and t. The sharp Huyghens principle (4.6.3) and the Duhamela
formula (see (4.6.15)) show

Qa(t) = −
∫ t

0
U0(t− s)V ζaUV (s)χads,

then show that for any g ∈ L2, (recall that suppV ⊂ B(0, a))

supp[Qa(t)g(x)] ⊂ {(t, x) : ∃ |y| ≤ a, 0 ≤ s ≤ |y|+ Ta + 1, |x− y| = t− s}
⊂ {(t, x) : 0 ≤ t ≤ 2a+ |x|+ Ta + 1}.

Hence (4.6.17) holds with Ca = 2a+ Ta + 1.

In particular this means that F∗t→λ(Wa(t)g) is well defined. (This is the
crucial part of the argument: the compact support of the perturbation –
V ∈ C∞c (Rn) – forces the compact support in time of Wa(t) which compares
the truncated perturbed evolution with the free evolution.)

9. We now put

R#
a (λ)g := R̃a(λ)g + F∗t→λ(Wa(t)g), g ∈ L2,
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where R̃a(λ) was defined in (4.6.10). If

χa = 1 on suppV

(which is possible since suppV ⊂ B(0, a)) then

(−∆ + V − λ2)R#
a (λ)g = χag + V F∗t→λ(Wa(t)g)

= χa(I +Ka(λ))g,

where Ka(λ) := V F∗t→λ(Wa(t)).

10. In view of the definitions of R̃a and R#
a (λ), (4.6.2) will follow once we

show the following estimates

‖F∗t→λζaH(t)UV (t)χa‖L2→L2 ≤ C0〈λ〉−1eC0(Imλ)− , χ ∈ C∞c (Rn),(4.6.20)

‖χF∗t→λ(Wa(t))‖L2→L2 ≤ C0〈λ〉−1eC0(Imλ)− ,(4.6.21)

‖F∗t→λ(VWa(t))‖L2→L2 ≤ CN 〈λ〉−NeC1(Imλ)− ,(4.6.22)

where C0 depends on χ and a and C1 depends on a, and N is arbitrary.

11. We start with the last two bounds. In fact, a stronger bound than
(4.6.21) is valid: for any χ ∈ C∞c (Rn),

‖χF∗t→λ(Wa(t))‖L2→L2 ≤ CN 〈λ〉−NeC1(Imλ)− .

In fact, the regularity property (4.6.16) and the support property (4.6.17)
imply that χWa(t) ∈ C∞c ((0,∞);L(L2, L2)), and the bound on the Fourier
transform follows. This also implies (4.6.22) as we can take χ = V .

12. To prove (4.6.20) we use an argument similar to that in the proof of
Theorem 3.1. We first note that

UV (t), ∂tUV (t) = O(expC|t|)L2→L2

where the exponential growth is due to the possible presence of negative
eigenvalues of −∆ + V . Hence

χF∗t→λ(ζaH(t)UV (t)χa) = O(eC(Imλ)−)L2→L2 ,

where C depends on χ and a. We also have (since UV (0) = 0)

iλχF∗t→λ(ζaH(t)UV (t)χa) = −F∗t→λ(ζaH(t)∂tUV (t)χa)

= O(eC(Imλ)−)L2→L2 ,

from which (4.6.20) follows. This completes the proof of (4.41). �

We now move to the general black box case. The proof follows the same
strategy but we need more cut-off functions. All of them will be either
identically 0 or 1 in a neighbourhood of the black box.
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We also require an abstract condition which will replace (4.6.2). Let
P be a black box Hamiltonian in the sense of Definition 4.1. Since it is a
self-adjoint operator we use the spectral theorem to define

(4.6.23) U(t) :=
sin t
√
P√

P
.

We assume here that h = 1.

DEFINITION 4.42 (Non-trapping black box). Suppose that P is a
black box Hamiltonian and that U(t) is given by (4.6.23). We say that P is
non-trapping if

(4.6.24) P ≥ −C

for some C and if the following condition holds:

∀ a > R0 ∃Ta ∀χ ∈ C∞c (B(0, a)), χ|B(0,R0+ε) ≡ 1,

χU(t)χ|t>Ta ∈ C∞((Ta,∞);L(H,D)),
(4.6.25)

where the space D is the domain of P .

EXAMPLE. Suppose that P = −∆g where g is a Riemannian metric on
Rn, n odd, with the property that gij − δij ∈ C∞c (B(0, R0)). Suppose that
the metric is classically non-trapping that is,

∀ (x, ξ) ∈ T ∗Rn \ 0 π(exp tHp(x, ξ))→∞, t→ ±∞,

p(x, ξ) =
n∑

i,j=1

gij(x)ξiξj .

Here π : T ∗Rn → Rn is the natural projection and Hp is the Hamilton vector
field of p – see Proposition E.5.

In particular this implies that for any a > 0 there exists Ta such that

|x| < a, p(x, ξ) = 1, |t| > Ta =⇒ |π((exp tHp)(x, ξ))| > a.

Hence the result on propagation of singularities – see Theorem E.47 – shows
that for χ ∈ C∞c (B(0, a)) and any N > 0.

χ(sin t
√
−∆g/

√
−∆g)χ ∈ C∞((Ta,∞);L(L2(Rn), HN (Rn)).

This means that classical non-trapping for the metric g implies non-trapping
for the propagator in the sense of Definition 4.42.

We can now state a theorem relating propagation of singularities to
resonance region for general black box Hamiltonians in odd dimensions.
The proof follows the same idea as the proof of Theorem 4.41 but with more
cut-offs related to the abstract black box.
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THEOREM 4.43 (Non-trapping estimates for black box Hamilto-
nians). Suppose that P is a black box Hamiltonian in the sense of Defintion
4.1 and R(λ) : Hcomp → Dloc is the meromorphically continued resolvent.

If P is non-trapping in the sense of Definition 4.42 then for any M there
exists C0 such that R(λ) is holomorphic in

(4.6.26) ΩM := {λ ∈ C : Imλ > −M log |λ|, |λ| > C0}.

Moreover, for any χ ∈ C∞c (Rn), χ = 1 near B(0, R0) (the black box) there
exist C1 and T such that

(4.6.27) ‖χR(λ)χ‖H→H ≤ C1|λ|−1eT (Imλ)− , λ ∈ ΩM .

REMARKS. 1. The estimate (4.6.27) can be improved to an estimate
valid between H and Dα, α = 0, 1

2 , 1 – see (4.6.44). That is important for
obtaining resonance expansions for data in natural spaces.

2. The condition (4.6.25) seems weaker that the condition

(4.6.28) χU(t)χ ∈ C∞((Ta,∞);L(H,DN )),

for all N . However, differentiation of (4.6.23) with respect to t and changing
the cut-offs χ shows that (4.6.27) implies the seemingly stronger statement
(4.6.28).

3. As observed in [Sj02, §3] condition (4.6.25) can be weakened to demand-
ing that

χU(t)χ ∈ C∞((Ta, Ta + c);L(L2,D))

for some c > 0. That can already be seen in the proof of Theorem 4.41: we
only use (4.6.5) and for that only smoothness for in (Ta, Ta + c) for some c
is needed. See [Sj02, §3] for a slightly different argument.

4. As pointed out in [BW13] the proof below shows that C∞ in (4.6.27) can
be replaced by Ck for any k ≥ 0. In the case of k = 0 we obtain a resonance
free region of the form Imλ ≥ −C, |λ| > C for any C – see Step 6 of the
proof: the Fourier transform of a continuous compactly supported function
is o(1)eC| Imλ|, as |Reλ| → ∞. When k > 0 then we obtain a logarithmic
strip Imλ ≥ −M0 log |λ|, |λ| ≥ C0 for some fixed M0.

Proof. 1. The operator U(t) defined in (4.6.23) has the mapping property

(4.6.29) U(t) : Dα −→ Dα+ 1
2 , U(t) ∈ C(Rt,L(DαDα+ 1

2 )),

and it solves the equation

�U(t) = 0, U(0) = 0, ∂tU(0) = IH, � := ∂2
t + P.
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Suppose that a is chosen large enough so that suppχ ⊂ B(0, a) and let
χa ∈ C∞c (B(0, a)) be equal to 1 on the support of χ. Let ψa ∈ C∞(R×Rn)
satisfy

suppψa ∩ (R× Rn \B(0, R0)) ⊂ {(t, x) : |x|+ Ta ≤ t ≤ |x|+ Ta + 1},

ψa|R×B(0,R0+ε) = ψ0
a(t), ψ0

a ∈ C∞c (Ta +R0, Ta +R0 + 1),

see Figure 4.5. In particular, u 7→ ψau is well defined as an operator from
C∞(R,Hloc) to intself.

Using (4.6.25) we see that

(4.6.30) ψaU(t)χa ∈ C∞(R;L(H,D)).

In fact, let χ0, χ1 ∈ C∞c (B(0, a)) satisfy χ0 ≡ 1 on suppχa and χ1 ≡ 1 on
suppχ0. Then (4.6.25) gives

(4.6.31) χ1UV (t)χ1|t>Ta ∈ C∞((Ta,∞);L(L2,D)).

Also,

�0 ((1− χ0)UV (t)χa) = −[�0, χ0]χ1UV (t)χa|t>Ta =: Ga(t)

Ga(t)|t>Ta ∈ C∞((Ta,∞),L(H, H1
comp(B(0, a) \B(0, R0) )),

(the support restriction comes from −[�0, χ0] = [∆, χ0]and

(1− χ0)UV (0)χa = 0, (1− χ0)∂tUV (0)χa = 0.

The Duhamel formula and the support properties of U0 (4.6.3) and Ga(t)
give

ψa(1− χ0)UV (t)χa = ψa

∫ t

0
U0(t− s) [Ga(s)|s>Ta ] ds

∈ C∞((Ta,∞),L(H,D)),

(4.6.32)

see Figure 4.5. (Here we used (4.6.29) with α = 1
2 .)

Since (1 − χ0)(1 − χ1) = (1 − χ1) and ψaχ1|t>Ta = ψaχ1, (4.6.31) and
(4.6.32) show (4.6.30).

2. We now modify the function ζa ∈ C∞ in (4.6.7) so that it is independent
of x in B(0, R0):

ζa(x, t)||x|>R0+2ε =

{
1 t ≤ |x|+ Ta,
0 t ≥ |x|+ Ta + 1,

ζa(x, t)||x|<R0+ε = ζ0
a(t) =

{
1 t ≤ R0 + ε+ Ta,
0 t ≥ R0 + ε+ Ta + 1.

(4.6.33)

Using ζa we put

(4.6.34) Fa(t) := [�, ζa]U(t)ψa ∈ C∞(R;L(H,D
1
2 )),
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Figure 4.5. Supports of ψa, 1− χ0 and Ga(t) showing the validity of
(4.6.32). The cone represents the support of U(t − s) in the Duhamel

formula.

where the regularity comes from (4.6.30) and we change from D to D
1
2 (in

fact H1 since the cut-offs move us outside of the “black box”) because of
the first order operator [�, ζa] – see (4.1.9) and (4.1.10).

3. Now choose χb ∈ C∞c (B(0, a)) such that χb = 1 near B(0, R0) and χa ≡ 1
on suppχb and solve

(4.6.35) �0Wa(t) = −(1− χb)Fa(t), Wa(t) ≡ 0, t ≤ 0.

We then proceed as in Step 7 of Theorem 4.41 to see that for g ∈ H,

supp[Wa(t)g](x) ⊂ {(x, t) : |x|+ Ta ≤ t ≤ |x|+ Ca},

[Wa(t)g](x) ∈ C∞(Rt,D
1
2 ).

(4.6.36)

The smoothness statement comes from (4.6.34) and to see the support prop-
erty we write

Wa(t) = (1− χb)ζaH(t)U(t)χa −H(t)U0(t)(1− χb)χa +Qa(t),
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where H(t) is the Heaviside function and where Qa(t) solves

�0Qa(t) = �0Wa(t)− (1− χb)�(ζaH(t)U(t)χa)

+ [�0, χb]ζaH(t)U(t)χa −�0(H(t)U0(t)(1− χb)χa)
= −(1− χb)Fa(t) + (1− χb)(χa + Fa(t))

+ [�0, χb]ζaH(t)U(t)χa(1− χb)χa − χa(1− χb)χa
= −[∆, χb]ζaH(t)U(t)χa.

For any g ∈ H,

[∆, χb]ζaH(t)U(t)χa ∈ L2(B(0, a) \B(0, R0)),

that is the support is contained in a fixed compact subset of Rt ×Rnx. (The
compactness in t comes from ζa.) The sharp Huyghens principle (see Step
8 of the proof of Theorem 4.41) then shows that

supp[Qa(t)g](x) ⊂ {(t, x) : 0 ≤ t ≤ Ca + |x|}.

The lower bound on t in (4.6.36) follows from the support property of (1−
χb)Fa(t) and the final speed of propagation.

5. The support property in (4.6.36) allows us to define the following approx-
imation of the resolvent R(λ)χa: choose χc ∈ C∞c (B(0, a)) equal to 1 near
B(0, R0) and such that χb = 1 on suppχc and put

(4.6.37) R#
a (λ) = F∗t→λ (ζaH(t)U(t)χa + (1− χc)Wa(t)) .

We note that R#
a (λ) : H → D for Imλ > 0 except for poles given by a

discrete set of eigenvalues – see Theorem 4.5, (4.6.24) and (4.6.6).

4. We calculate

(P − λ2)R#
a (λ) = χa(I +Ka(λ)),(4.6.38)

where, using (4.6.35),

Ka(λ) := F∗t→λ (χbFa(t) + [∆, χc]Wa(t)) .

We prove (4.6.25) by showing that

χR#
a (λ) = O(eC(Imλ)−〈λ〉−1)H→H,(4.6.39)

Ka(λ) = ON (eC(Imλ)−〈λ〉−N )H→H,(4.6.40)

for any N .

In fact, for Imλ > 0, in view of mapping properties of R#
a (λ) discussed

in Step 3, we have

(4.6.41) R(λ)χa = R#
a (λ)(I +Ka(λ))−1,

and by analytic continuation in holds in ΩM : the bound (4.6.40) implies
invertibility of I +Ka(λ) there.
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5. To obtain (4.6.39) we proceed as in Step 12 of the proof of Theorem
4.41. Since P is bounded from below (see (4.6.24)) the functional calculus
of self-adjoint operators implies that

U(t), ∂tU(t) = O(expC|t|)H→H.

Hence

χF∗t→λ(ζaH(t)UV (t)χa) = O(eC(Imλ)−)H→H,

where C depends on χ and a. We also have (since U(0) = 0)

iλχF∗t→λ(ζaH(t)U(t)χa) = −F∗t→λ(ζaH(t)∂tU(t)χa)

= O(eC(Imλ)−)H→H.

The second term in R#
a (λ) satisfies an even better bound in view of (4.6.36):

F∗t→λ(χWa(t)) = O(eC(Imλ)−〈λ〉−N )H→H. This proves (4.6.39).

6. It remains to show (4.6.40). Since the cut-offs χb and [∆, χc] restrict t to
a compact set smoothness in t – from (4.6.34) and (4.6.36) – we obtain the

estimates O(eC(Imλ)−〈λ〉−N )H→H. (It is here that we need D rather than

D
1
2 in (4.6.25) as we need to apply the first operator [∆, χc] to Wa(t).) That

completes the proof. �

We can state a theorem about the expansion of scattered waves. The
proof follows the same lines as the proof of Theorem 2.9.

THEOREM 4.44 (Resonance expansions for non-trapping black
box Hamiltonians.). Suppose that P is a non-trapping black box Hamil-
tonian in the sense of Definition 4.42 and that that w(t) is the solution
of

(∂2
t + P )w(t) = 0 , w(0) = w0 ∈ D

1
2
comp , ∂tw(0) = w1 ∈ Hcomp .

Then, for any A > 0,

w(t) =
∑

λj∈Res(P )
Imλj>−A

mR(λj)−1∑
`=0

tje−iλjtfj,` + EA(t) ,(4.6.42)

where sum is finite,

mR(λj)−1∑
`=0

t`e−iλjtfj,` = Resµ=λj

(
(iR(µ)w1 + λR(µ)w0) e−iµt

)
,

(P − λj)`+1fj,` = 0 ,

(4.6.43)
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and for any K > 0, such that suppwj ⊂ B(0,K), there exist constants CK,A
and TK,A

‖EA(t)‖D ≤ CK,Ae−tA
(
‖w0‖D 1

2
+ ‖w1‖H

)
, t ≥ TK,A .

Proof. To repeat the proof of Theorem 2.9 we need the following improve-
ment of the estimate (4.6.25):

(4.6.44) ‖χR(λ)χ‖H→Dα ≤ C〈λ〉α/2−1eC(Imλ)− , α = 0, 1, 2.

From (4.6.41) we see that it is enough to prove these estimates with R(λ)χ,

suppχ ⊂ B(0, a), replaced by R#
a (λ), where R#

a (λ) is given by (4.6.37)
with χa = χ. But this follow from the support and mapping properties
of ζaU(t)χa and Wa(t) following the argument in the proof of (3.1.12) in
Theorem 3.1 with −∆ replaced by P . �

4.7. NOTES

The black box formalism was introduced in [SZ91]. The presentation in §4.2
comes from that paper with additional improvements, including (4.2.13) and
the proof of Theorem 4.7, from Sjöstrand [Sj02].

Theorem 4.13 comes essentially from [SZ91] but the proof follows Vodev
[Vo92] and Petkov–Zworski [PZ01] and is based on the same ideas as the
proof of Theorem 3.27. The case of global bounds in even dimensions is
proved in Vodev [Vo94a],[Vo94b] (see Intissar [In86] for an earlier con-
tribution) while semiclassical bounds valid for a large class of operators
(including some long range perturbations of −h2∆) are given in Sjöstrand
[Sj96a].

The scattering theoretical interpretation of spectral theory on finite vol-
ume hyperbolic quotients goes back to Selberg and was made explicit by
Fadeev–Pavlov [FP72] and Lax–Phillips [LP76]. The pseudo-Laplacian
was introduced by Colin de Verdière [CdV83] and was used to show generic
absence of embedded eigenvalues for variable curvature surfaces with cusps.
The Fermi Golden rule in that setting was discovered by Phillips–Sarnak
[PS85] and led to much work – see Hillairet–Judge [HJ18] for recent progress
and references and [LZ16] for a version in which a boundary condition
changes. For an early mathematical treatment of the the Fermi Golden rule
see Simon [Si73] and for more recent developments, for instance Soffer–
Weinstein [SW98] and Jensen–Nenciu [JN06]. For more general pertur-
bations and continuity statements about resonances see Stefanov [St94].
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The derivation of the scattering matrix for the modular surfaces com-
bines the classical approach of Titchmarsh and Heath-Brown [Ti86, Notes
for Chapter II] with the black box approach. That in essence is Colin
de Verdière’s proof of the meromorphic continuation of Eisenstein series
[CdV81b].

The method of complex scaling originated in the work of Aguilar-Combes
[AC71], Balslev-Combes [BC71] and was developed by Simon [Si72],[Si73],
[Si79a], Hunziker [Hu86], Helffer-Sjöstrand [HS86], Hislop–Sigal [HS89]
(see also [HS96]) and other authors. For compactly supported black box
perturbations (and large θ) it was introduced in Sjöstrand–Zworski [SZ91]
while an adaptation to the case of long range black box perturbations was
provided in Sjöstrand [Sj96a]. In our presentation we opted for a quick
approach which benefits from the precise knowledge of the resolvent of the
free Laplacian. A more systematic approach is based on the theory of differ-
ential operators with analytic coefficients – see [SZ91] and [Sj02]. For an
adaptation to asymptotically euclidean manifold satisfying certain (strong)
analyticity conditions at infinity see Wunsch–Zworski [WZ00].

The complex scaling method has been extensively used in computational
chemistry – see Reinhardt [Re07] for a review. As the method of perfectly
matched layers it reappeared in numerical analysis – see Berenger [Be94].

Another computational technique for scattering resonances is the method
of complex absorbing potentials (CAP) – see Seideman–Miller [SM92], Riss–
Meyer [RM95] for the original presentation and Jagau at al [J∗14] for more
recent developments. The method is based on replacing P by

(4.7.1) Pε := P − iε(1− χ)x2,

where χ ≡ 1 near the black box. The potential (1 − χ)x2 in (4.7.1), or
another potentials with similar properties is a CAP. The operator Pε has
discrete spectrum and as ε → 0+ the eigenvalues with arg z > −π/4 tend
to resonances uniformly on compact sets – see Zworski [Zw18]. This defi-
nition using ”viscosity limits” is similar to the definition of Pollicott–Ruelle
resonances obtained by adding iε∆ to the generator of an Anosov flow – see
Dyatlov–Zworski [DZ15] and Drouot [Dr17]. A relation of resonances to
eigenvalues of a fixed CAP (Pε for a fixed ε) was investigated mathematically
by Stefanov [St05].

Theorem 4.39 is a slight generalization of a result of Klopp–Zworski
[KZ95]. It extends to the case of resonances the now classical result of
Uhlenbeck [Uh76] for eigenvalues of the Laplacian on a compact manifold.
Instead of complex scaling one could use Agmon’s theory of resonance per-
turbations [Ag98] as was done by Borthwick–Perry [BP02]. That extends
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applicability of the method to, for instance, scattering on asymptotically
hyperbolic manifolds – see §5.1.

The presentation of resolvent estimates for non-trapping black boxes in
§4.6 is based on Tang–Zworski [TZ00, §3] but the method is due to Văınberg
[Va73],[Va89]. See these references for the case of even dimensions. For
a different presentation see Sjöstrand [Sj02, §3] and for some recent ap-
plications Baskin–Wunsch [BW13], Baskin–Spence–Wunsch [BSW16] and
Galkowski [Ga17]. Another point of view on linking propagation of singular-
ities with resolvent estimates and energy decay is given by the Lax–Phillips
theory – see [LP68] and for a “black box” presentation [SZ94]. One of the
main applications is to obstacle problems where propagation of singularities
was established by Andersson, Ivrii, Melrose, Lebeau, Sjöstrand and Taylor
– see Hörmander [HöIII, Chapter 24] and references given there. Earlier
results for star shaped obstacle but with geometric bounds on the distance
of resonances to the real axis were obtained by Morawetz [Mo61], Ralston
[Ra78], see also Morawetz–Ralston–Strauss [MRS77]. That non-trapping
condition is necessary for uniform energy decay in obstacle scattering is a
classical result of Ralston [Ra69]. For energy decay of solutions to the (con-
formal) wave equation for obstacles in hyperbolic space see Hintz–Zworski
[HZ18].

For non-trapping obstacles with analytic boundaries and for strictly

convex obstacles with smooth boundaries larger, | Imλ| ≤ (Reλ)
1
3 /C − C,

resonance free regions were established by Lebeau [Le84], Popov [Po85],
Bardos–Lebeau–Rauch [BLR87], Hargé–Lebeau [HL94] and Sjöstrand–
Zworski [SZ95]. Convex obstacles with smooth boundaries provide one
of the rare instances in which asymptotics for the number of resonances are
possible [SZ99]. That in particular, shows optimality of the cubic resonance
free regions. See also Jin [Ji15],[Ji14] for more general boundary conditions.

For recent advances on resonance free regions for transmission problems
see Galkowski [Ga14],[Ga16],[Ga19] and references given there.

4.8. EXERCISES

Section 4.1

1. Suppose O is bounded region with a smooth boundary Γ := O. Suppose
that V : L2(Γ)→ L2(Γ) is a bounded operator. Show that

P := −∆ + V ⊗ δΓ

satisfies the black box hypothesis. Construct Γ and V so that P has embed-
ded eigenvalues. (See Galkowski–Smith [GS15] for more information and
deeper analysis.)
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2. Define a Hilbert spaceH :=
⊕∞

k=1 L
2([0,∞)) with the norm ‖{bk}∞k=1‖2H :=∑∞

k=1 ‖bk‖2L2([0,∞)). For G(s), a continuous function on [0,∞), define

HG :=

{
{bk}∞k=1 :

∞∑
k=1

∫ ∞
0

(|∂sbk(s)|2 + k2eG(s)|bk(s)|2)ds <∞

}
.

Show that if G(s)→∞ as s→∞ then

HG ↪→ H is a compact inclusion.

In particular this proves the compactness of (4.1.21).

Section 4.2

3. Prove (4.2.29). Here are suggested steps, see also [HZ17, Proof of (4.3)].

(a) Show that for a fixed f in (4.2.27), λ 7→ u ∈ C(Rt;D′(Rn)) is a holo-
morphic function of λ ∈ C. Conclude that it is enough to prove (4.2.29) for
Imλ > 0.

(b) Use the Fourier transform to show that if τ ∈ R (for f ∈ C∞c (Rn) and
in the distributional sense for f ∈ E ′(Rn))

Ft→τu(τ, x) =
1

2(2π)n−1

∑
±

∫
Sn−1

e±iτ〈ω,x〉
f̂(±τω)

τ2 − λ2
(1− λ/τ)(±τ)n−1

+ dω,

where Ft→τ is the Fourier transform in t. This formula holds in any dimen-
sion.

(c) Conclude that for n ≥ 3 and odd

Ft→τu(τ, x) =
1

2(2π)n−1

∫
Sn−1

eiτ〈ω,x〉
f̂(τω)

τ + λ
τn−2dω,

and hence τ 7→ Ft→τu(τ, x) extends to a holomorphic function in Im τ >
− Imλ.

(d) Use the Schwartz-Paley–Wiener theorem [HöI, Theorem 7.3.1] applied
to f to prove that

|Ft→τu(τ, x)| ≤ C〈τ〉MeIm τ(|x|+R), Im τ > − Imλ+ ε

for some C and M depending on ε > 0. Use the other direction of the
Schwartz-Paley–Wiener theorem (applied to Ft→τu(τ, x)) to obtain (4.2.29).

Section 4.4

4. Using the proof of Theorem 3.35 justify Theorem 4.17.

5. Prove Theorem 4.20 using the proof of Theorem 3.47 as a blueprint. That
proof can be read independently of the rest of §3.9.
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6. Suppose that (4.4.11) holds. For S(λ) given in Definition 4.25 and the
generalized plane wave given by (4.4.1) show that

(4.8.1) S(λ)e(−λ, •) = e(λ, •),
in the sense that for f ∈ Hcomp,

S(λ) (〈e(−λ, •), f〉) = 〈e(λ, •), f〉, 〈e(−λ, •), f〉 ∈ C∞(Sn−1).

7. Show that if λ2 > 0 then mR(λ) = mR(−λ).

Section 4.5

8. Use Theorem 4.32 and invertibility of

e−2iθ∆− λ2 = e−2iθ(∆− (eiθλ)2) : H2(Rn)→ L2(Rn), Im(eiθλ) > 0,

to show directly (that is, without using the explicit calculations of §4.5.2)
that

−∆θ − λ2 : H2(Γθ)→ L2(Γθ),

is a Fredholm operator for Im(eiθλ) > 0.

9. Show (4.5.30) directly using (4.5.13) and the expression dw = det(I +
F ′′θ (y))dy.



Chapter 5

SCATTERING ON
HYPERBOLIC
MANIFOLDS

5.1 Asymptotically hyperbolic manifolds
5.2 A motivating example
5.3 The modified Laplacian
5.4 Phase space dynamics
5.5 Propagation estimates
5.6 Meromorphic continuation
5.7 Applications to general relativity
5.8 Notes
5.9 Exercises

In this chapter, we show meromorphic continuation of the resolvent of
the Laplacian on complete asymptotically hyperbolic Riemannian manifolds.
A basic example is given by the hyperbolic space Hn, which can be viewed
as the open unit ball in Rn with the metric

(5.0.1) g = 4
dw2

(1− |w|2)2
, w ∈ BRn(0, 1).

A larger family of examples is provided by convex co-compact hyperbolic
surfaces, which are complete two-dimensional Riemannian manifolds of con-
stant sectional curvature −1 whose infinite ends are funnels, that is they

313
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have the form

(5.0.2) [0,∞)v × S1
θ, S1 = R/`Z, ` > 0; g = dv2 + (cosh v)2dθ2.

Convex co-compact hyperbolic surfaces can be viewed as the quotients of H2

by certain discrete subgroups of its isometry group PSL(2;R), and have ap-
plications in algebra and number theory [Bo16], [BGS11]. From the point
of view of this book they give fundamental examples of hyperbolic trapped
sets and are a model object to study the effects of hyperbolic trapping on
distribution of resonances.

We take a geometric approach to scattering on hyperbolic manifolds
and consider more general asymptotically hyperbolic ends, whose metrics
approach (5.0.2) in a certain sense as v → +∞, and satisfy an additional
evenness assumption. We follow a modified version of the microlocal ap-
proach of Vasy [Va12] – see [Zw16] for an introduction to the method in
the non-semiclassical setting. Here we emphasize that in addition to estab-
lishing the meromorphic continuation of the resolvent, the method works
well in the semiclassical limit. That makes the methods of Part 3 applica-
ble in scattering on asymptotically hyperbolic manifolds and, as indicated
in §5.7, black hole backgrounds.

On an asymptotically hyperbolic manifold of dimension n, the scattering
resolvent is the meromorphic continuation of

(5.0.3)
(
−∆g − λ2 − (n− 1)2

4

)−1
: L2(M)→ L2(M), Imλ > 0,

to the entire complex plane. Compared to Euclidean scattering, we have an
additional (n − 1)2/4 term, which is related to the fact that the essential
spectrum of −∆g is [(n− 1)2/4,∞). An explanation of this shift of the
spectral parameter is provided below in (5.2.9).

In the Euclidean case, the method of complex scaling described in §4.5
provides meromorphic continuation of the resolvent by relating it to a re-
solvent of a non-self-adjoint operator, Pθ, such that Pθ − λ2 is a Fredholm
operator for arg λ > −θ (see Theorem 4.37). In the case of asymptotically
hyperbolic manifolds the resolvent (5.0.3) is related to the inverse P (λ)−1

for a family of operators P (λ) – see (5.2.13) for a model case and Defini-
tion 5.11 for the general case. The main point is that P (λ) is a family of
Fredholm operators on suitably defined spaces – see Proposition 5.9 for the
Fredholm property in a model case and Theorem 5.30 for the general case.
Unlike the method of complex scaling in which resonances with arg λ > −θ
are identified with eigenvalues, λ2, of Pθ, the Fredholm property works in
strips: P (λ) has the Fredholm property in {Imλ > −C} on spaces which
depend on C.
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The operators P (λ) are constructed by extending the manifold across
the boundary at infinity – see §5.2 for an explanation in a model case. The
family P (λ) then has the property of translating the outgoing condition for
solutions to (−∆g − λ2 − (n− 1)2/4)u = f , f ∈ C∞c (M) to smoothness

(across the boundary at infinity) of solutions to P (λ)ũ = f̃ – see Proposi-
tion 5.8. The price one pays is that P transitions from elliptic to hyperbolic
behavior as one moves across the boundary at infinity – see Proposition 5.12.
However, propagation results inspired by radial estimates of Melrose [Me94]
(see §5.5) can be used to establish the Fredholm property.

This rather technically complicated chapter is structured as follows:

• in §5.1, we define asymptotically hyperbolic manifolds and study
their geometric properties;

• in §5.2, we use an example to motivate the use of the modified
spectral family of the Laplacian P (λ);

• in §§5.3–5.5, we introduce the operator P (λ) and use microlocal
techniques to prove estimates on this operator;

• in §5.6, we show that P (λ) has a meromorphic inverse and use this
to give a meromorphic continuation of (5.0.3);

• in §5.7, we apply the methods of the present chapter to wave decay
on certain Lorentzian spacetimes.

Some of the complicated parts of this chapter are only needed for applica-
tions to high frequency behavior (see §§5.6.3,6.2.3). A reader who is only
interested in the meromorphic continuation of the scattering resolvent (The-
orem 5.33) can safely skip Lemma 5.19 and §§5.4.4,5.6.3.

5.1. ASYMPTOTICALLY HYPERBOLIC MANIFOLDS

An asymptotically hyperbolic manifold is a complete Riemannian manifold
whose infinite ends are locally asymptotic to the infinity of the hyperbolic
space (5.0.1). A standard way to treat these manifolds is to define them as
interiors of compact manifolds with boundary. For instance, (5.0.1) defines
the hyperbolic space as the interior of the closed unit ball in Rn. We will
use the following general

DEFINITION 5.1. Let M be a compact manifold with boundary ∂M and
interior M . A boundary defining function on M is a C∞ function

y1 : M → [0,∞)

such that y1 = 0 on ∂M , dy1 6= 0 on ∂M , and y1 > 0 on M .
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Figure 5.1. (a) The hyperbolic cylinder Rv × S1
θ. (b) Resonances of

the hyperbolic cylinder (see page 355), with imaginary parts given by
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2
,− 3

2
,− 5

2
, . . .

Such functions always exist, as can be shown using local charts and a
partition of unity. Any two boundary defining functions y1, ỹ1 are multiples
of each other:

(5.1.1) ỹ1 = efy1 for some f ∈ C∞(M ;R).

Moreover, a neighborhood of the boundary has a product structure: namely,
for any boundary defining function y1 and ε1 > 0 small enough, there exists
a diffeomorphism

(5.1.2) y−1
1

(
[0, ε1)

)
→ [0, ε1)× ∂M, x 7→ (y1(x), y′(x)), y′|∂M = I.

We now define asymptotically hyperbolic manifolds:

DEFINITION 5.2. An asymptotically hyperbolic manifold is a com-
plete Riemannian manifold (M, g) such that:

(1) M is the interior of a compact manifold with boundary, denoted M ;

(2) for a boundary defining function y1, the metric y2
1g extends to a

smooth Riemannian metric on M ;

(3) we have |dy1|y21g = 1 on ∂M .

Note that properties (2) and (3) do not depend on the choice of the
boundary defining function, as follows immediately from (5.1.1). In partic-
ular, the invariance of property (3) follows from the identity

|d(efy1)|e2fy21g = e−f |efdy1|y21g = |dy1|y21g on ∂M.

Manifolds which satisfy properties (1) and (2) from Definition 5.2 are called
conformally compact. Property (3) has the additional effect that the sec-
tional curvatures on M converge to −1 at infinity; see [GL91, §2].

The boundary metric (y2
1g)|∂M depends on the choice of the boundary

defining function y1. However, by (5.1.1), a different choice of y1 multiplies
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`1 `2

`3

(a) (b)

Figure 5.2. (a) An example of a convex co-compact hyperbolic surface:
three-funnel surface with geodesic neck lengths `1, `2, `3. (b) Resonances
for the three-funnel surface with `1 = `2 = `3 = 7, computed numerically
by Borthwick and Weich [Bo14, BW14]. See [Bo16, Chapter 16] for
more numerical results.

the boundary metric by a conformal factor. Therefore, to each asymp-
totically hyperbolic manifold corresponds a conformal class of Riemannian
metrics on ∂M :

(5.1.3) [g]∂M = {(y2
1g)|∂M : y1 is a boundary defining function}.

EXAMPLES. 1. The hyperbolic space (5.0.1) is asymptotically hyperbolic,
where we may take for instance y1 = 1− |w|2.

2. Another example is the hyperbolic cylinder

(5.1.4) M = Rv × S1
θ, S1 = R/(`Z), g = dv2 + (cosh v)2dθ2.

The hyperbolic cylinder is the union of two funnels (5.0.2) glued along a
geodesic neck of length `. The two infinite ends are given by v = ±∞;
the compactification M is obtained by attaching a circle to each infinite
end and using the defining function y1 = (cosh v)−1. See Figure 5.1. For
a detailed presentation of Vasy’s method in the setting of the hyperbolic
cylinder, see [DD13, Appendix B].

3. More generally, one may consider convex co-compact hyperbolic mani-
folds, which are asymptotically hyperbolic manifolds of constant sectional
curvature −1. These manifolds can always be written as quotients Γ\Hn of
the hyperbolic space by a discrete group of isometries. A detailed study of
this setting is outside the scope of this book, however we refer the reader to
Borthwick [Bo16] for an extensive overview of classical and recent results
in the case of surfaces. See Figure 5.2 for an example.
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5.1.1. Canonical product structures. We now show existence of canon-
ical product structures near the boundary of an asymptotically hyperbolic
manifold, in which the metric takes the form of a stretched product. They
are defined as follows:

DEFINITION 5.3 (Canonical product structures). Let (M, g) be an
asymptotically hyperbolic manifold. A boundary defining function y1 is called
canonical if

|dy1|y21g = 1 in a neighborhood of ∂M.

For such a function y1, a product structure (y1, y
′) from (5.1.2) is called

canonical, if the pushforward of the metric g under (5.1.2) has the form

(5.1.5) g =
dy2

1 + g1(y1, y
′, dy′)

y2
1

in a neighborhood of ∂M

where g1(y1, y
′, dy′) is a family of Riemannian metrics on ∂M depending

smoothly on y1 ∈ [0, ε).

EXAMPLES. 1. On the hyperbolic space (5.0.1), a canonical coordinate
system on {w 6= 0} is given by

(5.1.6) y1 =
1− |w|
1 + |w|

∈ [0, 1), θ =
w

|w|
∈ Sn−1,

and the metric in the (y1, θ) coordinates takes the form

(5.1.7) g =
dy2

1 + g1

y2
1

, g1 =
(1− y2

1)2

4
gS(θ, dθ)

where gS denotes the standard metric on Sn−1.

2. On the hyperbolic cylinder (5.1.4), a canonical coordinate system on
{±v > 0} is given by

(5.1.8) y1 = exp(∓v) ∈ [0, 1), θ ∈ S1,

and the metric in the (y1, θ) coordinates takes the form

(5.1.9) g =
dy2

1 + g1

y2
1

, g1 =
(1 + y2

1)2

4
dθ2.

The following theorem shows existence and uniqueness of canonical coor-
dinates, if one fixes the representative of the conformal class at the boundary:

THEOREM 5.4 (Existence of canonical product structures). Let
(M, g) be an asymptotically hyperbolic manifold and fix g0 ∈ [g]∂M . Then
there exists a canonical product structure (y1, y

′) on M such that

(5.1.10) g0 = (y2
1g)|∂M .

Any two such product structures coincide in a neighborhood of ∂M .
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Proof. 1. We first construct y1. Fix a boundary defining function ỹ1 such
that g0 = (ỹ2

1g)|∂M and denote ḡ := ỹ2
1g. Then

y1 := ef ỹ1, f ∈ C∞(M ;R), f |∂M = 0,

is a canonical boundary defining function if and only if near ∂M ,

|dỹ1 + ỹ1df |2ḡ = 1.

This equation degenerates at ∂M but it is equivalent to the eikonal equation

(5.1.11) F (x, df(x)) = 0 for all x near ∂M,

with the function F ∈ C∞(T ∗M ;R) given by

(5.1.12)

F (x, ξ) =
|dỹ1(x) + ỹ1(x)ξ|2ḡ(x) − 1

ỹ1(x)

=
|dỹ1(x)|2ḡ(x) − 1

ỹ1(x)
+ 2〈dỹ1(x), ξ〉ḡ(x) + ỹ1(x)|ξ|2ḡ(x).

With HF denoting the Hamiltonian vector field of F , we compute

(5.1.13) HF ỹ1(x, ξ) = 2|dỹ1(x)|2ḡ(x) = 2 for x ∈ ∂M.

Therefore, the equation (5.1.11) is noncharacteristic with respect to ∂M .
The restriction f |∂M = 0 together with (5.1.11) lead to the initial condition

(5.1.14) df(x) =
1− |dỹ1(x)|2ḡ(x)

2ỹ1(x)
dỹ1(x) for x ∈ ∂M.

The existence and local uniqueness of solutions to (5.1.11), (5.1.14) satisfy-
ing f |∂M = 0 now follows from the local existence and uniqueness theorem
for first order partial differential equations, see for instance [TaI, Theo-
rem 1.15.3] or [Ev98, Theorem 3.2]. (Here is a sketch of a geometric proof:
it suffices to construct the graph Λ of df as a Lagrangian submanifold of T ∗M
contained in F−1(0). The condition (5.1.14) gives Λ ∩ T ∗∂M = Λ0 where
Λ0 ⊂ F−1(0) is an isotropic submanifold. To obtain Λ we take the flowout
of Λ0 by the vector field HF , which is a graph in the x variables by (5.1.13).)

2. Having obtained y1, we now construct a canonical product structure
(y1, y

′). The gradient vector field ∇y21gy1 is inward pointing at the boundary,

therefore for ε1 > 0 small enough the map

(5.1.15) Φ : [0, ε1)× ∂M →M, Φ(s, y′) = exp(s∇y21gy1)(y′)

is a diffeomorphism onto a neighborhood of ∂M . Since y1 is a canonical
boundary defining function, we have y1(Φ(s, y′)) = s. Thus in the product
structure (y1, y

′) := Φ−1, the gradient ∇y21gy1 is equal to ∂y1 . It follows that

(y1, y
′) is a canonical product structure. Reversing this argument we see

that canonical product structures are locally unique. �
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5.1.2. Even metrics. We next study the subclass of even asymptotically
hyperbolic manifolds. These are the manifolds for which meromorphic ex-
tension is established in this chapter. Without the evenness assumption, the
resolvent (5.0.3) does not admit a meromorphic extension to C with poles
of finite rank as shown by Guillarmou [Gu05, Theorem 1.4].

DEFINITION 5.5 (Even asymptotically hyperbolic metric). An
asymptotically hyperbolic manifold (M, g) is called even if there exists a
canonical product structure (y1, y

′) from Definition 5.3 such that the corre-
sponding metric g1 satisfies

(5.1.16) ∂2k+1
y1 g1(0, y′, dy′) = 0, k ∈ N0.

In other words, g1(y1, y
′, dy′) can be extended as an even function of y1 past

the boundary {y1 = 0}.

It is easy to see that the examples (5.1.7) and (5.1.9) are even metrics.

The evenness of a metric does not depend on the choice of the canonical
product structure, as shown by

THEOREM 5.6 (Invariance of the evenness condition). Assume
that (M, g) is an asymptotically hyperbolic manifold (y1, y

′), (ỹ1, ỹ
′) are two

canonical product structures on M , and g1, g̃1 the corresponding metrics.
Assume that (5.1.16) holds for g̃1. Then it also holds for g1, and

∂2k
ỹ1 y1 = 0 on ∂M, k ∈ N0,(5.1.17)

∂2k+1
ỹ1

(ψ ◦ y′) = 0 on ∂M, k ∈ N0, ψ ∈ C∞(∂M).(5.1.18)

Proof. 1. We first show (5.1.17). Since both y1 and ỹ1 are canonical bound-
ary defining functions, we have y1 = ef ỹ1 where f ∈ C∞(M ;R) solves the
eikonal equation (5.1.11). In coordinates (ỹ1, ỹ

′) the eikonal equation takes
the form

(5.1.19) 2∂ỹ1f + ỹ1

(
(∂ỹ1f)2 + |∂ỹ′f |2g̃1(ỹ1,ỹ′)

)
= 0.

Differentiating (5.1.19) 2k times in ỹ1, we obtain for each k ∈ N0,

(5.1.20) ∂2k+1
ỹ1

f |ỹ1=0 = −k∂2k−1
ỹ1

(
(∂ỹ1f)2 + |∂ỹ′f |2g̃1(ỹ1,ỹ′)

)∣∣
ỹ1=0

.

By induction using the Leibniz rule and the fact that g̃1 satisfies (5.1.16),

we see that ∂2k+1
ỹ1

f |ỹ1=0 = 0 for all k, implying (5.1.17).

2. We next show (5.1.18). By (5.1.15) the function ψ ◦ y′ is characterized
by the conditions (ψ ◦ y′)|∂M = ψ and〈

d(ψ ◦ y′),∇y21gy1

〉
= 0.
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In coordinates (ỹ1, ỹ
′) the latter equation takes the form

∂ỹ1(ψ ◦ y′) + ỹ1

(
∂ỹ1f · ∂ỹ1(ψ ◦ y′) +

〈
∂ỹ′f, ∂ỹ′(ψ ◦ y′)

〉
g̃1(ỹ1,ỹ′)

)
= 0.

Differentiating this expression 2k times in ỹ1 at ∂M and arguing by induction
as in step 1, we obtain (5.1.18).

3. We finally show that g1 satisfies (5.1.16). It is enough to prove that for
each ψ ∈ C∞(∂M), we have

(5.1.21) ∂2k+1
y1

(
|d(ψ ◦ y′)|2y21g

)∣∣
y1=0

= 0, k ∈ N0.

We have ∂y1 = ∇y21gy1 = e−f (∂ỹ1 + ỹ1∇ỹ21gf). By (5.1.17) it suffices to

prove (5.1.21) with y1 replaced by ỹ1:

(5.1.22) ∂2k+1
ỹ1

(
|d(ψ ◦ y′)|2ỹ21g

)∣∣
ỹ1=0

= 0, k ∈ N0.

Now (5.1.22) follows from (5.1.18) and the fact that g̃1 satisfies (5.1.16). �

5.1.3. The even extension. We finally describe an extension of an even
asymptotically hyperbolic manifold, which is the underlying manifold for
the analysis of the rest of this chapter:

DEFINITION 5.7. Let (M, g) be an even asymptotically hyperbolic man-
ifold and fix a canonical product structure (y1, y

′) ∈ [0, ε1)× ∂M . Consider
the diffeomorphism

(5.1.23) M ∩ {y1 < ε1} → (0, ε2
1)× ∂M, x 7→ (x1, x

′) := (y2
1, y
′).

We define:

• the even compactification M even of M to be the manifold with
boundary obtained by gluing M with [0, ε2

1)×∂M using the map (5.1.23);

• the even extension X = Xε of M to be the manifold with bound-
ary obtained by gluing M with [−ε, ε2

1)×∂M using the map (5.1.23).
Here ε > 0 is a given constant.

See Figure 5.3 on page 326. Note that by (5.1.17) and (5.1.18), the
compactifications M even arising from different choices of canonical product
structures are diffeomorphically equivalent.

We also note that a function in C∞(M even) can be thought of as a
function in C∞(M) which admits an extension across the boundary which
is even in y1 in the coordinates (y1, y

′).

We will suppress the dependence of X on ε; we fix ε small enough for
the construction to work.

EXAMPLES. 1. For the hyperbolic space (5.0.1), we may take

(5.1.24) X = BRn(0, 2), M even = BRn(0, 1),
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where, using polar coordinates r, θ on M even, and with y1 defined by (5.1.6),

r =
2|w|

1 + |w|2
=

1− y2
1

1 + y2
1

, θ =
w

|w|
∈ Sn−1.

The metric g in the (r, θ) coordinates takes the form

(5.1.25) g =
dr2

(1− r2)2
+
r2gS(θ, dθ)

1− r2
.

2. For the hyperbolic cylinder (5.1.4), we may take

(5.1.26) X = [−2, 2]r × S1
θ, M even = [−1, 1]r × S1

θ,

where, with y1 defined in (5.1.8),

r = tanh v; 1− r2 =
4y2

1

(1 + y2
1)2

.

The metric g in the (r, θ) coordinates takes the form

(5.1.27) g =
dr2

(1− r2)2
+

dθ2

1− r2
.

5.2. A MOTIVATING EXAMPLE

Before proceeding with the general construction of the scattering resolvent,
we present a simple example of an asymptotically hyperbolic manifold, and
use it as motivation for introducing the modified Laplacian in §5.3 below.
We will not provide proper proofs for most claims made in this section;
instead they will follow from the general construction presented in the rest
of the present chapter.

Consider an asymptotically hyperbolic manifold (M, g) with a boundary
defining function y1 and a canonical product structure

(5.2.1) (y1, y
′) : M ∩ {y1 < 1} → [0, 1)×N,

in which the metric has the form

g =
dy2

1 + g0(y′, dy′)

y2
1

.

Here N = ∂M has dimension n − 1 and g0 is a Riemannian metric on N .
The simplification compared to (5.1.5) is that g0 does not depend on y1; this
automatically makes (M, g) even in the sense of Definition 5.5.

On the domain {y1 < 1} of (5.2.1), we calculate the volume form

dVolg = y−n1 dy1dVolg0
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and the Laplacian (here ∆g0 is the Laplacian in the y′ variables)

∆g = y2
1∂

2
y1 + (2− n)y1∂y1 + y2

1∆g0 .

The scattering resolvent of M is a meromorphic family of operators

R(λ) : C∞c (M)→ C∞(M), λ ∈ C,

such that for all f ∈ C∞c (M),(
−∆g − λ2 − (n− 1)2

4

)
R(λ)f = f ;(5.2.2)

R(λ)f ∈ L2(M ; dVolg) for Imλ > 0.(5.2.3)

The equation

(5.2.4)
(
−∆g − λ2 − (n− 1)2

4

)
u = f

has infinitely many solutions for every given f . However, the solution u =
R(λ)f can be identified uniquely (except at resonances) if we know enough
information about the asymptotic behavior of u at the infinite end of M ,
which in our case corresponds to y1 → 0.

Given (5.2.3), it makes sense to first consider the case Imλ > 0 and
understand the asymptotic behavior of the L2 solutions of (5.2.4). In this
section, we do it using separation of variables. Let (βk)k∈N be the spectrum
of the Laplacian −∆g0 on N , and let vk ∈ C∞(N) be the corresponding
orthonormal basis of eigenfunctions. Assume that

(5.2.5) u ∈ C∞(M) ∩ L2(M ; dVolg)

is a solution to (5.2.4) and write the Fourier series in {y1 < 1},

u(y1, y
′) =

∑
k

uk(y1)vk(y
′), uk ∈ C∞

(
(0, 1)

)
.

The right-hand side f is supported in {y1 ≥ δ} for some δ > 0. For simplicity
of notation, we assume that supp f ⊂ {y1 ≥ 1}. Then (5.2.4) implies that
uk solves the ordinary differential equation in (0, 1)

(5.2.6)
(
− y2

1∂
2
y1 + (n− 2)y1∂y1 − λ2 − (n− 1)2

4
+ y2

1βk

)
uk(y1) = 0.

This is Bessel’s equation, and (unless λ ∈ iZ where a bit of extra care is
needed), it has two solutions asymptotic to y

α+

1 and y
α−
1 , where α± ∈ C,

called the indicial roots, are solutions to the equation

(5.2.7) I(α) = 0, I(α) := −
(
α− n− 1

2

)2
− λ2.

Indeed, we have(
− y2

1∂
2
y1 + (n− 2)y1∂y1 − λ2 − (n− 1)2

4
+ y2

1βk

)
yα1 = I(α)yα1 + βky

α+2
1 ;
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then (see Exercise 5.2) the two solutions to (5.2.6) can be found in the form
of power series

(5.2.8) y
α±
1

∞∑
j=0

aj,±y
2j
1

for some coefficients aj,± ∈ C, a0,± 6= 0.

In our case, the indicial roots are

(5.2.9) α± =
n− 1

2
± iλ.

This explains the shift of the spectral parameter by (n−1)2

4 in (5.0.3) – with-
out this, α± will not be holomorphic functions of λ.

Recall that we are looking for u ∈ L2(M ; dVolg), thus we need

(5.2.10) y
−n/2
1 uk ∈ L2((0, 1); dy1).

Since Imλ > 0, (5.2.10) holds for y
α−
1 , but not for y

α+

1 . Therefore, y
−α−
1 uk

has to be the sum of a power series in y2
1. This leads to the following

statement, which is a corollary of Theorem 5.33 below:

PROPOSITION 5.8. Assume that u ∈ C∞(M)∩L2(M ; dVolg) solves the
equation (5.2.4), for some f ∈ C∞c (M) and Imλ > 0. Then

(5.2.11) u ∈ y
n−1
2
−iλ

1 C∞(M even)

where the even compactification M even was introduced in Definition 5.7.

Returning to meromorphic continuation of the resolvent to Imλ ≤ 0, the
main idea is to define R(λ)f as the solution to (5.2.4) satisfying the outgoing
condition (5.2.11). For this, the outgoing condition should be strong enough
to rule out all other solutions. In practice, we replace C∞(M even) by the
Sobolev space H̄s(X) (see Definition E.25), where X is the even extension
introduced in Definition 5.7 and s is large enough depending on λ.

To see why an outgoing solution to (5.2.4) is uniquely defined (for λ not
a resonance), we consider the conjugated operator

(5.2.12) y
iλ−n−1

2
1

(
−∆g − λ2 − (n− 1)2

4

)
y
n−1
2
−iλ

1 .

In the product coordinates (5.2.1), it takes the form

−y2
1∂

2
y1 − y

2
1∆g0 + (2iλ− 1)y1∂y1 .

Passing to the product structure (x1, x
′) = (y2

1, y
′) on the even compactifi-

cation M even and extending the resulting operator to X = {x1 ≥ −ε}, we
obtain

−4x2
1∂

2
x1 − x1∆g0 + 4(iλ− 1)x1∂x1 .



5.3. THE MODIFIED LAPLACIAN 325

The result can be divided on the left by x1, obtaining the final operator
on X that will be the focus of this chapter (with the previous calculation
showing that the two operators below coincide in {0 < x1 < 1}):

(5.2.13) P (λ) =

{
x
iλ
2
−n+3

4
1

(
−∆g − λ2 − (n−1)2

4

)
x
n−1
4
− iλ

2
1 on {x1 > 0},

−4x1∂
2
x1 −∆g0 + 4(iλ− 1)∂x1 on {x1 < 1}.

The operator P (λ) has nondegenerate principal part for x1 6= 0, and the
degeneracy at x1 = 0 is minimal as only the coefficient of ∂2

x1 vanishes.

This minimal degeneracy, which is the result of passing to the space M even

and dividing the conjugated operator by x1, makes it possible to prove the
following key statement (see Theorem 5.30 below for the general case):

PROPOSITION 5.9. Consider the space

X s := {u ∈ H̄s(X) | P (0)u ∈ H̄s−1(X)};

see Definition E.25 for Sobolev spaces on manifolds with boundary. Then

P (λ) : X s → H̄s−1(X), Imλ >
1

2
− s

is a Fredholm operator. Moreover, it is invertible for some values of λ.

To show the Fredholm property of P (λ), we need to show its invertibility
modulo a smoothing operator. In M = {x1 > 0}, this property follows from
the fact that P (λ) is elliptic. In X \M even = {x1 < 0}, P (λ) is hyperbolic
and one may use standard energy estimates (see Theorem E.64). Finally,
on {x1 = 0} the operator P (λ) denegerates and we use radial source/sink
estimates, which is where the condition Imλ > 1

2 − s becomes important.

Given Proposition 5.9, we see by Analytic Fredholm Theory (Theo-
rem C.8) that the inverse

P (λ)−1 : H̄s−1(X)→ X s

is a meromorphic family of operators. The scattering resolvent is then de-
fined as

R(λ) = x
n−1
4
− iλ

2
1 1lM P (λ)−1 1lM x

iλ
2
−n+3

4
1 ,

which coincides with the L2 resolvent for Imλ > 0 since the outgoing con-
dition (5.2.11) implies that u ∈ L2(M ; dVolg).

5.3. THE MODIFIED LAPLACIAN

In this section we introduce the modified spectral family of the Laplacian,
generalizing (5.2.13) – see Definition 5.11 below. As explained in §5.2, the
Fredholm property of this operator on appropriately chosen spaces will ul-
timately give meromorphic continuation of the resolvent (5.0.3).
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x10−ε ε21
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Figure 5.3. The even extension X = M ∪ Y .

Let (M, g) be an even asymptotically hyperbolic manifold, see Defini-
tion 5.5. Fix a canonical boundary defining function y1 and let (y1, y

′) ∈
[0, ε1) × ∂M be the corresponding canonical product structure; see Defini-
tion 5.3. Let M even be the even compactification of M and X = Xε be its
even extension, see Definition 5.7.

We denote by X the interior of the even extension X ⊃M even.

Put

x1 := y2
1,

so that x1 is a boundary defining function of M even and x1 +ε is a boundary
defining function of X. We write (see Figure 5.3)

(5.3.1) X = M ∪ Y , M = {x1 > 0}, Y := {−ε ≤ x1 < ε2
1},

where {y1 < ε1} is the domain of the product structure (y1, y
′). On Y , we

have the product structure

(5.3.2) (x1, x
′) ∈ [−ε, ε2

1)× ∂M, x′ := y′.

Since (M, g) is an even metric, recalling (5.1.5) and (5.1.16) we can write
on M ∩ Y in the coordinates (5.3.2),

(5.3.3) g =
dx2

1

4x2
1

+
g1(x1, x

′, dx′)

x1

where g1 is smooth in x1 ∈ [0, ε2
1). We fix an extension of g1 to x1 ∈ [−ε, ε2

1)
as a smooth family of Riemannian metrics on ∂M :

(5.3.4) g1 ∈ C∞
(
[−ε, ε2

1)× ∂M ;⊗2T ∗∂M
)
.
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Following (5.2.13), consider the differential operator on M ,

(5.3.5) x
iλ
2
−n+3

4
1

(
−∆g − λ2 − (n− 1)2

4

)
x
n−1
4
− iλ

2
1 .

LEMMA 5.10. On M ∩ Y = {0 < x1 < ε2
1}, the operator (5.3.5) has the

following form under (5.3.2):

−4x1∂
2
x1 + 4(iλ− 1)∂x1 − γ(4x1∂x1 + n− 1− 2iλ)−∆g1 ,

where ∆g1 is the Laplace–Beltrami operator of g1 in the x′ variables and

(5.3.6) γ(x1, x
′) := J−1 ∂J

∂x1
∈ C∞(Y ;R), J :=

√∣∣det(g1
jk)
∣∣

is the logarithmic derivative of the Jacobian of the metric g1, which is inde-
pendent of the choice of local coordinates on ∂M .

Proof. We compute from (5.3.3)

∆g = 4x
n+1
2

1 ∂x1x
3−n
2

1 ∂x1 + 4x2
1γ∂x1 + x1∆g1 .

Using the identity x1∂x1x
α
1 = xα1 (x1∂x1 + α), α ∈ C, we compute (5.3.5) as

− 1

x1

(
2x1∂x1 +

1− n
2
− iλ

)(
2x1∂x1 +

n− 1

2
− iλ

)
−γ(4x1∂x1 + n− 1− 2iλ)−∆g1 −

1

x1

(
λ2 +

(n− 1)2

4

)
= −4x1∂

2
x1 + 4(iλ− 1)∂x1 − γ(4x1∂x1 + n− 1− 2iλ)−∆g1 ,

finishing the proof. �

Using Lemma 5.10, we continue the operator (5.3.5) to X, obtaining the
central object of study for the rest of this chapter:

DEFINITION 5.11. Define the extended modified Laplacian as the
second order differential operator P (λ) on X given by (5.3.5) on M and by
the following formula on Y :

(5.3.7) P (λ) = −4x1∂
2
x1 + 4(iλ− 1)∂x1 − γ(4x1∂x1 + n− 1− 2iλ)−∆g1

where g1 is defined in (5.3.4) and γ ∈ C∞(Y ;R) is defined in (5.3.6).

We next introduce the semiclassically rescaled version of the opera-
tor P (λ):

(5.3.8) Ph(ω) := h2P (h−1ω), 0 < h� 1, ω ∈ C.

Most results of the present chapter do not require this semiclassical rescaling,
however it is essential for the study of the high frequency limit Reλ → ∞
in §5.6.3 and Part 3 of the book and is also used in Proposition 5.28 below.
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To streamline the exposition we use the rescaled operator Ph(ω) throughout
this chapter.

We calculate

(5.3.9) Ph(ω) = x
iω
2h
−n+3

4
1

(
− h2∆g − ω2 − (n− 1)2

4
h2
)
x
n−1
4
− iω

2h
1

on M and, denoting D = 1
i ∂,

(5.3.10)
Ph(ω) = 4x1(hDx1)2 − 4(ω + ih)hDx1 − h2∆g1

− ihγ(4x1hDx1 + i(1− n)h− 2ω)

on Y . It follows from (5.3.9) and (5.3.10) that Ph(ω) is a second order
semiclassical differential operator on X (see §E.1.1) with coefficients smooth
up to the boundary, depending holomorphically on the parameter ω.

Consider the semiclassical principal symbol of Ph(ω) defined using (E.1.3),

(5.3.11) p = p(x, ξ;ω) := σh(Ph(ω)) ∈ Poly2(T ∗X).

We compute on M = {x1 > 0}, for ω real

(5.3.12) p(x, ξ;ω) =
1

x1

(∣∣∣ξ − ωdx1

2x1

∣∣∣2
g(x)
− ω2

)
and on Y = {−ε ≤ x1 < ε2

1},

(5.3.13) p(x1, x
′, ξ1, ξ

′;ω) = 4x1ξ
2
1 − 4ωξ1 + p1, p1 := |ξ′|2g1(x1,x′)

.

Note that p is a second order polynomial in ω and

(5.3.14) ∂ωp ∈ Poly1(T ∗X), ∂2
ωp ∈ Poly0(T ∗X).

The behavior of p for any ω ∈ R can be reduced to the cases ω = 0 and
ω = 1, as follows from the scaling relation

(5.3.15) p(x, sξ; sω) = s2p(x, ξ;ω), s ∈ R.

REMARK. In (5.3.5), we used the function x1 = y2
1, where y1 was a

canonical boundary defining function on M . This has the advantage that
the metric has the simple form (5.3.3). However, in many examples y1 is
given near ∂M by a formula that does not extend smoothly to the entire M
(see e.g. (5.1.6) and (5.1.8)). To remedy this we can consider a more general
function e−2ψx1, where ψ ∈ C∞(X;R), and study the resulting operators

(5.3.16) Pψ(λ) := e(n+3
2
−iλ)ψP (λ)e(iλ−n−1

2
)ψ, Pψ,h(ω) := h2Pψ(h−1ω).

The operator Pψ(λ) has similar properties to P (λ). In particular, Theo-
rem 5.30 (meromorphy of the inverse) applies to this operator as well. This
more general form is used in the examples below and for applications to
general relativity in §5.7.
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EXAMPLES. 1. For the hyperbolic space (see (5.1.24), (5.1.25)), we
choose ψ so that e−2ψx1 = 1− r2. Then on M ,

(5.3.17) Pψ(λ) = (1− r2)
iλ
2
−n+3

4

(
−∆g − λ2 − (n− 1)2

4

)
(1− r2)

n−1
4
− iλ

2 ,

and on the entire X we have

(5.3.18)

Pψ(λ) = − (1− r2)∂2
r + (n+ 1− 2iλ)r∂r +

1− n
r

∂r

− λ2 − niλ+
n2 − 1

4
− 1

r2
∆S ,

with ∆S the Laplacian on the sphere. The principal symbol of Pψ,h(ω) is

(5.3.19) pψ(r, θ, ξr, ξθ;ω) = (1− r2)ξ2
r + 2ωrξr − ω2 +

|ξθ|2gS
r2

.

If we instead take ψ = 0 and use the defining function x1 = y2
1 where y1 is

given by (5.1.6), then

(5.3.20)

P (λ) = − 4x1∂
2
x1 + 4(iλ− 1)∂x1

+
n− 1

1− x1
(4x1∂x1 + n− 1− 2iλ)− 4

(1− x1)2
∆gS .

2. For the hyperbolic cylinder (see (5.1.26), (5.1.27)), we also choose ψ so
that e−2ψx1 = 1− r2. Then on M , Pψ(λ) has the form (5.3.17) and on the

entire X we have

(5.3.21) Pψ(λ) = −(1− r2)∂2
r + 2(1− iλ)r∂r − λ2 − iλ+ 1

4 − ∂
2
θ .

The principal symbol of Pψ,h(ω) is

(5.3.22) pψ(r, θ, ξr, ξθ;ω) = (1− r2)ξ2
r + 2ωrξr − ω2 + ξ2

θ .

If we instead take ψ = 0 and use the defining function x1 = y2
1 where y1 is

given by (5.1.8), then we have

(5.3.23)

P (λ) = − 4x1∂
2
x1 + 4(iλ− 1)∂x1

− 1

1 + x1
(4x1∂x1 + 1− 2iλ)− 4

(1 + x1)2
∂2
θ .

We conclude this section with two facts about the operator P (λ). The
first one gives basic properties of the nonsemiclassical principal symbol p0

of P (λ), and is a direct corollary of (5.3.12) and (5.3.13):

PROPOSITION 5.12. Let p0(x, ξ) be the quadratic in ξ part of the sym-
bol p, that is the quadratic form obtained by putting ω := 0 in p. Then P (λ),
considered as a nonsemiclassical differential operator, is

• elliptic on M = {x1 > 0}, in the sense that p0 is positive definite;
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• hyperbolic on X \M even = {x1 < 0} with respect to x1, in the
sense of Definition E.55.

The other fact concerns the imaginary part of the operator P (λ), for-
mulated in terms of its rescaled version Ph(ω). It is needed to verify the
threshold conditions in radial estimates (Theorems E.52, E.54) which are
used to analyse the operator P (λ) on the interface {x1 = 0} between the
elliptic and the hyperbolic regions. Define a volume form dVol on X as
follows:

(5.3.24) dVol =

{
2x

n+1
2

1 dVolg on M ;

dx1dVolg1 on Y .

A direct calculation using (5.3.9) and (5.3.10) shows that

(5.3.25) Ph(ω)∗ = Ph(ω̄)

where Ph(ω)∗ denotes the formal adjoint of Ph(ω) in L2(X; dVol). It follows
that for ω ∈ R, the operator Ph(ω) is symmetric. For general values of ω,
we have the following statement:

PROPOSITION 5.13. Let ω = ωR + ihωI , ωR, ωI ∈ R, and put

ImPh(ω) =
Ph(ω)− Ph(ω)∗

2i
.

Then h−1 ImPh(ω) is a first order semiclassical differential operator (see §E.1.1)
and its principal symbol is (with p defined in (5.3.11))

(5.3.26) σh
(
h−1 ImPh(ω)

)
(x, ξ;ωR, ωI) = ωI∂ωp(x, ξ;ωR).

REMARK. Note that here we parametrize Ph(ω) by ωR = Reω and ωI =
h−1 Imω rather than by Reω and Imω as before. This still gives a family of
operators in Diff2

h(X) depending smoothly on ωR, ωI , and the semiclassical
principal symbol of Ph(ω) does not depend on ωI .

Proof. By (5.3.25), we have

ImPh(ω) = Im
(
Ph(ω)− Ph(ωR)

)
.

By (5.3.9) and (5.3.10), Ph(ω) is a quadratic polynomial in hDx, ω with
coefficients smooth in x. It follows that h−1(Ph(ω)−Ph(ωR)) is a first order
semiclassical differential operator with principal symbol iωI∂ωp; (5.3.26)
follows. �
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5.4. PHASE SPACE DYNAMICS

We now study the zero set and the Hamiltonian flow of the principal symbol p
of the semiclassically rescaled modified Laplacian Ph(ω) (see (5.3.11)), in
preparation for the propagation estimates of §5.5. In this section, we always
consider the case of ω ∈ R.

To understand the behavior of p both for bounded ξ and for |ξ| go-

ing to infinity, we use the fiber-radially compactified cotangent bundle T
∗
X,

see §E.1.3. The values of |ξ| =∞ correspond to the boundary ∂T
∗
X (called

the fiber infinity), which is diffeomorphic to the cosphere bundle over X.

Since p is a polynomial of order 2 in ξ, the rescaled symbol 〈ξ〉−2p and

the rescaled Hamiltonian vector field 〈ξ〉−1Hp extend smoothly to T
∗
X (see

Propositions E.4 and E.5). Therefore, we consider the flow

(5.4.1) exp(t〈ξ〉−1Hp) on {〈ξ〉−2p = 0} ⊂ T ∗X.

Note that the symbol p depends on the choice of ω.

We will often use the following coordinates on the fibers of T
∗
Y \ 0,

where Y ⊂ X is defined in (5.3.1):

(5.4.2) ρ = (ξ2
1 + |ξ′|2g1)−1/2 ∈ [0,∞), ξ̂ = (ξ̂1, ξ̂

′) = ρξ ∈ S∗xY.

Here S∗Y denotes the cosphere bundle:

S∗Y = {(x, ξ̂1, ξ̂
′) : ξ̂2

1 + |ξ̂′|2g1 = 1}.

Using (5.3.13), we calculate in the coordinates (x, ρ, ξ̂),

(5.4.3) ρ2p = 4x1ξ̂
2
1 − 4ρωξ̂1 + |ξ̂′|2g1 .

5.4.1. Characteristic set. We first study the characteristic set

{〈ξ〉−2p = 0} ⊂ T ∗X.

We will show that for ω 6= 0 it splits into two components. To define them,
we use an auxiliary function

(5.4.4) ϕ = ϕ(x1) ∈ C∞(X;R),

such that, with ε1 > 0 defined in (5.3.1)

ϕ(x1) =
1

2
log x1 for x1 ≥ ε2

1;(5.4.5)

ϕ′(x1) > 0, x1ϕ
′(x1) < 1 for all x1.(5.4.6)

To construct ϕ(x1) it suffices to construct ϕ′ which is straightforward, see
Figure 5.4. We have

(5.4.7)
∣∣∣dϕ− dx1

2x1

∣∣∣
g
< 1 on M = {x1 > 0}.
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x10 ε21−ε

1
x1

1
2x1

ϕ′(x1)

Figure 5.4. The derivative of the function ϕ from (5.4.4). Here (5.4.5)
means that ϕ′ = 1

2x1
for x1 ≥ ε21 and (5.4.6) means that the graph of ϕ′

lies in the shaded region.

On {x1 ≥ ε2
1} this follows from (5.4.5) and on {0 < x1 ≤ ε2

1} this follows
from (5.3.3) and (5.4.6).

LEMMA 5.14 (Splitting of the characteristic set). There exist closed

ω-dependent sets Σ± ⊂ T
∗
X such that (see Figure 5.5)

{〈ξ〉−2p = 0} = Σ+ t Σ−, ω ∈ R \ {0};(5.4.8)

{〈ξ〉−2p = 0} ∩ ∂T ∗X = Σ̂+ t Σ̂−, ω ∈ R;(5.4.9)

here Σ̂± := Σ± ∩ ∂T
∗
X are independent of ω. Moreover,

(5.4.10) ± 〈ξ〉−1(∂ωp+ ∂ξp · ∂xϕ) > 0 on Σ±, ω ∈ R \ {0}

where ϕ was defined in (5.4.4). Finally,

Σ± ∩ ∂T
∗
M = ∅ for ω ∈ R;(5.4.11)

Σ± ∩ T
∗
M = ∅ for ± ω > 0.(5.4.12)

REMARK. See (5.7.12) below for a general relativistic interpretation of
the sets Σ± in terms of two halves of the light cone.

Proof. 1. Define the function

q := ∂ωp+ ∂ξp · ∂xϕ ∈ Poly1(T ∗X).

We put

(5.4.13) Σ± := {〈ξ〉−2p = 0} ∩ {±〈ξ〉−1q ≥ 0}.
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Clearly, Σ± are closed and their union equals the characteristic set. To show
that Σ+ ∩ Σ− = ∅, as well as (5.4.10), we need

(5.4.14) {〈ξ〉−2p = 0} ∩ {〈ξ〉−1q = 0} = ∅ for ω ∈ R \ {0}.

The splitting (5.4.9) follows from (5.4.8) and the fact that Σ± ∩ ∂T
∗
X are

independent of ω (since ∂ωp ∈ Poly1(T ∗X), ∂ωq ∈ Poly0(T ∗X)).

2. We first show (5.4.14) on T
∗
M = {x1 > 0}. By Proposition 5.12,

{〈ξ〉−2p = 0} ∩ ∂T ∗M = ∅;

this proves (5.4.11). In the interior T ∗M , we have by (5.3.12),

p = 0 =⇒
∣∣∣ξ − ωdx1

2x1

∣∣∣
g

= |ω|,

q =
2

x1

(〈
ξ − ωdx1

2x1
, dϕ− dx1

2x1

〉
g
− ω

)
.

By (5.4.7) and the Cauchy–Schwarz inequality for the metric g, for ω ∈ R\0
the function q has the same sign as −ω on {p = 0}∩T ∗M . This gives (5.4.12)

and finishes the proof of (5.4.14) on T
∗
M .

3. It remains to show (5.4.14) on T
∗
(X \M) = {x1 ≤ 0}. Using (5.3.13)

we compute on Y

(5.4.15) q = −4ξ1 + 4(2x1ξ1 − ω)ϕ′(x1).

In the interior T ∗(X \M) ∩ {p = 0} ∩ {q = 0}, we have by (5.3.13),

4(x1ξ1 − ω)ξ1 + |ξ′|2g1(x1,x′)
= 0,(5.4.16)

(2x1ξ1 − ω)ϕ′(x1) = ξ1.(5.4.17)

Since ω 6= 0, we have ξ1 6= 0. Solving (5.4.17) for ω and substituting it
into (5.4.16), we get a contradiction with (5.4.6).

On the fiber infinity ∂T
∗
(X \M)∩{〈ξ〉−2p = 0}∩{〈ξ〉−1q = 0}, we have

in the coordinates (5.4.2),

4x1ξ̂
2
1 + |ξ̂′|2g1(x1,x′)

= 0,(5.4.18)

ξ̂1(2x1ϕ
′(x1)− 1) = 0.(5.4.19)

Since x1 ≤ 0, (5.4.6) implies that 2x1ϕ
′(x1) − 1 < 0. Therefore, (5.4.19)

implies that ξ̂1 = 0, giving a contradiction with (5.4.18) and finishing the
proof. �
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L−

L+

Σ̂−

Σ̂+

ω < 0

Σ−

Σ+

L−

L+

Σ̂−

Σ̂+

ω = 0

L−

L+

Σ̂−

Σ̂+

ω > 0

Σ+

Σ−

Figure 5.5. The flow of 〈ξ〉−1Hp, with p given by (5.3.13), projected
to the x1, ξ1 plane. The horizontal coordinate is x1; the dashed line
is {x1 = 0}. The vertical coordinate is ξ1/(1 + 〈ξ1〉), so that the top
and bottom lines correspond to the fiber infinity. The characteristic set
{〈ξ〉−2p = 0} is shaded. In the case ω = 0, the midline {ξ = 0} lies in
the characteristic set and consists of fixed points of the flow.

5.4.2. Local dynamics of the Hamiltonian flow and the radial sets.
We now analyse the Hamiltonian flow (5.4.1), concentrating on its behavior

on T
∗
Y (see (5.3.1)). Using (5.3.13), we calculate in the coordinates induced

by (5.3.2),

Hp = 4(2x1ξ1 − ω)∂x1 − 4ξ2
1∂ξ1 +Hp1 ,

where Hp1 is the sum of −(∂x1p1)∂ξ1 and the generator of the geodesic flow
of the metric g1(x1, •).

In the coordinates (5.4.2) near the fiber infinity ∂T
∗
Y , we compute

(5.4.20)
ρHp = 4(2x1ξ̂1 − ρω)∂x1

+ 4ξ̂2
1(ξ̂1ρ∂ρ − |ξ̂′|2g1∂ξ̂1 + ξ̂1ξ̂

′ · ∂ξ̂′) + ρHp1 ;

the resulting flow is a reparametrization of (5.4.1).

Let Σ̂± be given by Lemma 5.14. Using the coordinates (5.4.2), define
the radial sets (see Figure 5.5)

(5.4.21) L± := {ρ = 0, x1 = 0, ξ̂′ = 0, ξ̂1 = ∓1} = Σ̂± ∩ {x1 = 0};
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note that L+tL− is the intersection of the conormal bundle to {x1 = 0} with
the fiber infinity. See (5.7.15) below for a general relativistic interpretation
of the sets L± in terms of the red-shift trajectories.

The importance of the sets L± comes from the following

LEMMA 5.15 (Radial sources/sinks). L± are invariant under the Hamil-
tonian flow (5.4.1). Moreover, L+ is a radial sink and L− is a radial source
for the flow (5.4.1) in the sense of Definition E.50, for all ω ∈ R.

Proof. 1. We argue in a neighborhood of L+tL−, using the coordinates (5.4.2)
and replacing the flow (5.4.1) by its rescaling exp(tρHp). Using the function

ρ2p1(x, ξ) = |ξ̂′|2g1 , we write

L+ t L− = {ρ = 0, x1 = 0, ρ2p1 = 0}.

Using (5.4.20), we compute

(5.4.22)

ρHpρ = (4ξ̂3
1 +Hp1ρ)ρ,

ρHpx1 = 8ξ̂1x1 − 4ωρ,

ρHp(ρ
2p1) = (8ξ̂3

1 + 2Hp1ρ)ρ2p1 + 4(ρ2∂x1p1)(2ξ̂1x1 − ωρ).

Here Hp1ρ is a symbol of order 0 and thus extends smoothly to the fiber
infinity. We have ρ−2 = ξ2

1 + p1, thus Hp1(ρ−2) = −2ξ1∂x1p1. Since p1 is a
quadratic form in ξ′, so is ∂x1p1, and we obtain near L+ t L−,

(5.4.23)
ρ2∂x1p1 = O(ρ2p1),

Hp1ρ = ξ̂1ρ
2∂x1p1 = O(ρ2p1).

By (5.4.22) and (5.4.23), in a neighborhood of L± we have

±ρHp(x
2
1 + ρ2p1) ≤ −4(x2

1 + ρ2p1) + C0ρ|x1|,(5.4.24)

±ρHpρ ≤ −2ρ(5.4.25)

where the constant C0 > 0 depends on ω.

2. It follows from (5.4.24), (5.4.25) that

±ρHpf ≤ −2f near L±,

f := x2
1 + ρ2p1 + C2

0ρ
2,

where we have used the inequality 2C0ρ|x1| ≤ x2
1 + C2

0ρ
2.

Since f is a quadratic defining function of L±, we see that L± are in-
variant under the flow (5.4.1). Moreover, we have uniformly in (x, ξ) in a
neighborhood of L±,

e±tρHp(x, ξ)→ L± as t→∞,

ρ(e±tρHp(x, ξ)) ≤ e−2tρ(x, ξ) for t ≥ 0,



336 5. PHASE SPACE DYNAMICS

ξ1ξ+1ξ−1 − ωϕ′(x1)

1− 2x1ϕ′(x1)

Figure 5.6. The graph of the left-hand side of (5.4.27), as a function of ξ1.

where for the second inequality we used (5.4.25). This shows that L+ is a
radial sink and L− is a radial source. �

5.4.3. Global dynamics of the Hamiltonian flow. We next study the
global behavior of the flow on T

∗
X. We use the following technical

LEMMA 5.16. For ω ∈ R \ 0, we have (see Figure 5.5)

(5.4.26) ± 〈ξ〉−1Hpx1 > 0 on Σ± ∩ {x1 ≤ 0} \ L±.

REMARK. See (5.7.13) for a general relativistic interpretation of (5.4.26)
in terms of an observer being pushed farther into the black hole region.

Proof. 1. We first consider the case of x1 < 0 and finite ξ. Fix x1 < 0, x′, ξ′.
We write the equation p = 0 using (5.3.13):

(5.4.27) 4x1ξ
2
1 − 4ωξ1 + |ξ′|2g1 = 0.

This is a quadratic equation in ξ1 with discriminant 16(ω2 − x1|ξ′|2g1) > 0,

therefore it has two roots ξ−1 < ξ+
1 . See Figure 5.6.

By (5.4.10), (5.4.15), and (5.4.6), Σ± are characterized by the inequali-
ties

±
(
ξ1 +

ωϕ′(x1)

1− 2x1ϕ′(x1)

)
< 0.

Substituting ξ1 = −ωϕ′(x1)/(1−2x1ϕ
′(x1)) into the left-hand side of (5.4.27),

we obtain a positive number. Therefore,

(x1, x
′, ξ∓1 , ξ

′) ∈ Σ±.

On the other hand, Hpx1 = ∂ξ1p is positive at ξ−1 and negative at ξ+
1 ; (5.4.26)

follows.

2. The case of the fiber infinity ∂T
∗
X ∩{x1 < 0} is considered similarly,

writing the equation 〈ξ〉−2p = 0 in the coordinates (5.4.2) as

4x1ξ̂
2
1 + |ξ̂′|2g1 = 0

and solving it in ξ̂1.

By (5.4.21), the remaining case is x1 = 0 and ξ finite. It is handled
similarly to the first case, with (5.4.27) now a linear equation whose only
root lies in Σ∓ for ±ω > 0. �
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Since X is a manifold with boundary, some Hamiltonian trajectories
may exit T

∗
X through the boundary X. This is formalized in

DEFINITION 5.17. We say that a trajectory γ(t) = et〈ξ〉
−1Hp(x, ξ), (x, ξ) ∈

T
∗
X, exits T

∗
X at time t0 ∈ R, if the projection of γ(t0) to the base lies

in {x1 = −ε} = ∂X, with ε fixed in the beginning of §5.3.

Combining (5.4.26) with (5.4.11), we see that

±〈ξ〉Hpx1 > 0 on Σ̂± \ L±.

Together with Lemma 5.15 this gives the structure of the flow on the fiber
infinity (see the proof of Lemma 5.19 below for a detailed argument; note

that the restriction of 〈ξ〉−1Hp to ∂T
∗
X does not depend on ω by (5.3.14)):

LEMMA 5.18 (Global dynamics at fiber infinity). Let (x, ξ) ∈ Σ̂±
and put γ(t) = et〈ξ〉

−1Hp(x, ξ). Then:

1. γ(t)→ L± as t→ ±∞.

2. If (x, ξ) /∈ L±, then γ exits T
∗
X at some time t0, ±t0 ≤ 0.

The situation on the entire T
∗
X is more complicated because trajectories

may become trapped inside the manifold M (see also Figure 5.5):

LEMMA 5.19 (Global dynamics in general). There exists δ > 0 such

that for all ω ∈ R \ {0} and (x, ξ) ∈ T
∗
X, γ(t) := et〈ξ〉

−1Hp(x, ξ), the
following holds:

1. If (x, ξ) ∈ Σ±, then either

(a) γ(t)→ L± as t→ ±∞, or

(b) there exists t0 ≥ 0 such that γ(t) ∈ {x1 > δ} for all t, ±t ≥ t0.

2. If (x, ξ) ∈ Σ± \ L±, then there exists t0 ≥ 0 such that either

(a) γ(t) exits T
∗
X at time ∓t0, or

(b) γ(t) ∈ {x1 > δ} for all t, ∓t ≥ t0.

Proof. 1. We concentrate on the case (x, ξ) ∈ Σ+; the case (x, ξ) ∈ Σ− can
be handled similarly, reversing the direction of the flow. Using (5.3.15) we
reduce to the case ω ∈ {1,−1}.

By Lemma 5.15, there exists a neighborhood U+ of L+ such that

(5.4.28) et〈ξ〉
−1Hp(x, ξ)→ L+ as t→∞ uniformly in (x, ξ) ∈ U+.

By Lemma 5.16, there exists δ > 0 such that

(5.4.29) 〈ξ〉−1Hpx1 ≥ δ on Σ+ ∩ {x1 ≤ δ} \ U+.
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Indeed, if (5.4.29) failed for each δ, we could find a sequence of counterex-
amples; the limit of any its convergent subsequence would give a counterex-
ample to (5.4.26).

2. We first prove part 1. Note that γ(t) ∈ Σ+ for all t for which it is
well-defined. Put

x1(t) := x1(γ(t)), ẋ1(t) = 〈ξ〉−1Hpx1(γ(t)).

By (5.4.26) we have x1(t) = −ε ⇒ ẋ1(t) > 0. Thus the trajectory γ(t)

cannot exit T
∗
X for positive times.

Next, if γ(t) ∈ U+ for some t ≥ 0, then case 1(a) holds. On the other
hand, if γ(t) ∈ Σ+ \ U+ for all t ≥ 0, then it follows from (5.4.29) that
x1(t) ≤ δ ⇒ ẋ1(t) ≥ δ for all t ≥ 0. Then γ(t) ∈ {x1 > δ} for all t ≥ 0
large enough, thus case 1(b) holds.

3. We now prove part 2. Assume that case 2(a) does not hold; then
γ(t) ∈ Σ+ is well-defined for all t ≤ 0. Since (x, ξ) /∈ L+, we may take
a neighborhood V+ of L+ such that (x, ξ) /∈ V+. By (5.4.28), there exists
T > 0 such that

et〈ξ〉
−1Hp(U+) ⊂ V+ for all t ≥ T.

Since (x, ξ) /∈ V+, it follows that

γ(t) ∈ Σ+ \ U+ for all t ≤ −T.
By (5.4.29), we have x1(t) ≤ δ ⇒ ẋ1(t) ≥ δ for all t ≤ −T . Since
x1(t) ≥ −ε for all t ≤ −T , we have x1(t) > δ for all t ≤ −T , thus case 2(b)
holds. �

5.4.4. Hamiltonian flow and geodesics on M . We finally study the re-
lation of Hamiltonian trajectories of p inside T ∗M to geodesics on the orig-
inal Riemannian manifold (M, g). This relation is exploited in §§5.6.3,6.2.3.
Define the smooth map

(5.4.30) j : T ∗M \ 0→ T ∗M, j(x, ξ) :=
(
x, ξ + |ξ|g

dx1

2x1

)
.

Then (5.3.12) implies that for each ω > 0, the characteristic set of p inter-

sected with T
∗
M is the image of a rescaled cosphere bundle under j:

(5.4.31) {〈ξ〉−2p = 0} ∩ T ∗M = j
(
{(x, ξ) ∈ T ∗M : |ξ|g = ω}

)
.

On M , geodesics are the trajectories of the Hamiltonian flow exp(tH|ξ|2g),

and they give rise to trajectories of Hp on the characteristic set as follows:

LEMMA 5.20 (Geodesics and bicharacteristics of the modified
Laplacian). Fix ω > 0 and let (x, ξ) ∈ T ∗M , |ξ|g = ω. Then we have

(5.4.32) j
(

exp(tH|ξ|2g)(x, ξ)
)

= exp(s(t)〈ξ〉−1Hp)
(
j(x, ξ)

)
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for some smooth function s : R → R, depending on (x, ξ) and such that
s(0) = 0, s′(t) > 0 for all t. Moreover, limt→−∞ s(t) = −∞.

Proof. 1. Put γ̃(t) = (x(t), ξ(t)) := exp(tH|ξ|2g)(x, ξ). Then |ξ(t)|g = ω, thus

j(γ̃(t)) = jω(γ̃(t)), t ∈ R,

where jω : T ∗M → T ∗M is the symplectomorphism defined by

jω(x, ξ) =
(
x, ξ + ω

dx1

2x1

)
.

By (5.3.12), we have on T ∗M

(x1p) ◦ jω = |ξ|2g − ω2.

Since symplectomorphisms preserve Hamiltonian flows, we have

∂tjω(γ̃(t)) = djω(γ̃(t))H|ξ|2g(γ̃(t)) = Hx1p

(
jω(γ̃(t))

)
= x1(t)Hp

(
jω(γ̃(t))

)
where x1(t) := x1(x(t)) > 0. Now (5.4.32) follows with

(5.4.33) s(t) :=

∫ t

0
x1(r)

〈
ξ(r) + ω

dx1

2x1
(r)
〉
dr.

2. To show that s(t) → −∞ as t → −∞, we argue by contradiction,
assuming that

s− := limt→−∞ s(t) ∈ (−∞, 0).

By (5.4.33) there exists a sequence tj → −∞ with x1(tj)→ 0. Put γ(s) :=
exp(s〈ξ〉−1Hp)(j(x, ξ)). Using the identity

(5.4.34) x1(t) = x1(γ(s(t)))

and taking the limit along the subsequence tj , we get x1(γ(s−)) = 0. More-
over, by (5.4.12) γ(s−) ∈ Σ− ∩ T ∗X. Finally, x1(γ(s)) > 0 for s ∈ (s−, 0].
Therefore

γ(s−) ∈ Σ− ∩ {x1 = 0} \ L−, 〈ξ〉−1Hpx1(γ(s−)) = ∂s|s=s−x1(γ(s)) ≥ 0.

This gives a contradiction with Lemma 5.16. �

REMARK. For a geodesic γ̃(t) = exp(tH|ξ|2g)(x, ξ) on M , |ξ|g = ω > 0, we

have two possibilities as t→ −∞ (see §6.1):

• either γ̃ escapes to infinity, that is x1(γ̃(t))→ 0 as t→ −∞,

• or γ̃ is trapped, that is x1(γ̃(t)) ≥ c > 0 for some c and all t ≤ 0.

Lemma 5.20 together with part 1 of Lemma 5.19 shows that when γ̃(t)
escapes as t→ −∞, the corresponding trajectory of the flow (5.4.1)

γ(s) := exp(s〈ξ〉−1Hp)(j(x, ξ)), j(x, ξ) ∈ Σ−

satisfies x1(γ(s))→ 0 as s→ −∞ and thus converges to L−.
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As t → ∞ we also have two possibilities for γ̃(t), escape and trapping.
However if γ̃(t) escapes as t→∞ then the trajectory γ(s) crosses {x1 = 0}
for some finite s+ := limt→∞ s(t) > 0 and exits T

∗
X at a later time. Indeed,

we have s+ < ∞ since otherwise we get a contradiction with part 2 of
Lemma 5.19. Using the identity (5.4.34) we see that γ(s+) ∈ Σ− ∩ {x1 =
0}\L−, thus by (5.4.26) x1(γ(s)) < 0 for all s > s+. By part 2 of Lemma 5.19
this implies that γ exits T ∗X. See Figure 5.5.

5.5. PROPAGATION ESTIMATES

In this section, we prove estimates for the operator Ph(ω) introduced in (5.3.8),
as well as its formal adjoint Ph(ω)∗ defined using the density (5.3.24). For
that we combine the properties of the semiclassical principal symbol p =
σh(Ph(ω)) established in §5.4 with the propagation of singularities and ra-
dial source/sink estimates of §E.4, as well as hyperbolic estimates of §E.5.
The resulting Propositions 5.27 and 5.28 will be the key components of the
proof of meromorphic continuation of the scattering resolvent in §5.6. We
will freely use the notation of Appendix E.

We first discuss the functional spaces used. Recall from §5.3 that the
even extension X is a compact manifold with boundary ∂X = {x1 = −ε}
and interior X = {x1 > −ε}. Consider the semiclassical Sobolev spaces (see
Definition E.25)

H̄s
h(X), Ḣs

h(X), s ∈ R.
Recall that H̄s

h(X) and Ḣ−sh (X) are dual to each other with respect to

the standard L2 pairing. The norms of these spaces depend on h, but the
underlying Hilbert spaces H̄s(X), Ḣs(X) are h-independent. We will later
assume that s is large enough depending on ω – see (5.5.10).

Since Ph(ω) is a second order semiclassical differential operator with
coefficients smooth up to the boundary of X, it defines a bounded oper-
ator H̄s(X) → H̄s−2(X). However, our propagation estimates bound the
norm ‖u‖H̄s

h(X) in terms of ‖Ph(ω)‖H̄s−1
h (X), rather than the weaker norm

‖Ph(ω)‖H̄s−2
h (X). For that reason, we will apply Ph(ω) to distributions u

satisfying

(5.5.1) u ∈ H̄s(X), Ph(ω)u ∈ H̄s−1(X).

Similarly, we will apply the adjoint operator Ph(ω)∗ to distributions v sat-
isfying

(5.5.2) v ∈ Ḣ1−s(X), Ph(ω)∗v ∈ Ḣ−s(X).

Our estimates are uniform in ω as long as

(5.5.3) |Reω| ≤ C0, | Imω| ≤ C0h,
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where C0 > 0 is any fixed constant. In terms of the original spectral pa-
rameter λ = h−1ω, (5.5.3) corresponds to |Reλ| ≤ C0h

−1, | Imλ| ≤ C0. In
particular, by taking h small enough we can handle arbitrarily large values
of λ, as long as Imλ is bounded. The constants in our estimates will be
independent on h except where noted otherwise.

Given (5.5.3), we will parametrize Ph(ω) by ωR = Reω and ωI =
h−1 Imω, see the remark following Proposition 5.13. In this parametrization
the semiclassical principal symbol of Ph(ω) is given by p(x, ξ; Reω), so that
the results of §5.4 apply. The adjoint operator Ph(ω)∗ has semiclassical prin-
cipal symbol p(x, ξ; Reω) as well. The estimates below will be uniform in ω
since the arguments used are stable under perturbations of ω; to simplify
the presentation we prove them for fixed values of ωR, ωI .

5.5.1. Microlocal estimates. We first prove microlocal propagation es-
timates for the operators Ph(ω), Ph(ω)∗. See Figure 5.7 on page 345 for a
phase space illustration of these estimates. We use the following notation:

DEFINITION 5.21 (Controlled set). Assume that V ⊂ T ∗X is an open
set, fix ω satisfying (5.5.3), and let p = p(x, ξ; Reω) be given by (5.3.11).

We say that a point (x, ξ) ∈ T
∗
X is controlled by V , and write (x, ξ) ∈

Conp(V ), if either

(a) (x, ξ) /∈ {〈ξ〉−2p = 0}, or

(b) there exists t ∈ R such that et〈ξ〉
−1Hp(x, ξ) ∈ V .

Note that Conp(V ) is an open subset of T
∗
X.

In this section, we will use pseudodifferential operators in Ψ0
h(X) which

are compactly supported; that is, the supports of their Schwartz kernels do
not intersect the boundary of X × X. Our first estimate is a combination
of elliptic bounds and propagation of singularities:

LEMMA 5.22. Assume that A,B ∈ Ψ0
h(X) are compactly supported and

(5.5.4) WFh(A) ⊂ Conp(ellh(B)).

Then for ω satisfying (5.5.3), all s,N , and u, v satisfying (5.5.1), (5.5.2),

‖Au‖Hs
h
≤Ch−1‖Ph(ω)u‖H̄s−1

h (X)

+ C‖Bu‖Hs
h

+ ChN‖u‖H̄−Nh (X),
(5.5.5)

‖Av‖H1−s
h
≤Ch−1‖Ph(ω)∗v‖Ḣ−sh (X)

+ C‖Bv‖H1−s
h

+ ChN‖v‖Ḣ−Nh (X).
(5.5.6)
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Proof. We will show (5.5.5); the estimate (5.5.6) is proved in exactly the
same way. We claim that for all u ∈ Hs

loc(X), Ph(ω)u ∈ Hs−1
loc (X),

(5.5.7)
‖Au‖Hs

h
≤Ch−1‖χPh(ω)u‖Hs−1

h

+ C‖Bu‖Hs
h

+ ChN‖χu‖H−Nh ,

where χ ∈ C∞c (X) is some cutoff function depending on A,B. For that we
recall that Ph(ω) ∈ Ψ2

h(X) and consider the following cases:

• WFh(A) ∩ {〈ξ〉−2p = 0} = ∅: (5.5.7) follows by the semiclassical
elliptic estimate, Theorem E.33;

• for each (x, ξ) ∈WFh(A), there exists t ∈ R with et〈ξ〉
−1Hp(x, ξ) ∈

ellh(B): (5.5.7) follows by semiclassical propagation of singularities,
Theorem E.47 (strictly speaking, we apply Theorem E.47 to the
operator −Ph(ω) in the case t > 0);

• a general A satisfying (5.5.4) can be written as a sum of operators
falling into the above two cases, by a pseudodifferential partition
of unity (Proposition E.30).

Now

(5.5.8)
‖χPh(ω)u‖Hs−1

h
≤ C‖Ph(ω)u‖H̄s−1

h (X),

‖χu‖H−Nh ≤ C‖u‖H̄−Nh (X).

Therefore, (5.5.7) implies (5.5.5). �

The next statement uses the high regularity radial estimate (Theo-
rem E.52) to bound u microlocally near the sets L±, assuming s is large
enough, and then propagates this bound to a neighborhood of the fiber
infinity ∂T

∗
X:

LEMMA 5.23 (High regularity microlocal estimate). Let A ∈ Ψ0
h(X)

be compactly supported. Then there exists A0 ∈ Ψ0
h(X) compactly supported

such that

(5.5.9) WFh(A0) ∩ ∂T ∗X = ∅

and for ω satisfying (5.5.3), s satisfying

(5.5.10) s >
1

2
− Imω

h
,

all N , and u satisfying (5.5.1),

(5.5.11)
‖Au‖Hs

h
≤Ch−1‖Ph(ω)u‖H̄s−1

h (X) + C‖A0u‖Hs
h

+ ChN‖u‖H̄−Nh (X).
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Proof. 1. Recall the radial sets L± introduced in (5.4.21); by Lemma 5.15,
L+ is a radial sink and L− is a radial source for the flow exp(t〈ξ〉−1Hp).

Let ρ be defined in (5.4.2). Put 〈ξ〉 :=
√

1 + ξ2
1 + |ξ′|2g1 = ρ−1

√
1 + ρ2.

Using (5.3.26), (5.4.3), and (5.4.22), we compute

(5.5.12)

±〈ξ〉−1

(
σh
(
h−1 ImPh(ω)

)
+
(
s− 1

2

)Hp〈ξ〉
〈ξ〉

)∣∣∣∣
L±

= ±ρ
(
σh
(
h−1 ImPh(ω)

)
+
(1

2
− s
)Hpρ

ρ

)∣∣∣∣
L±

= 4
( Imω

h
+ s− 1

2

)
> 0

where the last inequality follows from our assumption (5.5.10).

We apply the high regularity radial estimate, Theorem E.52, to L± and
the operator ∓Ph(ω). Here the threshold regularity condition (E.4.39) fol-
lows from (5.5.12) (putting b := 0 in (E.4.38)). Using (5.5.8) we deduce that
there exist compactly supported A± ∈ Ψ0

h(X) such that L± ⊂ ellh(A±) and

(5.5.13) ‖A±u‖Hs
h
≤ Ch−1‖Ph(ω)u‖H̄s−1

h (X) + ChN‖u‖H̄−Nh (X).

2. By (5.4.9) and part 1 of Lemma 5.18,

∂T
∗
X ⊂ Conp

(
ellh(A+) ∪ ellh(A−)

)
.

Take compactly supported A0 ∈ Ψ0
h(X) satisfying (5.5.9) and elliptic on the

compact set WFh(A) \ Conp(ellh(A+) ∪ ellh(A−)) ⊂ T ∗X. Then

(5.5.14) WFh(A) ⊂ Conp
(

ellh(A0) ∪ ellh(A+) ∪ ellh(A−)
)
.

Applying Lemma 5.22 with B := A∗0A0 +A∗+A+ +A∗−A−, we get

(5.5.15)
‖Au‖Hs

h
≤Ch−1‖Ph(ω)u‖H̄s−1

h (X) + C‖A0u‖Hs
h

+ C‖A+u‖Hs
h

+ C‖A−u‖Hs
h

+ ChN‖u‖H̄−Nh (X).

Estimating ‖A±u‖Hs
h

by (5.5.13), we obtain (5.5.11). �

For the adjoint operator Ph(ω)∗, we cannot obtain an a priori bound
microlocally near the radial sets of the form (5.5.13), since Theorem E.52
does not hold in the low regularity space H1−s. We will instead put on the
right-hand side the norm of v near the boundary X. This norm will control
v everywhere on ∂T

∗
X except the radial sets L±, and the bound is extended

to those using the low regularity radial estimate (Theorem E.54). Fix

(5.5.16) χ1 ∈ C∞c (X), χ1 = 1 near M even = {x1 ≥ 0}.

Then we have
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LEMMA 5.24 (Low regularity microlocal estimate). Assume that
A ∈ Ψ0

h(X) is compactly supported. Then there exists A′0 ∈ Ψ0
h(X) com-

pactly supported such that (5.5.9) holds and for ω satisfying (5.5.3), s sat-
isfying (5.5.10), all N , and v satisfying (5.5.2),

(5.5.17)
‖Av‖H1−s

h
≤Ch−1‖Ph(ω)∗v‖Ḣ−sh (X) + C‖A′0v‖H1−s

h

+ C‖(1− χ1)v‖Ḣ1−s
h (X) + ChN‖v‖Ḣ−Nh (X).

Proof. 1. We calculate similarly to (5.5.12), under the condition (5.5.10)

(5.5.18)

∓〈ξ〉−1

(
σh
(
h−1 ImPh(ω)∗

)
+
(1

2
− s
)Hp〈ξ〉
〈ξ〉

)∣∣∣∣
L±

= 4
( Imω

h
+ s− 1

2

)
> 0

We apply the low regularity radial estimate, Theorem E.54, to L± and the
operator ±Ph(ω)∗, with s replaced by 1 − s and the threshold regularity
condition (E.4.47) following from (5.5.18) (putting b := 0 in (E.4.38)). It
follows that there exist compactly supported A′±, B± ∈ Ψ0

h(X) such that

L± ⊂ ellh(A′±), WFh(B±) ∩ (L+ t L−) = ∅,

and the following estimate holds (where we use an analog of (5.5.8)):

(5.5.19)
‖A′±v‖H1−s

h
≤Ch−1‖Ph(ω)∗v‖Ḣ−sh (X)

+ C‖B±v‖H1−s
h

+ ChN‖v‖Ḣ−Nh (X),

2. By (5.4.9) and part 2 of Lemma 5.18,

∂T
∗
X \ (L+ t L−) ⊂ Conp({1− χ1 6= 0}).

Therefore,

∂T
∗
X ⊂ Conp(ellh(A′+) ∪ ellh(A′−) ∪ {1− χ1 6= 0}).

Arguing as in the proof of Lemma 5.23, we construct A′0 and χ̃ ∈ C∞c (X)
such that (5.5.9) holds and

WFh(A) ⊂ Conp(ellh(A′0) ∪ ellh(A′+) ∪ ellh(A′−) ∪ {χ̃(1− χ1) 6= 0}),
WFh(B±) ⊂ Conp(ellh(A′0) ∪ {χ̃(1− χ1) 6= 0}).

By Lemma 5.22, this implies the estimates

‖Av‖H1−s
h
≤Ch−1‖Ph(ω)∗v‖Ḣ−sh (X) + C‖A′0v‖H1−s

h

+ C‖A′+v‖H1−s
h

+ C‖A′−v‖H1−s
h

+ C‖(1− χ1)v‖Ḣ1−s
h (X) + ChN‖v‖Ḣ−Nh (X),

(5.5.20)



5.5. PROPAGATION ESTIMATES 345

                          
χ1

A−

A+

A0

                          

χ1

A′−

A′+

B−

B+

A′0

  
1− χ1

Figure 5.7. A phase space picture of the proof of (5.5.27), on the left,
and (5.5.28), on the right. The coordinates are same as in Figure 5.5, in
particular the dashed line is {x1 = 0}. For (5.5.27), we use hyperbolic
estimates to bound u via χ1u; χ1 is controlled by A0, A±; and A± are
controlled using high regularity radial estimates. For (5.5.28), we use
hyperbolic estimates to bound (1−χ1)v; χ1 is controlled by A′0, A

′
±, 1−

χ1; B± is controlled by A′0, 1 − χ1; and A′± is controlled by B± using
low regularity radial estimates.

‖B±v‖H1−s
h
≤Ch−1‖Ph(ω)∗v‖Ḣ−sh (X) + C‖A′0v‖H1−s

h

+ C‖(1− χ1)v‖Ḣ1−s
h (X) + ChN‖v‖Ḣ−Nh (X).

(5.5.21)

Substituting (5.5.19) into (5.5.20) and combining the result with (5.5.21),
we obtain (5.5.17). �

5.5.2. Hyperbolic estimates and global regularity. The microlocal es-
timates proved above are only valid away from the boundary X. To estimate
the functions u, v near the boundary, we use the semiclassical hyperbolicity
of Ph(ω) in {x1 < 0} when ω is away from 0:

LEMMA 5.25. Let χ1 satisfy (5.5.16) and assume that ω satisfies the
following strengthening of (5.5.3) for some fixed C0 > 0:

(5.5.22) C−1
0 ≤ |Reω| ≤ C0, | Imω| ≤ C0h.

Then for all s and u, v satisfying (5.5.1), (5.5.2),

‖u‖H̄s
h(X) ≤ Ch−1‖Ph(ω)u‖H̄s−1

h (X) + C‖χ1u‖Hs
h
,(5.5.23)

‖(1− χ1)v‖Ḣ1−s
h (X) ≤ Ch

−1‖Ph(ω)∗v‖Ḣ−sh (X).(5.5.24)
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REMARK. The proof below can be interpreted in terms of well-posedness
of the Cauchy problem for hyperbolic equations as follows. We view Ph(ω),
Ph(ω)∗ as semiclassically hyperbolic operators on {x1 < 0} where the func-
tion x1 takes the role of time. Then ‖χ1u‖ in (5.5.23) controls the Cauchy
data of u on {x1 = −δ} for any small δ > 0. This lets us estimate u
on {x1 < −δ}, giving (5.5.23). For (5.5.24), the support property for

v ∈ Ḣ1−s(X) implies that v vanishes past the boundary ∂X = {x1 = −ε},
thus it has zero Cauchy data on {x1 = −ε}.

Proof. Consider the defining function t := 1 + x1/ε on X and the product
structure (t, x′) on {t < 1} = {x1 < 0}, see (5.3.2). By (5.3.13), the
operators Ph(ω), Ph(ω)∗ are semiclassically hyperbolic with respect to t on
{t < 1}, in the sense of Definition E.55. (See Proposition 5.12 and the
paragraph following (5.4.27).) Then (5.5.23), (5.5.24) follow immediately
from the semiclassical hyperbolic estimate, Theorem E.57 (with χ2 ≡ 1). �

In general Ph(ω) may not be semiclassically hyperbolic (take ω = 0,
ξ′ = 0 in (E.5.8)) so the constants in (5.5.23), (5.5.24) depend on h:

LEMMA 5.26. Let χ1 satisfy (5.5.16) and assume that ω satisfies (5.5.3).
Then for all s and u, v satisfying (5.5.1), (5.5.2),

‖u‖H̄s(X) ≤ C‖Ph(ω)u‖H̄s−1(X) + C‖χ1u‖Hs ,(5.5.25)

‖(1− χ1)v‖Ḣ1−s(X) ≤ C‖Ph(ω)∗v‖Ḣ−s(X),(5.5.26)

with the constants in (5.5.25), (5.5.26) depending on h.

Proof. Consider the product structure (t, x′) as in the proof of Lemma 5.25.
By Proposition 5.12, the operators Ph(ω), Ph(ω)∗ are hyperbolic with respect
to t on {t < 1} in the sense of Definition E.55. Then (5.5.25), (5.5.26) follow
immediately from the nonsemiclassical hyperbolic estimate, Theorem E.56
(with χ2 ≡ 1). �

Combining Lemmas 5.23, 5.24, and 5.26, we arrive to the following state-
ment, which is used in §5.6 below to prove the Fredholm property of Ph(ω).
Here we allow the constants depend on h in an unspecified way, thus we
replace the norms ‖•‖Hs

h
by ‖•‖Hs and remove the prefactors h−1, hN from

the estimates. See Figure 5.7.

PROPOSITION 5.27. For ω satisfying (5.5.3), s satisfying (5.5.10),
all N , and u, v satisfying (5.5.1), (5.5.2), we have the estimates

‖u‖H̄s(X) ≤ C‖Ph(ω)u‖H̄s−1(X) + C‖u‖H̄−N (X),(5.5.27)

‖v‖Ḣ1−s(X) ≤ C‖Ph(ω)∗v‖Ḣ−s(X) + C‖v‖Ḣ−N (X)(5.5.28)

with the constants in (5.5.27), (5.5.28) depending on h.
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Proof. Fix χ1 satisfying (5.5.16). To see (5.5.27), it suffices to substi-
tute (5.5.11) with A := χ1 into (5.5.25). Here WFh(A0) ∩ ∂T ∗M = ∅,
thus A0 ∈ Ψ−s−Nh (X) for all N which implies ‖A0u‖Hs ≤ C‖u‖H̄−N (X).

To see (5.5.28), we first substitute (5.5.26) into (5.5.17) with A := χ1,
to estimate ‖χ1v‖H1−s . Combining the result with (5.5.26), we obtain an
estimate on ‖v‖Ḣ1−s(X). �

5.5.3. Invertibility in the upper half-plane. The Fredholm property
of Ph(ω), following from Proposition 5.27, is not enough to conclude that
Ph(ω)−1 is meromorphic. Indeed, it could happen that Ph(ω) is not in-
vertible for any ω, for instance if it were a family of Fredholm operators
of nonzero index. Here we show that this is not the case, by proving that
Ph(ω) is invertible for some ω in the upper half-plane:

PROPOSITION 5.28. Fix s ∈ R. Then there exists β > 0 such that
s > 1

2 − β and for

ω := 1 + ihβ,

small enough h, and u, v satisfying (5.5.1), (5.5.2), we have the estimates

‖u‖H̄s
h(X) ≤ Ch−1‖Ph(ω)u‖H̄s−1

h (X),(5.5.29)

‖v‖Ḣ1−s
h (X) ≤ Ch

−1‖Ph(ω)∗v‖Ḣ−sh (X).(5.5.30)

Proof. 1. Fix χ1 satisfying (5.5.16). We first claim that it is enough to prove
the following estimates for some choice of χ ∈ C∞c (X):

‖χ1u‖Hs
h
≤ Ch−1‖χPh(ω)u‖Hs−1

h
+ Ch1/2‖χu‖

H
s−1/2
h

,(5.5.31)

‖χ1v‖H1−s
h
≤Ch−1‖χPh(ω)∗v‖H−sh + C‖χ(1− χ1)v‖H1−s

h

+ Ch1/2‖χv‖
H

1/2−s
h

.
(5.5.32)

Indeed, combining these estimates with the hyperbolic bounds (5.5.23),
(5.5.24) similarly to the proof of Proposition 5.27, and taking h small enough

to remove the O(h1/2) remainder, we obtain (5.5.29), (5.5.30).

2. To show (5.5.31), (5.5.32), we use Lemma E.49, which is a basic positive
commutator estimate. Let Σ± be defined in Lemma 5.14, where we put
ω = 1. Take cutoff functions

ψ± ∈ C∞c (T
∗
X; [0, 1]), suppψ± ∩ Σ∓ = ∅

with the following properties:

ψ± = 1 near Σ± ∩ suppχ1, ±〈ξ〉−1Hpψ± ≥ 0 near Σ±.
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The existence of such functions follows from (5.4.26), where we make ψ± be
increasing functions of x1 near Σ±. With β > 0 to be chosen later, we put

f± := eβϕψ±, f̃± := e−βϕψ±,

where ϕ ∈ C∞(X;R) is the function introduced in (5.4.4).

3. Using (5.3.26) and (5.4.10), we compute

(5.5.33)

∓〈ξ〉−1
(
Hpf± + σh(h−1 ImPh(ω))f±

)
= ∓eβϕ〈ξ〉−1

(
Hpψ± + β(Hpϕ+ ∂ωp)ψ±

)
≤ −δβf± near Σ+ t Σ−

for some δ > 0 independent of β. Here we used that suppψ± ∩ Σ∓ = ∅.
Fix β large enough depending on s such that near Σ+ t Σ−,

(5.5.34) ∓〈ξ〉−1
(
Hpf±+σh

(
h−1 ImPh(ω)

)
f±+

(
s− 1

2

)Hp〈ξ〉
〈ξ〉

f±

)
≤ −f±.

Using (5.4.8), take compactly supported Â±, B̂ ∈ Ψ0
h(X) such that

(5.5.35)
suppχ1 ⊂ ellh(Â+) ∪ ellh(Â−) ∪ ellh(B̂),

WFh(Â±) ⊂ {f± > 0}, WFh(B̂) ∩ {〈ξ〉−2p = 0} = ∅,

and (5.5.34) holds in a neighborhood of T
∗
X \ ellh(B̂).

By Lemma E.49 applied to f± and the operators ∓Ph(ω), we get

(5.5.36)
‖Â±u‖Hs

h
≤Ch−1‖χPh(ω)u‖Hs−1

h

+ C‖B̂u‖Hs
h

+ Ch1/2‖χu‖
H
s−1/2
h

.

By the elliptic estimate, Theorem E.33, ‖B̂u‖Hs
h

is bounded in terms of

‖χPh(ω)u‖Hs−2
h

. By a pseudodifferential partition of unity (Proposition E.30)

and Theorem E.33, ‖χ1u‖Hs
h

is bounded in terms of ‖Â+u‖Hs
h
, ‖Â−u‖Hs

h
,

and ‖B̂u‖Hs
h
. Combining these estimates with (5.5.36), we obtain (5.5.31).

4. Similarly to (5.5.33), we compute

(5.5.37)

±〈ξ〉−1
(
Hpf̃± + σh(h−1 ImPh(ω)∗)f̃±

)
= ±e−βϕ〈ξ〉−1

(
Hpψ± − β(Hpϕ+ ∂ωp)ψ±

)
≤ −δβf̃± near (Σ+ t Σ−) ∩ suppχ1,

where we used that Hpψ± = 0 near (Σ+tΣ−)∩suppχ1. Arguing as in step 3,

we see that for β > 0 large enough, there exist Â±, B̂ satisfying (5.5.35) and
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such that near T
∗
X \

(
{χ1 6= 1} ∪ ellh(B̂)

)
,

±〈ξ〉−1
(
Hpf̃± + σh

(
h−1 ImPh(ω)∗

)
f̃± +

(1

2
− s
)Hp〈ξ〉
〈ξ〉

f̃±

)
≤ −f̃±.

By Lemma E.49 applied to f̃±, the operators ±Ph(ω)∗, and B := B̂∗B̂ +
χ(1− χ1) with a correct choice of χ, we obtain

‖Â±v‖H1−s
h
≤Ch−1‖χPh(ω)∗v‖H−sh + C‖χ(1− χ1)v‖H1−s

h

+ C‖B̂v‖H1−s
h

+ Ch1/2‖χv‖
H

1/2−s
h

.

Arguing as in step 3, we see that this estimate implies (5.5.32). �

5.6. MEROMORPHIC CONTINUATION

In this section, we use the estimates proved in §5.5 to show that the family
of operators P (λ) (see Definition 5.11) has a meromorphic inverse P (λ)−1.
We next use P (λ)−1 to show meromorphic continuation of the scattering
resolvent (5.0.3). Finally we give some applications of the estimates of §5.5
to high frequency resolvent bounds.

5.6.1. Meromorphic inverse for the modified Laplacian. The main
results of §5.5, Propositions 5.27 and 5.28, estimate ‖u‖H̄s

h(X) in terms of

‖Ph(ω)u‖H̄s−1
h (X), where Ph(ω) is the semiclassical rescaling of P (λ) defined

in (5.3.8). However, P (λ), as a second order differential operator, is not
bounded H̄s(X)→ H̄s−1(X). To resolve this issue, we consider the domain
of P (λ),

(5.6.1) X s := {u ∈ H̄s(X) | P (0)u ∈ H̄s−1(X)},

endowed with the semiclassical norm

‖u‖X sh =
(
‖u‖2H̄s

h(X) + ‖Ph(0)u‖2
H̄s−1
h (X)

)1/2
.

It is easy to see that X s is a Hilbert space, by identifying it with the closed
subspace

{(u, f) | P (0)u = f} ⊂ H̄s(X)⊕ H̄s−1(X).

Moreover, the norms ‖ • ‖X sh for different h are equivalent, with constants

depending on h. Since P (λ) − P (0) is a first order differential operator, it
is bounded H̄s(X)→ H̄s−1(X); therefore

(5.6.2) P (λ) : X s → H̄s−1(X)

is a family of bounded operators holomorphic in λ ∈ C.
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Before we prove meromorphy of P (λ)−1, let us introduce notation for
the kernel, cokernel, and kernel of the adjoint of (5.6.2):

kers P (λ) = {u ∈ H̄s(X) | P (λ)u = 0},(5.6.3)

cokers P (λ) = {v ∈ Ḣ1−s(X) | 〈P (λ)u, v〉L2 = 0 for all u ∈ X s},(5.6.4)

ker1−s P (λ)∗ = {v ∈ Ḣ1−s(X) | P (λ)∗v = 0}.(5.6.5)

Here we recall from §E.1.8 that Ḣ1−s(X) is the dual to H̄s−1(X) with respect
to the L2 inner product.

LEMMA 5.29. For all s, λ, we have cokers P (λ) = ker1−s P (λ)∗.

Proof. 1. By (5.5.26) (or applying directly Proposition E.62), we have

(5.6.6) v ∈ ker1−s P (λ)∗ =⇒ supp v ⊂M even = {x1 ≥ 0}.

In particular, v is compactly supported insideX. Therefore, by Lemma E.46,
for all u ∈ X s and v ∈ ker1−s P (λ)∗,

〈P (λ)u, v〉L2 = 〈u, P (λ)∗v〉L2 = 0.

This implies that ker1−s P (λ)∗ ⊂ cokers P (λ).

2. Assume now that v ∈ cokers P (λ). Then we have

〈u, P (λ)∗v〉L2 = 〈P (λ)u, v〉L2 = 0, u ∈ C∞(X).

This implies that P (λ)∗v = 0 and thus cokers P (λ) ⊂ ker1−s P (λ)∗. �

The following theorem is the central result of this chapter. It uses the
results of §5.5 together with Fredholm theory to show meromorphy of the
inverse to P (λ):

THEOREM 5.30 (Meromorphic inverse for the modified Lapla-
cian). Fix s ∈ R. Then (5.6.2) is a Fredholm operator of index zero for
Imλ > 1

2 − s, and it has a meromorphic inverse with poles of finite rank,

(5.6.7) P (λ)−1 : H̄s−1(X)→ X s, Imλ >
1

2
− s.

Proof. 1. By Proposition 5.27, recalling the definition (5.3.8) of the semi-
classically rescaled operator Ph(ω), we have for Imλ > 1

2 − s and all u ∈
X s, v ∈ Ḣ1−s(X), P (0)v ∈ Ḣ−s(X),

‖u‖X s ≤ C‖P (λ)u‖H̄s−1(X) + C‖u‖H̄s−1(X),(5.6.8)

‖v‖Ḣ1−s(X) ≤ C‖P (λ)∗v‖Ḣ−s(X) + C‖v‖Ḣ−s(X),(5.6.9)

where the constant C depends on s and λ. By Rellich–Kondrachov’s theo-
rem [HöIII, Theorem B.2.2] the embeddings X s → H̄s−1(X), Ḣ1−s(X) →
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Ḣ−s(X) are compact operators. We now follow a standard argument from
functional analysis to establish the Fredholm property of P (λ).

2. We first show the following statement: if uj is a bounded sequence in X s
such that P (λ)uj converges in H̄s−1(X), then uj has a subsequence which
converges in X s. Indeed, since the embedding X s → H̄s−1(X) is compact
and ‖uj‖X s is bounded, by passing to a subsequence we may assume that
uj converges in H̄s−1(X). Applying (5.6.8) to the differences uj − uk, we
see that uj is a Cauchy sequence in X s; therefore, it converges.

It follows immediately that kers P (λ) is finite dimensional. Indeed, oth-
erwise there exists an X s-orthonormal sequence uj ∈ kers P (λ); P (λ)uj = 0
converges and ‖uj‖X s is bounded, yet uj has no convergent subsequence.

3. We next show that the image of (5.6.2) is a closed subspace of H̄s−1(X).
Take a convergent sequence

fj ∈ P (λ)(X s), fj → f∞ in H̄s−1(X).

We may write fj = P (λ)uj , where uj ∈ X s is X s-orthogonal to kers P (λ).

Assume first that ‖uj‖X s is bounded. Then by step 2, by passing to a
subsequence we can make uj converge to some u∞ in X s . It follows that
f∞ = P (λ)u∞ lies in the image of (5.6.2).

If on the contrary ‖uj‖X s is not bounded, then by passing to a subse-
quence we may assume that ‖uj‖X s →∞. Put

ũj :=
uj

‖uj‖X s
, f̃j = P (λ)ũj =

fj
‖uj‖X s

.

Then ‖ũj‖X s = 1 and f̃j → 0 in H̄s−1(X). By step 2, passing to a sub-
sequence, we may assume that ũj converges to some ũ∞ in X s. We have
‖ũ∞‖X s = 1, P (λ)ũ∞ = 0, and ũ∞ is X s-orthogonal to kers P (λ); this gives
a contradiction.

4. To finish the proof of the Fredholm property of (5.6.2), it remains to
show that its image has finite codimension. Since this image is closed, by
Lemma 5.29 it suffices to show that ker1−s P (λ)∗ is finite dimensional. To
do this, we may argue as in step 2, using (5.6.9) instead of (5.6.8).

5. To show that (5.6.2) has a meromorphic inverse, we apply Analytic
Fredholm Theory, Theorem C.8. For that, we need to show that (5.6.2)
is invertible for some choice of λ, Imλ > 1

2 − s. This statement together
with continuity of index of Fredholm operators will also imply that P (λ)
has index zero.

Take λ := h−1 + iβ, where h > 0 is small enough and β > 0 is fixed
in Proposition 5.28. Then by (5.5.29), kers P (λ) is trivial; by (5.5.30),
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cokers P (λ) = ker1−s P (λ)∗ is trivial. Together with the Fredholm prop-
erty, these imply that (5.6.2) is invertible as needed. �

The next proposition shows that for each λ, the inverse P (λ)−1 de-
fined in (5.6.7) does not depend on the choice of s. Moreover, it maps
H̄s−1(X) → H̄s(X) for all s > 1

2 − Imλ and thus defines a meromorphic
family of continuous operators

(5.6.10) P (λ)−1 : C∞(X)→ C∞(X), λ ∈ C.

PROPOSITION 5.31. Assume that s < t, and let P (s)(λ)−1, P (t)(λ)−1

be the inverses of P (λ) as an operator X s → H̄s−1(X) and X t → H̄t−1(X)
respectively. Then we have for Imλ > 1

2 − s,

(5.6.11) P (s)(λ)−1f = P (t)(λ)−1f, f ∈ H̄t−1(X).

Proof. By analytic continuation, it suffices to prove (5.6.11) when λ is not

a pole of either P (s)(λ)−1 or P (t)(λ)−1. Then

u := P (t)(λ)−1f ∈ X t ⊂ X s.

Since P (λ)u = f , we see that u = P (s)(λ)−1f as needed. �

We now define resonances and (co)resonant states of P (λ):

DEFINITION 5.32. Let λ ∈ C and s > 1
2 − Imλ. We say that λ is

an extended resonance of (M, g), if it is a pole of (5.6.7). In this case
we call extended resonant states elements of kers P (λ) and extended
coresonant states elements of cokers P (λ), see (5.6.3), (5.6.4).

Since (5.6.2) is a Fredholm operator of index zero, λ is an extended
resonance if and only if dim kers P (λ) > 0. Moreover, dim kers P (λ) =
dim cokers P (λ). Using Lemma 5.29 we see that for all t > s > 1

2 − Imλ

kert P (λ) ⊂ kers P (λ), cokers P (λ) ⊂ cokert P (λ).

This gives inequalities on dimensions of the above spaces, which show that
the spaces of extended (co)resonant states do not depend on s. Combining
this with (5.6.6) we see that for s > 1

2 − Imλ

(5.6.12)
kers P (λ) = {u ∈ C∞(X) | P (λ)u = 0},

cokers P (λ) = {v ∈ D′(X) | supp v ⊂M even, P (λ)∗v = 0}.

We will henceforth drop the superscript s in kers P (λ), cokers P (λ).
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5.6.2. Meromorphic continuation of the scattering resolvent. We
now return to the original even asymptotically hyperbolic manifold (M, g).
Since it is complete, the Laplace–Beltrami operator ∆g is essentially self-
adjoint on C∞c (M) (see for instance [TaII, Proposition 8.2.4]). Denote the
domain of the self-adjoint extension by

(5.6.13) H2(M) = {u ∈ L2(M) | ∆gu ∈ L2(M)}

where we understand ∆gu in the sense of distributions and use the volume
form of g to defined the space L2(M). Following (5.0.3), we define for

(5.6.14) Imλ > 0, λ /∈ i
[
0,
n− 1

2

]
,

the holomorphic L2 resolvent

(5.6.15)
(
−∆g − λ2 − (n− 1)2

4

)−1
: L2(M)→ H2(M).

As a corollary of Theorem 5.30 we obtain

THEOREM 5.33 (Meromorphic continuation of the scattering re-
solvent). The family (5.6.15) admits a meromorphic continuation with poles
of finite rank

(5.6.16) R(λ) : L2
comp(M)→ H2

loc(M), λ ∈ C.

Moreover, for each s > 1
2 − Imλ, R(λ) can be extended to

(5.6.17) R(λ) : x
n+3
4
− iλ

2
1 H̄s−1(Meven)→ x

n−1
4
− iλ

2
1 H̄s(Meven),

where x1 = y2
1 is a boundary defining function of the even compactification

M even introduced in Definition 5.7. In particular,

(5.6.18) f ∈ C∞c (M) =⇒ R(λ)f ∈ x
n−1
4
− iλ

2
1 C∞(M even).

REMARKS. 1. Motivated by (5.6.18) and Definition 3.32 we say that a
solution u ∈ C∞(M) to

(5.6.19)
(
−∆g − λ2 − (n− 1)2

4

)
u = f ∈ C∞c (M)

is outgoing if u ∈ x
n−1
4
− iλ

2
1 C∞(M even).

2. We define resonances of (M, g) as the poles of (5.6.16). The set of reso-
nances is contained in the set of extended resonances (see Definition 5.32),
however there could be extended resonances which are not resonances (that
is the singular part of P (λ)−1 is annihilated by restricting to M). There
could also exist an outgoing solution to (5.6.19) with f ≡ 0 for some λ which
is not a resonance. See Exercises 5.5, 5.6, 5.14. For this reason we will not
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define resonant states for the asymptotically hyperbolic case. (We remark
without proof that these issues can only arise at λ = −ik where k ∈ N.)

3. An analog of Rellich’s theorem on absense of real resonances (Theo-
rem 3.33) holds in the asymptotically hyperbolic setting, see Mazzeo [Maz]
and Cardoso–Vodev [CV02].

Proof. 1. We first consider the case of the right-hand side f ∈ C∞c (M).
Assume λ is not a pole of P (λ)−1. Using (5.6.10), define

(5.6.20) R(λ)f := x
n−1
4
− iλ

2
1

(
P (λ)−1x

iλ
2
−n+3

4
1 f

)∣∣
M
∈ C∞(M).

Here we make x
iλ
2
−n+3

4
1 f into an element of C∞c (X) by extending it by zero

outside of M , and R(λ)f satisfies (5.6.18).

It follows from Definition 5.11 that R(λ)f solves the equation(
−∆g − λ2 − (n− 1)2

4

)
R(λ)f = f.

Moreover, it follows from (5.3.3) and (5.6.18) that when Imλ > 0 we have
R(λ)f ∈ L2(M) and thus by (5.6.13) R(λ)f ∈ H2(M). This gives

R(λ)f =
(
−∆g − λ2 − (n− 1)2

4

)−1
f, Imλ > 0, λ /∈ i

[
0,
n− 1

2

]
.

That is, R(λ) does indeed give a meromorphic continuation of (5.6.15).

For s > 1
2 − Imλ and f ∈ x

n+3
4
− iλ

2
1 H̄s−1(Meven), we can also define

R(λ)f by (5.6.20), using (5.6.7) and extending x
iλ
2
−n+3

4
1 f to an element of

Hs−1
comp(X); the mapping property (5.6.17) follows immediately.

2. It remains to show that R(λ) extends to an operator with mapping
properties (5.6.16). Such extension will necessarily be unique since C∞c (M)
is dense in L2

comp(M).

We will handle the case of f ∈ L2
comp(M) using an elliptic parametrix.

For each λ there exist regular properly supported operators W (λ), Z(λ)
on M such that W (λ) : L2

comp(M)→ H2
comp(M), Z(λ) is smoothing, and

I =
(
−∆g − λ2 − (n− 1)2

4

)
W (λ) + Z(λ).

The elliptic parametrix statement in this book (Proposition E.32) is semi-
classical, so to construct these we put

P1(z;h) := −h2∆g + 1− h2z ∈ Ψ2
h(M).

For each z, P1(z;h) is everywhere elliptic, so by Proposition E.32 there exist

W1(z;h) ∈ Ψ−2
h (M), Z1(z;h) = O(h∞)Ψ−∞
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such that
I = P1(z;h)W1(z;h) + Z1(z;h).

It remains to put W (λ) := W1(z;h), Z(λ) := Z1(z;h) where h := 1, z :=

1 + λ2 + (n−1)2

4 .

3. By (5.6.20), we have for each λ which is not an extended resonance

u = R(λ)
(
−∆g − λ2 − (n− 1)2

4

)
u, u ∈ C∞c (M).

Applying this to u := W (λ)f , we get

R(λ)(I − Z(λ))f = W (λ)f, f ∈ C∞c (M).

It follows that

(5.6.21) R(λ)f = W (λ)f +R(λ)Z(λ)f, f ∈ C∞c (M).

We may now define R(λ)f ∈ H2
loc(M) for f ∈ L2

comp(M) using (5.6.21). Here
R(λ)Z(λ)f on the right-hand side is well-defined by (5.6.20), since Z(λ) is
smoothing and thus Z(λ)f ∈ C∞c (M). �

EXAMPLES. 1. For the hyperbolic space (5.0.1), there are no resonances
when n is odd and there are resonances

λk = −i
(
k +

n− 1

2

)
, k ∈ N0,

when n is even – see [GZ95b, §2]. Moreover, for n odd the values λk are
extended resonances – see Exercises 5.6 and 5.14.

2. For the hyperbolic cylinder (5.1.4), resonances are given by (see [Bo16,
Proposition 5.2] and Figure 5.1(b))

(5.6.22) λj,k =
2πk

`
−
(
j +

1

2

)
i, k ∈ Z, j ∈ N0.

5.6.3. Applications to high frequency asymptotics. We finally give
a few applications of the construction of this chapter to high frequency
asymptotics, using the semiclassically rescaled operator Ph(ω) = h2P (h−1ω)
from (5.3.8). These will be used in §6.2.3 below. Recall the class of com-
pactly microlocalized pseudodifferential operators Ψcomp

h introduced in Defi-
nition E.28, the symbol p defined in (5.3.11), the components Σ± of the char-

acteristic set defined in Lemma 5.14, and the radial sets L± ⊂ Σ± ∩ ∂T
∗
X

defined in (5.4.21). (Recall also that p and Σ± depend on ω.) We start with
constructing an approximate inverse for Ph(ω):

THEOREM 5.34 (Approximate inverse with complex absorption).
Fix a compact subset Ω ⊂ (0,∞) and constants C0 > 0, s > 1

2 +C0. Let the
space X s be defined in (5.6.1). Assume that

Q ∈ Ψcomp
h (M), σh(Q) ≥ 0,
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controls trapping in the following sense (see Figure 5.5):

(5.6.23)

for all ω ∈ Ω, (x, ξ) ∈ Σ−, γ(t) := et〈ξ〉
−1Hp(x, ξ),

either γ(t)→ L− as t→ −∞
or there exists t0 ≤ 0 such that γ(t0) ∈ ellh(Q).

Then for h small enough and Reω ∈ Ω, | Imω| ≤ C0h, the operator Ph(ω)−
iQ : X s → H̄s−1(X) is invertible and

(5.6.24) ‖(Ph(ω)− iQ)−1‖H̄s−1
h (X)→X sh

≤ Ch−1.

REMARKS. 1. An operator Q with above properties always exists. In-
deed, by part 1 of Lemma 5.19, it is enough to make Q elliptic on Σ−∩{x1 ≥
δ}, and the latter is a compact subset of T ∗M by (5.4.11).

2. Using Lemmas 5.19 and 5.20, the condition (5.6.23) can be reformulated
in terms of the geodesic flow exp(tH|ξ|2g) on (M, g) (here δ > 0 is defined in

Lemma 5.19 and the map j, in (5.4.30)):

(5.6.25)

for all ω ∈ Ω, (x̃, ξ̃) ∈ T ∗M, |ξ̃|g = ω

if γ̃(t) := exp(tH|ξ|2g)(x̃, ξ̃) lies in {x1 > δ} for all t ≤ 0

then there exists t0 ≤ 0 such that j(γ̃(t0)) ∈ ellh(Q).

By Proposition 6.4, it is then enough to require that j(Kω2) ⊂ ellh(Q) for
all ω ∈ Ω where Kω2 ⊂ {(x, ξ) ∈ T ∗M : |ξ|g = ω} is the trapped set at
energy ω2, see (6.1.4) and §6.1.2, as well as the proof of Proposition 6.12.
In particular if M has no trapped geodesics, we may take Q = 0 – see
Theorem 6.13.

Proof. 1. We first claim that it suffices to prove the following estimate for
all compactly supported A ∈ Ψ0

h(X) and all u ∈ X s:

(5.6.26) ‖Au‖Hs
h
≤ Ch−1‖(Ph(ω)− iQ)u‖H̄s−1

h (X) + ChN‖u‖H̄−Nh (X)

Indeed, let χ1 satisfy (5.5.16). Combining (5.6.26) for A := χ1 with (5.5.23)
(whose proof applies to Ph(ω)− iQ since Q is supported in {x1 > 0}, so we
may choose χ2 in Theorem E.57 such that χ2Q = 0), we obtain

(5.6.27) ‖u‖H̄s
h(X) ≤ Ch−1‖(Ph(ω)− iQ)u‖H̄s−1

h (X) + ChN‖u‖H̄−Nh (X).

Since Q is compactly microlocalized, it is a smoothing operator on X, and
thus a compact operator X s → H̄s−1(X). Then by Theorem 5.30, Ph(ω)−iQ
is a Fredholm operator of index zero X s → H̄s−1(X). By (5.6.27), for h small
enough this operator has trivial kernel and thus is invertible, and (5.6.24)
holds. Here to estimate the X sh norm we use the bound

‖Ph(0)u‖H̄s−1
h (X) ≤ ‖(Ph(ω)− iQ)u‖H̄s−1

h (X) + C‖u‖H̄s
h(X).
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2. To show (5.6.26) we follow the proof of Lemma 5.23, putting A0 := 0. The
radial estimates (5.5.13) still hold for Ph(ω)− iQ, since WFh(Q) ∩ L± = ∅.
Therefore, it remains to prove the following version of (5.5.15):

(5.6.28)
‖Au‖Hs

h
≤Ch−1‖(Ph(ω)− iQ)u‖

H
s−1
h (X)

+ C‖A+u‖Hs
h

+ C‖A−u‖Hs
h

+ ChN‖u‖
H
−N
h (X)

where the operators A± ∈ Ψ0
h(X), chosen in the proof of Lemma 5.23, are

elliptic on L±.

To show (5.6.28), we follow the proof of Lemma 5.22, using a partition
of unity to reduce to the situation when WFh(A) is contained in a small

neighborhood of some point (x, ξ) ∈ T
∗
X, and considering the following

cases for the trajectory γ(t) = et〈ξ〉
−1Hp(x, ξ):

(1) (x, ξ) ∈ ellh(Ph(ω) − iQ) = {〈ξ〉−2p 6= 0} ∪ ellh(Q): then ‖Au‖ can be
bounded using the semiclassical elliptic estimate, Theorem E.33;

(2) (x, ξ) ∈ Σ+: by (5.4.12) and part 1 of Lemma 5.19, γ(t) converges to L+

as t → +∞ and does not pass through T ∗M ⊃ WFh(Q). Therefore, ‖Au‖
can be bounded by ‖A+u‖ using propagation of singularities, Theorem E.47;

(3) (x, ξ) ∈ Σ− and γ(t) converges to L− as t→ −∞: ‖Au‖ can be bounded
by ‖A−u‖ using propagation of singularities;

(4) By (5.4.8) and since Q controls trapping, the remaining case is (x, ξ) ∈
Σ− and γ(t0) ∈ ellh(Q) for some t0 ≤ 0. Then ‖Au‖ can be bounded
by ‖A′u‖ using propagation of singularities, for some A′ ∈ Ψcomp

h (M) with
WFh(A′) ⊂ ellh(Q), and ‖A′u‖ can be bounded using case (1).

The cases (3) and (4) used the fact that σh(Q) ≥ 0 to be able to apply
propagation of singularities (Theorem E.47) to the operator Ph(ω)− iQ. �

We conclude this section with a semiclassically outgoing property for the
operators Ph(ω) and Ph(ω) − iQ. This property is useful in particular for
applying the resolvent gluing method of Datchev–Vasy [DV12a] to asymp-
totically hyperbolic manifolds, with the model resolvent at infinity given by
(Ph(ω)− iQ)−1 for Q satisfying (5.6.23).

THEOREM 5.35 (Semiclassically outgoing property). Fix a compact
subset Ω ⊂ (0,∞) and constants C0 > 0, s > 1

2 + C0, and assume that

Q ∈ Ψcomp
h (M), σh(Q) ≥ 0. Consider compactly supported operators

A ∈ Ψ0
h(M), B ∈ Ψ0

h(X), L− ∪WFh(A) ⊂ ellh(B)
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satisfying the following control condition:

(5.6.29)

for all ω ∈ Ω, (x, ξ) ∈WFh(A) ∩ Σ−, γ(t) := et〈ξ〉
−1Hp(x, ξ)

we have γ(t)→ L− as t→ −∞
and γ(t) ∈ ellh(B) for all t ≤ 0.

Then for Reω ∈ Ω, | Imω| ≤ C0h, all N , and u ∈ X s, we have

(5.6.30) ‖Au‖Hs
h
≤ Ch−1‖B(Ph(ω)− iQ)u‖Hs−1

h
+ ChN‖u‖H̄−Nh (X).

REMARK. Using Lemmas 5.19 and 5.20 we see that if

(5.6.31)
for all ω ∈ Ω, (x̃, ξ̃) ∈ T ∗M, |ξ̃|g = ω, j(x̃, ξ̃) ∈WFh(A)

we have x1

(
exp(tH|ξ|2g)(x̃, ξ̃)

)
→ 0 as t→ −∞

then the condition (5.6.29) holds for any B elliptic on {x1 ≥ 0}. Here the
map j is given by (5.4.30) and exp(tH|ξ|2g) is the geodesic flow on (M, g).

Condition (5.6.31) means that for all ω ∈ Ω, we have WFh(A) ∩ j(Γ+
ω2) = ∅

where Γ+
ω2 ⊂ {(x, ξ) ∈ T ∗M : |ξ|g = ω} is the set of backwards trapped

geodesics on (M, g) at energy ω2, see (6.1.4).

Proof. We follow the proof of Lemma 5.23. First of all, since B is elliptic
on L− and WFh(Q) ∩ L− = ∅, Theorem E.52 gives the following strength-
ening of (5.5.13):

(5.6.32) ‖A−u‖Hs
h
≤ Ch−1‖B(Ph(ω)− iQ)u‖Hs−1

h
+ ChN‖u‖H̄−Nh (X),

for some A− ∈ Ψ0
h(X) elliptic on L−.

Since WFh(A) lies in T
∗
M , by (5.4.12) it does not intersect Σ+. Thus

by (5.4.8) and a pseudodifferential partition of unity we may reduce to the
following cases:

(1) WFh(A)∩{〈ξ〉−2p = 0} = ∅: by the elliptic estimate, Theorem E.33, we
get

‖Au‖Hs
h
≤ C‖B(Ph(ω)− iQ)u‖Hs−2

h
+ ChN‖u‖H̄−Nh (X).

(2) there exists T ≥ 0 such that e−T 〈ξ〉
−1Hp(WFh(A)) ⊂ ellh(A−) and

e−t〈ξ〉
−1Hp(WFh(A)) ⊂ ellh(B) for all t ∈ [0, T ]: by propagation of sin-

gularities, Theorem E.47, we get

‖Au‖Hs
h
≤C‖A−u‖Hs

h
+ Ch−1‖B(Ph(ω)− iQ)u‖Hs−1

h

+ ChN‖u‖H̄−Nh (X),

and the first term on the right-hand side is estimated by (5.6.32). �
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5.7. APPLICATIONS TO GENERAL RELATIVITY

We now discuss applications of the methods of this chapter to quasi-normal
modes and wave decay on black hole spacetimes. To keep the presentation
uniform with the rest of the chapter we restrict ourselves to spacetimes which
correspond to asymptotically hyperbolic manifolds. Other spacetimes to
which the methods developed here apply include the Schwarzchild–de Sitter
spacetime, considered in Exercise 5.16, and more general Kerr–de Sitter
spacetimes and their stationary perturbations, studied in the original work
of Vasy [Va13]. The methods of [Va13] described here form the basis of the
proof by Hintz–Vasy [HV16] of global non-linear stability of slowly rotating
Kerr–de Sitter black holes under Einstein’s equations.

Our starting point is the following procedure, associating a pseudo-
Riemannian metric to a family of second order differential operators:

DEFINITION 5.36. Let X be an n-dimensional manifold and P(λ) a
family of second order differential operators on X of the form

P(λ) = −
n∑

j,k=1

ajk ∂j∂k + 2i
n∑
j=1

a0j λ∂j + a00 λ
2 +B

where (ajk)
n
j,k=0 is an invertible real-valued symmetric matrix, ajk ∈ C∞(X),

and B = b0λ +
∑n

j=1 bj∂j + c for some bj , c ∈ C∞(X). Then we define the

associated pseudo-Riemannian manifold (X̃, g̃) as follows:

X̃ := Rt ×X, 〈dxj , dxk〉g̃ = ajk,

where x0 := t.

Note that if P(i∂t) is the differential operator on X̃ obtained by replacing
λ by i∂t, then P(i∂t) differs from the pseudo-Riemannian Laplace–Beltrami
operator −�g̃ by a first order differential operator. Note also that g̃ is
stationary, that is its components are independent of t.

We apply Definition 5.36 to the modified Laplacian introduced in §5.3.
As in that section, let (M, g) be an even asymptotically hyperbolic mani-
fold. We consider the even extension X, fix a product structure (x1, x

′) as
in (5.3.2) and extend to X the metric g1(x1, x

′, dx′) as in (5.3.4). We fix

ψ = ψ(x1) ∈ C∞(X)

and consider the operator Pψ(λ) defined in (5.3.16). Recall that

Pψ(λ) = e(n+3
2
−iλ)ψP (λ)e(iλ−n−1

2
)ψ

where P (λ) is the extended modified Laplacian, see Definition 5.11.
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Let g̃ be the metric on X̃ := Rt ×X associated to

P(λ) := Pψ(λ)

according to Definition 5.36. We can write its action on covectors in terms
of the symbol p(x, ξ;ω) defined in (5.3.11):

(5.7.1) |(τ, ξ)|2g̃(t,x) = pψ(x, ξ;−τ) = e2ψ(x)p(x, ξ − τdψ;−τ).

Here we denote elements of T ∗X̃ by (t, x, τ, ξ) where t, τ ∈ R, (x, ξ) ∈
T ∗X, and pψ(x, ξ;ω) is the semiclassical principal symbol of Pψ,h(ω) =
h2Pψ(h−1ω), see Exercise 5.7. We use the notation |(τ, ξ)|2g̃(t,x) for the inner

product 〈(τ, ξ), (τ, ξ)〉g̃(t,x) even though g̃ is not positive definite.

By (5.3.12), we have on R×M ,

(5.7.2) |(τ, ξ)|2g̃(t,x) =
e2ψ

x1

(∣∣∣ξ + τ
(dx1

2x1
− dψ

)∣∣∣2
g(x)
− τ2

)
;

by (5.3.13), we have on R×Y (here Y = {−ε ≤ x1 < ε2
1} is defined in (5.3.1))

(5.7.3)
|(τ, ξ1, ξ

′)|2g̃(t,x1,x′) = e2ψ
(
4(ξ1 − ψ′(x1)τ)

(
x1ξ1 + (1− x1ψ

′(x1))τ
)

+ |ξ′|2g1(x1,x′)

)
.

It follows that g̃ is Lorentzian, that is it has signature (n, 1). We refer the
reader to [TaI, §2.7] for an introduction to Lorentzian geometry.

On R ×M , we may write g̃ as conformal to a product metric which is
singular at the boundary {x1 = 0}, by using the change of variables

(5.7.4) Φ : (t, x) 7→
(
t− ψ(x) +

1

2
log x1, x

)
.

Indeed, we compute

|(τ, ξ)|2Φ∗g̃(t,x) =
e2ψ

x1
(|ξ|2g(x) − τ

2),

therefore on R×M ,

(5.7.5) Φ∗g̃ = x1e
−2ψ(−dt2 + g(x, dx)).

EXAMPLES. 1. For the hyperbolic space (see (5.3.18)), we have

X̃ = Rt ×X, X = BRn(0, 2),

and with (r, θ) denoting polar coordinates on X and gS the standard metric
on Sn−1,

(5.7.6)
|(τ, ξ)|2g̃(t,x) = (1− r2)ξ2

r − 2rτξr − τ2 +
|ξθ|2gS(θ)

r2
;

g̃ = −(1− r2)dt2 − 2r drdt+ dr2 + r2gS(θ, dθ).
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r

t

r = 1r = −1

Figure 5.8. The light cones and a timelike curve on the spacetime
associated to the hyperbolic cylinder. The event horizons are {r = ±1}.

On R × M , M = BRn(0, 1), we use (5.1.25) together with the formula
x1e
−2ψ = 1− r2 to see that the pullback metric (5.7.5) is

Φ∗g̃ = −(1− r2)dt2 +
dr2

1− r2
+ r2gS(θ, dθ).

Thus (X̃, g̃) is a subset of the de Sitter spacetime – see [Va13, (4.1)].

2. For the hyperbolic cylinder (see (5.3.21)), we have

(5.7.7)

X̃ = Rt ×X, X = [−2, 2]r × S1
θ;

|(τ, ξ)|2g̃(t,x) = (1− r2)ξ2
r − 2rτξr − τ2 + ξ2

θ ,

g̃ = −(1− r2)dt2 − 2r drdt+ dr2 + dθ2.

See Figure 5.8. On R ×M , M = (−1, 1)r × S1
θ, the pullback metric (5.7.5)

is (using (5.1.27) and the formula x1e
−2ψ = 1− r2)

(5.7.8) Φ∗g̃ = −(1− r2)dt2 +
dr2

1− r2
+ dθ2.

5.7.1. Geometry of spacetime. We now study the properties of the

spacetime (X̃, g̃). For each ω ∈ R, (5.7.1) gives a correspondence

(5.7.9) Θω : (t, x, τ, ξ) ∈ C ∩ {τ = −ω} 7→ (x, ξ − τdψ) ∈ {p = 0}

between the characteristic set {p = 0} ⊂ T ∗X and the intersection of the
dual light cone

C := {(t, x, τ, ξ) ∈ T ∗X̃ : |(τ, ξ)|2g̃(t,x) = 0}

with the hypersurface {τ = −ω}. (Recall that p depends on ω.)
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The geodesic flow on (X̃, g̃) is (up to rescaling) the Hamiltonian flow

(5.7.10) exp(tHp̃), p̃(t, x, τ, ξ) := |(τ, ξ)|2g̃(t,x).

The trajectories of the flow (5.7.10) on C = {p̃ = 0} are called null geodesics,
and τ is constant on each geodesic since ∂tp̃ = 0. Under the map (5.7.9)
null geodesics correspond to reparametrized trajectories of the Hamiltonian
flow Hp. More precisely, if γ(s) ∈ C ∩ {τ = −ω} is a trajectory of the
flow (5.7.10) and γ1(s) = Θω(γ(s)) then

(5.7.11) γ̇1(s) = e2ψ(γ1(s))Hp(γ1(s)).

The identity (5.7.11) follows from the fact that (x, ξ) 7→ (x, ξ + ωdψ) is a
symplectomorphism for all ω ∈ R.

We impose the conditions (5.4.6), (5.4.7) on the function ψ:∣∣∣dψ − dx1

2x1

∣∣∣
g
< 1 on M,

ψ′(x1) > 0, x1ψ
′(x1) < 1 for all x1.

See also Figure 5.4. Computing from (5.7.2), (5.7.3)

|dt|2g̃(t,x) =

{
e2ψ

x1

(∣∣dx1
2x1
− dψ

∣∣2
g(x)
− 1
)
, on R×M ;

−4e2ψψ′(x1)(1− x1ψ
′(x1)), on R× Y

we see that the hypersurfaces {t = const} are spacelike; that is, |dt|2g̃ < 0.
This is the reason we could not simply take ψ ≡ 0.

The vector field ∂t is:

• timelike on R×M = {x1 > 0}, namely |∂t|2g̃ < 0;

• null on {x1 = 0}, namely |∂t|2g̃ = 0;

• spacelike on {x1 < 0}, namely |∂t|2g̃ > 0.

Rather than inverting (5.7.2), (5.7.3) to obtain the form of the metric on
tangent vectors, we can see this by putting τ := 0 and studying the signature
of the resulting quadratic form in ξ. Then by (5.7.1) ∂t being timelike
corresponds to P (λ) being elliptic and ∂t being spacelike corresponds to
P (λ) being hyperbolic (see Proposition 5.12; here hyperbolicity with respect
to x1 corresponds to the hypersurfaces {x1 = c} being spacelike for c < 0).

REMARK. The geometry described in this section is very similar to that
of the Schwarzschild–de Sitter black hole spacetime, see Exercise 5.16. In
particular, on that spacetime ∂t is timelike in {x1 > 0}. However, the
more general rotating Kerr–de Sitter spacetime has an ergoregion, namely
a region inside {x1 > 0} where ∂t is spacelike. The corresponding station-

ary d’Alembert–Beltrami operator P̃ (λ) (see (5.7.20) below) is hyperbolic
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in the ergoregion, which makes the spectral theory approach to meromor-

phic continuation for black hole spacetimes (reducing P̃ (λ) to the spectral
family of some self-adjoint operator P in {x1 > 0}, similar to −∆g for
an asymptotically hyperbolic manifold) difficult to apply. The approach of
Vasy, presented here, handles the elliptic to hyperbolic transition of P (λ)
in a systematic way. In particular this approach applies with no essential
changes to Kerr–de Sitter spacetimes. See [Va13] for details. �

If we remove the zero section of T ∗X̃ then C splits into two halves

(5.7.12) C± := {(t, x, τ, ξ) ∈ C | ±〈(τ, ξ), dt〉g̃(t,x) < 0}.

The time variable t satisfies the equation ṫ = ∂τ p̃ = 2〈(τ, ξ), dt〉g̃(t,x) under
the geodesic flow (5.7.10). Thus the null geodesics on C+ travel backward
in time and those on C− travel forward in time. We thus call C+ the past-
oriented light cone and C− the future-oriented light cone.

We see from (5.4.13) (where we put ϕ := ψ) and (5.7.1) that un-
der (5.7.9), C± correspond to the components Σ± of the characteristic set
when ω 6= 0. Then (5.4.12) corresponds to the following corollary of ∂t being
timelike on R×M :

C± ∩ T ∗(R×M) ⊂ {±τ > 0}.

Next, we introduce the following subsets of X̃:

• the domain of outer communications is {x1 > 0} = R×M ;

• the event horizon is the hypersurface {x1 = 0};
• the black hole region is {x1 < 0}.

By (5.7.3), the event horizon is a null hypersurface in the sense that |dx1|2g̃ =

0 on {x1 = 0}. Moreover, the hypersurfaces {x1 = c} are spacelike (that
is |dx1|2g̃ < 0) for c < 0, and 〈dx1, dt〉g̃ > 0 on {x1 < 0}. It follows that

if γ(s) ∈ X̃ is a curve which is timelike or lightlike (that is, |γ̇|2g̃ ≤ 0) and

future oriented (that is, 〈dt, γ̇〉 > 0), then for all s

(5.7.13) γ(s) ∈ {x1 < 0} =⇒ ∂s x1(γ(s)) < 0.

That is, if an observer crosses the event horizon at some point, they can
never escape the black hole region and will be pushed farther into this re-
gion as time t increases – see Figure 5.8. For null geodesics in C− (5.7.13)
corresponds to Lemma 5.16, using (5.7.11).

We finally define the red-shift trajectories, which are the null geodesics
on the event horizon given by (here we assume ψ = 0 on {x1 = 0} for
simplicity)

(5.7.14) t = ln(∓4s), x1 = 0, x′ = const, τ = 0, ξ1 = ∓e−t, ξ′ = 0,
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where s, ∓s > 0, is the geodesic parameter. We call (5.7.14) red-shift
trajectories because the frequency ξ decays exponentially along them as
t→∞.

Writing the trajectories (5.7.14) using the correspondence (5.7.9), we
obtain the following Hamiltonian trajectories of esHp on {p = 0} ⊂ T ∗X
for ω = 0:

(5.7.15) x1 = 0, x′ = const, ξ1 =
1

4s
, ξ′ = 0.

As s → 0∓, these trajectories converge in T
∗
X to the radial sources/sinks

L± defined in (5.4.21). In other words, L± correspond to limits of the red-
shift trajectories as t→ −∞.

5.7.2. Resonance expansions. We finally present an application of the

results of this chapter to resonance expansions on the spacetime (X̃, g̃). We
keep the presentation relatively brief, referring to [Va13, §§3, 6] or [Dy12,
§1.1] for more details.

Let �g̃ be the d’Alembert–Beltrami operator on (X̃, g̃). Consider the
future solution to the inhomogeneous wave equation,

(5.7.16) −�g̃u = f, suppu ⊂ {t > 0},
where we assume for simplicity that the right-hand side f satisfies

f ∈ C∞c (X̃ ∩ {0 < t < 1}).

PROPOSITION 5.37. The problem (5.7.16) has a unique solution u ∈
C∞(X̃), which is smooth up to the boundary {x1 = −ε}. Moreover, there
exist constants C,C1 > 0 such that for all t ≥ 0

(5.7.17) ‖∇g̃u(t)‖L2(X) ≤ CeC1t‖f‖L1
t ((0,1);L2(X)).

REMARK. The estimate (5.7.17) only gives an exponentially growing
bound on the energy of solutions to the wave equation. As follows from
Theorem 5.40 below, if there is a resonance free strip, then boundedness of
energy of u as t→∞ is equivalent to the following mode stability condition:
there are no resonances in the upper half-plane and resonances on the real
line are algebraically simple. Such conditions are crucial for establishing
stability for nonlinear wave equations (such as [HV16]). Mode stability
is known for slowly rotating Kerr–de Sitter, see [Dy11a, Theorem 4]. For
general Kerr–de Sitter spacetimes mode stability is an open question.

Proof. 1. To show existence of u we will use well-posedness of the Cauchy
problem for hyperbolic equations, Theorem E.61. Since this theorem is
stated for the case of a compact space slice, we embed X into a compact

manifold without boundary Xext, and put X̃ext := Rt×Xext. We will extend
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g̃ to a stationary Lorentzian metric on X̃ext such that the hypersurfaces
{t = const} are spacelike; that is, |dt|2g̃ < 0.

To construct the extension of g̃ we use the following fact: if g̃0, g̃1 are two
Lorentzian inner products on Rn+1

t,x which are positive definite on ker dt '
Rn, then for each α ∈ [0, 1] there exists unique Lorentzian inner product
g̃α = [g̃0, g̃1]α such that, denoting ∇g̃αt := g̃−1

α dt,

(5.7.18)
g̃α|ker dt = (1− α)g̃0|ker dt + αg̃1|ker dt,

∇g̃αt = (1− α)∇g̃0t+ α∇g̃1t.

We now let Xext be the double space of X, obtained by gluing X along
the boundary ∂X to another copy of X, which we denote X1. Let g̃0 be a

smooth stationary extension of g̃ from X̃ to a neighborhood of it in X̃ext

such that |dt|2g̃0 < 0. Next, let g̃1 be the mirror image of g̃ on X̃1. Take χ ∈
C∞(Xext; [0, 1]) which is supported inside the domain of g̃0 and equal to 1 on

X. We then define the extension of g̃ to X̃ext using the procedure (5.7.18):

g̃(t, x) := [g̃0(t, x), g̃1(t, x)]1−χ(x).

2. Since the hypersurfaces {t = const} are spacelike, the operator −�g̃ is

hyperbolic on X̃ext with respect to t in the sense of Definition E.55 (where
we fix h := 1). By Theorem E.61 (where we take zero Cauchy data on

{t = 0}) there exists a function ũ ∈ C∞(X̃ext) such that −�g̃ũ = f and

supp ũ ⊂ {t > 0}, where we extend f by zero to X̃ext. Putting u := ũ|
X̃

we
obtain existence of solutions to the problem (5.7.16).

3. The estimate (5.7.17) is a special case of the following energy estimate

for wave equations on Lorentzian manifolds: for any u ∈ C∞(X̃) smooth up
to the boundary {x1 = −ε} and all t1 ≥ t0

(5.7.19) Eu(t1) ≤ CeC1(t1−t0)Eu(t0) + C

∫ t1

t0

eC1(t1−t)‖�g̃u(t)‖L2(X) dt

where Eu(t) := ‖∇g̃u(t)‖L2(X). The estimate (5.7.19) is proved by integra-
tion by parts in the integral∫

t0≤t≤t1
(�g̃u)(V u) dVolg̃, V := −∇g̃t

using that g̃ is stationary, the vector field V is timelike, the hypersurfaces
{t = const} and {x1 = −ε} are spacelike, 〈dt, V 〉 > 0 everywhere, and
〈dx1, V 〉 < 0 on {x1 = −ε}. See [TaI, Proposition 2.8.1], [Dy11a, Propo-
sition 1.1], and [Dy11b, §1.1] for details. Finally, uniqueness of u follows
immediately from (5.7.17). �
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Now, following the strategy of §2.1 define the Fourier–Laplace transform

û(λ) :=

∫
R
eiλtu(t) dt ∈ H̄1(X), λ ∈ C, Imλ > C1.

Here C1 > 0 is the constant in (5.7.17) and the integral converges exponen-
tially fast.

Let P̃ (λ) be the second order differential operator on the space slice X
obtained from −�g̃ by replacing ∂t with −iλ. Fourier transforming the wave
equation (5.7.16), we obtain

(5.7.20) P̃ (λ)û(λ) = f̂(λ), Imλ > C1.

We now express û(λ) in terms of the meromorphic inverse of P̃ (λ):

THEOREM 5.38. Fix s ∈ R. Then for Imλ > 1
2 − s,

(5.7.21) P̃ (λ) : {w ∈ H̄s(X) | P̃ (0)w ∈ H̄s−1(X)} → H̄s−1(X)

is a Fredholm operator of index zero and has a meromorphic inverse with
poles of finite rank

(5.7.22) P̃ (λ)−1 : H̄s−1(X)→ H̄s(X).

The operators (5.7.22) for different values of s coincide on their common
domain and define an operator C∞(X) → C∞(X), similarly to Proposi-

tion 5.31. Moreover, P̃ (λ)−1 has no poles in {Imλ > C1} where C1 is the
constant in (5.7.17).

Finally, if u solves the wave equation (5.7.16), then

(5.7.23) û(λ) = P̃ (λ)−1f̂(λ) for Imλ > C1.

REMARK. The poles of (5.7.22) are called resonances or quasi-normal

modes of the spacetime (X̃, g̃). To each resonance λ correspond resonant

states w ∈ C∞(X), P̃ (λ)w = 0. These gives rise to solutions e−iλtw(x) of
the wave equation which in physics are called mode solutions.

Proof. 1. We first establish the Fredholm property and the meromorphy of
the inverse of (5.7.21), applying the proof of Theorem 5.30. Recall that we
constructed g̃ in the beginning of §5.7 based on the operator Pψ(λ). By
the remark following Definition 5.36 the difference −�g̃ − Pψ(i∂t) is a first

order differential operator on X̃. From the definition of P̃ (λ) we see that

P̃ (λ)−Pψ(λ) is a first order polynomial in λ and ∂x (with coefficients smooth
in x). Recalling the definition (5.3.16) of Pψ(λ), we consider the operator

P ′(λ) := e(iλ−n+3
2

)ψP̃ (λ)e(n−1
2
−iλ)ψ
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and note that P ′(λ) − P (λ) is a first order polynomial in λ and ∂x. Thus
the semiclassically rescaled operator

(5.7.24) P ′h(ω) := h2P ′(h−1ω)

satisfies (where Ph(ω) was defined in (5.3.8))

P ′h(ω) = Ph(ω) + hDiff1
h(X).

Now the proof of Theorem 5.30 applies to the operator P ′(λ). Indeed, most
of the analysis only used the principal symbol of P ′h(ω), which is still equal
to p. The only statement that needs to be checked is Proposition 5.13; more
precisely we need to show that for λ ∈ R, the operator P ′(λ) is symmetric.

To see this we use that �g̃ is symmetric with respect to dVolg̃ and thus P̃ (λ)
is symmetric with respect to the density dS on X defined by dVolg̃ = dtdS.

Then P ′(λ) is symmetric with respect to the density e(n+1)ψ dS. A direct

computation using (5.7.2) and (5.7.3) shows that 2e(n+1)ψ dS equals the
density dVol defined in (5.3.24).

We have showed the Fredholm property and the meromorphy of the
inverse for the operator

P ′(λ) : {w ∈ H̄s(X) | P ′(0)w ∈ H̄s−1(X)} → H̄s−1(X)

which immediately imply these properties for the original operator (5.7.21).
The proof of Proposition 5.31 applies without any changes.

2. We next show that if Imλ > C1, then λ is not a pole of P̃ (λ)−1. Indeed,
assume the contrary. Then there exists a nontrivial solution w ∈ C∞(X)

to the equation P̃ (λ)w = 0 (see (5.6.12)). Then u(t, x) := e−iλtw(x) is a
solution to the equation �g̃u = 0 which violates the bound (5.7.19), giving
a contradiction.

Finally, (5.7.23) follows from (5.7.20) and the invertibility of (5.7.21) for
s := 1. �

Recall that the proof of resonance expansions for potential scattering
(Theorem 2.9) used resonance free regions (Theorem 2.10). In the situation
studied here a resonance free region may or may not be present depending
on the behavior of trapped geodesics (see Chapter 6). Thus we make

DEFINITION 5.39 (Resonance free strip). Let P̃h(ω) := h2P̃ (h−1ω)

be the semiclassical rescaling of the operator P̃ (λ) defined in the paragraph
preceding (5.7.20) and C1 > 0 be the constant in (5.7.17). We say that

(X̃, g̃) has a resonance free strip of size ν > 0, if there exist N ≥ 0,
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C, h0 > 0, C2 > C1, and s > 1
2 + ν such that

(5.7.25)
‖u‖H̄s

h(X) ≤ Ch−1−N‖P̃h(ω)u‖H̄s−1
h (X), u ∈ H̄s

h(X),

|Reω| = 1, Imω ∈ [−νh,C2h], 0 < h ≤ h0.

REMARKS. 1. A resonance free strip is also often called an essential

spectral gap. In terms of the original operator P̃ (λ) it implies that there are
no resonances with Imλ ≥ −ν and |Reλ| ≥ h−1

0 .

2. It is enough to verify (5.7.25) for the case Reω = 1; the case Reω = −1
then follows using the identity

P̃h(ω)u = P̃h(−ω̄)ū.

Finally, we present resonance expansions which are analogues of Theo-
rems 2.9 and 3.11 in the current setting:

THEOREM 5.40 (Resonance expansions for black hole spacetimes).

Let (X̃, g̃) be the spacetime constructed in the beginning of §5.7 from an

even asymptotically hyperbolic manifold. Assume that (X̃, g̃) has a reso-
nance free strip of some size ν > 0. Then for every solution u to the wave
equation (5.7.16) we have the resonance expansion as t→∞

(5.7.26) u(t) = −i
∑

Imλj≥−ν
Resλ=λj

(
e−iλtP̃ (λ)−1f̂(λ)

)
+O(e−νt)L2(X).

Here P̃ (λ)−1 : C∞(X) → C∞(X) is defined in Theorem 5.38 and the sum

is taken over the resonances λj of (X̃, g̃).

REMARK. To simplify the presentation we give a weak form of the remain-
der in (5.7.26), in particular we do not speficy the dependence of the con-
stant on the right-hand side f . We refer to [Va13, Lemma 3.1] or [Dy11b,
Proposition 2.1] for a stronger remainder bound in weighted Sobolev spaces
e−νtHs

t,x, which shows that the constant N in Definition 5.39 specifies the
number of derivatives lost in the decay bound (compared to (5.7.17)).

Proof. 1. Let C2 > C1, N, s, h0 be given in Definition 5.39. By the Fourier
inversion formula in t and (5.7.23) we have

(5.7.27) u(t) =
1

2π

∫
Imλ=C2

e−iλtP̃ (λ)−1f̂(λ) dλ.

To justify (5.7.27) we use the wave equation (5.7.16) to write ∂2
t u = P1∂tu+

P0u for t ≥ 1 where Pj are differential operators of order 2 − j on X.
Differentiating this identity and arguing by induction with the base given by
the growth bound (5.7.17), we see that for each ϕ ∈ C∞c (X) the function t 7→
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e−C2t〈u(t, x), ϕ(x)〉L2(X) is exponentially decaying with all its derivatives.

Applying the Fourier inversion formula to this function we obtain (5.7.27).

2. Rescaling (5.7.25) we get the high frequency resolvent estimate

(5.7.28)
‖P̃ (λ)−1‖H̄s(X)→L2(X) ≤ C〈λ〉N−1,

|Reλ| ≥ h−1
0 , Imλ ∈ [−ν, C2].

Since f ∈ C∞c (X̃ ∩ {0 < t < 1}), we have for all N ′

(5.7.29) ‖f̂(λ)‖H̄N′ (X) ≤ CN ′〈λ〉
−N ′ , Imλ ∈ [−ν, C2].

Combining (5.7.28) and (5.7.29) we obtain for all N ′

(5.7.30)
‖P̃ (λ)−1f̂(λ)‖L2(X) ≤ CN ′〈λ〉−N

′
,

|Reλ| ≥ h−1
0 , Imλ ∈ [−ν, C2].

3. For simplicity we assume that there are no resonances on the line {Imλ =
−ν}. (Otherwise we deform the contour a tiny bit below the finitely many
resonances on that line.) Using (5.7.30) we deform the contour in (5.7.27)
to obtain

(5.7.31)

u(t) = − i
∑

Imλj≥−ν
Resλ=λj

(
e−iλtP̃ (λ)−1f̂(λ)

)
+

1

2π

∫
Imλ=−ν

e−iλtP̃ (λ)−1f̂(λ) dλ.

Using (5.7.30) again we see that the second line of (5.7.31) is O(e−νt)L2(X),
finishing the proof. �

EXAMPLES. 1. For the spacetime (5.7.6) corresponding to the hyperbolic
space, we compute (here ∆S is the Laplacian on the sphere)

−�g̃ = − (1− r2)∂2
r + 2r∂r∂t + ∂2

t −
1

r2
∆S

+ (n+ 1)r∂r −
n− 1

r
∂r + n∂t,

P̃ (λ) = − (1− r2)∂2
r + (n+ 1− 2iλ)r∂r −

n− 1

r
∂r

− λ2 − niλ− 1

r2
∆S .

In terms of the operator Pψ(λ) computed in (5.3.18) we have

P̃ (λ) = Pψ(λ) +
1− n2

4
.
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Since the hyperbolic space has no trapped trajectories, arguing similarly

to Theorem 6.13 we see that (X̃, g̃) has a resonance free strip of size ν for
any ν > 0 (and N := 0 in (5.7.25)).

2. For the spacetime (5.7.7) corresponding to the hyperbolic cylinder, we
compute

−�g̃ = −(1− r2)∂2
r + 2r∂t∂r + ∂2

t − ∂2
θ + ∂t + 2r∂r,

P̃ (λ) = −(1− r2)∂2
r + 2(1− iλ)r∂r − λ2 − iλ− ∂2

θ .

In terms of the operator Pψ(λ) computed in (5.3.21) we have

P̃ (λ) = Pψ(λ)− 1

4
.

The hyperbolic cylinder has normally hyperbolic trapping (see Example 2
on page 403). Arguing similarly to Theorem 6.16 (see also (6.3.28)) we see

that (X̃, g̃) has a resonance free strip of size ν for any ν ∈ (0, 1
2) (and N := 1

in (5.7.25)).

5.8. NOTES

The meromorphic continuation of the resolvent (5.0.3) in the case when
M = Γ\H2 is non-compact and has finite volume was proved by Selberg
[Se53]. That case is an example of black box scattering (with n = 1) and
was presented in Example 1, §4.1, Example 3, §4.2 and Example 3, §4.4. It
is related to many great themes in mathematics, in particular the Selberg
trace formula. (See [GZ99] for a presentation in the spirit of this book.)

The fundamental example for this chapter is given by quotients M =
Γ\H2 of infinite volume which are geometrically finite and have no cusps.
Such M are called convex co-compact and the study of the resolvent in
this case was initiated by Patterson [Pa75]. Celebrated results of Patterson
[Pa76] and Sullivan [Su79] on the abscissa of convergence of Poincaré series
and the dimension of the limit set for such Γ\H2 have the following scat-
tering theoretical interpretation: they imply existence of a resonance free
strip under a “pressure condition” stating that the trapped set (see §6.1) is
sufficiently “thin”. In obstacle scattering this pressure condition appeared
independently in physics in Gaspard–Rice [GR89] and in mathematics in
Ikawa [Ik88] – see §6.6 for a description of recent advances. The book of
Borthwick [Bo16] provides a comprehensive introduction to scattering and
spectral theories on Γ\H2. See also Bourgain–Gamburd–Sarnak [BGS11],
Jakobson–Naud [JN10],[JN12],[JN14] and Oh–Winter [OW16] for related
results with arithmetic connections.
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For general asymptotically hyperbolic manifolds (and in particular for
any convex co-compact Γ\Hn) the meromorphic continuation of the resol-
vent (5.0.3) was established by Mazzeo–Melrose [MM87]. Earlier contribu-
tions were made by Agmon [Ag86], Fay [Fa77], Lax–Phillips [LP82], Man-
douvalos [Ma88] and Perry [Pe89]. Guillopé–Zworski [GZ95b] provided
meromorphic continuation for manifolds with constant curvature in a neigh-
bourhood of infinity and their method was extended to the case of more
general constant curvature infinities (mixed rank cusps) by Guillarmou–
Mazzeo [GM12] (see Froese–Hislop–Perry [FHP91] for an earlier version
of the result obtained by Mourre theory methods).

Guillarmou [Gu05] showed that the evenness condition in Definition 5.5
was needed for a global meromorphic continuation and clarified the construc-
tion given in [MM87].

Roughly speaking, the Mazzeo–Melrose method is based on constructing
a pseudo-differential calculus which allows solving(

−∆g − λ2 − (n− 1)2

4

)
R̃(λ) = I +K(λ),

R̃(λ) : yN1 L
2(M)→ y−N1 L2(M), N > − Imλ+

n− 1

2
,

where K(λ) is compact as in operator yN1 L
2(M)→ yN1 L

2(M). That shows

meromorphic continuation of (5.0.3) as an operator yN1 L
2(M)→ y−N1 L2(M).

That is, in spirit, similar to the method used in §§3.2 and 4.2 where the re-
solvent was continued as an operator L2

comp(Rn)→ L2
loc(Rn). This approach

does not provide a family of Fredholm operators and hence does not allow
for the use of geometric methods to study the distribution of resonances.
However, the detailed description of the resolvent in [MM87] and [Gu05]
remains essential in the study of the scattering matrix on asymptotically
hyperbolic manifods – see Graham–Zworski [GrZw] and references given
there. That paper related the scattering matrix to conformal structure at
infinity and the work of Fefferman–Graham [FG] which in turn is one of the
mathematical foundations of the AdS/CFT correspondence in physics.

Vasy’s method which is used in this chapter is dramatically different from
earlier approaches and is related to the study of stationary wave equations
for Kerr–de Sitter black holes – see [Va13] and §5.7. One of the first appli-
cations was Datchev–Dyatlov [DD13] who provided fractal upper bounds
on the number of resonances for (even) asymptotically hyperbolic mani-
folds and in particular for convex co-compact quotients of Hn. Previously
only the case of convex co-compact Schottky quotients was known Guillopé–
Lin–Zworski [GLZ04] and that was established using transfer operators and
zeta function methods. In the context of black holes Vasy’s construction has
been used to obtain a quantitative version of Hawking radiation by Drouot
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[Dr15b], exponential decay of waves in the Kerr–de Sitter case [Va13] (es-
tablished earlier by Dyatlov [Dy11a, Dy11b] using a different method),
the description of quasi-normal modes for perturbations of Kerr–de Sit-
ter black holes by Dyatlov [Dy12] and rigorous definition of quasi-normal
modes for Kerr–Anti de Sitter black holes by Gannot [Gan14]. The con-
struction of the Fredholm family also plays a role in the study of linear
and non-linear scattering problems – see Baskin–Vasy–Wunsch [BVW15],
Hintz–Vasy [HV14b], [HV15], [HV16] and references given there.

A related approach to meromorphic continuation, motivated by the
study of Anti-de Sitter black holes, was independently developed by Warnick
[Wa15]. It is based on physical space techniques for hyperbolic equations
and it also provides meromorphic continuation of resolvents for even asymp-
totically hyperbolic metrics [Wa15, §7.5].

For a physics perspective on quasi-normal modes of black hole spacetimes
(discussed in §5.7) and additional references see Kokkotas–Schmidt [KS99],
Dyatlov–Zworski [DZ13] and Cardoso et al [C∗18]. In the mathematics lit-
erature quasi-normal modes were studied by Bachelot–Motet-Bachelot [BaMB]
and Sá Barreto–Zworski [SZ97], who applied the methods of scattering the-
ory and semiclassical analysis to the case of a spherically symmetric black
hole. Resonance expansions for Schwarzschild–de Sitter spacetimes were ob-
tained by Bony–Häfner [BH08], see also Melrose–Sá Barreto–Vasy [MSV14].
For Kerr–de Sitter black holes resonance expansions were proved by Dyat-
lov [Dy12].

5.9. EXERCISES

Section 5.1

1. Let (M, g) be an asymptotically hyperbolic manifold and

(5.9.1) ϕt = exp
( tH|ξ|2g

2

)
: T ∗M → T ∗M

the geodesic flow. Fix a canonical product structure (y1, y
′) and let (y1, y

′, η1, η
′)

be the corresponding product structure for T ∗M . This exercise explores the
behaviour of geodesics on M near ∂M .

(a) Denote µ1 := y1η1. Show that trajectories of ϕt on S∗M solve the
evolution equations

ẏ1 = y1µ1, µ̇1 = µ2
1 − 1− y3

1

2
〈η′, η′〉∂y1g1(y1,y′), (ẏ′, η̇′) = y2

1Gy1(y′, η′)

where Gy1 is the generator of the geodesic flow of the metric g1(y1, •) defined
similarly to (5.9.1).
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(b) Let γ : R → S∗M be a geodesic such that y1(γ(0)) < ε1, η1(γ(0)) ≤ 0.
Show that for ε1 small enough, we have as t→∞ along the geodesic γ(t)

y1(t) = O(e−t), µ1(t) = −1 +O(e−2t),(
y′(t), η′(t)

)
= (y′∞, η

′
∞) +O(e−2t)

for some (y′∞, η
′
∞) ∈ T ∗∂M . (Hint: differentiate the function e2t

(
y1(t)2 +

1− µ1(t)2
)
.)

Section 5.2

2. Show that for λ /∈ iZ, the equation (5.2.6) has two solutions of the
form (5.2.8), with

aj,± := (−βk)j
j∏
`=1

1

I(α± + 2`)

and I(α) defined in (5.2.7), α± defined in (5.2.9). Show that the series (5.2.8)
converges for all y1 > 0.

3. On the hyperbolic plane H2 (see (5.0.1)), the Schwartz kernel of the
resolvent (with respect to the density induced by the metric)

R(λ) =
(
−∆g − λ2 − 1

4

)−1
: L2(H2)→ L2(H2), Imλ > 0,

is given by (see e.g. [Bo16, Proposition 4.2])

R(λ)(w, z) =
1

4π

∫ 1

0

(
t(1− t)

)− 1
2
−iλ

(σ(w, z)− t)−
1
2

+iλ dt,

where, with dH2 denoting the hyperbolic distance,

σ(w, z) = cosh2
(dH2(w, z)

2

)
= 1 +

|w − z|2

(1− |w|2)(1− |z|2)
.

Use this formula to prove Proposition 5.8 for H2. (Hint: to show smoothness
on M even, rather than just M , use the change of variables t 7→ 1− t.)

Section 5.3

4. Verify that the formulas (5.3.12) and (5.3.13) for p agree on M ∩ Y .

Exercises 5.5–5.6 study solutions v ∈ D′(X) to the equation P (λ)∗v = 0
which are supported on {x1 = 0}. Such distributions will lie in the coker-
nel cokers P (λ) defined in (5.6.5) for sufficiently large s. This gives examples
of resonances for P (λ) which are not resonances of the original scattering
resolvent R(λ), see Exercise 5.14.
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5. Let f0, . . . , fk−1 ∈ D′(∂M) and fk−1 6≡ 0. Show that

(5.9.2) P (λ)∗
( k−1∑
j=0

δ(j)(x1)fj(x
′)

)
= 0

if and only if λ = −ik and fj solve the equations for j = 0, . . . , k − 1

(5.9.3) 4(j−k)fj−1 +
k−1∑
`=j

(−1)`−j
(
`

j

)(
−∆`−j+(4`+5−n−2k)γ`−j

)
f` = 0

where f−1 := 0, the second order differential operator ∆j on ∂M is obtained
by differentiating the coefficients of ∆g1(x1,•) j times in x1 at x1 = 0, and

γj := ∂jx1γ|x1=0 ∈ C∞(∂M ;R).

Note that if fk−1 is fixed, then the equations (5.9.3) for j = 1, . . . , k− 1
determine f0, . . . , fk−2 uniquely, and the j = 0 equation is satisfied if and
only if Dkfk−1 = 0 where Dk is an order 2k differential operator on ∂M
with principal part (−∆0)k.

6. (a) Using (5.3.20) multiplied by (1 − x1)2, show that for the hyperbolic
space Hn, there exist f0, . . . , fk−1, fk−1 6≡ 0 satisfying (5.9.2) if and only if
λ = −ik and fj solve the equations

(5.9.4)

(j − k)fj−1 + (aj −∆gS )fj + (j + 1)bj+1fj+1 = 0,

aj := 2(j + 1)(j + 1− k) +
(n− 1)(n− 5− 4j + 2k)

4
,

bj := (j + 1)(j + 1− k) +
(n− 1)(n− 5− 4j + 2k)

4

for all j = 0, . . . , k − 1, where we put f−1 = fk = 0.

(b) Verify the following claim for several small values of k: (5.9.4) has a
nontrivial solution if and only if −∆gS has an eigenvalue (r+ 3−n

2 )(r+ n−1
2 )

for some r = 0, . . . , k − 1. (The claim is true for all k but the proof is
algebraically involved, see [Ba16, Proposition 2] for the case n = 3.)

(c) Assuming the claim in part (b) and using the known spectrum of −∆gS ,
conclude that for n even, (5.9.4) never has a nontrivial solution, and for
n ≥ 3 odd, it has a nontrivial solution if and only if k ≥ n−1

2 .

7. Let Pψ,h(ω) be defined in (5.3.16). Show that Pψ,h(ω) lies in Diff2
h(X)

and its principal symbol is

pψ(x, ξ;ω) = e2ψp(x, ξ + ωdψ).

Section 5.4

8. Show that (5.4.8) and (5.4.26) are no longer true when ω = 0.
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9. Show that the vector field 〈ξ〉−1Hp vanishes on the sets L±, that is L±
consist of radial points (see Remark 4 after Definition E.50).

Section 5.5

10. Using Exercises E.31, E.35, E.36, and E.41, show the following strength-
ening of Lemma 5.27:

(a) if s > m > 1
2 − h

−1 Imω and u ∈ H̄m(X), Ph(ω)u ∈ H̄s−1(X), then

u ∈ H̄s(X) and (5.5.27) holds;

(b) if s > 1
2 − h

−1 Imω, v ∈ D′(X) can be extended beyond X to a dis-

tribution supported on X, and Ph(ω)∗v ∈ Ḣ−s(X), then v ∈ Ḣ1−s(X)
and (5.5.28) holds.

Section 5.6

11. Arguing as in the proof of Proposition 5.28, show that (5.5.30) also holds
for fixed s and β large enough and negative. Does this work for (5.5.29)?
Does this imply that λ = h−1 + iβ is not a pole of the operator P (λ)−1

defined in (5.6.10)?

12. Give a proof of (5.6.12) without using that P (λ) has index 0 (which
itself relied on Proposition 5.28), instead applying Exercise 5.10.

13. Show that the extended resonances of (M, g) do not depend on the
choice of the extension of the metric g1 in (5.3.4). (Hint: use (5.6.6).)

14. This exercise gives an example of an extended resonance on the three-
dimensional hyperbolic space H3 which is not a scattering resonance. We
use the model (5.3.18), (5.3.20).

(a) Arguing as in Exercise 5.6, show that the distribution v := δ(x1) is
in the cokernel of P (−i) (see (5.6.12)).

(b) Show that the function u := 1 is in the kernel of Pψ(−i).
(c) Why don’t parts (a), (b) contradict the fact that H3 has no scattering

resonances?

15. This exercise shows that R(λ)f is independent of the way we extend

x
iλ
2
−n+3

4
1 f from M to X in (5.6.20). Assume that λ ∈ C, s > 1

2 − Imλ,

and f ∈ H̄s−1(X) satisfies supp f ∩M = ∅ (that is, supp f ⊂ {x1 ≤ 0}).
Define P (λ)−1f by (5.6.7). Show that supp(P (λ)−1f) ∩ M = ∅. (Hint:
reduce to the case f ∈ C∞(X), supp f ⊂ {x1 < 0}. Then use either analytic
continuation from the upper half-plane or Theorem E.61.)

Section 5.7
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16. This is an advanced exercise relying on all the material of this chapter,
as well as on §§6.1–6.3. (See [Va13, §6] for a solution in the more general
Kerr–de Sitter case and [Dy15b, §§3.1–3.3] for more information on the
geometry of Kerr–de Sitter spacetimes.) Define the Schwarzschild–de Sitter

spacetime as (M̃SdS, g̃SdS) where M̃SdS := Rt ×MSdS and

MSdS := (r−, r+)r × S2
y, g̃SdS = −Gdt2 +G−1dr2 + r2gS(y, dy),

gS is the standard metric on S2, the function G is given by

G(r) = 1− Λr2

3
− 2M0

r
, M0 > 0, 0 < Λ <

1

9M2
0

,

and r− < r+ are the two positive roots of the equation G(r) = 0, with G > 0
on (r−, r+). Here M0 is the mass of the black hole and Λ is the cosmological
constant.

The metric g̃SdS has a form similar to the Lorentzian metric correspond-
ing to the hyperbolic cylinder (5.7.8), replacing S1 by S2, dθ2 by r2gS(y, dy),
and the function 1 − r2 by G(r). This exercise uses that similarity to ob-
tain meromorphic continuation of the resolvent and resonance expansions

for (M̃SdS, g̃SdS).

(a) Let F (r) ∈ C∞((r−, r+);R) be a function such that

∂rF (r)±G(r)−1 is smooth at r = r±.

Define ΦF : (t, r, y) 7→ (t − F (r), r, y). Show that the metric Φ∗F g̃SdS con-
tinues smoothly past {r = r±}. Denote an extension of the spacetime

(M̃SdS,Φ
∗
F g̃SdS) by (X̃, g̃), where X̃ := Rt × X, and choose F such that

the hypersurfaces {t = const} are spacelike with respect to g̃. (In terms
of the analogy with the hyperbolic cylinder, we undid the change of vari-
ables (5.7.4).)

(b) Arguing as in §5.7.2, show that for each solution u to the wave equa-

tion (5.7.16) on (X̃, g̃), the Fourier–Laplace transform û(λ) continues mero-
morphically to λ ∈ C. (Note: one has to change the regularity threshold
condition s > 1

2 − Imλ to ∓G′(r±)(s− 1
2) + 2 Imλ > 0.)

(c) Show that the trapping in the domain of outer communications is nor-
mally hyperbolic, with the trapped set contained in the photon sphere {r =
3M0, ξr = 0}, and obtain a resonance expansion similar to Theorem 5.40

with any ν <

√
1−9ΛM2

0

6
√

3M0
.
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Chapter 6

RESONANCE FREE
REGIONS

6.1 Geometry of trapping
6.2 Resonances in strips
6.3 Normally hyperbolic trapping
6.4 Logarithmic resonance free regions
6.5 Lower bounds on resonance widths
6.6 Notes
6.7 Exercises

In this section, we study existence of resonance free regions at high
energies or in the semiclassical limit. We have already seen logarithmic
resonance free regions in potential scattering in Theorems 2.10, 3.10, 4.41.
Theorem 4.43 provided such resonance free region for black box perturba-
tions under an abstract non-trapping assumption given in Definition 4.42.
A semiclassical version of these results will be discussed in §6.4.

In this chapter we will discuss resonance free regions including resonance
free strips in some trapping situations.

A basic setting is given by the semiclassical Schrödinger operator on Rn:

(6.0.1) P = P (h) = −h2∆ + V (x), V ∈ C∞c (Rn;R).

For technical simplicity, and to be able to refer to §4.5, we present the case
of n odd but that restriction is irrelevant for the results of this chapter –
see §6.6 for references. Here h > 0 is a constant called the semiclassical
parameter. We consider the semiclassical régime, using the operator P − z

379
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where

z ∈ [α, β] + i[−ν(h),∞), 0 < α ≤ β, ν(h) ∈ (0, 1), h→ 0.

In terms of the λ-plane picture (see §2.1) this means that we consider P −λ2

with

λ ∈ [a, b] + i[−µ(h),∞), 0 < a < b, µ(h) ∈ (0, 1), h→ 0.

(Here the behaviour in 0 ≤ − Im z � 1, 0 ≤ − Imλ � 1 is important.)
For the application to the wave equation we also need estimates on R(λ) for
λ ∈ [−b,−a] + i[−µ(h),∞) but these follow from (4.2.19).

The meromorphic continuation of the scattering/outgoing resolvent

(6.0.2) R(z, h) = (P − z)−1 :

{
L2 → H2, z ∈ [α, β] + i(0,∞];

L2
loc → H2

comp, z ∈ [α, β] + i[−ν(h), 0]

follows by rescaling from Theorem 3.8. The set of resonances of P = P (h)
is denoted by

Res(P ) = Res(P (h)).

We say that P has a resonance free region of size ν(h) in the energy range
[α, β], if there exist N,h0 > 0 such that for all h ∈ (0, h0), χ ∈ C∞0 (Rn) the
following cutoff resolvent estimate holds:

(6.0.3) ‖χR(z, h)χ‖L2→L2 ≤ Cχh−N , z ∈ [α, β] + i[−ν(h),∞).

In particular, this implies that there are no resonances in [α, β]+i[−ν(h),∞),
for h < h0. The estimate (6.0.3) implies decay of solutions to the wave
equation at high frequency, with the rate depending on ν(h) – see the table
below.

The classical objects associated to the operator P are its semiclassical
principal symbol

p(x, ξ) = |ξ|2 + V (x), (x, ξ) ∈ R2n = T ∗Rn,
and its Hamiltonian flow

(6.0.4)

exp(tHp) : T ∗Rn → T ∗Rn,

Hp :=

n∑
j=1

∂ξjp ∂xj − ∂xjp ∂ξj .

The size, ν(h), of the resonance free region depends on the structure of the
trapped set K[α,β], consisting of trajectories of exp(tHp) in the energy slab

p−1([α, β]) which do not escape to infinity in either direction – see §6.1.

In case when trapping is present, we treat the interaction region in a
way which is decoupled from the analysis at infinity. To illustrate this, and
to broaden the class of examples to which the results of this chapter apply,
we consider the following two settings, the first of which generalizes (6.0.1):
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• (Rn, g) is a compact metric perturbation of the Euclidean space,
V ∈ C∞c (Rn;R), and

(6.0.5) P (h) = −h2∆g + V (x);

• (M, g) is an even asymptotically hyperbolic manifold in the sense
of Definitions 5.2 and 5.5, and

(6.0.6) P (h) = −h2∆g.

Our presentation will be centered around case (6.0.5), indicating what changes
are necessary to cover case (6.0.6). The restriction on the supports of gij−δij
and V can be relaxed significantly – see [Sj96a] for a general treatment. The
key is the structure of the trapped set.

The results of this chapter (see §7.5 for the wave decay statements
and §5.7.2 for applications to wave decay on black hole spacetimes) are
summarized in the following table:

§ Trapping
assumptions

Setting ν(h) = size of
the gap

Wave decay

§6.2 Nontrapping
(K[α,β] = ∅)

(6.0.5),
(6.0.6)

Ch,
C arbitrary

Exponential,
arbitrary rate

§6.4 Nontrapping
(Euclidean ∞)

(6.0.5) Ch log(1/h) Exponential,
arbitrary rate

§6.3 Normally
hyperbolic

(6.0.5),
(6.0.6)

ch, c > 0 fixed Exponential,
fixed rate

§6.5 No assumptions (6.0.1) exp(−C/h) Logarithmic

Remarks about generalizations and improvements, in particular in the
case of “no assumptions”, will be given in §6.6.

6.1. GEOMETRY OF TRAPPING

In this section, we define and investigate the incoming/outgoing tails and
the trapped set associated to the Hamilton flow exp(tHp). Here p(x, ξ) is the
semiclassical principal symbol of P given by (6.0.5) or (6.0.6), and exp(tHp)
is the Hamiltonian flow of p on the cotangent bundle – see (6.0.4).

6.1.1. The Euclidean case. We start with the Euclidean case (6.0.5),
where

p(x, ξ) = |ξ|2g + V (x), (x, ξ) ∈ T ∗Rn; V ∈ C∞c (Rn;R)

and the Riemannian metric g on Rn is a compactly supported perturbation
of the Euclidean metric. We fix a constant r0 > 0 such that

(6.1.1) suppV, supp(gij − δij) ⊂ B(0, r0).
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The classical trajectories (x(t), ξ(t)) = etHp(x, ξ) solve Hamilton’s equa-
tions. In {|x| ≥ r0}, we have p(x, ξ) = |ξ|2 and

(6.1.2) ẋ(t) = 2ξ(t), ξ̇(t) = 0,

so the corresponding trajectories are straight lines.

DEFINITION 6.1. Let (x, ξ) ∈ T ∗Rn and (x(t), ξ(t)) = etHp(x, ξ) be the
corresponding trajectory. We say that (x, ξ) escapes as t → +∞ (respec-
tively as t→ −∞) if

x(t)→∞ as t→ +∞ (respectively t→ −∞).

We define the incoming tail Γ− and the outgoing tail Γ+ to be the sets
of trajectories which do not escape as t→ +∞, respectively as t→ −∞:

Γ± = {(x, ξ) | x(t) 6→ ∞ as t→ ∓∞}.
The trapped set is defined as the set of points which do not escape in either
time direction, namely

(6.1.3) K := Γ+ ∩ Γ−.

For a set J ⊂ R, we define the incoming/outgoing tails and the trapped set
at energies in J :

(6.1.4) Γ±J := Γ± ∩ p−1(J), KJ := K ∩ p−1(J).

For E ∈ R, we put Γ±E := Γ±{E} and KE := K{E}.

It follows from the definition that Γ±,K,Γ±J ,KJ are invariant under the
flow exp(tHp). Moreover,

K(−∞,0] = p−1
(
(−∞, 0]

)
,

that is escaping trajectories only exist at positive energies. See Figure 6.1.

Let

(6.1.5) r(x) := |x|, x ∈ Rn.
We can lift r to a function on T ∗Rn, putting r(x, ξ) := r(x). For r(x) ≥ r0,

Hpr(x, ξ) =
2〈x, ξ〉
r(x)

, H2
pr(x, ξ) =

4(|x|2|ξ|2 − 〈x, ξ〉2)

r(x)3
≥ 0.

This and (6.1.2) imply that every point (x, ξ) satisfying the inequalities

(6.1.6) r(x) > r0, ±Hpr(x, ξ) > 0

escapes as t → ±∞, and conversely every trajectory escaping as t → ±∞
eventually satisfies (6.1.6).

We also note that if Hpr(x0, ξ0) = 0, r(x0) ≥ r0 and ξ0 6= 0 then
H2
pr(x0, ξ0) > 0 which means that Hpr(x, ξ) is strictly increasing on the

trajectory through (x0, ξ0) and r(x) ≥ r0 on that trajectory.
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x

V (x)

x

ξ

Γ+

Γ−

Γ−

Γ+

Figure 6.1. Example of Hamiltonian dynamics of the symbol p(x, ξ) =
ξ2 + V (x) on p−1((0,∞)), with the potential V pictured on the top.
The three marked points are fixed points of the flow. The shaded re-
gion, including the boundary, is the trapped set K, and the four thick
trajectories are the components of Γ± \K.

We record this in

LEMMA 6.2. Let (x, ξ) ∈ T ∗Rn and (x(t), ξ(t)) = etHp(x, ξ). Then:

1. If r(x) ≥ r0, ξ 6= 0, and ±Hpr(x, ξ) ≥ 0, then (x, ξ) /∈ Γ∓ and
(x(t), ξ(t)) satisfies (6.1.6) for all t, ±t > 0.

2. If (x, ξ) /∈ Γ∓, then (x(t), ξ(t)) satisfies (6.1.6) for ±t� 1.

Using Lemma 6.2, we establish topological properties of Γ± and K:

PROPOSITION 6.3. The sets Γ± are closed and for each compact J ⊂
R \ {0}, KJ is compact. Moreover,

(6.1.7) KR\{0} ⊂ {r < r0}.
Finally, if KE = ∅ for some E ∈ R, then K[E−δ,E+δ] = ∅ for some δ > 0.

Proof. 1. We show that Γ− is closed with the case of Γ+ handled similarly.
Let (x0, ξ0) ∈ T ∗Rn \ Γ−. By part 2 of Lemma 6.2, there exists T ≥ 0
such that eTHp(x0, ξ0) satisfies (6.1.6) with a + sign. Since that is an open
condition, it is satisfied by eTHp(x, ξ) for all (x, ξ) in some neighbourhood
U of (x0, ξ0). Now, by part 1 of Lemma 6.2, U ∩ Γ− = ∅. It follows that
T ∗Rn \ Γ− is open and thus Γ− is closed.
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2. To see (6.1.7), take (x, ξ) ∈ {r ≥ r0} with ξ 6= 0. If Hpr(x, ξ) ≥ 0,
then by part 1 of Lemma 6.2, (x, ξ) /∈ Γ−. If Hpr(x, ξ) ≤ 0, then similarly
(x, ξ) /∈ Γ+. In either case (x, ξ) /∈ K.

3. Since K is an intersection of two closed sets, it is closed. Combining this
fact with (6.1.7), we see that KJ = K ∩ p−1(J) is bounded, hence compact,
for each compact J ⊂ R \ {0}.
4. To show the last statement we argue by contradiction, assuming that
KE = ∅ and there exists a sequence Ej → E such that KEj 6= ∅. Take
(xj , ξj) ∈ KEj . Since KE = ∅ we have E 6= 0, so we may assume that Ej ∈ J
where J ⊂ R \ {0} is some compact set. Since (xj , ξj) lie in the compact set
KJ , we may pass to a subsequence to make (xj , ξj) converge to some point
(x∞, ξ∞). Since K is closed, (x∞, ξ∞) ∈ K, moreover p(x∞, ξ∞) = E. Thus
(x∞, ξ∞) ∈ KE , a contradiction. �

PROPOSITION 6.4. Let (x, ξ) ∈ Γ±E for some E ∈ R and (x(t), ξ(t)) =

etHp(x, ξ). Then

(6.1.8) (x(t), ξ(t))→ KE as t→ ∓∞

in the sense that the distance from (x(t), ξ(t)) to KE converges to zero. In
particular, if KE = ∅, then Γ±E = ∅ as well. The convergence in (6.1.8) is

uniform for (x, ξ) varying in any compact subset of Γ±E.

Proof. 1. Again, we consider only the case of (x, ξ) ∈ Γ−E . We may assume

that E > 0, since otherwise Γ−E = KE .

We first show that (x(t), ξ(t))t≥0 is precompact. More precisely, with
ρ(t) := r(x(t)),

(6.1.9) (x(t), ξ(t)) ∈ p−1(E) ∩ {r ≤ max(r0, ρ(0))}, t ≥ 0.

Indeed, if (6.1.9) does not hold, then there exists T > 0 such that ρ(T ) > r0

and ρ(T ) > ρ(0). Let t0 ∈ [0, T ] be the point where the function ρ achieves
its maximal value, then t0 > 0, ρ(t0) > r0, and

Hpr(x(t0), ξ(t0)) = ρ̇(t0) ≥ 0.

By part 1 of Lemma 6.2, we have (x(t0), ξ(t0)) /∈ Γ−, thus (x, ξ) /∈ Γ−, a
contradiction.

2. We now prove (6.1.8) by contradiction. Indeed, if it does not hold, then
there exists a sequence tj → ∞ and a neighbourhood U of KE such that
(x(tj), ξ(tj)) /∈ U for all j. By (6.1.9), we may pass to a subsequence to
make

(x(tj), ξ(tj))→ (x∞, ξ∞) for some (x∞, ξ∞) /∈ KE = Γ+
E ∩ Γ−E .
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Since Γ−E is closed, we have (x∞, ξ∞) ∈ Γ−E . It follows that (x∞, ξ∞) /∈ Γ+.

Then r(etHp(x∞, ξ∞))→∞ as t→ −∞, thus there exists T > 0 such that

r(e−THp(x∞, ξ∞)) > max(r0, ρ(0)).

Since (x(tj−T ), ξ(tj−T )) = e−THp(x(tj), ξ(tj)) converges to e−THp(x∞, ξ∞),
we have for j large enough,

ρ(tj − T ) > max(r0, ρ(0)).

But since tj →∞ this contradicts (6.1.9).

To show uniformity of convergence we argue as above to prove that
for every convergent sequence (xj , ξj) ∈ Γ−E and every tj → ∞ we have

etjHp(xj , ξj)→ KE . �

The next result has the flavor of Poincaré’s recurrence theorem and
to formulate it we recall the definition of the Liouville measure on a non-
degenerate energy surface p−1(E). The cotangent bundle T ∗Rn is equipped
with a canonical measure obtained from the symplectic form:

dm = ωn/n!, ω := dσ, σ := ξdx.

If dp|p−1(E) 6= 0 then p−1(E) is a smooth hypersurface in T ∗Rn and a natural

measure, LE , on p−1(E) is given by

dp ∧ dLE := dm.

Since p and m are preserved by the flow of Hp, so is LE .

PROPOSITION 6.5. Denote by m the canonical measure on T ∗Rn. Then

(6.1.10) m(Γ± \K) = 0.

Also, if E satisfies dp|p−1(E) 6= 0 and LE is the Liouville measure on p−1(E),
then

(6.1.11) LE(Γ±E \KE) = 0.

Proof. We show (6.1.11), with (6.1.10) proved similarly. We assume that
E > 0, since otherwise Γ±E = KE .

1. By (6.1.9), we have

etHp(Γ−E ∩ {r ≤ r0}) ⊂ Γ−E ∩ {r ≤ r0}, t ≥ 0.

For j ∈ Z, put Aj := ejHp(Γ−E ∩ {r ≤ r0}). Then,

Aj+1 ⊂ Aj ,
⋃

j∈Z
Aj = Γ−E ,

⋂
j∈Z

Aj = KE ,

where the last two statements follow from (6.1.8) and (6.1.7).
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2. Since Aj is compact, LE(Aj) <∞. It follows that

LE(KE) = lim
j→+∞

LE(Aj), LE(Γ−E) = lim
j→−∞

LE(Aj).

However, LE is invariant under the flow exp(tHp), thus LE(Aj) = LE(A0)
for all j. Therefore

LE(Γ−E) = LE(KE) = LE(A0),

and it follows that LE(Γ−E \KE) = 0. Similarly LE(Γ+
E \KE) = 0. �

6.1.2. The asymptotically hyperbolic case. We now consider the sec-
ond case discussed in the introduction, with the Hamiltonian given by (6.0.6).
The classical Hamiltonian is1

(6.1.12) p(x, ξ) = |ξ|2g, (x, ξ) ∈ T ∗M

and (M, g) in an asymptotically hyperbolic manifold in the sense of Defini-
tion 5.2.

The replacement of the function r defined by (6.1.5) is

(6.1.13) r := y−1
1 ,

where y1 : M → [0,∞) is any fixed canonical boundary defining function in
the sense of Definition 5.3. Note that the level sets r−1([0, C]) are compact
for each C. As in the Euclidean case, we lift r to a function on T ∗M . We use
Definition 6.1 to introduce the incoming/outgoing tails Γ± and the trapped
set K, and (6.1.4) to define the sets Γ±J ,KJ ; all of these are subsets of T ∗M .

We have K(−∞,0] = p−1((−∞, 0]) = {ξ = 0}.
The behaviour of the flow exp(tHp) near the infinity of M is less straight-

forward than in the Euclidean case. To establish the properties of Γ± and
K, we use the following

LEMMA 6.6 (Convexity near infinity). There exists r0 > 0 such that
for each (x, ξ) ∈ T ∗M ,

(6.1.14) r(x) ≥ r0 =⇒ H2
pr(x, ξ) ≥ 2p(x, ξ).

Proof. Using Theorem 5.4, fix a canonical product structure on M ,

(y1, y
′) : y−1

1 ((0, ε1))→ (0, ε1)× ∂M.

Let η1, η
′ be the momenta corresponding to y1, y

′, then by (5.1.5)

p(y1, y
′, η1, η

′) = y2
1(η2

1 + |η′|2g1(y1,y′)
).

1Note that our use of the symbol p in this chapter differs from Chapter 5 where p was the
symbol of the modified Laplacian introduced in (5.3.11). The two are related by (5.3.12).
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We compute

Hpr = −y−2
1 Hpy1 = −2η1,

H2
pr = 4y−1

1 p+ 2y2
1〈η′, η′〉∂y1g1(y1,y′).

Since g1(y1, y
′) is smooth up to y1 = 0, there exists a constant C such that

for all y1 ∈ (0, ε1),

y2
1|〈η′, η′〉∂y1g1(y1,y′)| ≤ Cp.

Therefore,

H2
pr ≥ (4r − 2C)p

and (6.1.14) follows for r ≥ r0 and r0 large enough. �

We now show the analogue of Lemma 6.2 in the asymptotically hyper-
bolic setting:

LEMMA 6.7. Let (x, ξ) ∈ T ∗M and (x(t), ξ(t)) = exp(tHp)(x, ξ). Then:

1. If r(x) ≥ r0, ξ 6= 0, and Hpr(x, ξ) ≥ 0, then (x, ξ) /∈ Γ− and

(6.1.15) r(x(t)) > r0, Hpr(x(t), ξ(t)) > 0 for all t > 0.

2. If (x, ξ) /∈ Γ−, then

(6.1.16) r(x(t)) > r0, Hpr(x(t), ξ(t)) > 0 for large enough t > 0.

Same is true for propagation in the negative time direction, replacing Γ−

by Γ+ and changing the sign of Hpr.

Proof. 1. By rescaling we may assume that p(x(t), ξ(t)) = 1. We put ρ(t) :=
r(x(t)) and note that

ρ̇(t) = Hpr(x(t), ξ(t)), ρ̈(t) = H2
pr(x(t), ξ(t)).

Assume first that r(x) ≥ r0 and Hpr(x, ξ) ≥ 0. In our new notation that
means ρ(0) ≥ r0 and ρ̇(0) ≥ 0. By (6.1.14), we have

(6.1.17) ρ̈(t) ≥ 2 for all t such that ρ(t) ≥ r0.

Let t > 0. If the maximal value of ρ on the interval [0, t] is achieved at some
t0 ∈ (0, t) then ρ(t0) ≥ r0, ρ̈(t0) ≤ 0, a contradiction with (6.1.17). Since ρ
is non-decreasing at 0 the maximal value is then achieved at t, showing that
ρ(t) ≥ r0 for all t ≥ 0. Then ρ̈(t) ≥ 2 for all t ≥ 0 and

ρ̇(t) ≥ 2t, ρ(t) ≥ r0 + t2 for all t ≥ 0,

which implies (6.1.15). Moreover, ρ(t)→∞ as t→∞, thus (x, ξ) /∈ Γ−.

2. Assume now that (x, ξ) /∈ Γ−. Then ρ(t) → ∞ as t → ∞, thus there
exists T0 > 0 such that

ρ(T0) > r0, ρ̇(T0) > 0.
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Arguing as in Step 1 of the proof we see that same is true for all t ≥ T0,
giving (6.1.16). �

With Lemma 6.7 in place Propositions 6.3–6.5 apply to asymptotically
hyperbolic manifolds. Indeed, their proofs only used Lemma 6.2, which in
the asymptotically hyperbolic case should be replaced by Lemma 6.7. In
fact, these statements hold under more general assumptions near infinity –
see Exercises 6.1–6.8.

6.2. RESONANCES IN STRIPS

In this section we study the properties of the scattering resolvent of an
operator P of the form (6.0.5) or (6.0.6) where the spectral parameter z lies
in an h-sized strip

(6.2.1) Re z ∈ [α, β] ⊂ (0,∞), Im z ∈ [−C0h,C0h],

α, β, C0 are fixed and the semiclassical parameter h tends to zero. We show
that in the nontrapping case, the strip (6.2.1) has no resonances for h small
enough – see Theorems 6.10 and 6.13. We also prove existence of semiclassi-
cal defect measures associated to sequences of resonant states and show that
they are supported on the outgoing tail – see Theorems 6.11 and 6.14. In
fact, one way to establish existence of resonance free strips is by using these
defect measures and that will be exploited in a situation in which there is
trapping – see §6.3.

We assume that P (h) is a second order semiclassical differential operator
on a manifold M of the form (6.0.5) or (6.0.6). The L2 resolvent

R(z, h) = (P (h)− z)−1 : L2(M)→ H2(M), Im z > 0

admits a meromorphic continuation to the region (6.2.1),

(6.2.2) R(z, h) : L2
comp(M)→ H2

loc(M), z ∈ [α, β] + i[−C0h,C0h].

Indeed, for the case (6.0.5) this follows from Theorem 4.4 since the operator
P (h) satisfies the black box assumptions of §4.1, see Example 1 preceding
Lemma 4.12. For the case (6.0.6) this follows from Theorem 5.33 (assuming
h is small enough).

Fix h and assume that z is a resonance, that is a pole of R(z, h), in the
region (6.2.1). Then

(6.2.3) R(w, h) =
J∑
j=1

Bj
(w − z)j

+B(w, z),

where w 7→ B(w, z) is holomorphic near z and BJ 6= 0.
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The space of resonant states at z is the range of the operator BJ – see
Theorems 4.7 and 4.9. It is a finite-dimensional subspace of C∞(M) and
each resonant state u solves the equation

(P (h)− z)u = 0.

6.2.1. The Euclidean case. We start with the case (6.0.5), where P =
P (h) is a Schrödinger operator on a metric perturbation of Rn, with n odd.

To study the resolvent at high energies, we will use the method of com-
plex scaling as presented in §4.5. More precisely, fix a constant r1 > r0, with
r0 given by (6.1.1), take a scaling angle θ ∈ (0, π/2), and define the contour
Γθ ⊂ Cn by

Γθ = fθ(Rn); fθ : Rn → Cn, fθ(x) = x+ i∂xFθ(x),

where Fθ : Rn → R is a smooth convex function satisfying

(6.2.4) Fθ(x) = 0 near B(0, r1); Fθ(x) =
tan θ

2
|x|2, x ≥ 2r1.

Consider the complex scaled operator Pθ = Pθ(h), which is a second order
semiclassical differential operator on Γθ (see §E.1.1) defined as follows:

• on fθ(B(0, r1)) = B(0, r1) ⊂ Rn, Pθ(h) = P (h) = −h2∆g + V ;

• on fθ(Rn \B(0, r0)), Pθ(h) = −h2∆Γθ , with ∆Γθ defined by (4.5.7).

The two definitions agree in the transition region by (6.1.1). We use the
map fθ to identify Γθ with Rn; then Pθ − z defines an operator

(6.2.5) Pθ − z : H2(Rn)→ L2(Rn).

By Theorem 4.36, (6.2.5) is a Fredholm operator for z in the region C \
e−2iθ[0,∞). We henceforth assume that h is small enough so that this
region contains (6.2.1). Moreover, (6.2.5) has a meromorphic inverse

(Pθ − z)−1 : L2(Rn)→ H2(Rn).

By Theorem 4.38, resonances in the region (6.2.1) coincide with the poles
of the inverse of (6.2.5).

We record here some basic facts about the semiclassical principal symbol
of Pθ:

LEMMA 6.8. Suppose that pθ = σh(Pθ) is the semiclassical principal sym-
bol of Pθ. Then

(1) Im pθ(x, ξ) ≤ 0 everywhere.

(2) For E ∈ R,

(6.2.6) {〈ξ〉−2(pθ − E) = 0} ⊂ p−1(E).
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Moreover, if 0 < α ≤ β, then there exists δ > 0 such that for E ∈ [α, β] and
|x| ≥ 2r1 (see (6.2.4))

|pθ(x, ξ)− E| ≥ δ〈ξ〉2.(6.2.7)

(3) If

(6.2.8) ϕt := exp(t〈ξ〉−1HRe pθ) : T
∗Rn → T

∗Rn,

then for all (x, ξ) and t0 ≤ t1,

(6.2.9)
ϕt(x, ξ) ∈ {〈ξ〉−2 Im pθ = 0} for all t ∈ [t0, t1]

=⇒ ϕt(x, ξ) = exp(t〈ξ〉−1Hp)(x, ξ) for all t ∈ [t0, t1].

Proof. 1. For r1 > r0 introduced before (6.2.4)

(6.2.10) pθ(x, ξ) =

{〈
(1 + i∇2Fθ(x))−2ξ, ξ

〉
, |x| ≥ r0;

p(x, ξ) = |ξ|2g + V (x), |x| ≤ r1.

Since Fθ is convex, ∇2Fθ(x) defines a nonnegative real quadratic form. Di-
agonalizing it, we derive the following properties of pθ:

Im pθ(x, ξ) ≤ 0 everywhere;(6.2.11)

Im pθ(x, ξ) = 0 =⇒ ∇2Fθ(x)ξ = 0.(6.2.12)

In particular we obtain part (1) or the lemma.

2. Since ∇2Fθ(x) is nonnegative,

∇2Fθ(x)ξ = 0 =⇒ 〈∂xj∇2Fθ(x)ξ, ξ〉 = 0.

This implies that for each (x, ξ) such that Im pθ(x, ξ) = 0,

(6.2.13) pθ(x, ξ) = p(x, ξ), ∇pθ(x, ξ) = ∇p(x, ξ).

3. From (6.2.13) we obtain (6.2.6). Moreover, for α > 0, it follows from (6.2.4)
and (6.2.10) that there exists δ > 0 such that

|pθ(x, ξ)− Re z| ≥ 1
2 (|Re pθ(x, ξ)− Re z|+ | Im pθ(x, ξ)|)

≥ δ〈ξ〉2 for |x| ≥ 2r1.

That gives (6.2.7).

4. We finally relate the rescaled Hamiltonian flow associated to Re pθ given
by (6.2.8) to the corresponding object for the unscaled symbol p. By (6.2.13),
ϕt agrees with the flow generated by p as long as Im pθ = 0: that gives
(6.2.9). �
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REMARK. It is convenient to use the rescaled flow (6.2.8) so that it is

defined on the compactified co-tangent bundle T
∗Rn (see §E.1.3) and we can

quote general propagation results of §E.4. Since ξ is bounded on Γ±[α,β] all

the statements from §6.1 remain valid for the flow ϕt.

We now show that at high frequency, L2 solutions to the equation (Pθ−
z)u = f are controlled away from the outgoing tail. We also show that
a positive fraction of their mass is localized near the trapped set. The
resulting statement essentially reduces the analysis of resonance free regions
inside (6.2.1) to a neighbourhood of the trapped set. We use the notion
of semiclassical pseudodifferential operators, their wavefront sets WFh, and
their elliptic sets ellh, see §§E.1,E.2.

PROPOSITION 6.9 (Semiclassical outgoing estimates). Fix 0 <
α ≤ β and C0 > 0. Then the following estimates hold for all N , z sat-
isfying (6.2.1) and u ∈ L2(Rn), f := (Pθ − z)u ∈ L2(Rn), with constants
independent of u, z, h:

1. Let A ∈ Ψ0
h(Rn) be compactly supported and WFh(A) ∩ Γ+

[α,β] = ∅. Then

(6.2.14) ‖Au‖L2 ≤ Ch−1‖f‖L2 + ChN‖u‖L2 .

2. Let B ∈ Ψ0
h(Rn) be compactly supported and K[α,β] ⊂ ellh(B). Then for

h small enough,

(6.2.15) ‖u‖L2 ≤ C‖Bu‖L2 + Ch−1‖f‖L2 .

Proof. 1. We start by remarking that Im z = O(h) and (6.2.6) imply that

σh(Pθ − z) = pθ − Re z, Re z ∈ [α, β],

{〈ξ〉−2(pθ − z) = 0} ⊂ p−1([α, β]).

To prove (6.2.14) we use the following fact: for each (x, ξ) ∈WFh(A), there
exists T ≥ 0 such that (with ϕt defined in (6.2.8))

(6.2.16) ϕ−T (x, ξ) ∈ ellh(Pθ − z) = {〈ξ〉−2(pθ − Re z) 6= 0}.

Indeed, we have (x, ξ) /∈ Γ+
[α,β]. If (x, ξ) /∈ p−1([α, β]), then (x, ξ) ∈ ellh(Pθ−

z) by (6.2.6). Otherwise, (x, ξ) /∈ Γ+, therefore there exists T1 ≥ 0 such that

e−T1〈ξ〉
−1Hp(x, ξ) ∈ {r ≥ 2r1}. By (6.2.7) and (6.2.9), we see that (6.2.16)

holds for some T ∈ [0, T1].

The estimate (6.2.14) follows from applying propagation of singularities,
Theorem E.47, to the operator P = Pθ − z, with the controlling operator
(denoted by B in Theorem E.47) equal to Pθ− z as well. Here the sign con-
dition (E.4.12) is satisfied by Lemma 6.8 and the control condition (E.4.13)
is satisfied by (6.2.16). (See also Remark 1 after Theorem E.47.)
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2. We now prove (6.2.15). Fix a cutoff function

χ ∈ C∞c (Rn), χ = 1 near {|x| ≤ 2r1}.

We first show the estimate

(6.2.17) ‖χu‖L2 ≤ C‖Bu‖L2 + Ch−1‖f‖L2 + ChN‖u‖L2 .

We use the following fact: there exists T ≥ 0 such that for each (x, ξ) ∈
T
∗Rn, x ∈ suppχ,

(6.2.18) ϕ−T (x, ξ) ∈ ellh(Pθ − z − iB∗B) = ellh(Pθ − z) ∪ ellh(B).

Indeed, if (x, ξ) /∈ Γ+
[α,β], this follows from (6.2.16). If (x, ξ) ∈ Γ+

[α,β], then

by Proposition 6.4, and since K[α,β] ⊂ ellh(B), there exists T1 ≥ 0 such that

e−T1〈ξ〉
−1Hp(x, ξ) ∈ ellh(B). By (6.2.9), we see that (6.2.18) holds for some

T ∈ [0, T1].

To show (6.2.17), it remains to use propagation of singularities, Theo-
rem E.47, with the controlling operator Pθ − z − iB∗B, together with the
inequality (here B∗ ∈ Ψ0

h is uniformly bounded on L2)

‖(Pθ − z − iB∗B)u‖L2 ≤ ‖f‖L2 + C‖Bu‖L2 .

In fact, we replace A with χ, B with Pθ − z − iB∗B ∈ Ψ2
h(Rn) and B1 = I

in (E.4.14) to obtain (6.2.17).

3. To conclude the proof of (6.2.15) it remains to show the estimate

(6.2.19) ‖(1− χ)u‖L2 ≤ C‖f‖L2 + ChN‖u‖L2 .

The operator Pθ − z can be written in terms of the standard quantiza-
tion (E.1.18) as follows:

Pθ − z = Oph(p̃), p̃ = pθ − Re z +O(h)
S
1
1,0
∈ S2

1,0

where the classes S
k
1,0 = S

k
1,0(T ∗Rn), defined in (E.1.16), require uniform

control on derivatives as x→∞.

Using (6.2.7) (1−χ is supported in the region |x| > 2r1) and the elliptic

parametrix construction from the proof of Proposition E.32 for the S
k
1,0

calculus reviewed in §E.1.5, we construct an operator

(6.2.20) Q ∈ Oph(S
−2
1,0), 1− χ = Q(Pθ − z) + Oph(h∞S

−∞
1,0 ).

By Proposition E.19, ‖Q‖L2→L2 ≤ C, and the remainder in (6.2.20) is
O(h∞)L2→L2 . Applying (6.2.20) to u ∈ L2, we get (6.2.19).

Combining (6.2.17) and (6.2.19), and taking h small enough, we ob-
tain (6.2.15). �
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An immediate application of Proposition 6.9 is a resonance free strip of
size C0h for arbitrary C0 when there is no trapping at the energies in [α, β]:

THEOREM 6.10 (Nontrapping estimates in strips). Suppose that P
is given by (6.0.5) and Pθ is its complex scaled version (6.2.5). Fix 0 < α ≤
β, C0 > 0, χ ∈ C∞c (Rn), and assume that

K[α,β] = ∅.

Then the following estimates hold for h small enough, all s ≥ 0, and all
z ∈ [α, β] + i[−C0h,C0h]:

‖(Pθ − z)−1‖Hs
h(Rn)→Hs+2

h (Rn) ≤ Ch
−1,(6.2.21)

‖χR(z, h)χ‖Hs
h(Rn)→Hs+2

h (Rn) ≤ Ch
−1.(6.2.22)

In particular we have a resonance free region

(6.2.23) Res(P ) ∩
(
[α, β] + i[−C0h,C0h]

)
= ∅.

Proof. 1. Since C∞c (Rn) is dense in Hs(Rn), the estimate (6.2.21) follows
from showing that for each

f ∈ C∞c (Rn), u := (Pθ − z)−1f ∈ H2(Rn),

we have

(6.2.24) ‖u‖Hs+2
h (Rn) ≤ Ch

−1‖f‖Hs
h(Rn).

Next, (6.2.22) follows immediately from (6.2.21) and Theorem 4.37, if we
choose the constant r1 in the construction of the complex scaling contour Γθ
such that suppχ ⊂ B(0, r1).

2. The operator Pθ − z is elliptic near fiber (ξ) infinity, that is, there exists
a constant C1 > 0 such that

|pθ(x, ξ)− Re z| ≥ 〈ξ〉2/C1 for |ξ| ≥ C1.

Take χ ∈ C∞c (Rn) with χ = 1 near B(0, C1). Using an elliptic parametrix
as in Step 3 of the proof of Proposition 6.9, we get

‖(1− χ(hDx))u‖Hs+2
h (Rn) ≤ C‖f‖Hs

h(Rn) +O(h∞)‖u‖L2(Rn).

On the other hand,

‖χ(hDx)u‖Hs+2
h (Rn) ≤ C‖u‖L2(Rn).

Adding these estimates, we get

(6.2.25) ‖u‖Hs+2
h (Rn) ≤ C‖f‖Hs

h(Rn) + C‖u‖L2(Rn).
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3. We will now use the fact that K[α,β] = ∅. This means that the estimate
(6.2.15) holds with B ≡ 0, giving

‖u‖L2 ≤ Ch−1‖f‖L2 .

Combining this with (6.2.25), we get (6.2.24), finishing the proof. �

6.2.2. Semiclassical defect measures. One way to understand families
of functions depending on h→ 0 is by associating to them measures on the
cotangent bundle. Properties of these measures capture classical properties
in a rougher way than propagation estimates – see §E.3. However, results
about measures can be sufficient for obtaining, say, resonance free strips. In
this section we study semiclassical measures associated to resonant states.
We will use them in §6.3 to obtain resonance free regions in the case of
normally hyperbolic trapping.

We keep working in the Euclidean setting (6.0.5) and use the complex
scaled operator Pθ(h), see §6.2.1. We endow Rn with the volume form
induced by the metric g, so that the operator P is symmetric.

Assume that we have sequences hj → 0, zj satisfying (6.2.1), and

uj ∈ H2(Rn)

is a family of L2 normalized o(h)-quasimodes to the operator Pθ − z:

‖uj‖L2 = 1,(6.2.26)

‖(Pθ(hj)− zj)uj‖L2 = o(hj).(6.2.27)

In particular, one can take zj to be a sequence of resonances of P and let
uj be elements of the kernel of Pθ(hj) − zj ; on {r ≤ r1}, uj coincide with
resonant states of R(z, h) by Theorem 4.37.

By Theorem E.42, passing to a subsequence we may assume that uj
converges to some nonnegative Borel measure µ on T ∗Rn in the following
sense (see Definition E.28 for the class Ψcomp

h ):

(6.2.28) 〈A(hj)uj , uj〉 →
∫
T ∗Rn

σh(A) dµ as j →∞, A ∈ Ψcomp
h (Rn).

By (6.2.1), we may moreover pass to a subsequence satisfying

(6.2.29) Re zj → E ∈ [α, β],
Im zj
hj
→ ν ∈ [−C0, C0] as j →∞.

Henceforth we will suppress the dependence of h, z, u on j in notation.

The main result of this section is the following

THEOREM 6.11 (Measures associated to resonant states). Under
the assumptions (6.2.26)–(6.2.29), the measure µ has the following proper-
ties:
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1. µ is supported on Γ+
E, that is µ(T ∗Rn \ Γ+

E) = ∅.
2. For each neighbourhood U of KE, we have µ(U) > 0.

3. For each U ⊂ T ∗Rn ∩ {r ≤ r1} and each t ≥ 0,

(6.2.30) µ(e−tHp(U)) = e2νtµ(U).

REMARKS. 1. The condition (6.2.30) can also be written in the form

LHpµ = −2νµ on {r ≤ r1}

where LHp denotes the Lie derivative, d
dt

∣∣
t=0

(etHp)∗µ.

2. By (6.1.9) (strictly speaking, its analogue for Γ+), we have

(6.2.31) e−tHp(Γ+
E ∩ {r ≤ r1}) ⊂ Γ+

E ∩ {r ≤ r1}, t ≥ 0,

therefore (6.2.30) implies that ν ≤ 0. This is consistent with the fact that
there are no resonances in the upper half z-plane.

3. Theorem 6.11 implies the resonance free strip of Theorem 6.10; indeed,
if K[α,β] = ∅ then we may take U = ∅ in part 2 of Theorem 6.11. Of course,
both Theorem 6.10 and Theorem 6.11 rely on Proposition 6.9, where most
of the hard work is done.

Proof. 1. By Theorem E.43 applied to the operator Pθ−E and using (6.2.27)
we have

µ(T ∗Rn \ p−1
θ (E)) = 0.

By (6.2.6) this implies that µ(T ∗Rn \ p−1(E)) = 0. Moreover, for each
A ∈ Ψcomp

h (T ∗Rn) with WFh(A) ∩ Γ+ = ∅, we have by (6.2.14), (6.2.26),
and (6.2.27)

‖Au‖L2 ≤ Ch−1‖(Pθ − z)u‖L2 + ChN → 0 as j →∞.
(Recall that we suppressed the dependence on j in notation.) It follows
from (6.2.28) that for each a ∈ C∞c (T ∗Rn),

supp a ∩ Γ+ = ∅ =⇒
∫
T ∗Rn

a dµ = 0.

Therefore, µ(T ∗Rn \ Γ+) = 0, finishing the proof of the first claim.

2. Let U be a neighbourhood of KE and take B ∈ Ψcomp
h (Rn) such that

KE ⊂ ellh(B) and WFh(B) ⊂ U . Then by (6.2.15), (6.2.26), and (6.2.27),
we have

‖Bu‖L2 ≥ C−1‖u‖L2 − h−1‖(Pθ − z)u‖L2 ≥
1

2C
for large j.

Applying (6.2.28) to the expression ‖Bu‖2L2 = 〈B∗Bu, u〉, we see that∫
T ∗Rn

|σh(B)|2 dµ > 0,
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which implies that µ(U) > 0, proving the second claim.

3. To prove the last claim, take a cutoff function

χ ∈ C∞c (Rn), χ = 1 near {r ≤ r1}, suppχ ∩ suppFθ = ∅,

where Fθ is the function defining the complex scaling contour, see (6.2.4).

By (6.2.27) we have

‖χ(Pθ − z)u‖L2 = o(h).

Since suppχ ∩ suppFθ = ∅ we have

χPθ = χP.

By Theorem E.44 with P replaced by χ(P − Re z − iνh) (whose proof still
applies despite the fact that Re z depends on h, since it does not influence the
right-hand side of (E.3.12)), we get for each a ∈ C∞c (T ∗Rn) with supp a ⊂
{r ≤ r1}, ∫

T ∗Rn
Hpa− 2νa dµ = 0.

Since µ is supported on Γ+
E and by (6.2.31), we see that∫

T ∗Rn
a ◦ etHp dµ = e2νt

∫
T ∗Rn

a dµ when supp a ⊂ {r ≤ r1}, t ≥ 0.

This implies (6.2.30). �

6.2.3. The asymptotically hyperbolic case. We now consider the case
of asymptotically hyperbolic Laplacian (6.0.6).

We fix a canonical boundary defining function y1 on M , put x1 := y2
1,

and use the extended modified Laplacian introduced in §5.3, which is a
differential operator on the even extension X of M . Since that operator is
denoted P (λ), we first fix some notation to avoid conflicts with Chapter 5.
Let Ph(ω) be the semiclassical version of the extended modified Laplacian
introduced in (5.3.8). We assume that h is small. For z in (6.2.1), put

(6.2.32) P̃ (z) = P̃ (z;h) := Ph(ω)

where ω ∈ C is uniquely defined by

z = ω2 +
(n− 1)2

4
h2, Reω > 0;

by (6.2.1), we have

ω =
√

Re z + i
Im z

2
√

Re z
+O(h2).
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Then P̃ (z) is a second order semiclassical differential operator on X. It is
related to the operator P = −h2∆g from (6.0.6) by the following corollary
of (5.3.9):

(6.2.33) P̃ (z) = x
iω
2h
−n+3

4
1 (P − z)x

n−1
4
− iω

2h
1 on M ⊂ X.

Fix

(6.2.34) s >
1

2
+

C0

2
√
α
,

where C0 is the constant from (6.2.1). By Theorem 5.30,

P̃ (z) : X s → H̄s−1(X), z ∈ [α, β] + i[−C0h,C0h]

is a holomorphic family of Fredholm operators, and it has a meromorphic

inverse P̃ (z)−1. Here the space X s ⊂ H̄s(X) is defined in (5.6.1) and H̄s(X)
denote Sobolev spaces on X as a manifold with boundary (see §E.1.8).

The L2 resolvent of P continues meromorphically from the upper half
plane to (6.2.1) by Theorem 5.33. The resulting resonances are contained

in the set of poles of P̃ (z)−1 by (5.6.20):

(6.2.35) R(z, h)f = x
n−1
4
− iω

2h
1

(
P̃ (z)−1x

iω
2h
−n+3

4
1 f

)∣∣
M
, f ∈ C∞c (M).

The analogue of Proposition 6.9 in the asymptotically hyperbolic case is
given by the next result. To formulate it we recall from (5.4.30) the following
definition:

j : T ∗M \ 0→ T ∗M, j(x, ξ) :=
(
x, ξ + |ξ|g

dx1

2x1

)
.

The purpose of j is to map the Hamiltonian dynamics of p = |ξ|2g into that

of σh(P̃ (z)), see Lemma 5.20. (Recall from §6.1.2 that the use of the letter p
in this chapter is different from Chapter 5.) It is possible to make x1 equal
to 1, and thus j the identity map, on an arbitrary fixed compact subset
of M .

PROPOSITION 6.12 (Semiclassical outgoing estimates, asymp-
totically hyperbolic case). The following estimates hold for all N , z

satisfying (6.2.1), and u ∈ H̄s(X), f := P̃ (z)u ∈ H̄s−1(X), with constants
independent of u, z, h:

1. Let A ∈ Ψ0
h(M) be compactly supported and WFh(A) ∩ j(Γ+

[α,β]) = ∅.
Then

(6.2.36) ‖Au‖Hs
h
≤ Ch−1‖f‖H̄s−1

h (X) + ChN‖u‖H̄s
h(X).
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2. Let B ∈ Ψ0
h(M) be compactly supported and j(K[α,β]) ⊂ ellh(B). Then

for h small enough,

(6.2.37) ‖u‖H̄s
h(X) ≤ C‖Bu‖Hs

h
+ Ch−1‖f‖H̄s−1

h (X).

Proof. 1. The estimate (6.2.36) follows directly from Theorem 5.35 where
we put Q := 0. Indeed, the control condition (5.6.29) follows from the fact
that WFh(A) ∩ j(Γ+

[α,β]) = ∅, see (5.6.31).

2. For (6.2.37), we use Theorem 5.34. (A more direct approach would be as
follows: we first prove Lemma 5.23 with A0 := B which is possible since the
control condition (5.5.14) holds by Lemmas 5.19–5.20 and Proposition 6.4.
We next combine it with Lemma 5.25 similarly to the proof of (5.5.27). Here
we give a different proof using results already established in §5.6.3.)

Take Q,Z ∈ Ψcomp
h (M) such that

σh(Q) ≥ 0, WFh(Q) ⊂ ellh(B), j(K[α,β]) ⊂ ellh(Q);

WFh(Z) ⊂ ellh(B), WFh(I − Z) ∩WFh(Q) = ∅.

By Proposition 6.4 and since j(K[α,β]) ⊂ ellh(Q), the condition (5.6.25)
is satisfied. Thus Q controls trapping in the sense of (5.6.23). Applying
Theorem 5.34 to (I − Z)u and recalling (6.2.32) we get

‖(I − Z)u‖H̄s
h(X) ≤ Ch−1‖(P̃ (z)− iQ)(I − Z)u‖H̄s−1

h (X)

≤ Ch−1‖P̃ (z)(I − Z)u‖H̄s−1
h (X) + ChN‖u‖H̄s

h(X)

where in the last inequality we used that Q(I − Z) = O(h∞)Ψ−∞ . This
implies that

‖u‖H̄s
h(X) ≤‖(I − Z)u‖H̄s

h(X) + ‖Zu‖Hs
h

≤Ch−1‖f‖H̄s−1
h (X) + Ch−1

∥∥[P̃ (z), Z]u
∥∥
Hs−1
h

+ ‖Zu‖Hs
h

+ ChN‖u‖H̄s
h(X).

Now (6.2.37) follows using the elliptic estimate, Theorem E.33, since Z and

h−1[P̃ (z), Z] lie in Ψcomp
h (M) and have wavefront sets contained in ellh(B).

Here we take h small enough to remove the ChN‖u‖H̄s
h(X) remainder. �

Armed with Proposition 6.12, we prove the asymptotically hyperbolic
version of the nontrapping estimate, Theorem 6.10:

THEOREM 6.13. Fix 0 < α ≤ β, C0 > 0, χ ∈ C∞c (M), and assume that

K[α,β] = ∅.
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Then the following estimates hold for h small enough, s satisfying (6.2.34),
and all z ∈ [α, β] + i[−C0h,C0h]:

‖P̃ (z)−1‖H̄s−1
h (X)→H̄s

h(X) ≤ Ch
−1,(6.2.38)

‖χR(z, h)χ‖Hs−1
h →Hs

h
≤ Ch−1.(6.2.39)

Proof. Assume that u ∈ H̄s(X) and f := P̃ (z)u ∈ H̄s−1(X). By (6.2.37)
with B = 0, we have

‖u‖H̄s
h(X) ≤ Ch−1‖f‖H̄s−1

h (X),

implying (6.2.38).

Next, (6.2.39) follows directly from (6.2.38), (6.2.35), and the fact that
we may choose the defining function x1 to be equal to 1 on suppχ. �

Finally we discuss semiclassical measures associated to o(h) quasimodes

for the operator P̃ (z), see §6.2.2. Namely, assume that we have sequences
hj → 0, zj satisfying (6.2.1), s satisfies (6.2.34), E, ν are defined by (6.2.29),
and uj ∈ X s satisfy

‖uj‖H̄s
hj

(X) = 1,(6.2.40)

‖P̃ (zj , hj)uj‖H̄s−1
hj

(X) = o(hj).(6.2.41)

Similarly to (6.2.28) we assume that the restrictions uj |M converge to a non-
negative Borel measure µ on T ∗M , where we use the volume form induced
by the metric g to define the inner product on L2(M).

The properties of semiclassical measures associated to uj are given by
the following analogue of Theorem 6.11 (whose proof applies to the asymp-
totically hyperbolic case, substituting Proposition 6.12 in place of Proposi-
tion 6.9):

THEOREM 6.14. Under the assumptions (6.2.34), (6.2.40), (6.2.41), (6.2.28)
(for all A ∈ Ψcomp

h (M)), and (6.2.29), the semiclassical measure µ on T ∗M
has the following properties:

1. µ is supported on j(Γ+
E), that is µ(T ∗M \ j(Γ+

E)) = 0.

2. For each neighbourhood U of j(KE), we have µ(U) > 0.

3. If we choose the function x1 in (6.2.33) such that2 x1 = 1 near
{r ≤ r0}, where r is defined in (6.1.13) and r0 is defined in Lemma 6.6,
then for all U ⊂ T ∗M ∩ {r ≤ r0} and t ≥ 0 we have

(6.2.42) µ(e−tHp(U)) = e2νtµ(U).

2Strictly speaking this means that we have to use two canonical boundary defining functions
on M : one in (6.1.13) and another one in (6.2.33).
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6.3. NORMALLY HYPERBOLIC TRAPPING

In this section, we consider systems whose trapped trajectories form a nor-
mally hyperbolic set – see the definition below. This gives a class of exam-
ples with nonempty trapped sets where it is typically impossible to describe
individual resonances yet one can make precise statements about their dis-
tribution. That is due to the fine structure of the trapped set. One setting
where normally hyperbolic sets appear are Kerr(–de Sitter) black holes (see
Exercise 5.16 for a special case). Another comes from molecular dynamics.

The main result of this section is a resonance free strip given in Theo-
rem 6.16.

We work in the setting of Euclidean Schrödinger operators (6.0.5) or
asymptotically hyperbolic Laplacians (6.0.6). To formulate the assump-
tions on the trapped set, we use the material of §6.1, in particular the sets
Γ±J ,KJ ⊂ T ∗M defined in (6.1.4) using the Hamiltonian flow etHp (here
M = Rn in the Euclidean case).

Assume that

(6.3.1) [α′, β′] ⊂ (α, β) ⊂ (0,∞)

are such that:

(A1) Γ±(α,β) ⊂ T ∗M are C∞ orientable hypersurfaces intersecting trans-

versely, that is

T(x,ξ)(T
∗M) = T(x,ξ)Γ

+
(α,β) + T(x,ξ)Γ

−
(α,β) for all (x, ξ) ∈ K(α,β);

(A2)K(α,β) is symplectic, that is the restriction ω|TK(α,β)
is a nondegenerate

2-form, where ω is the standard symplectic form on T ∗M .

We next want to make a hyperbolicity assumption on the flow near the
trapped set. Roughly speaking, it states that every Hamiltonian trajectory
in p−1([α′, β′]) converges exponentially fast to Γ± as t → ±∞. However, it
is more convenient to use the linearization of the flow. By (A1), there exist
defining functions ϕ± of Γ± in some open set

U ⊂ p−1((α, β)), K[α′,β′] ⊂ U,
namely

ϕ± ∈ C∞(U ;R);(6.3.2)

{ϕ± = 0} = Γ± ∩ U ;(6.3.3)

dϕ± 6= 0 on Γ± ∩ U.(6.3.4)

Note that for (x, ξ) ∈ Γ±∩U , T(x,ξ)Γ
± is the kernel of dϕ±(x, ξ). Therefore,

for each
(x, ξ) ∈ K ∩ U, v ∈ T(x,ξ)(T

∗M),
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the quantity |〈dϕ±(x, ξ), v〉| measures the distance from v to T(x,ξ)Γ
±. The

distance from the propagated vector detHp(x, ξ)v to TetHp (x,ξ)Γ
± is given by

the quantity

(6.3.5) |〈dϕ±(etHp(x, ξ)), detHp(x, ξ)v〉| = |〈d(ϕ± ◦ etHp)(x, ξ), v〉|.

Since Γ± are invariant under the flow etHp and ϕ±|Γ± = 0, we also have
ϕ± ◦ etHp |Γ± = 0. Hence (6.3.4) shows that d(ϕ± ◦ etHp)(x, ξ) is a is a non-
zero multiple of dϕ±(x, ξ) and it makes sense to divide these vectors by each
other. At t = 0 the multiple is equal to 1 which means that

(6.3.6)
d(ϕ± ◦ e±tHp)(x, ξ)

dϕ±(x, ξ)
> 0.

The following assumption says that (6.3.5) decays exponentially as t→ ±∞:

(A3) There exist constants C, ν > 0 such that for all (x, ξ) ∈ K ∩ U ,

(6.3.7)
d(ϕ± ◦ e±tHp)(x, ξ)

dϕ±(x, ξ)
≤ Ce−νt, t ≥ 0.

It is easy to see that the constant ν in assumption (A3) is independent of
the choice of the defining functions ϕ±. Define the minimal expansion rate

νmin > 0

as the supremum of all values of ν for which there exists a constant C such
that (6.3.7) holds.

DEFINITION 6.15. We say that the trapping is normally hyperbolic
near p−1([α′, β′]) if (A1), (A2) and (A3) hold for some α, β satisfying (6.3.1).

REMARKS. 1. For normally hyperbolic trapped sets, we have the follow-
ing stable/unstable decomposition:

(6.3.8) T(x,ξ)(T
∗M) = T(x,ξ)K ⊕ E+(x, ξ)⊕ E−(x, ξ), (x, ξ) ∈ K[α′,β′],

where E±(x, ξ) are spanned by the Hamiltonian vector fields of ϕ±:

E±(x, ξ) := RHϕ± , T(x,ξ)Γ
± = T(x,ξ)K ⊕ E±(x, ξ).

Since the flow etHp consists of symplectomorphisms,

(6.3.9) v = Hϕ±(x, ξ) =⇒ detHp(x, ξ)v = Hϕ±◦e−tHp (etHp(x, ξ)).

(See [Zw12, Theorem 2.10].) Since K is invariant under the flow it follows
that the decomposition (6.3.8) is also invariant.

The differential of etHp expands vectors in E+ and contracts vectors in
E−: for some ν > 0

(6.3.10) |detHp(x, ξ)v| ≤ Ce−ν|t||v|, v ∈ E±(x, ξ), ∓t ≥ 0.
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Figure 6.2. A barrier-top potential and the corresponding phase space
dynamics, with the sets Γ±[1−δ,1+δ] shown by solid lines.

In fact, in the notation of (6.3.9), the bound (6.3.7) gives

|detHp(x, ξ)v|
|v|

=

∣∣Hϕ±◦e−tHp (etHp(x, ξ))
∣∣

|Hϕ±(etHp(x, ξ))|
·
|Hϕ±(etHp(x, ξ))|
|Hϕ±(x, ξ)|

≤ max
(y,η)∈K∩U

∣∣∣∣d(ϕ± ◦ e−tHp)(y, η)

dϕ±(y, η)

∣∣∣∣ · maxK∩U |Hϕ± |
minK∩U |Hϕ± |

≤ Ce−ν|t|, ∓t ≥ 0.

The properties (6.3.8), (6.3.10), with E± of possibly higher dimensions, de-
fine a more general concept of normally hyperbolic trapping where Γ± need
not be smooth, see Nonnenmacher–Zworski [NZ15] and the references there.

2. Under an additional assumption, called r-normal hyperbolicity (roughly
speaking, the expansion rates in the directions transversal to K are more
than r-fold bigger than the expansion rates along K, here r ≥ 1), normally
hyperbolic structures are stable under smooth perturbations of the sym-
bol p, with the resulting submanifolds Γ± of class Cr – see Hirsch–Pugh–
Shub [HPS77]. For r-normally hyperbolic trapped sets under additional
pinching conditions there exist bands of resonances with a Weyl law in the
first band – see Dyatlov [Dy15a, Dy16]. Such band structures are also
known for Pollicott–Ruelle resonances of contact Anosov flows where the
trapping is also normally hyperbolic – see Faure–Tsujii [FT13].
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EXAMPLES. 1. Consider the Schrödinger operator (6.0.1) on R such that
the potential V ∈ C∞c (R;R) has the following properties:

V (0) = 1, V ′(0) = 0, V ′′(0) < 0, V (x) < 1 for x 6= 0.

See Figure 6.2. The trapping is normally hyperbolic for energies in [1−δ, 1+
δ], if δ > 0 is small enough. In fact, the sets Γ±[1−δ,1+δ] and K[1−δ,1+δ] are

given by

Γ±[1−δ,1+δ] = {ξ = ± sgn(x)
√

1− V (x)}, K[1−δ,1+δ] = {(0, 0)}.

Since V (x) = 1− 1
2 |V

′′(0)|x2 +O(x3), the defining functions of Γ±[1−δ,1+δ] are

smooth (we take the positive square root).

Note that Γ±E = ∅ for 0 < |E − 1| ≤ δ and that we can take

ϕ±(x, ξ) = ξ ∓ sgn(x)
√

1− V (x).

Since p = ϕ+ϕ− + 1, we find

Hpϕ± = ∓{ϕ+, ϕ−}ϕ±; {ϕ+, ϕ−}|(0,0) =
√
−2V ′′(0).

We see that (6.3.7) is satisfied, and

νmin =
√
−2V ′′(0).

2. Consider the operator (6.0.6) where the manifold (M, g) is the hyperbolic
cylinder studied in (5.1.4). Denote by ξ, η the momenta corresponding to
the coordinates v, θ, then

p = ξ2 +
η2

cosh2 v
.

The incoming/outgoing tails and the trapped set at positive energies are

Γ±(0,∞) = {ξ = ±|η| tanh v, η 6= 0}, K(0,∞) = {v = ξ = 0, η 6= 0}.

Consider the following defining functions of Γ±:

ϕ± = ξ ∓ |η| tanh v.

Since p = ϕ+ϕ− + η2 and {η2, ϕ±} = 0, we have

Hpϕ± = ∓{ϕ+, ϕ−}ϕ±; {ϕ+, ϕ−}|K(0,∞)
= 2
√
p.

We see that (6.3.7) is satisfied on p−1((α, β)) for α > 0, and

νmin = 2
√
α.

We now state the main result of this section, which is a resonance free
strip of width just below νmin/2:
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THEOREM 6.16 (Spectral gap for normally hyperbolic trapping).
Assume that the operator P is given by (6.0.5) or (6.0.6) and has normally
hyperbolic trapping near p−1([α′, β′]). Fix ε, C0 > 0, χ ∈ C∞c (M). Then for
h small enough, the following estimates hold:

‖χR(z, h)χ‖L2→L2 = o(h−2), z ∈ [α′, β′] + ih
[
− νmin

2
+ ε, C0

]
;(6.3.11)

‖χR(z, h)χ‖L2→L2 ≤ C
log(1/h)

h
, z ∈ [α′, β′].(6.3.12)

REMARKS. 1. The estimate (6.3.12) is optimal as shown by Theorem 7.1
in the following chapter.

2. The proof of Theorem 6.16 in fact gives bounds of the form (6.3.11) on
the inverse of the complex scaled operator Pθ − z (in the Euclidean setting)

or the modified Laplacian P̃ (z) (in the asymptotically hyperbolic setting) –
see (6.3.26) and (6.3.28) below.

The starting point of the proof of Theorem 6.16 is the following con-
struction of defining functions of Γ± adapted to the flow:

LEMMA 6.17 (Adapted defining functions). Fix ε > 0 and let the
assumptions (A1)–(A3) above hold. Then there exists a neighbourhood U ⊂
T ∗M of K[α′,β′] and functions ϕ± satisfying (6.3.2)–(6.3.4) such that:

(1) for δ > 0 small enough

(6.3.13) Uδ := {|ϕ+| < δ, |ϕ−| < δ, p ∈ (α′ − δ, β′ + δ)} b U ;

(2) there exist c± ∈ C∞(U ;R) such that

(6.3.14) Hpϕ± = ∓c±ϕ±, c± ≥ νmin − ε on U ;

(3) {ϕ+, ϕ−} ≥ 1 in U .

Proof. 1. We show existence of ϕ+, the case of ϕ− being similar. Fix a
function ϕ̃+ on some neighbourhood U of K[α′,β′] satisfying (6.3.2)–(6.3.4).

We can choose U so that K ∩ U is invariant under the flow etHp .

Since Γ+ is invariant under the flow, the function Hpϕ̃+ vanishes on Γ+.
Therefore, for some c̃+ ∈ C∞(U ;R)

Hpϕ̃+ = −c̃+ϕ̃+ in U.

In K ∩ U we have (recall that ϕ̃+|K∩U = 0)

∂td(ϕ̃+ ◦ etHp) = d
(
(Hpϕ̃+) ◦ etHp

)
= −(c̃+ ◦ etHp)d(ϕ̃+ ◦ etHp).

Therefore, for all T > 0 we have in K ∩ U (recall (6.3.6))

− 1

T
log

d(ϕ̃+ ◦ eTHp)
dϕ̃+

= 〈c̃+〉T :=
1

T

∫ T

0
c̃+ ◦ etHp dt.
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By taking any smooth extension of c̃+ outside of U the right hand side is
defined in all of U .

2. By (6.3.7) and for T large enough,

(6.3.15) 〈c̃+〉T ≥
νT − logC

T
> νmin − ε in K ∩ U.

We now solve

Hpf+ = 〈c̃+〉T − c̃+ in U

by putting

f+ :=
1

T

∫ T

0
(T − t)(c̃+ ◦ etHp) dt, f+ ∈ C∞(U ;R).

3. Now, put

ϕ+ := e−f+ϕ̃+.

Then

Hpϕ+ = −c+ϕ+, c+ = c̃+ +Hpf+.

From (6.3.15) we obtain

c+ = 〈c̃+〉T > νmin − ε in K ∩ U.
Shrinking U , we can make sure that this inequality holds on all of U , and
that gives (6.3.14). By taking δ small enough Uδ is contained in any given
small neighbourhood of K[α′,β′] and hence (6.3.13) holds as well.

4. By assumption (A2), K ∩ U is a symplectic submanifold given by ϕ+ =
ϕ− = 0 and hence for v ∈ T(x,ξ)K, ω(v,Hϕ±(x, ξ)) = 〈dϕ±, v〉 = 0. Since
Hϕ±(x, ξ) span a complement of T(x,ξ)K (see (6.3.8)) the symplectic form
has to be non-degenerate on that span:

0 6= ω(Hϕ+ , Hϕ−) = Hϕ+ϕ− = {ϕ+, ϕ−} at (x, ξ) ∈ K[α′,β′].

Shrinking U and multiplying ϕ+ by a constant, we obtain {ϕ+, ϕ−} ≥ 1
in U . �

We now construct an auxiliary pseudodifferential operator. Fix δ > 0
such that the set Uδ defined in (6.3.13) is compactly contained in U . Take
an operator

Θ+ ∈ Ψcomp
h (M), Θ∗+ = Θ+, σh(Θ+) = ϕ+ in Uδ.

We will henceforth argue in the Euclidean setting (6.0.5), with M = Rn;
at the end of this section, we explain what changes are necessary for the
asymptotically hyperbolic setting. Let Pθ be the complex scaled operator,
see §6.2.1. We choose the constant r1 in (6.2.4) so that U ⊂ {r < r1}; then

Pθ = P +O(h∞)Ψ−∞ microlocally in U.

(See Definition E.29.)
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The key component of the proof is a bound on Θ+u for quasimodes
u of the operator Pθ − z. That bound implies that ‖Θ+u‖ = O(h)‖u‖
microlocally in Uδ/4 ⊃ K[α′,β′] when (Pθ − z)u = 0. That refines (6.2.14) in

our current setting as we can get closer to Γ+: the symbol σh(Θ+) vanishes
simply on Γ+ rather than being supported away from it.

LEMMA 6.18 (Auxiliary pseudodifferential bound). Assume that
u ∈ L2(Rn), (Pθ − z)u = f ∈ L2(Rn), and

(6.3.16) z ∈ [α′, β′] + ih
[
− (νmin − 2ε), C0

]
.

Then for each A ∈ Ψcomp
h (Rn) such that WFh(A) ⊂ Uδ/4 (see (6.3.13)),

(6.3.17) ‖AΘ+u‖L2 ≤ Ch−1‖f‖L2 + Ch‖u‖L2 ,

where the constant C is undependent of u, z, h.

REMARK. The region (6.3.16) is larger than the one in (6.3.11), since
νmin is not divided by 2. In fact, under additional assumptions one may
establish a second resonance free strip deeper than the one in (6.3.11) –
see [Dy15a, Dy16] and [B∗16]. It can then be used to obtain resonance
asymptotics in a band – see [Dy15a, Theorem 2].

Proof. 1. Fix an operator

(6.3.18) Z+ ∈ Ψcomp
h (Rn), Z∗+ = Z+, σh(Z+) = c+ in Uδ.

By (6.3.14), we have for some R+ ∈ Ψcomp
h (Rn),

[Pθ − z,Θ+] = ihZ+Θ+ + h2R+ +O(h∞)Ψ−∞ microlocally in Uδ.

Thus we have microlocally in Uδ

(Pθ − z)Θ+u = Θ+f + ihZ+Θ+u+ h2R+u+O(h∞)‖u‖L2 .

Therefore, for each B1 ∈ Ψcomp
h (Rn) such that WFh(B1) ⊂ Uδ, we have

(6.3.19) ‖B1(Pθ − ihZ+ − z)Θ+u‖L2 ≤ C‖f‖L2 + Ch2‖u‖L2 .

2. We will apply Lemma E.49, which is a positive commutator estimate,
to the equation (6.3.19) to estimate Θ+u. The part of the right-hand side
localized away from Γ+ will be estimated by Proposition 6.9.

3. We first construct the escape function g. Take cutoff functions

χ1 ∈ C∞c
(
(−δ, δ); [0, 1]

)
, χ1 = 1 near [−δ/2, δ/2];

χ2 ∈ C∞c
(
(α′ − δ, β′ + δ); [0, 1]

)
, χ2 = 1 near [α′ − δ/2, β′ + δ/2],

and define

g = χ1(ϕ+)χ1(ϕ−)χ2(p) ∈ C∞c (Uδ; [0, 1]), g = 1 in Uδ/2.
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We additionally require that tχ′1(t) ≤ 0. Then

Hpg = c−ϕ−χ
′
1(ϕ−)χ2(p) ≤ 0 on U ∩ {|ϕ+| ≤ δ/2}.

Since U ∩Γ+ = U ∩{ϕ+ = 0}, the closure of {Hpg > 0} is a compact subset
of Uδ \ Γ+. Thus there exists an operator

(6.3.20)
B ∈ Ψcomp

h (Rn), WFh(B) ⊂ Uδ \ Γ+,

Hpg ≤ 0 in a neighbourhood of T ∗Rn \ ellh(B).

We also fix an operator

B1 ∈ Ψcomp
h (Rn), WFh(B1) ⊂ Uδ, supp g ⊂ ellh(B1).

4. Put P := Pθ − ihZ+ − z. Then by (6.3.14), (6.3.16) and (6.3.18)

σh(h−1 Im P) = −c+ −
Im z

h
≤ −ε in Uδ.

Combining this with (6.3.20), we get

Hpg + σh(h−1 Im P)g ≤ −εg in a neighbourhood of T ∗Rn \ ellh(B).

This implies the condition (E.4.29), where k = 2 and we put s = 1
2 for

convenience: the choice of s and the factor 〈ξ〉−1 do not matter since our
operators A,B,B1 are compactly microlocalized.

Applying Lemma E.49 to (6.3.19), we obtain the following bound for
each A ∈ Ψcomp

h (Rn) with WFh(A) ⊂ Uδ/2:

(6.3.21)
‖AΘ+u‖L2 ≤C‖BΘ+u‖L2 + Ch−1‖f‖L2

+ Ch‖u‖L2 + Ch1/2‖B1Θ+u‖L2

5. We now upgrade the Ch1/2 term in (6.3.21) to Ch as follows. Repeating
the argument in steps 3–4 with δ/2 in place of δ, we see that there exist
B′, B′1 ∈ Ψcomp

h (Rn) such that

WFh(B′) ⊂ Uδ/2 \ Γ+, WFh(B′1) ⊂ Uδ/2,

and (6.3.21) holds with B,B1 replaced by B′, B′1 and each A ∈ Ψcomp
h (Rn)

such that WFh(A) ⊂ Uδ/4. Estimating ‖B′1Θ+u‖L2 by the original esti-
mate (6.3.21), we get

‖AΘ+u‖L2 ≤C‖B′Θ+u‖L2 + Ch1/2‖BΘ+u‖L2

+ Ch−1‖f‖L2 + Ch‖u‖L2 .

Finally, by (6.2.14) in Proposition 6.9 (here WFh(BΘ) ∩ Γ+ = ∅ and same
for B′)

‖B′Θ+u‖L2 + ‖BΘ+u‖L2 ≤ Ch−1‖f‖L2 + ChN‖u‖L2 .

Combining the latter two estimates, we obtain (6.3.17). �



408 6. NORMALLY HYPERBOLIC TRAPPING

s

bρ(s)

ρ
−ρ

δ/5

−δ/5

ρ

−ρ

Figure 6.3. The function bρ used in the proof of Lemma 6.19.

The next step is to deduce from (6.3.17) partial regularity of semiclassical
measures associated to O(h2) quasimodes of the operator P − z:

LEMMA 6.19. Consider sequences

(6.3.22)

hj → 0, zj ∈ [α′, β′] + ihj
[
− (νmin − 2ε), C0

]
;

uj ∈ L2(Rn), fj := (Pθ(hj)− zj)uj ∈ L2(Rn);

‖uj‖L2(Rn) = 1, ‖fj‖L2(Rn) = O(h2
j )

and assume that uj converges to some measure µ on T ∗Rn in the sense
of (6.2.28). Then there exists a constant C such that, with Uρ defined
in (6.3.13),

(6.3.23) µ(Uρ) ≤ Cρ, ρ > 0.

Proof. 1. Fix an operator A ∈ Ψcomp
h (Rn) with WFh(A) ⊂ Uδ/4 and A =

I +O(h∞) microlocally near Uδ/5. By Lemma 6.18, we have

‖AΘ+uj‖L2 = O(hj).

Applying (E.3.10) from Theorem E.44 to the operator P := AΘ+, where
σh(AΘ+) = ϕ+ near Uδ/5, we see that there exists a constant C such that

(6.3.24)
∣∣∣ ∫

T ∗Rn
{ϕ+, b} dµ

∣∣∣ ≤ C sup |b| for all b ∈ C∞c (Uδ/5).

By (6.2.14) (see Step 1 of the proof of Theorem 6.11), we also have

(6.3.25) µ(T ∗Rn \ Γ+
[α′,β′]) = 0.

2. Since ‖uj‖L2 = 1, we have µ(Uρ) ≤ 1 for all ρ (as follows from (6.2.28) and
the operator norm bound (E.1.55)). Therefore, it suffices to prove (6.3.23)
for ρ small enough, in particular for ρ < δ/10.
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Take a function (see Figure 6.3)

bρ ∈ C∞c
(
(−δ/5, δ/5);R

)
, bρ(s) = s for |s| ≤ ρ;

sup |bρ| ≤ 2ρ, b′ρ ≥ −
20ρ

δ
.

We apply (6.3.24) to

b := bρ(ϕ−)χ3(ϕ+)χ4(p) where

χ3 ∈ C∞c ((−δ/5, δ/5); [0, 1]), χ3 = 1 near 0;

χ4 ∈ C∞c ((α′ − δ/5, β′ + δ/5); [0, 1]), χ4 = 1 near [α′, β′].

By (6.3.25) and since b = bρ(ϕ−) near Γ+
[α′,β′] and {ϕ+, ϕ−} ≥ 1, we have

for some ρ-independent constant C

Cρ ≥
∫
T ∗Rn
{ϕ+, bρ(ϕ−)} dµ

=

∫
Uρ

b′ρ(ϕ−){ϕ+, ϕ−} dµ+

∫
T ∗Rn\Uρ

b′ρ(ϕ−){ϕ+, ϕ−} dµ

≥ µ(Uρ)− Cρ,

proving (6.3.23). �

We are now ready to prove Theorem 6.16 in the Euclidean setting:

Proof of Theorem 6.16. 1. Without loss of generality we assume that ε is
small. Choose the complex scaled operator Pθ as explained before Lemma 6.18.
We first show the bound for small enough h

(6.3.26) ‖(Pθ − z)−1‖L2→L2 = o(h−2), z ∈ [α′, β′] + ih
[
− νmin

2
+ ε, C0

]
and to do this we argue by contradiction.

Hence, assume that (6.3.26) does not hold. Then there exist sequences
hj , zj , uj , fj satisfying (6.3.22) and Im zj ≥ hj(−νmin/2 + ε). By Theo-
rem E.42, we may pass to a subsequence to make uj converge to some
measure µ in the sense of (6.2.28). Passing to a further subsequence, we can
also make sure that (6.2.29) holds, that is,

Re zj → E ∈ [α′, β′],
Im zj
hj
→ ν ∈

[
− νmin

2
+ ε, C0

]
.

2. By Theorem 6.11, we have for each t ≥ 0,

(6.3.27) µ(T ∗Rn \ Γ+
E) = 0, µ(e−tHp(Uδ)) = e2νtµ(Uδ) > 0.

On the other hand, by (6.3.14) (recall the definition (6.3.13) of Uδ)

e−tHp(Uδ ∩ Γ+
E) ⊂ Uδ exp(−(νmin−ε)t), t ≥ 0.
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Therefore, by Lemma 6.19

µ(e−tHp(Uδ)) ≤ Ce−(νmin−ε)t, t ≥ 0.

Since ν ≥ −νmin/2 + ε, this contradicts (6.3.27) for sufficiently large t > 0,
finishing the proof of (6.3.26).

3. The bound (6.3.11) follows immediately from (6.3.26) as explained in the
proof of Theorem 6.10. Finally, to prove (6.3.12) we use the upper half-plane
bound, ‖R(z, h)‖L2→L2 = d(z, Spec(P ))−1 ≤ 1/ Im z, to obtain

‖χR(z, h)χ‖L2→L2 ≤
C

γh
, Im z = γh > 0.

By Lemma D.1 applied to

Ω = [α′, β′] + ih
[
− νmin

2
+ ε, γ

]
we get for γ < νmin/2− ε, a γ-independent constant C, and z ∈ [α′, β′],

‖χR(z, h)χ‖L2→L2 ≤ Chθ−2γ−θ, θ =
νmin/2− ε

νmin/2− ε+ γ
.

Since θ ≥ 1− Cγ, we get

‖χR(z, h)χ‖L2→L2 ≤ Ch−1−Cγγ−1.

Putting

γ :=
1

log(1/h)
,

we obtain ‖χR(z, h)χ‖ ≤ Ch−1 log(1/h) for z ∈ [α′, β′], proving (6.3.12). �

REMARK. For the asymptotically hyperbolic case (6.0.6), the proof of
Theorem 6.16 should be modified as follows. Instead of the complex scaled

operator Pθ − z, we use the modified Laplacian P̃ (z) introduced in (6.2.32).
We choose the defining function x1 so that x1 = 1 near U , so that by (6.2.33)

P̃ (z) = P − z +O(h∞) microlocally on U.

We replace Proposition 6.9 by Proposition 6.12 and Theorem 6.11 by The-
orem 6.14. Repeating the argument of this section, we obtain the following
bound for s satisfying (6.2.34) with C0 := νmin/2 and z satisfying the con-
dition in (6.3.11):

(6.3.28) ‖P̃ (z)−1‖H̄s−1
h (X)→H̄s

h(X) = o(h−2).

As in the proof of Theorem 6.13, this implies the cutoff bound

(6.3.29) ‖χR(z, h)χ‖Hs−1
h →Hs

h
= o(h−2).

Using the fact that P − z is elliptic at fiber infinity similarly to (6.2.25), we
can upgrade (6.3.29) to a bound Hs−2

h → Hs
h for all s ∈ R, in particular
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giving the L2 bound (6.3.11). The bound (6.3.12) follows from (6.3.11) as
in the Euclidean case.

6.4. LOGARITHMIC RESONANCE FREE REGIONS

In the Euclidean case we have a semiclassical analogue of the results of §4.6
which provide logarithmic resonance free regions. These are not available
in the asymptotically hyperbolic setting since meromorphic continuation
presented in §5.6 proceeds strip-by-strip. It is an interesting question if the
same results hold in that case, possibly under some stronger assumptions
about the structure of infinity.

The proof of existence of logarithmic resonance free regions uses the
concept of an escape function, that is a function G such that HpG0 > 0 on
the energy surface p−1(E). In §6.2 we used such functions implicitly when
citing propagation of singularities (Theorem E.47) – see Lemma E.48. In
§6.3 the use was more explicit in the use of Lemma E.49.

The simplest example of an escape function is given by the free Laplacian
in which case

p = |ξ|2, G0(x, ξ) = χ(|ξ|/E)〈x, ξ〉, E > 0,

χ ∈ C∞c ((1
2 , 2); [0, 1]), χ(1) = 1.

Then clearly

HpG0(x, ξ) = 2χ(|ξ|/E)|ξ|2 = 2E2 > 0 on p−1(E).

We now show that we can construct such G under the non-trapping
condition:

LEMMA 6.20 (Construction of an escape function). Suppose that
p(x, ξ) = |ξ|2g + V (x), where V, gij − δij ∈ C∞c and gij is positive definite.
Suppose that at E > 0, KE = ∅. Then for any R > 0 there exists G ∈
C∞c (T ∗Rn;R) and δ > 0 such that

(6.4.1) HpG(x, ξ) ≥ 1 for |p(x, ξ)− E| ≤ δ, |x| ≤ R.

REMARK. It is convenient to take compactly supported G in which case
HpG ≥ 1 can only hold in a compact set. The proof can be modified to
show that we can construct G ∈ S0

1,0(T ∗Rn;R) such that HpG ≥ 1 is valid

for all (x, ξ) satisfying |p(x, ξ)− E| ≤ δ.

Proof. 1. From Proposition 6.3 we know that K[E−3δ,E+3δ] = ∅, for some

δ > 0. Proposition 6.4 then shows that Γ±[E−3δ,E+3δ] = ∅ as well.

Define

(6.4.2) Σγ := {(x, ξ) : |p(x, ξ)− E| ≤ 2γ, |x| ≤ R}.
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Since the set Σ2δ, is compact this implies that for any R there exists T =
T (R) such for

(6.4.3) |x(exp(tHp(x, ξ)))| > R, |t| ≥ T, (x, ξ) ∈ Σ2δ.

2. For ρ = (x, ξ) ∈ Σδ we first define Gρ ∈ C∞c (T ∗R), a local escape function
supported in a neighbourhood of the segment

Iρ = {exp(tHp)(ρ) : t ∈ [−T, T ]} ,

and which satisfies HpGρ ≥ 1 on the part of Iρ lying over

π∗B(0, R) = {(x, ξ) ∈ T ∗Rn : |x| ≤ R}

3. For that, let Γ be a hypersurface through ρ which is transversal to Hp.
For a neighbourhood Uρ of ρ we define

Vρ = {exp(t(Uρ ∩ Γ)) : t ∈ (−T − 1, T + 1)}

⊂ p−1((E − 2δ, E + 2δ)).

If Uρ is sufficiently small, Vρ is a neighbourhood of Iρ and we can identify
it with the product

Vρ ' (−T − 1, T + 1)× (Uρ ∩ Γ), (x, ξ) := exp(tHp)(m),

(x, ξ) ∈ Vρ, t ∈ (−T − 1, T + 1), m ∈ Uρ ∩ Γ.

In view of (6.4.3)

(((−T − 1,−T ) ∪ (T, T + 1))× (Uρ ∩ Γ))) ∩ π∗B(0, R) = ∅ .

Now let ϕρ ∈ C∞c (Uρ ∩ Γ) be identically 1 near ρ, and let

χT ∈ C∞c ((−T − 1, T + 1); [0, 1]), χT (t) = t, t ∈ [−T, T ].

Let also

ψ ∈ C∞c ((E − 2δ, E + 2δ), [0, 1]) , ψ|[E−δ,E+δ] ≡ 1

and, using the product coordinates, put

(6.4.4) Gρ(exp(tHp)(m)) := χT (t)ϕρ(m)ψ(p(m)) , Gρ ∈ C∞c (Vρ).

It follows that

(6.4.5) HpGρ(exp(tHp)(m)) = χ′T (t)ϕρ(m)ψ(p(m)),

satisfies

HpGρ = 1 on Vρ ∩ {|x| < R}.

4. Since Σδ (see (6.4.2)) is compact, applying the previous argument for
every ρ ∈ Σδ gives a Uρ, and a Vρ ⊂ Uρ on which ϕρ = 1. Since {Vρ : ρ ∈ Σδ}
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covers the compact set Σδ, we can pass to a finite subcover, {Vρj : j =
1, . . . , N}. We let

(6.4.6) G =
N∑
j=1

Gρj .

The construction of Gρj ’s now shows that

HpG(x, ξ) ≥ 1 , (x, ξ) ∈ Σδ, G ∈ C∞c (T ∗Rn),(6.4.7)

concluding the proof. �

We will now use the function G constructed in Lemma 6.20 to prove

THEOREM 6.21 (Logarithmic resonance free regions for non-trap-
ping perturbations). Suppose that P is given by (6.0.5) and that for some
E > 0 the trapped set at energy E defined by in Definition 6.1 is empty:

KE = ∅.

Then there exists δ > 0 such that for each M > 0 there exists hM > 0 so
that for 0 < h < hM ,

(6.4.8) Res(P ) ∩ ([E − δ, E + δ]− i[0,Mh log(1/h)]) = ∅.

In addition, we have a bound on the truncated resolvent: for χ ∈ C∞c (Rn),

(6.4.9) ‖χR(z, h)χ‖L2→L2 ≤
C exp(C| Im z|/h)

h
,

z ∈ [E − δ, E + δ]− i[0,Mh log(1/h)], 0 < h < hM .

REMARKS. 1. The idea of the proof is to conjugate the operator Pθ by
an exponential weight to define

e−tOph(G)/hPθe
tOph(G)/h = Pθ − itOph(HRe pθG)

+ tOph(HIm pθG) +O(t2)H2
h→L2 ,

with t = 2Mh log(1/h). For z ∈ [E − δ, E + δ] − i[0,Mh log(1/h)] the
properties of G constructed in Lemma 6.20 show that

Imσ
(
e−tOph(G)/h(Pθ − z)etOph(G)/h

)
≤ 0.

Hence we can apply propagation of singularities as in the proof of Proposi-
tion 6.12 to obtain a bound on the resolvent. For a toy model case of this
argument see Exercise E.28.

2. One can show invertibility of e−tOph(G)/h(Pθ−z)etOph(G)/h by estimating
the imaginary and real parts directly (analogously to the positive commu-
tator method used in the proof of Theorem E.47) – see [SZ07a, §4]. Here
we opted for a quicker hybrid approach.
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Proof of Theorem 6.21. 1. Let G ∈ C∞c (T ∗Rn;R) be given by Lemma 6.20.
For t ∈ R define the operator

Pθ(t) := e−tOph(G)/hPθe
tOph(G)/h : H2

h(Rn)→ L2(Rn)

The operator Oph(G) is bounded (uniformly in h) on Hs
h(Rn) for any s and

hence

(6.4.10) etOph(G)/h = O(eC|t|/h) : Hs
h(Rn)→ Hs

h(Rn).

Using the notation adAB := [A,B] and the identity eadAB = eABe−A,
Taylor’s formula shows that for any N ≥ 1,

Pθ(t) =

N∑
k=1

(−1)k

k!
(t/h)k adkOph(G) Pθ

+
(−1)N+1tN+1

N !hN+1

∫ 1

0
(1− τ)N

(
e−tτ Oph(G)/h adN+1

Oph(G) Pθe
tτ Oph(G)/h

)
dτ.

Symbolic calculus gives,

adkOph(G) Pθ ∈ h
kΨcomp

h (Rn), k ≥ 1.

Also, in view of (6.4.10), for τ ∈ [0, 1]

e−tτ Oph(G)/h
(

adN+1
Oph(G) Pθ

)
etτ Oph(G)/h = O(hN+1e2C|t|/h)Hr

h→H
s
h
,

for any r and s.

Since we can take N arbitrarily large, we see that for t satisfying

(6.4.11) |t| ≤M1h log(1/h)

and any r and s we have

(6.4.12) Pθ(t) = Pθ − (t/h) adOph(G) Pθ + e(t), e(t) = O(t2)Hs
h→H

r
h
.

2. We define the family of operators depending smoothly on t ∈ R

P̃θ(t) := Pθ − (t/h) adOph(G) Pθ ∈ Ψ2
h(Rn),

Pθ(t) = P̃θ(t) + e(t).

Let p̃θ(t) be the principal symbol of P̃θ(t). Then for z ∈ C

(6.4.13)
Re(p̃θ(t)− z) = Re pθ + tHIm pθG− Re z,

Im(p̃θ(t)− z) = Im pθ − tHRe pθG− Im z.

We now relate the parameters in the constructions of Pθ and G: we take
R := 2r1 in (6.4.1). Then there exists ε > 0 such that for

(6.4.14) Re z ∈ [E − δ, E + δ], 0 ≤ −2 Im z ≤ t ≤ ε
the symbol p̃θ(t) − z has the following properties (see Definition E.31 for
ellh(•)):
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(1) Im(p̃θ(t)− z) ≤ 0 near the characteristic set

{〈ξ〉−2(p̃θ(t)− z) = 0} = T
∗Rn \ ellh(P̃θ(t)− z);

(2) for each (x, ξ) ∈ T ∗Rn, there exists T ≥ 0 such that ϕ−T (x, ξ) ∈
ellh(P̃θ(t)− z), where ϕ−T := exp(−T 〈ξ〉−1HRe p̃θ(t)).

Indeed, for t = 0 (and thus Im z = 0) these follow from Lemma 6.8 and (6.2.16).
In the latter statement we used that Γ+

[E−δ,E+δ] = ∅ recalled in Step 1.

To deduce from here the case t > 0 we first note that by Lemma 6.8 for
Re z ∈ [E − δ, E + δ]

{〈ξ〉−2(pθ − Re z) = 0} ⊂ {|x| < 2r1} ∩ p−1(Re z),

HRe pθG = HpG on {〈ξ〉−2(pθ − Re z) = 0}.

Thus by Lemma 6.20 we have

HRe pθG ≥ 1 on {〈ξ〉−2(pθ − Re z) = 0}.

Since p̃θ − z = pθ − Re z + O(ε), for ε small enough each point (x, ξ) in
{〈ξ〉−2(p̃θ − z) = 0} is close to the set {〈ξ〉−2(pθ −Re z) = 0}, which implies
HRe pθG(x, ξ) ≥ 1

2 . Since t
2 + Im z ≥ 0 we obtain property (1) above.

For property (2) it suffices to use that HRe p̃θ(t) = HRe pθ +O(ε) and thus

ϕ−T (x, ξ) = exp(−T 〈ξ〉−1HRe pθ)(x, ξ) +O(ε).

3. Using properties (1)–(2) above, the elliptic estimate (Theorem E.33),
and propagation of singularities (Theorem E.47) similarly to Steps 2–3 of
the proof of Proposition 6.9 we get the following: for z, t satisfying (6.4.14)
and all u ∈ C∞(Rn) ∩ L2(Rn) we have

(6.4.15) ‖u‖L2 ≤ Ch−1‖(P̃θ(t)− z)u‖L2 +O(h∞)‖u‖L2

where the constants are uniform in z, t.

We now put t = t̄ := 2Mh log(1/h) and assume that

z ∈ [E − δ, E + δ]− i[0,Mh log(1/h)].

Applying (6.4.15) and using (6.4.12) we see that

(6.4.16) ‖u‖L2 ≤ Ch−1‖(Pθ(t̄)− z)u‖L2 +O(h log2(1/h))‖u‖L2 .

For h small enough we can absorb the O(h log2(1/h)) term into the left-hand
side, which gives invertivibility of

Pθ(t̄)− z : H2(Rn)→ L2(Rn).
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4. The bound in (6.4.10) and (6.4.16) show that (with ‖ • ‖ denoting the
L2 → L2 operator norm)

‖(Pθ − z)−1‖ = ‖et̄Oph(G)/h(Pθ(t̄)− z)−1e−t̄Oph(G)/h‖

≤ ‖et̄Oph(G)/h‖ · ‖e−t̄Oph(G)/h‖ · ‖(Pθ(t̄)− z)−1‖

= O(h−4CM−1).

(6.4.17)

In particular this implies the absence of resonances. We recall from Theorem
4.37 that χR(z, h)χ = χ(Pθ− z)−1χ provided that suppχ ⊂ B(0, r1), where
in the construction of Pχ we can take r1 arbitrarily large. Hence the bounds
(6.4.17) holds for the truncated resolvent.

5. To prove (6.4.9) we take ϕ,ψ ∈ L2(Rn), ‖ϕ‖L2 = ‖ψ‖L2 = 1 we apply
Lemma D.1 to

w 7−→ f(w) := C−1he−iC(w+z)/h〈χR(z + w, h)χϕ, ψ〉,
δ− = Mh log(1/h)− | Im z|, δ+ = | Im z|,

where z ∈ [E − δ/4, E + δ/4]− i[0,Mh log(1/h)] is fixed.

Then, in the notation of Lemma D.1, (6.4.17) gives M = h−L for some
L and M− = 1, if we take a large enough C in the definition of f . Increasing
that C if necessary, Theorem 6.10 gives M+ = 1. We can take R = δ/4.
The assumptions of Lemma D.1 are satisfied and hence,

C−1he−C| Im z|/h〈χR(z, h)χϕ, ψ〉 = |f(0)| ≤ C.

Since ϕ and ψ were arbitrarily we obtain (6.4.9) (by changing δ). �

REMARK. The bound (6.4.9) can be proved without invoking Theorem
6.10. In fact, we have

χR(z, h)χ =

{
O(1/ Im z), Im z ≥ 0,
O(h−4CM−1), z ∈ [E − δ, E + δ]− i[0,Mh log(1/h)],

and a different application of Lemma D.1 gives (6.4.9).

6.5. LOWER BOUNDS ON RESONANCE WIDTHS

We will now show that the cut-off resolvent of a semiclassical Schrödinger
operator with a compactly supported potential is bounded by exp(C/h) on
the real axis. When the cut-offs are supported outside of a ball containing
the support of the potential the estimate is the same as the non-trapping
estimate C/h. From this we deduce that the resonance width (imaginary
parts) are bounded from below by exp(−C/h). In Theorem 2.32 we saw
an elementary version of this result in the case of one dimension. As in
indicated in §6.6 many generalizations are available.
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We start with a uniform estimate of the resolvent in the upper half-
plane. At this stage it is important to have weights rather than compactly
supported cut-offs.

For x ∈ Rn we denote r = |x| and 1lRn\B(0,R0)(x) the characteristic
function of {x ∈ Rn : |x| ≥ R0}.

THEOREM 6.22 (Weighted resolvent estimates). Suppose that for
E > 0,

P = PE := −h2∆ + V − E, V, ∂rV ∈ L∞comp(Rn;R), n ≥ 3.

For any s > 1/2 there exist C,R0, h0 > 0 such that

(6.5.1) ‖(1 + r)−s(P − iε)−1(1 + r)−s‖L2(Rn)→L2(Rn) ≤ eC/h,

(6.5.2) ‖(1 + r)−s 1lRn\B(0,R0)(P − iε)−1 1lRn\B(0,R0)(1 + r)−s‖L2→L2 ≤
C

h
,

for all ε > 0, h ∈ (0, h0).

The proof is based on two lemmas. The first constructs a nondecreasing
Carleman weight for P which is constant outside of a compact set. (See
Lemma 3.34 for a simpler version which case serve as an introduction to
Carleman estimates.) To formulate it we put

(6.5.3) δ := 2s− 1 > 0, w = wδ(r) := 1− (1 + r)−δ ≥ 0.

LEMMA 6.23 (Construction of Carleman weights). If δ > 0 is small
enough, there exist R0 > 0 and ϕ = ϕ(r) ∈ C∞([0,∞)) with ϕ > 0, ϕ′ ≥ 0
and suppϕ′ ⊂ [0, R0), such that

(6.5.4) ∂r
(
w(r)

(
E − V (x) + (ϕ′(r))2

))
>
Ew′(r)

4
, r > 0.

Proof. 1. Fix R > 0 such that suppV ⊂ B(0, R). We first construct a
function ψ = ψδ(r) on R of the form

ψ :=


A r ≤ R,
B

w(r)
− E

4
R < r < R0,

0 r ≥ R0,

where A, B > 0, R0 > R will be chosen below so that ψ is continuous and

(6.5.5) ψ − V + (ψ′ − ∂rV )
w

w′
≥ −E

2
, r > 0, r 6= R, r 6= R0.

We should think of ψ as a prototype for (ϕ′)2.
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r100

wδ(r)

1

r100

mδ(r)

25

Figure 6.4. Plots of w = wδ(r) and m = mδ(r) defined in (6.5.3)
and (6.5.7) respectively for δ = 0.4.

2. We first arrange it so that ψ satisfies (6.5.5). For R > R0, this is
immediate as the left-hand side of (6.5.5) equals 0. For R < r < R0 we
compute this left-hand side as

ψ + ψ′
w

w′
= −E

4
.

Finally for 0 < r < R we observe that uniformly in r ∈ [0, R]

w

w′
= (1 + r)

(1 + r)δ − 1

δ
→ (1 + r) log(1 + r),

as δ → 0+. Putting

A := max |V |+ 2 max |∂rV |(1 +R) log(1 +R),

we obtain (6.5.5), provided δ is sufficiently small.

3. To make ψ continuous at r = R, put

B := w(R)(A+ E/4).

It remains to choose R0 such that ψ is continuous at R0. For that we need

w(R0) = 4B/E = w(R)(1 + 4A/E).

Since w takes values in [0, 1), this is possible only if

w(R) <
1

1 + 4A/E
.

But since w(R)→ 0 as δ → 0+, it is enough to take δ sufficiently small.

4. To obtain a smooth ϕ satisfying (6.5.4) we fix ρ ∈ C∞0 ((0,∞)) with ρ ≥ 0,∫
ρ = 1. Take η > 0 and put

ϕ(r) :=

∫ r

0
χ(t)dt, χ := ρη ∗

√
ψ, ρη(r) :=

1

η
ρ
( r
η

)
.
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The inequality (6.5.5) gives

∂r(w(χ2 − V ))

w′
= χ2 − V +

w(2χχ′ − ∂rV )

w′
> −E

2
+O(η).

Since ϕ′ = χ this concludes the proof of (6.5.4) once we take η small enough.
�

We note that if h0 is small enough (6.5.4) gives the following inequality
which will be used in our argument:

(6.5.6) ∂r
(
w(E − V + (ϕ′)2 − hϕ′′)

)
≥ Ew′/4 for h ∈ (0, h0].

The next lemma uses the weight constructed in Lemma 6.23 to prove a
global Carleman estimate. Define m = mδ(r) by

(6.5.7) m := (1 + r2)(1+δ)/4 ∼ (1 + r)s = δ
1
2 (w′(r))−

1
2 ,

where ∼ is a short hand for 2−s ≤ m(r)/(1 + r)s ≤ 1, r ≥ 0.

LEMMA 6.24 (Weighted Carleman estimate). Let δ and ϕ = ϕ(r) be
as in Lemma 6.23 and h0 as in (6.5.6). Then there exists C > 0 such that

‖m−1eϕ/hv‖2L2(Rn) ≤
C

h2
‖meϕ/h(P − iε)v‖2L2(Rn)

+
Cε

h
‖eϕ/hv‖2L2(Rn),

(6.5.8)

for all v ∈ C∞0 (Rn), ε ≥ 0, and h ∈ (0, h0].

Proof. 1. Let

Pϕ := eϕ/hr(n−1)/2(P − iε)r−(n−1)/2e−ϕ/h

=− h2∂2
r + 2hϕ′∂r + Λ + Vϕ − E − iε,

where Λ ≥ 0 a semi-definite operator

Λ := h2r−2 (−∆Sn−1 + (n− 1)(n− 3)/4) ,

and
Vϕ := V − ϕ′2 + hϕ′′.

2. Recalling the relation between m and w′ in (6.5.7), we see that (6.5.8) is
equivalent to ∫ ∞

0

∫
Sn−1

w′|u|2dωdr ≤ C
h2

∫ ∞
0

∫
Sn−1

|Pϕu|2

w′
dωdr

+
Cε

h

∫ ∞
0

∫
Sn−1

|u|2drdω,
(6.5.9)

for

(6.5.10) u = eϕ/hr(n−1)/2v ∈ eϕ/hr(n−1)/2C∞c (Rn).
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We may assume ε ≤ h, since w′ ≤ 1 makes (6.5.9) trivial for ε > h. We
will prove∫ ∞

0

∫
Sn−1

∂r (w(E − Vϕ)) |u|2dωdr ≤ 2

h2

∫ ∞
0

∫
Sn−1

|Pϕu|2

w′
dωdr

+
Cε

h

∫ ∞
0

∫
Sn−1

|u|2dωdr,
(6.5.11)

which, together with (6.5.6), implies (6.5.9).

3. For brevity, we write

‖u‖S := ‖u‖L2(Sn−1), 〈u, v〉S := 〈u, v〉L2(Sn−1).

Then for r > 0 we put

(6.5.12) F (r) := ‖h∂ru(r, ω)‖2S − 〈(Λ + Vϕ(r, ω)− E)u(r, ω), u(r, ω)〉S .

Note that the compact support of u (see (6.5.10)) shows that

(6.5.13)

∫ ∞
0

(w(r)F (r))′dr ≤ − lim
r→0

w(r) lim inf
r→0

F (r) = 0.

Using selfadjointness of Λ +Vϕ−E we compute the derivative of F in terms
of Pϕ. With the notation f ′ := ∂rf we first note that the definition of Λ
gives

(Λu)′ = Λu′ − 2r−1Λu.

This yields

F ′ = 2 Re〈h2u′′, u′〉S − 2 Re〈(Λ + Vϕ − E)u, u′〉S
+ 2r−1〈Λu, u〉S − 〈V ′ϕu, u〉S

= −2 Re〈Pϕu, u′〉S + 4hϕ′‖u′‖2S + 2ε Im〈u, u′〉S
+ 2r−1〈Λu, u〉S − 〈V ′ϕu, u〉S .

Since wϕ′ ≥ 0, 2wr−1 − w′ > 0 and Λ ≥ 0 (as an operator on C∞(Sn−1))

wF ′ + w′F =− 2wRe〈Pϕu, u′〉S +
(
4h−1wϕ′ + w′

)
‖hu′‖2S

+ 2wε Im〈u, u′〉S +
(
2wr−1 − w′

)
〈Λu, u〉S

+ 〈(w(E − Vϕ))′ u, u〉S
≥ −2wRe〈Pϕu, u′〉+ w′‖hu′‖2S + 2wε Im〈u, u′〉S

+ 〈(w(E − Vϕ))′ u, u〉S .

(6.5.14)

4. The ineuality in (6.5.14) and −2 Re〈a, b〉 + ‖b‖2 ≥ −‖a‖2, applied with
a = (w/hw′)Pϕu and b = w′hu′ give the crucial inequality satisfied by F :

(wF )′ ≥− w2

h2w′
‖Pϕu‖2S + 2wε Im〈u, u′〉S + 〈(w(E − Vϕ))′ u, u〉S .(6.5.15)
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5. We can now return to the proof of (6.5.11). For that we combine (6.5.15)
with (6.5.13) and use w ≤ 1 we obtain∫ ∞

0

∫
Sn−1

(w(E − Vϕ))′ |u|2dωdr ≤ 1

h2

∫ ∞
0

∫
Sn−1

|Pϕu|2

w′
dωdr

+ 2ε

∫ ∞
0

∫
Sn−1

|uu′|dωdr.
(6.5.16)

Using again that Λ ≥ 0, we see that, for all γ > 0 there is Cγ such that∫ ∞
0

∫
Sn−1

|hu′|2dωdr = Re

∫ ∞
0

∫
Sn−1

ū(Pϕ − 2hϕ′∂r − Λ− Vϕ + E + iε)udωdr

≤
∫ ∞

0

∫
Sn−1

|Pϕu||u|dωdr + 2

∫ ∞
0

∫
Sn−1

ϕ′|hu′||u|dωdr

+

∫ ∞
0

∫
Sn−1

|E − Vϕ||u|2dωdr

≤
∫ ∞

0

∫
Sn−1

|Pϕu|2dωdr + Cγ

∫ ∞
0

∫
Sn−1

|u|2dωdr

+ γ

∫ ∞
0

∫
Sn−1

ϕ′|hu′|2dωdr.

Choosing γ = 1/(2 maxϕ′) gives∫ ∞
0

∫
Sn−1

|hu′|2dωdr ≤2

∫ ∞
0

∫
Sn−1

|Pϕu|2dωdr

+ C

∫ ∞
0

∫
Sn−1

|u|2dωdr.
(6.5.17)

Applying the ineqaulity

2

∫ ∞
0

∫
Sn−1

|uu′|dωdr ≤ h−1

∫ ∞
0

∫
Sn−1

|u|2 + h−1

∫ ∞
0

∫
Sn−1

|hu′|2dωdr

to (6.5.16), and using (6.5.17) and ε ≤ h, gives (6.5.11). �

Proof of Theorem 6.22. 1. Put C0 = 2 maxϕ. Since ϕ(r) = 1
2C0 for r ≥ R0,

Lemma 6.24 and ϕ > 0 give

e−C0/h‖m−1 1lB(0,R0) v‖2L2 + ‖m−1 1lRn\B(0,R0) v‖2L2

≤ e−C0/h‖m−1eϕ/hv‖2L2

≤ C

h2
‖m(P − iε)v‖2L2 +

C1ε

h
‖v‖2L2 .

(6.5.18)



422 6. LOWER BOUNDS ON RESONANCE WIDTHS

Applying

2ε‖v‖2L2 = −2 Im〈(P − iε)v, v〉L2

≤ γ−1‖m 1lRn\B(0,R0)(P − iε)v‖2L2 + γ‖m−1 1lRn\B(0,R0) v‖2L2

+ γ−1
0 ‖m 1lB(0,R0)(P − iε)v‖2L2 + γ0‖m−1 1lB(0,R0) v‖2L2 ,

with γ = 1
2e
−C0/h and γ0 = h/2C1 allows us to eliminate the C1ε‖v‖2L2/h

term on the right hand of (6.5.18).

We conclude that for C2 > C0 and h sufficiently small,

e−C0/h‖m−1 1lB(0,R0) v‖2L2 + ‖m−1 1lRn\B(0,R0) v‖2L2 ≤

eC2/h‖m 1lB(0,R0)(P − iε)v‖2L2 +
C

h2
‖m 1lRn\B(0,R0)(P − iε)v‖2L2 ,

(6.5.19)

for all v ∈ C∞0 (Rn).

2. We will deduce from (6.5.19) that, for any f ∈ L2, we have

e−C/h‖ 1lB(0,R0)(P − iε)−1m−1f‖2L2

+ ‖m−1 1lRn\B(0,R0)(P − iε)−1m−1f‖2L2 ≤

eC/h‖ 1lB(0,R0) f‖2L2 +
C

h2
‖ 1lRn\B(0,R0) f‖2L2 ,

(6.5.20)

from which Theorem 6.22 follows.

3. To prove (6.5.20) we need the fact that, for fixed ε, h > 0, and mv ∈ H2,

(6.5.21)
1

Cε,h
‖mv‖H2 ≤ ‖m(P − iε)v‖L2 ≤ Cε,h‖mv‖H2 .

For f ∈ L2 we apply (6.5.21) to v := (P − iε)−1m−1f to obtain

m(P − iε)−1m−1f ∈ H2.

We then choose vk ∈ C∞0 satisfying

‖mvk −m(P − iε)−1m−1f‖H2 → 0 as k →∞.
In particular,

‖m−1vk −m−1(P − iε)−1m−1f‖L2 → 0,

and, by (6.5.21) again,

‖m(P − iε)vk − f‖L2 ≤ Cε,h‖mvk −m(P − iε)−1m−1f‖H2

→ 0, as k →∞.

Consequently (6.5.20) follows by applying (6.5.19) with vk in place of v, and
letting k →∞.

4. It remains to prove (6.5.21). We have

(6.5.22) ‖mv‖H2
h
≤ (C/ε)‖(P − iε)mv‖L2 ≤ (C ′/ε)‖mv‖H2

h
,



6.5. LOWER BOUNDS ON RESONANCE WIDTHS 423

for all v with mv ∈ H2
h. On the other hand,

[P,m] = −2h2m′∂r − h2m′′ − h2(n− 1)m′/r = O(h)H2
h→L2 .

Hence the second inequality in (6.5.21) follows from the second inequality
in (6.5.22):

‖m(P − iε)v‖L2 ≤ (C ′/C)‖mv‖H2
h

+ ‖[P,m]v‖L2 ≤ Cε,h‖mv‖H2 .

Similarly we deduce the first of (6.5.21) from the first of (6.5.22):

‖mv‖H2 ≤ Ch‖mv‖H2
h
≤ C ′h,ε (‖m(P − iε)v‖L2 + ‖[P,m]v‖L2)

≤ Cε,h‖m(P − iε)v‖L2 .

This proves (6.5.21) concluding the proof of the theorem. �

The weighted estimate immediately estimates for the cut-off resolvent
on the real axis:

THEOREM 6.25 (Estimates of the cut-off resolvent). Suppose that
V, ∂rV ∈ L∞comp(Rn;R) , n ≥ 3 and that

R(z, h) := (−h2∆ + V − z)−1, Im z > 0.

Fix 0 < a < b and assume that E ∈ [a, b]. Then there exists C0 > 0 such
that for any R > 0 and χ ∈ C∞c (B(0, R)) there exists C1 and

‖χR(E, h)χ‖L2(Rn)→L2(Rn) ≤ C1 exp
C0

h
.

In addition, there exist R0 such that for χ ∈ C∞c (B(0, R) \B(0, R0)),

‖χR(E, h)χ‖L2(Rn)→L2(Rn) ≤
C1

h
.

Proof. We only need to remark that the holomorphy of χR(z, h)χ, χ ∈
C∞c (Rn), on (0,∞) implies that

‖χR(E, h)χ‖L2→L2 = lim
ε→0+

‖χR(E − iε, h)χ‖L2→L2 .

The uniformity of the constants in (6.5.1) and (6.5.2) with respect to ε > 0
gives the estimates in the theorem. �

We now have an important conclusion about the minimal width of scat-
tering resonances:

THEOREM 6.26 (Lower bounds on resonance width). Suppose that
V satisfies the assumptions of Theorem 6.25 and that 0 < a < b are fixed.
Then there exist constants C0, h0 such that for 0 < h < h0,

z ∈ Res(−h2∆ + V ), Re z ∈ [a, b] =⇒ − Im z > e−C0/h.
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To prove this we will need the following lemma which provides a useful
resolvent identity similar to the identities used in §4.2:

LEMMA 6.27 (A resolvent identity). For V ∈ L∞c (Rn,R) and Im z > 0
put

R(z) = R(z, h) := (−h2∆ + V − z)−1,

R0(z) = R0(z, h) := (−h2∆− z)−1.

Suppose that χ, χ0 ∈ C∞c (Rn), have the property that χ0 = 1 on suppV and
χ = 1 on suppχ0,

(6.5.23) Q = Q(h) := [h2∆, χ0] = O(h) : Hs
h(Rn)→ Hs−1

h (Rn).

and

(6.5.24) Rχ(z) := χR(z)χ, R0,χ(z) = χR0(z)χ.

Then, for z, z0 ∈ (0,∞) + iR,

Rχ(z)−Rχ(z0) = (z − z0)Rχ(z)χ0(2− χ0)Rχ(z0)

+ (1− χ0 −Rχ(z)Q) (R0,χ(z)−R0,χ(z0)) (1− χ0 +QRχ(z0)) .
(6.5.25)

Proof. It suffices to prove (6.5.24) for Im z > 0, Im z0 > 0 as the general
case follows by analytic continuation.

1. Since χ0 = 1 on the support of V ,

(−h2∆ + V )(1− χ0) = (−h2∆)(1− χ0).

Hence, in the notation of (6.5.23),

R(z)(1− χ0)− (1− χ0)R0(z) = R(z)(1− χ0)(−h2∆− z)R0(z)

−R(z)(−h2∆− z)(1− χ0)R0(z)

= R(z)[1− χ0,−h2∆]R0(z)

= −R(z)QR0(z)

(6.5.26)

and similarly

(6.5.27) (1− χ0)R(z0)−R0(z0)(1− χ0) = R0(z0)QR(z0).

2. For Im z > 0 we also have

R(z)−R(z0) = (z − z0)R(z)R(z0)

= (z − z0)
(
R(z)χ0(2− χ0)R(z0) +R(z)(1− χ0)2R(z0)

)
.
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We now use (6.5.26) and (6.5.27) to rewrite the second term on the right
hand side. With the notation (6.5.23) this gives

R(z)(1− χ0)2R(z0) = (−R(z)QR0(z) + (1− χ0)R0(z)) (1− χ0)R(z0)

= −R(z)QR0(z)R0(z0)(1− χ0)

−R(z)QR0(z)R0(z0)QR(z0)

+ (1− χ0)R0(z)R0(z0)(1− χ0)

+ (1− χ0)R0(z)R0(z0)QR(z)

= (1− χ0 −R(z)Q)R0(z)R0(z0)(1− χ0 +QR(z0)).

3. Since

R0(z)R0(z0) = (z − z0)−1(R0(z)−R0(z0))

and χχ0 = χ0, χQ = Q the combination of the two identities in Step 2 gives
(6.5.25). �

Proof of Theorem 6.26. 1. We use the notation introduced in Lemma 6.27
and take z0 ∈ [a, b] and z with Re z = z0, | Im z| ≤ h. Theorem 6.26 shows
that

(6.5.28) ‖Rχ(z0)‖L2→L2 ≤ C1 exp(C2/h),

for some constants C1 and C2 depending only on χ and a, b. From now on
‖ • ‖ will denote the operator norm L2 → L2.

2. The bound (3.1.12) for the free resolvent rescales to a semiclassical bound

R0,χ(w) = O(h−1e| Imw|/h) : H−kh (Rn)→ Hj
h(Rn),

for k, j = 0, 1, w ∈ [a, b] + i[−1, 1]. Cauchy inequalities (or re-examination
of the proof of Theorem 3.1) show that we also have

∂wR0,χ(w) = O(h−2) : H−kh (Rn)→ Hj
h(Rn),

for k, j = 0, 1, w ∈ [a, b] + i[−h, h]. As z − z0 = i Im z = O(h) this gives

(6.5.29) ‖R0,χ(z)−R0,χ(z0)‖ = (h−2| Im z|) : H−kh → Hj
h, k, j = 0, 1.
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3. We now use the resolvent identity (6.5.25), (6.5.29) and (6.5.28):

‖Rχ(z)‖ ≤ ‖Rχ(z0)‖+ C| Im z|‖Rχ(z)‖‖Rχ(z0)‖

+
1∑

j,k=0

‖Rχ(z)‖j‖Qj(R0,χ(z)−R0,χ(z0))Qk‖‖Rχ(z0)‖k

≤ ‖Rχ(z0)‖+ | Im z|‖Rχ(z)‖‖Rχ(z0)‖

+

1∑
j,k=0

hk+j‖Rχ(z)‖j‖Rχ(z0)‖k‖R0,χ(z)−R0,χ(z0)‖
H−kh →H

j
h

≤ C3e
C2/h + | Im z|C3h

−2eC2/h‖Rχ(z)‖.

The meromorphy of Rχ(z) implies that Rχ(z) is finite except on a discrete
set and hence for

| Im z| < e−C0/h ≤ (2C3)−1h2e−C2/h,

we have ‖Rχ(z)‖ ≤ 2C3e
C2/h, which completes the proof. �

REMARKS. 1. A more direct proof of Theorem 6.26 can be given using a
(much more complicated) version of the proof we presented in one dimension
– see Theorem 2.32. The key element is the following inequality [Bu98,
Proposition 2.2]: suppose that u is outgoing in the sense that

u(h) := R0(z, h)f(h), f ∈ L∞comp(B(0, R0)),

for R0 fixed. Then R2 > R1 > R0, | Im z| ≤ Ch, Re z ∈ (a, b), 0 < h < h0,

−
∫
∂B(0,R2)

Imh∂ruūdS ≥ c
∫
∂B(0,R2)

(|u|2 + |hDu|2)dS

− Ce−c/h
∫
∂B(0,R1)

(|u|2 + |hDu|2)dS.

(6.5.30)

2. Using (6.5.30) on can show that existence of resonance very close to real
axis implies existence of localized quasimodes – see Stefanov [St00]. Then
Theorem 6.26 can be proved using an argument by contradiction and the
results of §7.3.

6.6. NOTES

For a presentation of classical scattering in a more general setting see [GS87,
Appendix].

Semiclassical defect measures were used to show existence of resonance
free strips (to which we will refer to as spectral gaps) by Burq [Bu02b] for
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obstacle problems. That provided a weaker result than logarithmic reso-
nance free strips obtained using propagation of singularities (see §§4.6,4.7)
but was much simpler technically. Here we followed Dyatlov [Dy16] and
applied the semiclassical defect measures to get spectral gaps and optimal
resolvent bounds for normally hyperbolic trapping. That improved earlier
results of Gérard–Sjöstrand [GS88] in the analytic case and of Wunsch–
Zworski [WZ11] in the smooth case and with resolvent bounds. Under
additional dynamical assumptions, existence of resonances and a counting
law was given in Dyatlov [Dy15a]. One example of normally hyperbolic
trapping with the assumptions of §6.3 satisfied is given by photon spheres of
black holes – see [WZ11],[Dy11b],[Dy12],[Dy15b], [HV14a] and [HV16].
(For a review see [DZ13].) This kind of trapping occurs also in molecular
dynamics [G∗10]. For a mathematical treatment under more general as-
sumptions see Nonnenmacher–Zworski [NZ15].

A special case of normally hyperbolic trapping is given by a single hy-
perbolic trajectory and in that case resonances can be described with great
precision. In the obstacle case that was done by Ikawa [Ik83] and Gérard
[Gé88]. The semiclassical case was first analysed by Gérard–Sjöstrand
[GS87] and that led to many developments. Resonances generated by non-
degenerate critical points were described by Sjöstrand [Sj87]. References to
more recent results can be found in [B∗16].

Another interesting class of trapped sets generating resonances is given
by homoclinic trapped sets. Although not stable under perturbations these
trapped sets occur in many situations each with its own rich structure in
distribution of resonances. An impressively precise study of this has been
made by Bony–Fujiie–Ramond–Zerzeri [B∗16].

When the trapped set is hyperbolic in the sense of dynamical systems
(see the references below) spectral gaps exist under a classical “topologi-
cal pressure condition”. For obstacle problems that was initiated by Ikawa
[Ik88] in mathematics and Gaspard–Rice [GR89] in physics, see also [PS10].
A semiclassical version was proved by Nonnenmacher–Zworski [NZ09a],[NZ09b].
One application is to no-loss Strichartz estimates by Burq–Guillarmou–
Hassell [BGH10]. It is now suspected that quantum effects will produce
spectral gaps for any hyperbolic trapped set. Evidence for that is provided
by a recent result of Bourgain–Dyatlov [BD18] who proved a presence of
a spectral gap for any convex co-compact Riemann surface. The proof was
based on a fractal uncertainly principle and microlocal methods developed
by Dyatlov–Zahl [DZa16]. See also [DJ16],[DZ18] and, for applications of
the fractal uncertainty principle to closed systems, Dyatlov–Jin [DJ18].

A strategy from “gluing” resolvent estimates between different geome-
tries at infinity was developed by Datchev–Vasy [DV12a],[DV12b]. As
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in [NZ15] it sometimes allows to prove resolvent estimates in the easier
setting of complex absorbing potentials (see (4.7.1)) and then glue them to
non-trapping estimates near infinity.

Existence of logarithmic resonance free regions for more general semi-
classical operators on Euclidean spaces was proved by Martinez [Ma02b]
following a long tradition of works in scattering theory – see §4.7. Here
we mention the seminal work of Lax and Phillips [LP68] and of Vainberg
[Va73] providing an abstract framework for obtaining resonance free regions
(see §4.6), and the work of Helffer and Sjöstrand [HS86], [Sj90] on large
resonance free regions,

(6.6.1) KE = ∅ =⇒ Res(P (h)) ∩B(E, δ) = ∅

for large classes of operators P (h) with analytic coefficients. In the “in-
termediate” Gevrey case, polynomial resonance free regions were shown to
exist by Goodhue [Go73] and Rouleux [Ro01].

The proof of Theorem 6.21 presented here, which uses microlocal expo-
nential weights, is a hybrid of the proof in Sjöstrand–Zworski [SZ07a, §4]
and the arguments in §6.2. In the analytic case stronger weights can be used
and that results in (6.6.1) – see Sjöstrand [Sj90],[Sj02, §12.5] and references
given there.

The review [Zw17, §3.3] can also be consulted about resonance free
regions and related open problems.

Theorem 6.22 was first proved by Burq [Bu98],[Bu02a] in more general
settings. Different proofs were found by Sjöstrand [Sj02] and Vodev [Vo00].
Cardoso and Vodev [CV02] gave a version for manifolds with asymptotically
conic or hyperbolic ends, and, most recently, Rodnianski and Tao [RT15]
considered Schrödinger operators on asymptotically conic manifolds, obtain-
ing also bounds for low energies and other refinements. Optimality of the
bounds with one cut-off localized outside of the support of the perturbation
was discussed in [DDZ15]. An early approach to lower bounds in potential
scattering was developed by Fernández–Lavine [FL90].

The proof of Theorem 6.22 was provided by Kiril Datchev [Da14] who
used the same methods to establish more general results, in particular relax-
ing the decay conditions at infinity. It is close in spirit to the earlier proofs
of Cardoso and Vodev [CV02], see also [Vo13, Vo14]. In particular, the
functional (6.5.12) comes from those papers. For more recent progress in the
case of rougher potentials, and in dimension two, see Klopp–Vogel [KV19],
Shapiro [Sh19], Vodev [Vo19], and [Sh16] respectively.

The proof of Theorem 6.26 comes from Vodev [Vo14, §5].
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6.7. EXERCISES

Section 6.1

Exercises 6.1–6.8 explore a more general set of assumptions on the Hamil-
tonian p under which the results of §6.1 hold. We assume the following:

(1) M is a manifold, p ∈ C∞(T ∗M ;R), and the Hamiltonian flow
exp(tHp) is defined on T ∗M for all times;

(2) r ∈ C∞(T ∗M ;R) is a function and α ≤ β are numbers such that
the sets

(6.7.1) UR = r−1
(
(−∞, R]

)
∩ p−1

(
[α, β]

)
are compact for each R;

(3) there exists a constant r0 such that the following convexity assump-
tion holds:

(6.7.2) p(x, ξ) ∈ [α, β], r(x, ξ) ≥ r0, Hpr(x, ξ) = 0 =⇒ H2
pr(x, ξ) > 0.

We define the sets Γ±[α,β] as follows: (x, ξ) ∈ Γ±[α,β] if p(x, ξ) ∈ [α, β] and

r(etHp(x, ξ)) does not converge to infinity as t→ ∓∞. We then put K[α,β] :=

Γ+
[α,β] ∩ Γ−[α,β].

1. Show that if assumptions (1)–(3) above hold, then they also hold with
r replaced by efF (r), where F : R → R is any smooth function such that
F ′ > 0 everywhere and limr→∞ F (r) =∞, and f ∈ C∞(M ;R) is bounded.

2. Show that assumptions (1)–(3) above hold in each of the following cases:

(a) M = Rn and p(x, ξ) = |ξ|2 + V (x), where V ∈ C∞(Rn;R) satisfies

lim sup
x→∞

V (x) < α, lim sup
x→∞

〈x,∇V (x)〉 ≤ 0,

and r(x, ξ) := |x| for |x| large enough.

(b) M = R, p(x, ξ) = xξ, and r(x, ξ) =
√
x2 + ξ2 for large enough (x, ξ).

What are Γ±[α,β] in this case?

3. Under assumptions (1)–(3) above, show that for each R ≥ r0, the set
UR defined in (6.7.1) is convex with respect to the flow exp(tHp): that is,

if e−t
−Hp(x, ξ) ∈ UR, et

+Hp(x, ξ) ∈ UR for some t± ≥ 0, then (x, ξ) ∈ UR.
(Hint: find the maximal value of r(etHp)(x, ξ) on the interval t ∈ [−t−, t+].)

4. Under assumptions (1)–(3) above, take (x, ξ) such that

p(x, ξ) ∈ [α, β], r(x, ξ) ≥ r0, ±Hpr(x, ξ) ≥ 0.
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(a) Show that

r(etHp(x, ξ)) > r0, ±Hpr(e
tHp(x, ξ)) > 0 for all t, ± t > 0.

(Hint: for the case Hpr(x, ξ) ≥ 0 and each T > 0, find the maximum of the

function r(etHp(x, ξ)) on the interval [0, T ].)

(b) Show that (x, ξ) /∈ Γ∓[α,β], that is r(etHp(x, ξ))→∞ as t→ ±∞. (Hint:

argue by contradiction, taking for the case Hpr(x, ξ) ≥ 0 a sequence of

tj → ∞ such that r(etjHp(x, ξ)) is bounded and extracting a convergent
subsequence. Apply assumption (3) to the limiting point of this subse-
quence.)

5. Using the previous exercise and the proof of Proposition 6.3, show that
the sets Γ±[α,β] are closed and K[α,β] ⊂ {r < r0} is compact.

6. Under assumptions (1)–(3) above, show that for each R and each neigh-
bourhood U of K[α,β], there exists T > 0 such that for all t± ≥ T ,

p(x, ξ) ∈ [α, β], r(e−t
−Hp(x, ξ)) ≤ R, r(et+Hp(x, ξ)) ≤ R =⇒ (x, ξ) ∈ U.

In other words, every trajectory that passes a long time in a bounded set
has to have many points close to the trapped set. (Hint: argue by con-
tradiction, taking a sequence t±j → ∞ and (xj , ξj) ∈ p−1([α, β]) \ U such

that r(e−t
−
j Hp(x, ξ)), r(et

+
j Hp(x, ξ)) ≤ R. Using Exercise 6.3, take a subse-

quence of (xj , ξj) converging to some (x∞, ξ∞) /∈ K[α,β]. Use the fact that

etHp(x∞, ξ∞) escapes in at least one time direction together with Exercise 6.4
to arrive to a contradiction.)

7. Use the previous exercise to show that for each (x, ξ) ∈ Γ∓[α,β], the tra-

jectory etHp(x, ξ) converges to K[α,β] as t → ±∞, and the convergence is
uniform for (x, ξ) in a compact set.

8. Arguing as in the proof of Proposition 6.5, show that the sets Γ±[α,β]\K[α,β]

have measure zero in T ∗M . Show that this is false with respect to the one-
dimensional Lebesgue measure on p−1(0) in the case of Exercise 6.2(b), and
explain why this does not give a contradiction.

9. This exercise gives an example of a situation where the trapped set is not
closed. Consider a Riemannian surface (M, g) with one infinite end which
is a cusp [0,∞)r × S1

θ with the metric g = dr2 + e−2rdθ2 in the cusp. Let
p(x, ξ) = |ξ|2g = ξ2

r + e2rξ2
t and take 0 < α ≤ β. (We denote by ξ• conjugate

variable to •, that is, the corresponding momentum variable.)

(a) Show that the function r does not satisfy (6.7.2).
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(b) Show that a point (x, ξ) with r = 0, ξr > 0, ξθ = 0 does not lie in Γ−[α,β],

but it lies in the closure of K[α,β]. (Hint: for the latter part, show that
nontrapped trajectories form a set of zero measure.)

REMARK. For an example of surfaces with a cusp and no trapping, and
a presence of resonance free region see Datchev [Da16].

Section 6.2

10. Deduce from Theorem 6.11 that:

(a) ν ≤ 0;

(b) if ν = 0, then µ is supported on K; (Hint: use the proof of Lemma
6.5.)

(c) if ν < 0, then µ(K) = 0.

11. In the case of (6.0.5) let u be a resonant state with z ∈ [α, β]− i[0, Ch],
α > 0. Let χ0 ∈ C∞c (M) be equal to 1 on a sufficiently large ball. Prove
that for h small enough

(6.7.3) ‖χu‖L2 ≤ C(χ, χ0)‖χ0u‖L2 for all χ ∈ C∞c (M)

Hint: Consider first the simpler case of −h2∆ + V . Then (see (3.2.3))
u = −R0(z, h)V u. Choose χ1 such that χ1 = 1 on suppV and suppχ1 ⊂
{χ0 = 1}. We only need to estimate χ(1 − χ1)u and for that we observe
that (1−χ1)R0(z, h)V u = −[χ1, R0(z, h)]V u = R0(z, h)[χ1, h

2∆]χ0u. Using
the rescaled version of (3.1.12) and the gain of h from the commutator we
obtain (6.7.3). For the general case, use Theorem 4.9. See [NZ09a, (8.12)]
for the case of non-compactly supported perturbations.

12. Let P = −h2∆g where (M, g) has Euclidean infinite ends. Assume that
P has an essential spectral gap of size β > 0 with a polynomial resolvent
bound: that is, there exist h0 > 0 and N > 0 such that for all χ ∈ C∞c (M)

‖χR(z, h)χ‖L2→L2 ≤ Cχh−1−N ,

Re z = 1, −βh ≤ Im z ≤ h, 0 < h < h0.

Show that the wave equation on Rt ×M has a resonance expansion with
loss of N derivatives. What changes need to be made when (M, g) is instead
asymptotically hyperbolic?

13. Show that each measure µ from Theorem 6.11 is supported in {r ≤ 2r1}
where r1 satisfies (6.2.4).

Section 6.3

14. For each ϕ± satisfying (6.3.2)–(6.3.3), assumptions (A1)–(A2) imply
that {ϕ+, ϕ−} 6= 0 on K[α′,β′]. Use this to show that if (A3) holds for one of
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the functions ϕ±, then it holds for the other one as well, and the constants
νmin coming from ϕ+ and ϕ− are the same.



Chapter 7

RESONANCES AND
TRAPPING

7.1 Lower bounds on the resolvent
7.2 Semiclassical growth estimates
7.3 From quasimodes to resonances
7.4 The Sjöstrand trace formula
7.5 Resonance expansions for strong trapping
7.6 Notes
7.7 Exercises

In this chapter we will discuss effects of trapped classical trajectories
on the distribution of resonances. We first present a result of Bony–Burq–
Rammond which shows that having trapped trajectories implies a lower
bound on the (cut-off) resolvent on the real axis. That lower bound differs
from the non-trapping bound by a logarithmic factor. It is optimal as shown
by Theorem 6.16.

We then discuss general bounds on the number of scattering poles and
on the resolvent. These are applied to show how localized quasimodes (ap-
proximate eigenfunctions) imply existence of resonances close to the real
axis. The general results of Tang–Zworski and Stefanov are presented in the
special case of semiclassical Schrödinger operators but the method applies
in great generality, for instance to obstacle problems.

We continue with Sjöstrand’s local trace formula and with his lower
bounds on the number of resonances. In that case trapping is not explicitly
discussed but comes from the presence of certain analytic singularities.

433
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Finally, we present a result of Burq–Zworski on the expansion of solu-
tions of evolution equations in terms of resonances close to the real axis,
that is, resonances generated by strong trapping.

7.1. LOWER BOUNDS ON THE RESOLVENT

In §6.10 we have shown that the truncated resolvent satisfies

KE = ∅ =⇒ χR(E, h)χ = OL2→L2(1/h),

R(E, h) := (P − E − i0)−1, P = −h2∆g + V,

V, gij − δij ∈ C∞c (Rn;R),

and this notation will be used throughout this section.

In this section we consider a lower bound on the norm of the resolvent
in the case of arbitrary trapping.

THEOREM 7.1 (Lower bounds on resolvent for trapping pertur-
bations). Suppose that E0 > 0 and that KE0 6= ∅, and that χ ∈ C∞c (Rn) is
equal to 1 near π(KE0).

Then there exists C0 = C0(E0) such that for any δ > 0 there exists
h0 = h0(δ) so that

(7.1.1) sup
|E−E0|<δ

‖χR(E, h)χ‖L2→L2 ≥
log(1/h)

C0h
,

for 0 < h < h0.

REMARK. Theorem 6.16 shows that this estimate is optimal. The point
here is that for any trapping situation we cannot do better than (6.3.12).

Before giving the proof of Theorem 7.1 we need to present an older result,
essentially due to Kato, relating resolvent estimates to local smoothing in
Schrödinger propagation.

THEOREM 7.2 (Kato’s local smoothing). Let E0 > 0 and let K(h) ≥
1 be a function on (0, 1).

Suppose that for |E − E0| < δ and χ ∈ L∞comp(Rn) we have

(7.1.2) ‖χR(E, h)χ‖L2→L2 ≤
K(h)

h
,

Then for ϕ ∈ C∞c ((E − δ, E + δ); [0, 1]) and u ∈ L2(Rn),

(7.1.3)

∫
R
‖χϕ(P ) exp(−itP/h)u‖2L2dt ≤ CK(h)‖u‖2L2 ,

with C independent of h.
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INTERPRETATION. 1. If the integration in (7.1.3) takes place over
a finite interval in time, [0, T ], then the estimate is obvious with CK(h)
replaced by T . The localization in space, χ(x) and in energy, ϕ(P ) are also
not needed. Hence the point lies in having the integral over R. For that χ
for which (7.1.2) holds is needed. In our presentation we take χ ∈ C∞c (Rn)

but finer weights, such as 〈x〉−
1
2
−ε also work – see [VZ00] and references

given there.

2. When P = −h2∆g, where g is a metric, we can change variables in the
the t integration in (7.1.3) to obtain∫

R
‖χϕ(−h2∆g) exp(it∆g)u‖2L2dt ≤ ChK(h)‖u‖L2 ,

where ϕ ∈ C∞c ((0,∞).

If K(h) = 1, as is the case in (6.2.22) under non-trapping assumption,
then ∫

R
‖χϕ1(−h2∆g)(−∆g)

1
4 exp(it∆g)u‖2L2dt ≤ C‖u‖L2 ,

where ϕ1(λ) := ϕ(λ)/λ
1
4 ∈ C∞c ((0,∞).

A dyadic decomposition (see for instance [Zw12, Section 7.5] for a pre-
sentation in a semiclassical spirit) then shows that

(7.1.4)

∫
R
‖χ(1− ψ)(−∆g) exp(it∆g)u‖2

H
1
2
dt ≤ C‖u‖L2 ,

where ψ ∈ C∞c (R; [0, 1]), ψ ≡ 1 near 0. To control the term with ψ(−∆g)
one needs finer analysis of the bottom of the spectrum of −∆g but a crude
bound gives

(7.1.5)

∫ T

−T
‖χ exp(it∆g)u‖2

H
1
2
dt ≤ CT‖u‖L2 ,

This is the local smoothing estimate for non-trapping perturbations. In this
formulation the smoothing character is clear: we gain 1/2 derivative when
localizing in space and averaging in time.

3. Doi [Do96] showed that any trapping produces a loss in the H
1
2 reg-

ularity. The proof of Theorem 7.1 uses Theorem 7.2 and a semiclassi-
cal and quantitative version of his argument to obtain the lower bound
K(h) ≥ log(1/h)/C.

Proof of Theorem 7.2. 1. We apply a TT ∗ argument which starts with defin-
ing

T : u 7−→ χϕ(P )e−itP/h ,
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T : L2(Rn) −→ L2
loc(R× Rn) ,

so that (7.1.3) can be rewritten as

‖Tu‖2L2
tx
≤ CK(h)‖u‖2L2

x
,

which in turn is equivalent to

‖T ∗f‖2L2
x
≤ CK(h)‖f‖2L2

tx
.

This last inequality follows from showing that

(7.1.6) TT ∗ = O(K(h)) : L2(R× Rn) −→ L2(R× Rn) .

2. To obtain (7.1.6) we start by calculating the adjoint:

T ∗f =

∫
R
eisP/hϕ(P )χf(s)ds ,

first defined for f ∈ C∞c (R× Rn). We have

TT ∗f =

∫
R
χe−i(t−s)P/hϕ(P )2χf(s)ds .

This we can rewrite as

TT ∗f =
(
χe−i•P/hϕ(P )2χ

)
∗ (f(•)) (t) ,(7.1.7)

where ∗ denotes the convolution in the t variable.

3. We recall the semiclassical inverse Fourier transform:

F−1
t7→λψ(λ) :=

1

2π

∫
eitλ/hψ(t)dt.

Then F−1 of t 7→ e−itP/hϕ(P ) is formally equal equal to

hδ(P − λ)ϕ(P )2 = hδ(P − λ)ϕ(λ)2,

which can then be expressed using the Stone formula (B.1.11):

hδ(P − λ)ϕ(λ) =
1

2πi

∑
±
±(P − λ∓ i0)−1ϕ(λ)2.

Returning to (7.1.7) and using the relation between the Fourier trans-

forms and convolution (paying attention to the factor of
√
h because of the

unitarity of F) we see that

TT ∗f = (h/2πi)Fλ 7→t

((∑
±
±χ(P − λ∓ i0)−1ϕ(λ)2χ

)
F−1
t7→λ (f(t))

)
,



7.1. LOWER BOUNDS ON THE RESOLVENT 437

4. To conclude the proof we apply Plancherel’s formula:

‖TT ∗f‖L2
tx

≤ h

∥∥∥∥∥
(∑
±
±χ(P − λ∓ i0)−1χ

)
ϕ(λ)2F∗t7→λ (f(t))

∥∥∥∥∥
L2
λx

≤ 2h sup
λ
‖ϕ(λ)2χ(P − λ− i0)−1χ‖L2

x→L2
x
‖f‖L2

tx

≤ 2K(h)‖f‖L2
tx
,

Here we used hypothesis (7.1.2), the assumptions on ϕ, and the basic fact
that the norms of χ(P − λ ± i0)−1χ are the same. This proves (7.1.6) and
consequently (7.1.3). �

Proof of Theorem 7.1. 1. We proceed by contraction using Theorem 7.2.
That theorem shows that if for some nontrivial u0 ∈ L2(Rn) and

ϕ ∈ C∞c ((E0 − δ, E0 + δ); [0, 1]) , ϕ(E0) = 1 ,

(7.1.8) ‖χϕ(P ) exp(−itP/h)u0‖2L2
tx
≥ K(h)‖u0‖L2

x
,

then

sup
|E−E0|<δ

‖χ(P − E − i0)−1χ‖L2→L2 ≥
K(h)

Ch
.

Hence we need to show that for χ satisfying

(7.1.9) χ ∈ C∞c (T ∗Rn) , χ ≡ 1 near π(KE0) ,

(7.1.8) holds with

K(h) = c log
1

h
,

where c is independent of δ and 0 < h < h0(δ).

2. Functional calculus for pseudodifferential operators (see [DS99, Chapter
8] or [Zw12, §14.3]) shows that

ϕ(P (h))χ(x)2ϕ(P (h)) = aw(x, hD) , a ∈ S(T ∗Rn) ,

a(x, ξ) = χ(x)2ϕ(p(x, ξ))2 +O(h〈x〉−∞〈ξ〉−∞) .
(7.1.10)

We put

awt (x, hD) := eitP/haw(x, hD)e−itP/h .

Egorov’s Theorem [Zw12, Theorem 11.12] shows that for

(7.1.11) 0 < t < α log
1

h
,
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with α sufficiently small, independent of δ,

at ∈ Sγ(T ∗Rn) , 0 < γ < 1
2 ,

at − (exp tHp)
∗a ∈ h2−3γSγ(T ∗Rn) ,

(7.1.12)

with all the symbol estimates uniform for t satisfying (7.1.11). See Remark 1
at the end of §E.1.7 for a discussion of such symbol classes.

3. With this notation we have

‖χϕ(P ) exp(−itP/h)u0‖2L2
tx

=

∫
R
‖χϕ(P )e−itP/hu0‖L2

x
dt

≥
∫ α log(1/h)

0
‖χϕ(P )e−itP/hu0‖L2

x
dt

=

∫ α log(1/h)

0
〈awt (x, hD)u0, u0〉L2

x
dt .

(7.1.13)

Hence, it remains to find u0 such that

(7.1.14) 〈awt (x, hD)u0, u0〉 ≥ 1
2 , ‖u0‖L2(Rn) = 1 ,

uniformly for

0 < h < h0 , 0 < t < α log
1

h
.

4. To find u0 satisfying (7.1.14) we choose (x0, ξ0) ∈ KE0 and take for u0 a
coherent state concentrated at (x0, ξ0):

(7.1.15) u0(x) = (2πh)−n/4 exp

(
i

h

(
〈x− x0, ξ0〉+

i

2
|x− x0|2

))
.

Since KE0 is invariant under the flow

exp(tHp)(x0, ξ0) ∈ KE0 .

The assumption (7.1.9) and the fact that ϕ(E0) = 1 show that

(exp tHp)
∗[χ2ϕ(p)](x0, ξ0) = 1 ,

for all time. Consequently (7.1.10) and (7.1.12) give

(7.1.16) at(x0, ξ0) = 1 +O(h
1
2 ),

uniformly for 0 < t < α log 1/h.

The properties of 〈awt (x, hD)u0, u0〉 follow from

LEMMA 7.3. Suppose that u0 is given by (7.1.15) and that b ∈ Sγ, 0 <

γ < 1
2 . Then

〈bw(x, hD)u0, u0〉 = b(x0, ξ0) + e(h) ,

|e(h)| ≤ Cnh
1
2 max
|α|=1

sup
T ∗Rn

|∂αb| ≤ Cn(b)h
1
2
−γ .

(7.1.17)
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Proof. 1. Using the definition of u0 (7.1.15) and making a change of variables
x = z + w, y = z − w we obtain

〈bw(x, hD)u0, u0〉

=
1

(2πh)n

∫
Rn

∫
Rn

∫
Rn
b((x+ y)/2, ξ)e

i
h
〈x−y,ξ〉u0(y)u0(x) dydξdx

=
2n

(2πh)
3n
2

∫
Rn

∫
Rn

∫
Rn
b(z, ξ)e

2i
h
〈w,ξ−ξ0〉e−

1
h

(|z−x0|2+|w|2) dwdξdz.

2. For each fixed z and ξ, the integral in w is∫
Rn
e

2i
h
〈w,ξ−ξ0〉e−

1
h
|w|2 dw = e−

1
h
|ξ−ξ0|2

∫
Rn
e−

1
h
|w+i(ξ−ξ0)|2 dw

= 2−
n
2 (2πh)

n
2 e−

1
h
|ξ−ξ0|2

3. Therefore

〈bw(x, hD)u0, u0〉 =
2
n
2

(2πh)n

∫
Rn

∫
Rn
b(z, ξ)e−

1
h

(|z−x0|2+|ξ−ξ0|2) dzdξ

= b0(x0, ξ0)
2
n
2

(2πh)n

∫
Rn

∫
Rn
e−

1
h

(|z−x0|2+|ξ−ξ0|2) dzdξ + e(h)

= anb(x0, ξ0) + e(h) ,

where

e(h) :=
2
n
2

(2πh)n

∫
Rn

∫
Rn

(b(z, ξ)− b(x0, ξ0))e−
1
h

(|z−x0|2+|ξ−ξ0|2) dzdξ,

and

an :=
2
n
2

(2π)n

∫
Rn

∫
Rn
e−(|z|2+|ξ|2) dzdξ.

Taking b ≡ 1 and recalling that ‖u0‖L2 = 1, we deduce that an(h) = 1.

4. To see that e(h) satisfies the estimate of (7.1.17) we note that

|b(z, ξ)− b(x0, ξ0)| ≤ sup
|α|=1

sup
T ∗Rn

|∂αb|(|z − x0|+ |ξ − ξ0|),

and that (since |x|e−|x|2/2h ≤ h
1
2 )

(|z − x0|+ |ξ − ξ0|)e−
1
h

(|z−x0|2+|ξ−ξ0|2) ≤ h
1
2 e−

1
2h

(|z−x0|2+|ξ−ξ0|2).

Definition of e(h) then shows that

|e(h)| ≤ h
1
2 sup
|α|=1

sup
T ∗Rn

|∂αb|2nan

which gives (7.1.17). �
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End of proof of Theorem 7.1. 5. We apply the lemma to b = at which
together with (7.1.16) gives

〈awt (x, hD)u0, u0〉 = at(x0, ξ0) +O(h
1
2 ) = 1 +O(h

1
2 ),

again uniformly for 0 < t < α log(1/h). Hence (7.1.14) holds. Using (7.1.13)
we obtain

‖χϕ(P ) exp(−itP/h)u0‖2L2
tx
≥ α

2
log

1

h
,

which is (7.1.8) with K(h) = c log(1/h), as needed for (7.1.1). �

7.2. SEMICLASSICAL GROWTH ESTIMATES

In this section we present local bounds on the resolvent and on the number
of resonances for operators of the form

(7.2.1) P = P (h) = −h2∆g + V,

where g is a smooth Riemannian metric on Rn satisfying gij−δij ∈ C∞c (Rn)
and V ∈ C∞c (Rn;R). If n is odd global bounds for compact black box per-
turbations were already presented in §4.3. The advantage of the argument
here is that it applies to more general operators and to even dimensions –
see §7.6 for pointers to the literature. We will also use some methods of the
proof in §7.4 devoted to a local semiclassical trace formula for resonances.

THEOREM 7.4. Suppose that P (h) is given by (7.2.1) and that the set of
resonances of PV is denoted Res(P (h)).

If Ω b {Re z > 0} then

(7.2.2) |Res(P (h)) ∩ Ω| ≤ CΩh
−n.

Proof. The proof is based on the characterization of resonances using the
complex scaling method and then comparing the scaled operator Pθ with an

operator P̃θ such that P̃θ − z is invertible for z ∈ Ω.

1. We first choose 0 < θ < π/4 such that Ω b {arg z > −2θ}. By Theorem
4.38 the resonances of P coincide with the eigenvalues of the scaled operator
Pθ (we recall that Pθ− z is a Fredholm operator for z in a neighbourhood of
Ω). Let χ ∈ C∞c (Rn;R) be equal to 1 on B(0, R2), where R2 will be chosen
sufficiently large. We then define

(7.2.3) P̃θ := Pθ − iMχ(hD)χ(x)2χ(hD),

where to define χ(hD) and χ(x) we identified Γθ with Rn using (4.5.5).

2. We claim that if M and R2 in the definition of P̃θ are large enough then

(7.2.4) (P̃θ − z)−1 = O(1) : L2(Γθ)→ L2(Γθ).
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To see this we calculate the semiclassical symbol of P̃θ (see §E.1.1) using the
identification of Γθ with Rn:

Rn 3 x 7−→ x+ i∂xFθ(x),

where Fθ : Rn → R is a convex function in (4.5.6). We choose Fθ so that
Fθ(x) = 0 for |x| ≤ R1 and that Γθ \ BCn(0, 2R1) = e2iθRn. With this

notation the symbol of P̃θ, σh(P̃θ), is given by

|ξ|2g + V (x)− iMχ(x)2χ(ξ)2, |x| ≤ R1,

((I + iF ′′θ (x))−1ξ) · ((I + iF ′′θ (x))−1ξ)− iMχ(x)2χ(ξ)2, R1 ≤ |x| ≤ 2R1,

e−2iθ|ξ|2 − iMχ(x)2χ(ξ)2, |x| ≥ 2R1.

3. For z ∈ Ω b {arg z > −2θ}, 0 < θ < π/4, we have

(7.2.5) |e−2iθ|ξ|2 − z − iMχ(x)2χ(ξ)2| ≥ (1 + |ξ|2)/C.

In fact, the left hand size cannot vanish since cos 2θ |ξ|2 = Re z > 0 implies

sin 2θ |ξ|2 + Im z +Mχ(x)2χ(ξ)2 > sin 2θ |ξ|2 − Re z tan 2θ = 0.

Hence the left hand side of (7.2.5) is bounded from below for ξ in compact
sets. Since for |ξ| → ∞ the asympotic behaviour is given by |ξ|2, (7.2.5)
holds.

To control σh(P̃h) for |x| ≤ R1 we choose R2 > R1 so that

|ξ| > R2/2 =⇒ |ξ|2g + V (x) > 1 + max
z∈Ω

Re z.

If we also choose M > maxz∈Ω(− Im z) then for z ∈ Ω and |x| ≤ R1,

||ξ|2g + V (x)− iMχ(x)2χ(ξ)2 − z| ≥ (1 + |ξ|2)/C.

It remains to consider the symbol for R1 ≤ |x| ≤ 2R1, where we assume
that R2 > 2R1. For that we go back to (4.5.16) in the proof of Theorem
4.32. It shows that with η = (I + (F ′′θ )2)−1ξ, and for R1 ≤ |x| ≤ R2 (so that
χ(x) = 1),

σh(P̃h − z) = |η|2 − |F ′′θ (x)η|2 − i(2〈F ′′θ (x)η, η〉+Mχ(ξ))− z

For |ξ| ≤ R2 the term Mχ(ξ)2 = M provides a lower bound. For |ξ| ≥ R2

have (note that since F ′′θ (x) positive semidefinite |2〈F ′′θ (x)η, η〉+Mχ(ξ)| ≥
|2〈F ′′θ (x)η, η〉|)

|σh(P̃h − z)| ≥ ||η|2 − |F ′′θ (x)η|2 − i(2〈F ′′θ (x)η, η〉| − |z|

≥ |ξ|2/C − |z| ≥ (1 + |ξ|2)/C,
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if R2 is large enough.

We conclude that P̃θ − z is elliptic as an element of Ψ2
h(Γθ). Theorem

E.32 then shows that for h sufficiently small (7.2.4) holds.

4. For z ∈ Ω we can now write

Pθ − z = (P̃θ − z)(I + iM(P̃θ − z)−1χ(hD)χ(x)2χ(hD))

=: (P̃θ − z)(I +K(z)),
(7.2.6)

where K(z) ∈ Ψcomp
h .

Using Theorem C.11 we conclude

1

2πi
tr

∮
z
(ζ − Pθ)−1dζ =

1

2πi
tr

∮
z
(I +K(ζ))−1K ′(ζ)dζ =: mK(z),

where the integral is over a small circle around z, not containing any eigen-
values of Pθ other than possibly z. This means that the eigenvalues of Pθ
coincide with multiplicities with the zeros of det(I +K(z)). (The operator
χ(hD)χ(x)2χ(hD) is of trace class as χ ∈ C∞c (Rn)).

5. Hence the estimate (7.2.2) follows from the estimate on the number of
zeros of

k(z) := det(I +K(z)),

and for that we use Jensen’s formula applied as in (D.1.11):

(7.2.7)
∑
z∈Ω

mK(z) ≤ C sup
z∈Ω′

log |k(z)| − C log |k(z0)|,

where Ω b Ω′ b Re z > 0 where Ω′ is a simply connected open set (for
instance a rectangle) and z0 ∈ Ω′. We take Ω′ ⊂ {−2θ < arg z < 2π − 2θ}
with the property that (7.2.4) holds for z ∈ Ω′ and that we can find z0 ∈ Ω′

with Im z0 > δ > 0. That is certainly possible following the argument in
step 2.

6. To apply (7.2.7) we first estimates k(z) from above on Ω′ using (B.5.11):

| log k(z)| ≤ ‖K(z)‖L1

≤ ‖(P̃θ − z)−1‖‖χ(hD)χ(x)2χ(hD)‖L1

≤ C tr
[
χ(hD)χ(x)2χ(hD)

]
,

(7.2.8)

where the trace class norm equals to the trace as the operator is positive
semidefinite. Pseudodifferential calculus [Zw12, Theorem 4.11] shows that
χ(hD)χ(x)2χ(hD) = c(x, hD), with c ∈ S (R2n). Hence,

tr
[
χ(hD)χ(x)2χ(hD)

]
=

1

(2πh)n

∫∫
c(x, ξ)dxdξ = O(h−n).

We conclude that

(7.2.9) log |k(z)| = O(h−n), z ∈ Ω′.
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7. It remains to obtain a lower bound at some z0 ∈ Ω′ and we take z0 with
Im z0 > δ > 0. Arguing as in Step 2 we see that Pθ − z0 is elliptic as an
element of Ψ2

h(Γθ). Hence for h small enough

(7.2.10) (Pθ − z0)−1 = O(1) : L2(Γθ)→ L2(Γθ).

Using (7.2.6) we get

(I +K(z0))−1 = (Pθ − z0)−1(P̃θ − z0)

= I − iM(Pθ − z0)−1(χ(hD)χ(x)2χ(hD))

:= I + K̃(z0).

Using (7.2.10) and arguing as in Step 5 we see that

log |det(I + K̃(z0))| ≤ Ch−n.

But that gives,

(7.2.11) log |k(z0)| = − log |det(I + K̃(z0))| ≥ −Ch−n.

Inserting this and (7.2.9) into (7.2.7) gives the bound (7.2.2). �

The next result provides a bound on the cut-off resolvent away from res-
onances. It will be crucial in showing that existence of a localized quasimode
implies existence of a resonance nearby – see §7.3.

THEOREM 7.5 (Exponential resolvent bounds). Suppose that P =
P (h) = −h2∆g + V where V ∈ C∞c (Rn;R) and gij − δij ∈ C∞c (Rn;R). Let
R(z, h) := (P (h)− z)−1, Im z > 0 be the outgoing resolvent which continues
meromorphically to Im z < 0.

Suppose that Ω b {Re z > 0}, χ ∈ C∞c (Rn;R) and that h 7→ δ(h) is
a positive function. Then there exist constants A = A(Ω) and h0 = h0(Ω)
such that for 0 < h < h0,

‖χR(z, h)χ‖L2→L2 ≤ A exp

(
Ah−n log

1

δ(h)

)
,

∀ z ∈ Ω \
⋃

w∈Res(P (h))

D(w, δ(h)).
(7.2.12)

REMARKS. 1. The proof of Theorem 7.5 combined with the methods of
§4.3 gives the same result for black box Hamiltonians. The assumptions on
P (h) can be weakened further and the bound holds in great generality – see
[TZ98].

2. If P = −∆g +V (or P is a general black box Hamiltonian independent of
h) then considering P (h) := h2P and rescaling provides the bound on the
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meromorphic continuation of the cut-off resolvent (R(λ) = (P − λ2)):

‖χR(λ)χ|L2→L2 ≤ A
(

expA|λ|2 log
1

δ(λ)

)
,

|Reλ| > 1, λ /∈
⋃

ζ2∈Res(P )

D(ζ, δ(ζ)).
(7.2.13)

3. The bound on the number of resonances (7.2.2) shows that the sum
of radii of D(w, δ(h)), w ∈ Ω′ ∩ Res(P (h)), where Ω b Ω′ b {Re z >
0}, is bounded by δ(h)h−n. Hence if δ(h) = o(hn) we can always find
Ω′, (h-independently) close to Ω, such that d(∂Ω′,Res(P (h))) > δ(h). In
particular, the estimate (7.2.12) holds for z ∈ ∂Ω′.

Proof. 1. Theorem 4.37 shows that for χ ∈ C∞c (B(0, R1)) (where R1 is as
in (4.5.1))

χR(z, h)χ = χ(Pθ − z)−1χ,

and hence the estimate above follows from the estimate on the norm of
(Pθ − z)−1, 0 < θ < π/4, z ∈ Ω b {arg z > −2θ}.
2. Using (7.2.4) and (7.2.6) we write

‖(Pθ − z)−1‖L2(Γθ)→L2(Γθ) = ‖(I +K(z))−1(P̃θ − z)−1‖L2(Γθ)→L2(Γθ)

≤ C‖(I +K(z))−1‖L2(Γθ)→L2(Γθ).

To estimate the last norm we recall that K(z) is of trace class and hence we
can apply (B.5.21):

‖(I +K(z))−1‖L2(Γθ)→L2(Γθ) ≤ det(I +K(z))−1 det(I + [K(z)∗K(z)]
1
2 ).

As in (7.2.8) we see that

det(I + [K(z)∗K(z)]
1
2 ) ≤ C exp(Ch−n).

Hence the estimate (7.2.12) will follow from the corresponding estimate on
det(I +K(z))−1.

3. From (7.2.8), (7.2.11) and (D.1.13) we now obtain that for

z ∈ Ω \
⋃

w∈Res(P (h))

D(w, δ)

we have the bound

‖ log |det(I +K(z))| ≥ −Ch−n log
1

δ
,

and, as we indicated above, that proves (7.2.12). �
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7.3. FROM QUASIMODES TO RESONANCES

In this section we will again consider operators of the form (7.2.1), P (h) =
−h2∆g + V , with V ∈ C∞c (Rn;R) and gij − δij ∈ C∞c (Rn;R). The results
hold in greater generality – see §6.6 for references but the ideas behind the
proofs are the same as in the arguments presented in this section.

In the presence of classical trapping it is sometimes easy to construct
approximate solutions to (P (h) − E(h))u(h) = 0, where E(h) is an energy
level. That means finding u(h) ∈ C∞c (Rn) such that

(7.3.1) (P (h)− E(h))u(h) = ε(h), ‖u‖L2 = 1,

where ε(h) = O(h∞) or ε(h) = O(e−S0/h), S0 > 0.

EXAMPLE. Suppose that for E > 0 the energy surface of P (h) = −h2∆+
V ,

ΣE = {(x, ξ) : |ξ|2 + V (x) = E},
satisfies

ΣE = Σ0 ∪ Σ∞, Σ0,Σ∞ are closed in T ∗Rn, Σ0 ∩ Σ∞ = ∅,

Σ0 6= ∅, Σ0 b π
−1(B(0, R)), suppV ⊂ B(0, R),

(x, ξ) ∈ Σ∞ =⇒ | exp(tHp)(x0, ξ0)| → ∞,
(7.3.2)

see Fig. 7.1 for an example. (Here, as always, π : T ∗Rn → Rn is the natural
projection, π(x, ξ) = x.)

Since Σ0 and Σ∞ are disjoint, there exist open sets Ω0 b Ω1 b Rn such
that

π(Σ0) ⊂ Ω0, V |Ω1\Ω0
> E.

We can then find V1 ∈ C∞(Rn;R) with the following properties:

V1(x) = V (x), x ∈ Ω1, V1(x) > E, x /∈ Ω0, V1(x) = α|x|2, |x| > R,

for some α > 0. The operator

P1(h) = −h2∆g + V1

is essentially self-adjoint and has discrete spectrum – see for instance [Zw12,
6.3]:

(P1(h) + V1)uj(h) = Ej(h)), ‖uj(h)‖L2 = 1, j ∈ N,
and

(7.3.3) |{Ej(h)}∞j=0 ∩ [E − δ, E + δ]| = 1 + o(1)

(2πh)n

∫
||ξ|2g+V (x)−E|≤δ

dxdξ,

see [Zw12, Theorems 6.8, 14.11].
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E

H2 + COH2 + CO C

O

H H

reaction coordinate

Figure 7.1. An example of a potential for which the assumption of the
example in §7.3 are satisfied. It is a classical example from molecular
dynamics: a cross-section of the energy surface of formaldehyde, H2CO.
That molecule, considered as a resonant state, has a very long lifetime
at energy E due to the strong barrier. That is not surprising considering
the well known properties of formaldehyde.

The eigenfunctions of P1(h) are exponentially small in the classically
forbidden region V1(x) > E + ε, ε > 0 thanks to Agmon estimates – see
[Zw12, Theorem 7.4]. In particular, δ small enough,

(7.3.4) ‖uj(h)‖H2
h(Rn\Ω0) = O(e−S0/h), for Ej(h) ∈ [E − δ, E + δ].

Let χ ∈ C∞c (Rn; [0, 1]) satisfy

χ(x) = 1, x ∈ Ω0, suppχ ⊂ Ω1.

We then see from (7.3.4) and the fact that V coincides with V1 in Ω1,

(7.3.5) (P (h)− Ej(h))(χuj(h)) = O(e−S0/h)L2 ,

that is, (7.3.1) is satisfied with

u(h) := χuj(h)/‖χuj(h)‖, ε(h) = O(e−S0/h).

Here we notice that (7.3.4) implies that ‖χuj‖L2 = 1 +O(e−S0/h).

From (7.3.3) we see that we have obtained ∼ h−n quasimodes. �

If P1(h) = −h2∆g + V is an operator on a compact manifold, or P1(h)
is the operator in the example above, then the spectrum of P1(h) is dis-
crete. Existence of a quasimode (7.3.1) and the spectral theorem imme-
diately imply that there exists an eigenvalue of P1(h), E0(h), such that
|E(h)− E0(h)| ≤ ‖ε(h)‖L2 .

If E0(h) > 0 then we know Theorem 4.18 that we cannot have L2 solu-
tions to (P (h)−E0(h))u0(h) = 0 yet existence of a quasimode (7.3.1) should
imply existence of a long living quantum state. That is indeed the case as
shown in the next result:



7.3. FROM QUASIMODES TO RESONANCES 447

THEOREM 7.6 (From quasimodes to resonances). Suppose that there
exists a family u(h) ∈ C∞c (Rn) such that suppu ⊂ U b Rn where U is
independent of h and that for some E(h) = E0 + o(1), E0 > 0,

(P (h)− E(h))u(h) = ε0(h), ‖u(h)‖L2 = 1,

ε0(h) = O(h∞)L2 or ε0(h) = O(e−S0/h)L2, S0 > 0..

Then for 0 < h < h0 there exists z(h) ∈ Res(P (h)) such that

|z(h)− E(h)| ≤ ε(h),

ε(h) = O(h∞) or ε(h) = O(e−S/h), ∀S < S0,
(7.3.6)

respectively.

EXAMPLE. Suppose that P (h) = −h2∆+V where V satisfies the assump-
tion (7.3.2) of the example in the beginning of this section. The construction
of quasimodes (7.3.5) in that example, Theorem 7.6 and (7.3.3), show that
there exist E(h) = E + o(1), and

z(h) ∈ Res(P (h)), |E(h)− z(h)| ≤ e−S/h, S > 0.

In many cases very precise form of E(h) can be given by using semiclassical
spectral theory for P1(h) – see for instance [DS99, Chapter 3] and references
given there. Resonances obtained this way are sometimes called shape res-
onances and, as we indicated already, they can be analyzed more precisely
under stronger assumptions – see [FLM11] and references given there.

Other constructions can be use to obtain quasimodes and consequently
resonances. For instance we can take P (h) = −h2∆g and construct quasi-
modes associated to elliptic geodesics – see Fig. 7.2 for an illustration and
[TZ98],[St99] for references. In particular, the same construction can be
used for obstacle problems. �

REMARKS. 1. Under additional assumptions much finer estimates on
the location of z(h) are possible. One can already see this in the simple
example presented in Theorem 2.27. For the analysis of the general “well-
in-the-island” case see Helffer–Sjöstrand [HS86] and for recent advances
and references see Fujiie–Lahmar-Benbernou–Martinez [FLM11], Grigis–
Martinez [GM14] and Dalla Venezia–Martinez [DM17].

2. The estimate in (7.3.6) can be improved and the localization of the imagi-
nary part is much better than the localization of the real part [TZ98],[St99].
That can be seen from the proof below.

3. Theorem 7.6 does not address the issue of multiplicities and hence we
cannot immediately deduce from (7.3.3) that we have ∼ h−n resonances
close to the real axis. That was remedied by Stefanov in [St99] and we
outline his argument in Exercise 7.1.
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Figure 7.2. A surface with a Euclidean end (the “stand”). The elliptic
trajectory around the largest cross-section generates real quasimodes.
The hyperbolic trajectory around the “neck” does not produce reso-
nances near the real axis – that is related to the results of §6.3.

The following lemma will play a crucial role in the proof of Theorem 7.6:

LEMMA 7.7 (Semiclassical maximum principle). Suppose H is a
Hilbert space and that z 7→ Q(z, h) ∈ L(H), 0 < h < 1, is a holomorphic
family of operators in a neighbourhood of

z ∈ Ω(h) := (2a(h)− b(h), 2b(h)− a(h)) + i(−δ(h)h−L, δ(h)),

a(h) < b(h), 0 < δ(h) < 1, (b(h)− a(h))2 ≥ Ch−3Lδ(h)2,
(7.3.7)

for some L > 0 and C > 0. Then,

‖Q(z, h)‖ ≤ exp(Ch−L), z ∈ Ω,

and

‖Q(z, h)‖ ≤ 1/ Im z, Im z > 0, z ∈ Ω,

(7.3.8)
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implies

(7.3.9) ‖Q(E, h)‖ ≤ eC+1δ(h)−1, a(h) < E < b(h).

Proof. We apply Lemma D.1 to the holomorphic family

F (z, h) := Ff,g(z, h) = 〈Q(z − a(h)+b(h)
2 , h)g, f〉H , ‖f‖H = ‖g‖H = 1,

with

R = b(h)− a(h), δ+ = δ(h), δ− = δ(h)h−L,

M = M− = exp(Ch−L), M+ = 1/δ(h).

The assumption (D.1.3) is verified as

R2δ−2
− = (b(h)− a(h))2δ(h)−2h2L ≥ Ch−L = logM.

Hence (D.1.4) shows that for Im z = 0, |z| ≤ R

|F (z, h)| ≤ eeCh−Lδ+/(δ++δ−)δ
−δ−/(δ++δ−)
+

= eeC/(1+hL)δ(h)−1/(1+hL) ≤ eC+1δ(h)−1.
(7.3.10)

Since ‖Q(z, h)‖ = supf,g |Ff,g(z, h)|, the lemma follow. �

REMARK. The proof shows that we also have

(7.3.11) ‖Q(z, h)‖ ≤ e2C+2δ(h)−1 for |Re z| ≤ R and | Im z| ≤ δ(h).

That follows from using (D.1.5) applied with |y| ≤ δ+ = δ(h). This remark
will be useful in §7.5.

Proof of Theorem 7.6. 1. We argue by contradiction. Suppose

χ ∈ C∞c (Rn; [0, 1]), χ(x) = 1, x ∈ U.

Then for complex scaling starting outside of U ,

χ(P (h)− E(h))−1χε0(h) = χ(Pθ(h)− E(h))−1χ(P (h)− E(h))u(h)

= χ(Pθ(h)− E(h))−1(Pθ(h)− E(h))u(h)

= χu(h) = u(h).

Hence if we show that

(7.3.12) Res(P (h)) ∩D(E(h), ε(h)) = ∅

implies

(7.3.13) ‖χ(P (h)− E(h))−1χ‖L2→L2 < 1
2‖ε0(h)‖−1,

we obtain a contradiction to ‖u(h)‖ = 1.

2. We can assume that for some c0

‖ε0(h)‖ ≥ e−c0/h
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E(h)1
2ε(h)ε(h)

h−n−1δ(h)

δ(h)

1
2
ε(h

)

ResP (h)

Figure 7.3. The two discs D(E(h), 2−jε(h)), j = 0, 1 used in the proof
of Theorem 7.6: absence of resonances in D(E(h), ε(h)) and Theorem
7.5 imply bounds on the resolvent in D((E(h), 1

2
ε(h). We can then place

a rectangle [E(h)− 1
4
ε(h), E(h) + 1

4
ε(h)] + i[−h−n−1δ(h), δ(h)] inside of

that disc and apply Lemma 7.7.

and then put

ε(h) = h−2(n+1)‖ε0(h)‖.
We note that (7.3.6) holds and that

(7.3.14) log(1/ε(h)) ≤ C1/h.

To deduce (7.3.13) from (7.3.12) with this choice of ε(h) we will use Lemma
7.7.

Theorem 7.5 and (7.3.14) show that for for some constant C,

‖χR(z, h)χ‖L2→L2 ≤ AeAh−n log(2/ε(h)) ≤ CeCh−n−1
,

for

z ∈ D(E(h), ε(h)) \
⋃

w∈Res(P (h))

D(w, 1
2ε(h)).

The assumption (7.3.12) then gives

‖χR(z, h)χ‖L2→L2 ≤ CeCh−(n+1)
, z ∈ D(E(h), 1

2ε(h)),

‖χR(z, h)χ‖L2→L2 ≤ 1/ Im z, Im z > 0,

where the last inequality comes from self-adjointness of P (h):

‖(P (h)− z)−1‖L2→L2 = 1/ Im z, Im z > 0.
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(a) (b)

(c) (d)

Figure 7.4. Examples of one-dimensional potentials illustrating condi-
tion (7.3.2): the component of infinity is non trapping (that is (7.3.2)
holds) in cases (a),(b),(c) but not (d).

3. We can now apply Lemma 7.7 with

Q(z, h) = χR(z, h)χ, δ(h) = M‖ε0(h)‖, M � 1,

a(h) = E(h)− 1
4ε(h), b(h) = E(h) + 1

4ε(h),

The assumptions (7.3.7) are satisfied as

(1
2ε(h))2 = 1

4h
−4(n+1)‖ε0(h)‖2 ≥ Ch−3(n+1)M2‖ε0(h)‖2

= Ch−3(n+1)δ(h)2,

if h is small enough. (There is no push for optimality here.) Thus (7.3.9)
gives (7.3.13) if M is chosen large enough:

‖χ(P (h)− E(h))−1χ‖ = ‖χR(E(h), h)χ‖ ≤ eC+1δ(h)−1

= eC+1M−1‖ε0(h)‖−1 ≤ 1
2‖ε0(h)‖−1.

Returning to Step 1 of the proof we have obtained the needed contradiction
to the assumption (7.3.12). �

We conclude this section by describing a dichotomy for imaginary parts
of resonances in the case a potential barrier for which the component of
infinity is non-trapping. This phenomenon of resonances splitting into those
close to the real axis and those far away occurs in many other settings,
for instance in transmission problems, see Sjöstrand–Vodev [SV97] and
Galkowski [Ga19].
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THEOREM 7.8 (Dichotomy for resonance widths). Suppose that
P (h) = −h2∆ + V satisfies (7.3.2) for some E > 0.

Then there exist δ > 0, S > 0 such that for every M there exists h0 > 0,
so that for 0 < h < h0,

(7.3.15) z ∈ Res(P (h)), |Re z − E| < δ =⇒

 Im z > −e−S/h
or

Im z < −Mh log(1/h).

for 0 < h < h0.

REMARKS. 1. Condition (7.3.2) means that the infinity component of
the energy surface p = E is non trapping – see Fig. 7.4.

2. We have a stronger conclusions than (7.3.15): all resonances with Im z >

−e−S/h come from quasimodes localized in p−1(E) \ Σ∞ and hence can be
related to eigenvalues of the reference problem P1(h) presented in the first
example – see Exercise 7.3.

Proof. 1. Let Pθ(h) be the complex scaled operator obtained by considering
P (h) as a black box Hamiltonian – see §4.5. In particular, Pθ(h) coincides
with P (h) near suppV and supp(gij − δij). If z ∈ Res(P (h)) we consider
the corresponding resonant state

(7.3.16) (Pθ(h)− z)uθ = 0, ‖uθ‖L2(Γθ) = 1.

2. Let χ ∈ C∞c (Rn; [0, 1]) satisfy

(7.3.17) χ(x) = 1 near π(Σ0) and χ(x) = 0 near π(Σ∞).

That is possible as Σ0 and Σ∞ are closed and disjoint. Condition (7.3.17)
implies that

(7.3.18) V (x) > E for x ∈ supp dχ .

We first claim that for z and uθ satisfying (7.3.16) and some S > 0 we
have the following dichotomy for small enough h:

(7.3.19) ‖χuθ‖ < e−S/h or Im z > −e−S/h.

3. To prove (7.3.19) use self-adjointness of P (h) to write

−2i Im z‖χuθ‖2 = 〈(P (h)− z)χuθ, χuθ〉 − 〈χuθ, (Pθ(h)− z)χuθ〉
= 〈[P (h), χ]uθ, χuθ〉.

In view of (7.3.18), Agmon estimates (see [Zw12, Theorem 7.4]) show that

‖[P (h), χ]uθ‖ < e−2S/h‖uθ‖
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for some S > 0 and h small enough. Hence

| Im z|‖χuθ‖ < e−2S/h,

and (7.3.19) follows.

4. We now show that for any M > 1 here exists h0 such that for 0 < h < h0,

(7.3.20) ‖χuθ‖ < e−S/h =⇒ Im z < −Mh log(1/h).

In view of (7.3.19) that will prove the theorem.

To establish (7.3.20) we use (7.3.2) to find V0 ∈ C∞c (Rn;R) such that

(7.3.21) supp(V − V0) ⊂ suppχ, V0(x) > E, x /∈ π(Σ∞),

where χ satisfies (7.3.17). That means that V0 “fills in” the finite components
of the energy surface of V . (Its role is the opposite to that of V1 in the first
example of this section.) Then

{(x, ξ) : |ξ|2g + V0(x) = E} = Σ∞

and the assumption (7.3.2) shows that

|ξ|2g + V0(x) = E =⇒ |π exp(tHp0)(x, ξ)| → ∞, t→ ±∞,

where p0(x, ξ) = |ξ|2g + V0(x). That means that the energy level E is non-
trapping for P0(h). If P0,θ(h) is the corresponding scaled operator. From
(6.4.17) we see that

(7.3.22)
‖(P0,θ(h)− z)−1‖ ≤ h−C0M ,

z ∈ [E − δ, E + δ]− i[0,Mh log(1/h)],

for 0 < h < h0.

5. Suppose that (7.3.20) is false that is, ‖χuθ‖ < e−S/h and Im z ≥
−Mh log(1/h). Because of (7.3.21) we can choose χ̃ ∈ C∞c (Rn; [0, 1]) such
that χ = 1 on a neighbourhood of supp χ̃ and

(Pθ(h)− z)(1− χ̃) = (P0,θ(h)− z)(1− χ̃).

Hence

(1− χ̃)uθ = (P0,θ(h)− z)−1(P0,θ(h)− z)(1− χ̃)uθ

= (P0,θ(h)− z)−1(Pθ(h)− z)(1− χ̃)uθ

= (P0,θ(h)− z)−1[Pθ(h), χ̃]uθ.

(7.3.23)

We can find open sets U ⊂ W such that supp dχ̃ ⊂ U and W b {χ = 1}.
Semiclassical elliptic estimates (see [Zw12, Theorem 7.1]) and ‖χuθ‖ <
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e−S/h then give

‖[Pθ(h), χ̃]uθ‖L2 ≤ Ch‖uθ‖H1
h(U)

≤ Ch‖(Pθ(h)− z)uθ‖L2(W ) + Ch‖uθ‖L2(W )

≤ Ch‖χuθ‖ ≤ Ce−S/h.

Combined with (7.3.22) and (7.3.23) this gives

1 = ‖uθ‖ ≤ ‖(1− χ̃)uθ‖+ ‖χ̃uθ‖

≤ ‖(1− χ̃)uθ‖+ e−S/h ≤ 2e−S/h

which provides an obvious contradiction for h small enough. �

7.4. THE SJÖSTRAND TRACE FORMULA

In this section we present a semiclassical local trace formula for resonances.
It is different from the formula in §3.10 by involving only a finite number of
resonances of a semiclassical black box operator.

We provide a complete proof in the simplified situation of −h2∆ + V ,
and V ∈ C∞c (R3;R). We then give an application by showing that for any
potential V ∈ C∞c (R3;R) there exist many energy levels E such that for any
r > 0,

(7.4.1) |Res(−h2∆g + V ) ∩D(E, r)| ≥ h−n/C(r), 0 < h < h0(r).

To formulate the theorem we introduce the following subsets of C:

Ω := (a, b) + i(c, d), W := (a′, b′) + i(c′, d),

0 < a < a′ < b′ < b, c < c′ < 0 < d,

Ω− := Ω ∩ {Im z ≤ 0}, W− := W ∩ {Im z ≤ 0},
ΩR = Ω ∩ R, WR = W ∩ R.

(7.4.2)

The complex scaling method described in §4.5 will be crucial in the proof.
Hence we choose c, d small enough so that Ω ⊂ {arg z > −θ} for some
θ < π/2. The regions are illustrated in Fig. 7.5

THEOREM 7.9 (The Sjöstrand trace formula). For n = 3 let

PV (h) := −h2∆ + V (x),

where V ∈ C∞c (R3;R), P0(h) = −h2∆, and supppose that Ω and W are
given by (7.4.2).

Let f be a holomorphic function in a neighbourhood of Ω and satisfies

(7.4.3) |f(z)| ≤ 1, z ∈ Ω \W,

and let ψ ∈ C∞c (ΩR) be equal to 1 on WR.
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Re z

Im z

W

Ω

a a′ b′ b

d

c′

c

Figure 7.5. The regions Ω and W in Theorem 7.9

Then

(7.4.4) (ψf)(PV (h))− (ψf)(P0(h)) ∈ L1(L2(Rn), L2(Rn)),

and

tr [(ψf)(PV (h))− (ψf)(P0(h))] =∑
z∈Res(PV (h))∩W−

f(z) +O(h−n) +Of (h∞).(7.4.5)

REMARKS. 1. In the application of (7.4.5) we vary f with a fixed ψ –
hence we are not concerned about the dependence of the constants on ψ –
only on f . The term Of (h∞) (see Remark 3 below) might seem disturbing
at first but in the applications we choose f (depending on some parameters)
so that information is drawn from the first two terms on the right hand side
of (7.4.5). One then fixes that f and considers the semiclassical limit h→ 0.

2. The restriction to dimension n = 3 is due to better trace class properties
used in the proof, just as in the proof of Theorem 3.51 for n = 3. The
proof works also for n = 1. The statement remains valid for all n but the
proof needs to be modified: complex scaling needs to be presented for odd
and even dimensions and we need additional arguments to deal with trace
class properties. Roughly, it amounts to replacing (P• − z)−1 in the proof
by (P•−z)−1(P•−z0)−m, m ≥ (n−1)/2 but that leads to (minor) algebraic
complications.

3. Much weaker assumptions on P (h) are needed and in particular the trace
formula works for long range black box Hamiltonians. The formulation is
also stronger: the error term Of (h∞) can be dropped and in (7.4.3) the
bound is needed only in Ω− \W – see §7.6 for references.

Before the proof we present two lemmas which provide quantitative es-
timates on trace class norms of resolvent differences.
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LEMMA 7.10. Suppose that n = 3. For z ∈ C \ R we have

(PV − z)−1 − (P0 − z)−1 = O(h−n| Im z|−M0)L1(L2(Rn)),(7.4.6)

for some constant M0. If χ ∈ C∞c (Rn) and χ ≡ 1 on suppV then, for any
N ,

(1− χ)
(
(PV − z)−1 − (P0 − z)−1

)
= O(hN | Im z|−CN ) : 〈x〉NH−N (Rn)→ 〈x〉−NHN (Rn).

(7.4.7)

Proof. 1. For z ∈ C \ R, PV − z is a quantization of an elliptic symbol in
S(〈ξ〉2) where the symbol class associated to the weight m(x, ξ) = 〈ξ〉2 is
described in [Zw12, §4.4]. Hence the semiclassical version of Beals’s Lemma
[Zw12, Theorem 8.3] shows that

(PV − z)−1 = aV (x, hD, z),

where, for some M1 > 0, aV satisfies

∂αx ∂
β
ξ aV (x, ξ, z) = Oα,β(〈ξ〉−2| Im z|−M1−2(|α|+|β|)).

(We find it more convenient here to refer to the calculus based on weight
functions – see [DS99, Chapter 7] and [Zw12, Chapter 4] rather than the
calculus build for our application for scattering on manifolds in Appendix
E. See [DS99, Chapter 8] and the proof [Zw12, Theorem 14.9] for similar
arguments.)

2. Since V ∈ S(〈x〉−N ) for any N ,

(PV − z)−1 − (P0 − z)−1 = −(PV − z)−1V (P0 − z)−1 = b(x, hD, z),

where for z ∈ C \ R, b ∈ S(〈ξ〉−4〈x〉−N ) for any N . Moreover, for some
M2 > 0,

∂αx ∂
β
ξ b(x, ξ, z) = Oα,β,N (〈x〉−N 〈ξ〉−4| Im z|−M2−2(|α|+|β|)).

This follows from the composition formula in [Zw12, Theorem 4.18] and
the remainder estimates – see for instance [Zw12, (9.3.17)]. The trace class
norm is bounded by (see for instance [DS99, Chapter 9])

‖b(x, hD, z)‖L1 ≤ Ch−n
∑

|α|+|β|≤2n+1

∫
R2n

|∂αx ∂
β
ξ b(x, ξ, h)|dxdξ

≤ C ′h−n| Im z|−M0 ,

which is (7.4.6). (It is here that we use n = 3 as
∫
Rn〈ξ〉

−4dξ < ∞ only for
n ≤ 3.)

3. To see (7.4.7) we proceed similarly: for z ∈ C \ R the pseudodifferential
calculus shows that (1−χ)b(x, hD, z) = O(h∞)S→S ′ . In fact, all the terms
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in the expansion vanish and the remainder is in the residual class. Expanding
the remainder explicitly as in [Zw12, (9.3.17)] shows a quantitative estimate:

(1− χ)b(x, hD, z) = c(x, hD, z),

∂αx ∂
β
ξ c(x, ξ, z) = Oα,β,N (hN 〈x〉−N 〈ξ〉−N | Im z|−M2−2(|α|+|β|)).

This and [Zw12, Theorem 8.10] prove (7.4.7). �

LEMMA 7.11. Suppose that n = 3 and that χ0 ∈ C∞c (B(0, R1)) is equal
to 1 near suppV . (Here R1 is the same as in (4.5.1)). Let PV,θ and P0,θ

be the complex scaled operators PV and P0, in the sense of Definition 4.31.
Then for Im z ≥ δ > 0,

(1− χ0)
(
(PV,θ − z)−1 − (P0,θ − z)−1

)
= Oδ(h∞)L1(L2(Γθ)).

Proof. As in the proof of Theorem 7.4 we see that Im z > −δ, PV,θ − z ∈
Ψ2
h(Γθ) is elliptic. Hence the estimate in the Lemma follows from the pseu-

dodifferential calculus similarly to (7.4.7). �

Proof of Theorem 7.9. 1. The starting point is the Helffer-Sjöstrand for-
mula: for g ∈ C∞c (R) we write g(PV ) is given by

(7.4.8) g(PV ) :=
1

π

∫
C

(PV − z)−1∂̄z g̃(z)dm(z),

where g̃ ∈ C∞c (C) is an almost analytic continuation of g – see §B.2 and
[DS99, (8.1) and (8.2)]. We stress that here and below the resolvent (P• −
z)−1 : L2 → L2, z ∈ C\R, • = V, 0, is meant in the usual spectral theoretical
sense and not in the sense of meromorphic continuation across R.

Using the short hand notation,

[F (P•)]
V
0 := F (PV )− F (P0),

we then have, with g = fψ,

[(fψ)(P•)|V0 =
1

π

∫
C

[(P• − z)−1]V0 ∂̄zψ̃(z)f(z)dm(z).

Lemma 7.10 shows that ‖[(P•−z)−1]V0 ‖L1 = O(h−n| Im z|−M0) and this gives
(7.4.4).

2. We can arrange that

supp ∂̄zψ̃ ∩ {Im z < δ} ⊂ Ω \W.

In particular

(7.4.9) ∂̄zψ̃(z)f(z) = O(1), Im z < δ,
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where the constant is independent of f . This is where the assumption (7.4.3)
is used. The Cauchy–Green formula (D.1.1),

2i

∫
U
∂̄zϕ(z)dm(z) =

∫
∂U
ϕ(z)dz, ϕ ∈ C∞c (C),

(U is an open set with a C1 positively oriented boundary) applied with the
operator valued function

ϕ(z) =
[
P• − z)−1

]V
0
f(z)ψ̃(z),

and U = {Im z > δ} shows that

1

π

∫
C

[
(P• − z)−1

]V
0
∂̄zψ̃fdm(z) =

1

2πi

∫
Γδ

[
(P• − z)−1

]V
0
ψ̃fdz

+
1

π

∫
Im z<δ

[
(P• − z)−1

]V
0
∂̄zψ̃fdm(z),

where the line Γδ := R + iδ is oriented from right to left.

From (7.4.6) and (7.4.9) we see that the trace class norm of the second
term on the right hand side is bounded by Ch−n with a constant independent
of f . Hence,

(7.4.10) [(fψ)(P•)|V0 =
1

2πi

∫
Γδ

[
(P• − z)−1

]V
0
ψ̃fdz +O(h−n)L1 .

3. For χ ∈ C∞c (Rn) equal to 1 near suppV we apply insert 1 = χ+ (1− χ)
on the left and right of the right hand of (7.4.10) and apply (7.4.7). The
terms involving (1− χ) give Of (h∞)L1) contributions and we obtain

[(ψf)(P•)]
V
0 =

1

2πi

∫
Γδ

χ
[
(P• − z)−1

]V
0
χψ̃f(z)dz

+O(h−n)L1 +Of (h∞)L1 .

Because of the cut-off χ we can now use Theorem 4.37 and replace P• by the
complex scaled operators P•,θ. Since Im z = δ > 0 in the integral, Lemma
7.11 shows that we can remove the cut-off function χ at the expense of
another error Of (h∞) error term:

tr [(ψf)(P•)]
V
0 =

1

2πi
tr

∫
Γδ

[
(P•,θ − z)−1

]V
0
ψ̃f(z)dz

+O(h−n) +Of (h∞)

We now bring back the operators P̃•,θ introduced in the proof Theorem 7.4

– see (7.2.3). Invertibility of P̃•,θ − z for z near Ω shows that∫
C

[(P̃•,θ − z)−1]V0 ∂̄zψ̃(z)f(z)dm(z) = 0.
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Arguing as in Step 2 with (P̃•,θ − z)−1 in place of (P• − z)−1 we obtain

tr[(fψ)(P•)|V0 =
1

2πi
tr

∫
Γδ

[
(P•,θ − z)−1 − (P̃•,θ − z)−1)

]V
0
ψ̃(z)f(z)dz

+O(h−n) +Of (h∞),

4. The terms • = 0, V can be treated separately as the differences are of trace
class. Applying the Cauchy–Green formula (D.1.1) with U = {Im z < δ},
again and taking the trace we obtain, noting that resonances are the poles

of (P•,θ − z)−1 − (P̃•,θ − z)−1 (the second term is holomorphic):

tr[(fψ)(P•)|V0 =
∑

z∈Res(PV )

(fψ̃)(z) +O(h−n) +Of (h∞)

+
1

π

∫
Im z<δ

tr
[
(P•,θ − z)−1 − (P̃•,θ − z)−1

]V
0
∂̄zψ̃(z)f(z)dm(z).

(Note that the negative orientation of Γδ produces the correct sign of the

terms (fψ̃)(z).)

5. We now use the operators K• defined by (7.2.6) with Pθ replaced by P•,θ:

K•(x) = iM(P̃•,θ − z)−1χ(hD)χ(x)2χ(hD).

We note that

(7.4.11) (P•,θ − z)−1 − (P̃•,θ − z)−1 = −K•(z)(I +K•(z))
−1(P̃•,θ − z)−1,

and that

(7.4.12) ∂zK•(z) = (P̃•,θ − z)−1K•(z).

From these two identities we deduce that∫
Im z<δ

tr
[
(P•,θ − z)−1 − (P̃•,θ − z)−1

]V
0
∂̄zψ̃(z)f(z)dm(z) =∫

Im z<δ
[∂zk•(z)k•(z)

−1]V0 ∂̄zψ̃(z)f(z)dm(z),

(7.4.13)

where k•(z) := det(I +K•(z)).

6. We recall the estimates on the determinant, (7.2.9) and (7.2.11), from
the proof of Theorem 7.4:

log |k•(z)| ≤ Ch−n, z ∈ Ω′ log |k•(z0)| ≥ −Ch−n.
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The bound (D.1.15) then shows that for z near Ω (and with Ω′ b {Re z > 0}
an h independent neighbourhood of Ω)

(7.4.14)

∂zk•(z)

k•(z)
= H ′•(z) +

∑
ζ∈Res(P (h))∩Ω′

mk•(ζ)

z − ζ
, H ′•(z) = O(h−n),

∑
ζ∈Ω

mkV (ζ) = O(h−n), mk0(ζ) ≡ 0.

In view of (7.4.9) ∂̄zψ̃(z)f(z) is bounded independently of f for Im z < δ.
Since for U b C, ∫

U
|z − ζ|−1dm(z) = OU (1),

(7.4.14) gives the bound O(h−n) for the right hand side of (7.4.13). �

To state an application of Theorem 7.9 we need to review some basic
facts about analytic singular support and wave front set. The standard
references are [De92],[HöI, §9.3],[Ma02a, §3.3] and [Sj82].

DEFINITION 7.12. Suppose that u ∈ S ′(Rn). Then the analytic singular
support of u is the closed set singsuppa u, defined by the condition that
x /∈ singsuppa u if and only if there exists a neighbourhood U of x such that
u|U is a real analytic function.

A useful characterization of the analytic singular support is given in
terms of the analytic wave front set which is the analytic version of the wave
front set given in §E.2. One way to define the analytic wave front set is
using the FBI (Fourier–Bros–Iagolnitzer) transform: for u ∈ S ′(Rn),

(7.4.15) Tλu(x, ξ) =

∫
Rn
e−λ(x−y)2/2+iλ〈ξ,x−y〉u(y)dy, λ > 0,

where the integral is meant in the sense of a distributional pairing. We
note |Tλu(x, ξ)| ≤ CλN , for some N . (The inequality follows from using a

semi-norm of y 7→ e−λ(x−y)2/2+iξ(x−y) in S .)

We then have

DEFINITION 7.13. For u ∈ S ′(Rn) the analytic wave front set of u,
WFa(u) ⊂ Rn × (Rn \ 0), is defined as follows:

(x, ξ) /∈WFa(u) ⇐⇒ ∃ U ⊂ R2n a neighbourhood of (x, ξ) and δ > 0

such that |Tλu(y, η)| ≤ Ce−δλ for (y, η) ∈ U as λ→∞.

The result connecting the two objects is

(7.4.16) singsuppau = π(WFa(u)), π(x, ξ) := x, π : T ∗Rn \ 0→ Rn,
see [HöI, Theorems 8.4.5 and 9.6.3].
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A lower bound on the number of resonances is now given in any neigh-
bourhood of an energy level lying in the analytic singular support of the
distribution function of the potential:

THEOREM 7.14 (Lower bounds for the number of resonances).
Suppose that n = 3 and PV = −h2∆ + V , V ∈ C∞c (Rn;R). Let λV be the
distribution function of V :

λV (t) := m({x : V (x) > t}).

If 0 < E ∈ singsuppa λV , then for any r > 0 there exists h0 > 0 and C > 0
such that for 0 < h < h0,

(7.4.17)
∑

z∈D(E,r)

mV (z) ≥ h−n/C.

REMARKS. 1. For any potential V , any critical value of V is in the C∞

singular support of λV and hence in singsuppaλV .

2. The theorem is valid in all dimensions and for the same class potentials
for which (7.4.5) holds – see [Sj96a] and [Sj96b]. We present the proof for
Rn assuming the validity of Theorem 7.9 for all n.

Proof. 1. Suppose g ∈ C∞c (R). We then have g(PV ) = aV (x, hD;h), where

a•(x, ξ;h) = g(ξ2 + V (x)) + ha1,V (x, ξ, h),

∂αx ∂
β
ξ a1,V (x, ξ, h) = Oα,β(〈x〉−∞〈ξ〉−∞).

(Note that a1,0 ≡ 0.) This follows from the functional calculus based on the
Helffer–Sjöstrand formula with Lemma 7.10 providing the needed resolvent
estimates – see [DS99, Chapter 8] or [Zw12, Theorem 14.9]. It follows that

tr(g(PV )− g(P0)) =
1

(2πh)n

∫
R2n

(g(ξ2 + V (x))− g(ξ2))dξdx

+Og(h−n+1).

(7.4.18)

2. We want to express the first term on the right hand side of (7.4.18)
using the distribution function of V , λV , or more precisely the distribution
functions for V±:

λV±(t) =

{
m({x : ±V (x) > t}), t ≥ 0

0, t < 0.

For that we put g̃(t) := g(−t) so that∫
Rn

(g(ξ2 + a)− g(ξ2))dξ = 2−1 Vol(Sn−1)

∫ ∞
0

(g(r + a)− g(r))r
n−2
2 dr

= πn/2(g̃ ∗ χ
n−2
2

+ (−a)− g̃ ∗ χ
n−2
2

+ (0)),
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where

χs+ = xs+/Γ(s+ 1), xs+ =

{
xs, x > 0,
0, x ≤ 0,

first defined for Re s > −1 and then by analytic continuation for all s ∈ C,
see [HöI, §3.2]. (We assume that n = 3 but as the argument works for
any dimension we proceed in that generality. The constant comes from the
calculation of the volume of the sphere: Vol(Sn−1) = 2πn/2/Γ(n/2).)

We now note that for F ∈ C1(R) with F (0) = 0,∫
Rn
F (V (x))dx =

∫ ∞
0

(
F ′(t)λV+(t)− F ′(−t)λV−(t)

)
dt.

The integration can be changed to integration over R in view of the support
properties of λV± . Applying this with

F (t) := g̃ ∗ χ
n−2
2

+ (−t)− g̃ ∗ χ
n−2
2

+ (0),

we see that∫
R2n

(g(ξ2 + V (x))− g(ξ2))dξdx

= πn/2
∫
R

(
−g̃′ ∗ χ

n−2
2

+ (−t)λV+(t) + g̃′ ∗ χ
n−2
2

+ (t)λV−(t)

)
dt

= πn/2
∫
R
g′(t)

(
χ
n−2
2

+ ∗ λV+(t)− χ
n−2
2

+ ∗ λV−(−t)
)
dt =

= πn/2〈u, g〉,

(7.4.19)

where 〈•, •〉 denotes distributional pairing and we used the fact that (χs+)′ =

χs−1
+ and

(7.4.20) u := −χ
n−4
2

+ ∗ (λV+(•)− λV−(−•)).

3. Since singsuppa(χ
s
+) = {0} and χ−s−2

+ ∗ χs+ = δ0 we see that u defined in
(7.4.20) satisfies

singsuppa(u) = singsuppa(λV+(•)− λV−(−•))

and for E > 0,

E ∈ singsuppa(u) ⇐⇒ E ∈ singsuppa(λV ).

Since u is real valued (which implies that the wave front set is symmetric
with respect to (x, ξ) 7→ (x,−ξ)) we conclude from (7.4.16) that

E ∈ singsuppa(u) ⇐⇒ ∀ ξ ∈ R \ 0, (E, ξ) ∈WFa(u).

Hence suppose that 0 < E ∈ singsuppau. Then (E, 1) ∈ WFa(u).
Suppose that ψ ∈ C∞c (R; [0, 1]) is equal to 1 near E. Then Definition (7.13)
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of the analytic wave front set in terms of the FBI transform shows that there
exist tj → E, τj → 1, εj → 0 and λj → +∞ such that

(7.4.21)

∣∣∣∣∫
R
e−λj(t−tj)

2/2+iλjτj(tj−t))χ(t)u(t)dt

∣∣∣∣ ≥ e−εjλj .
4. We will apply Theorem 7.9 with

W = (E − b/2, E + b/2) + i(−a/2, a), Ω = (E − b, E + b) + i(−a, a),

0 < b� 1, 0 < a/b2 � 1, and

fj(z) = M−1
j eλj(iτj(tj−z)−(tj−z)2/2),

where

Mj := max
z∈Ω\W

|eλj(iτj(tj−z)−(tj−z)2/2)|

= max
z∈Ω\W

eλj(τj Im z−(tj−Re z)2/2+Im z2/2)

≤ e−c0λj , c0 > 0,

(7.4.22)

for j large enough.

In fact, since tj → E and τj → 1 we only need to check this for tj = E
and τj = 1:

max
b
2
≤|Re z−E|≤b
−a≤Im z≤a

Im z − 1
2(E − Re z)2 + 1

2 Im z2 = a+ 1
2a

2 − 1
8b

2,

max
|Re z−E|≤ b

2
−a≤Im z≤−a

2

Im z − 1
2(E − Re z)2 + 1

2 Im z2 = −1
2a+ 1

2a
2.

Our assumptions on a and b in the definition of Ω and W guarantee that
both quantities are bounded from above by −2c0, c0 > 0.

5. Applying (7.4.18) and (7.4.19) with g = ψfj we obtain

tr [(ψfj)(PV )− (ψfj)(P0)]

=
1

(2πh)n

∫
R2n

(
(ψfj)(ξ

2 + V (x))− (ψfj)(ξ
2)
)
dξdx+Oj(h1−n)

=
1

(2πh)n
〈u, ψfj〉+Oj(h1−n)

=
1

(2πh)n
M−1
j Tλj (ψu)(tj , τj) +Oj(h1−n).
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The trace formula (7.4.5) (with the term Ofj (h∞) absorbed into Cjh
1−n)

and the bounds (7.4.21) (7.4.22) give

|
∑
z∈W

fj(z)| =
∣∣∣∣ 1

(2πh)n
M−1
j Tλj (ψu)(tj , τj) +Oj(h1−n) +O(h−n)

∣∣∣∣
≥ c1h

−nM−1
j e−εjλj − Cjh1−n − C0h

−n

≥ c1h
−ne(c0−εj)λj − Cjh1−n − C0h

−n.

We now fix j large enough so that εj < c0/2 and eλjc0/2 > 2 + C0. If
h0 := 1/Cj then for 0 < h < h0,

|
∑
z∈W

fj(z)| ≥ h−n.

But that implies that

max
z∈W
|fj(z)|

∑
z∈W

mV (z) ≥ h−n,

that is the number of resonances in W is bounded from below by h−n/C.
Since for any r we can choose W so that D(E, r) ⊂W the estimates (7.4.17)
follows. �

7.5. RESONANCE EXPANSIONS FOR STRONG
TRAPPING

In §§2.3 and 3.2.2 we saw that solutions of the wave equation (−∂2
t u −

∆ + V )u = 0, V ∈ L∞comp(Rn;R), n odd, with compactly supported initial
data can be expanded in terms of resonances – see (3.2.12). The same
arguments combined with Theorem 6.21 show that the same result holds for
non-trapping metrics: if

P := ∆g + V, gij − δij ∈ C∞c (Rn), V ∈ C∞c (Rn),

exp tHp(x, ξ)→∞, t→ ±∞, p = |ξ|2g,

then as t→ +∞,

u(x, t) =
∑

Imλj>−A
e−iλjtuj(x) + EA(t, x),

‖EA(t)‖HN (K) ≤ CKe−At (‖u(x, 0)‖H1 + ‖∂tu(x, 0)‖L2) ,

(7.5.1)

for solutions of the wave equation,

(∂2
t −∆g + V )u = 0, u|t=0 ∈ H1(U), ∂tu|t=0 ∈ L2(U),

where U b Rn is a fixed compact set. Here λ2
j ∈ Res(P ), Imλj < 0. To

make the statement clear we assumed for simplicity that resonances are
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semi-simple (algebraic and geometric multiplicities coincide) – see (3.2.12)
for the general statement.

In this section we will consider the case of semiclassical Hamiltonians
P (h) = −h2∆g + V with trapped sets which imply existence of resonances
close to the real axis – see §7.3 for examples of that. In that case it is natural
to expand u(t) given by the Schrödinger evolution u(t) = exp(−itP (h)/h)u0.
See Theorem 7.20 and Exercise 7.4 for applications of the same methods to
the wave equation in odd and even dimensions respectively.

We start with some results in some cases where resonances are not close
to the real axis. The analysis is based on results from §§6.3 and 6.4.

7.5.1. Schrödinger propagator in the case of resonance free re-
gions. Suppose that for E > 0,

P (h) := ∆g + V, gij − δij ∈ C∞c (Rn), V ∈ C∞c (Rn),

p(x, ξ) := |ξ|2g + V = E =⇒ exp tHp(x, ξ)→∞, t→ ±∞.
(7.5.2)

Theorem 6.21 shows that there exists δ > 0 such that for any M ,

(7.5.3) Res(P (h))∩ [E−δ, E+δ]− i[0,Mh log(1/h)] = ∅, 0 < h < h0(M).

Moreover, for any χ ∈ C∞c (Rn) we have the following bound on the mero-
morphically continued resolvent:

‖χR(z, h)χ‖L2→L2 ≤ C
expC Im z/h

h
,

z ∈ [E − δ, E + δ]− i[0,Mh log(1/h)] = ∅, 0 < h < h0(M).
(7.5.4)

This has the following consequence for the truncated Schrödinger propaga-
tor:

THEOREM 7.15 (Schrödinger propagator at nontrapping ener-
gies). Suppose that P (h) satisfies (7.5.2), χ ∈ C∞c (Rn) and ψ ∈ C∞c ((E −
δ, E + δ)) where δ is the same as in (7.5.3) and E > 0.

Then there exists T0 such that

(7.5.5) χ exp(−tP (h)/h)ψ(P (h))χ = O

((
(t− T0)+

h

)−∞)
L2→L2

REMARK. When the order of χ and ψ(P (h)) is reversed on the left hand
side of (7.5.5) we obtain an additional terms O(h∞) on the right hand side.
That follows from the pseudodifferential calculus: if χ1 = 1 on suppχ then
(1− χ1)ψ(P (h))χ = O(h∞)L2→L2 – see for instance [Zw12, §14.3].
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Proof. 1. Let us write

(7.5.6) R±(z, h) = (P (h)− z)−1 , analytic for ± Im z > 0 ,

using the same notation for the meromorphic continuation (this means that,
in our standard notationt, R(z, h) = R+(z, h)). Using Stone’s formula (The-
orem B.10) we write the spectral measure as

dEλ = (2πi)−1(R−(λ, h)−R+(λ, h))dλ , λ ∈ R.

Using this, the left hand side of (7.5.5) can be rewritten as

χe−itP (h)/hψ(P (h))χ =
1

2πi

∫
R
e−itλ/hχ(R−(λ, h)−R+(λ, h))χψ(λ)dλ .

(This is were the spectral theory helps in handling ψ(P (h)) left to the χ.)

2. Let ψ̃ ∈ C∞c (C) be an almost analytic extension of ψ – see §B.2. We can
choose it so that

supp ψ̃ ⊂ {z : Re z ∈ (E − δ, E + δ)}.

Green’s formula (D.1.1) then gives

χe−itP (h)/hψ(P (h))χ = A(h) +B(h),

A(h) :=
1

2πi

∫
Im z=−Mh log

1
h

e−itz/hχ(R−(z, h)−R+(z, h))χψ̃(z)dz

B(h) :=
1

π

∫∫
−Mh log

1
h<Im z<0

e−itz/hχ(R−(z, h)−R+(z, h))χ∂̄zψ̃(z)dm(z).

Using bound (7.5.4) on the analytic continuation of the resolvent we see that

‖A(h)‖L2→L2 ≤ C ′h−CMe−tM log(1/h) = C ′h−M(C−t)

= O((h/t)M ), t > C + 2, 0 < h < h0.

To estimate B(h) we use the property of almost analytic extensions:

∂̄zψ̃(z) = O(| Im z|∞)

which conbined with (7.5.4) gives

‖B(h)‖L2→L2 ≤ CNh−1

∫ Mh log 1
h

0
e−st/heCs/hsNds

= CNh
N

∫ M log 1
h

0
e−r(t−C)rNdr

≤ CNhNeCM log 1
h min

(∫ ∞
0

e−rtrNdr, (M log(1/h))N+1

)
≤ C ′NhN−MC−1〈t〉−N−1.

(7.5.7)
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homoclinic (see [B∗16])

nontrapped (Theorem 7.15)

nontrapped (Theorem 7.15)

normally hyperbolic (Theorem 7.16)

strongly trapped (Theorem 7.18)

Figure 7.6. An example of energy levels to which Theorems 7.15, 7.16
and 7.18 apply. In the case of a homoclinic orbit we can still use The-
orem 7.18 but there is no leading term contribution – see Bony–Fujiie–
Ramond–Zerzeri [B∗16] for a detailed discussion of many interesting
cases and for references.

Since N is arbitrary we conclude that

(7.5.8) B(h) = O(h∞〈t〉−∞).

Since for all times the propagator is bounded this proves the theorem. �

We now move to the case of normally hyperbolic trapping presented in
§6.3. We assume that P (h) = −h2∆g+V (x) and that at E > 0, the trapped
set KE 6= ∅ and that it satisfies the conditions (A1)–(A3) of §6.3. In that
case Theorem 6.16 shows that

(7.5.9) χR(z)χ = oε(h
−2)L2→L2 , z ∈ [E − δ, E + δ]− ih[0, νmin−ε

2 , 0],

for some δ and any ε > 0.

THEOREM 7.16 (Schrödinger propagator for normally hyperbolic
trapping). Suppose that P (h) is as in (7.5.2) but that at E > 0 the trapping
is normally hyperbolic in the sense of Definition 6.15.

If χ ∈ C∞c (Rn) and ψ ∈ C∞((E − δ, E + δ)) where δ is the same as in
(7.5.9), then for any ν < νmin,

χ exp(−tP (h)/h)ψ(P (h))χ = e−tν/2o(h−2)L2→L2

+O(h∞〈t〉−∞)L2→L2 .
(7.5.10)

Proof. 1. We proceed as in the proof of Theorem 7.15 and use the same
notation. For ν < νmin (7.5.9) and Green’s formula now give

χe−itP (h)/hψ(P (h))χ = A(h) +B(h),
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A(h) :=
1

2πi

∫
Im z=−νh/2

e−itz/hχ(R−(z, h)−R+(z, h))χψ̃(z)dz

B(h) :=
1

π

∫∫
−νh/2<Im z<0

e−itz/hχ(R−(z, h)−R+(z, h))χ∂̄zψ̃(z)dm(z).

The B(h) term can be estimating in the same way as in (7.5.7) resulting in
(7.5.8).

2. Using (7.5.9) we immediately see that A(h) = e−νt/2o(h−2) which
concludes the proof. �

INTERPRETATION. The localization in energy using the cut-off func-
tion ψ(P (h)) is necessary as different estimates are valid in different energy
regimes – see Fig.7.6. At non-trapping energies, once time is large enough
the localized propagator (in space and energy) is of size O(h∞t−∞), that is
negligible.

In the case of normally hyperbolic trapping the localized propagator
is semiclasically negligible (that is O(h∞〈t〉−∞)) once t � log(1/h). In
the intermediate region the the exponentially decaying estimate provides a
quantitative decay rate for the propagator.

7.5.2. Schrödinger propagator in the case of resonances converging
to the real axis. We now consider the general case of

(7.5.11) P (h) := ∆g + V, gij − δij ∈ C∞c (Rn), V ∈ C∞c (Rn),

but the results are non-trivial only in the case of existence of resonances
with Im z = O(h∞).

The difficulty in stating a general result is overlap of resonances. Since
the results for the Schrödinger equation are semiclassical, Theorems 7.6 (see
also Theorem 7.14) show that resonances appear in dense (∼ h−n) clouds
and the possibility of resonances being very close to each other is inevitable.
However, the upper bound (7.2.2) shows that there are always some gaps
between clouds of resonances. That motivates the following

DEFINITION 7.17. A family of rectangles

h 7→W (h) := (a(h), b(h))− i[0, c(h)), 0 < c0 < a(h) < b(h) < 1/c0,

is called semiclassically admissible if

(7.5.12) d(∂W (h) \ R,Res(P (h))) > 2 c1h
n, c1h

n < c(h) < 1/c0.

for some fixed constants c0, c1 > 0.

REMARK. The power n can be replaced by any larger power. Theorem
7.4 shows that near any fixed a, b and c we can find a(h), b(h) and c(h) so
that (7.5.12) holds once c1 is sufficently small.
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THEOREM 7.18 (Resonance expansion for strong trapping). Sup-
pose that P (h) is given by (7.5.11), ψ ∈ C∞c ((0,∞)), suppψ = [a, b],
χ ∈ C∞c (Rn).

There exist a constant Ln depending only on the dimension such for any
admissible W (h) with [a, b] bW (h) ∩ R,

(7.5.13) t > h−Ln

implies

χ exp(−tP (h)/h)ψ(P (h))χ =∑
z∈W (h)

χResw=z

(
e−itw/hR(w, h)

)
χψ(P (h)) +O(h∞)L2→L2 .(7.5.14)

REMARKS. 1. The result states that for sufficiently large times the lo-
calized propagator can be expanded in terms of resonances close to the real
axis with a semiclassical negligible error. From Theorem 6.26 (and its gen-
eralizations – see [CV02],[Da14] and references given there) we know the

resonances in W (h) satisfy Im z > e−C/h. This means that the expansion is

relevant for h−2n−2 < t < eC/h.

2. The need for admissible rectangles comes from the difficulties in esti-
mating individual terms in the sum over resonances. Unless some, possibly
very weak, separation between resonances is imposed we do not know how
to estimate the residues.

3. If (7.5.12) c1h
n is replaced by hM for some N then (7.5.14) still holds

once Ln in (7.5.13) is changed into an M -dependent constant.

4. The constant Ln in (7.5.13) comes from the proof and is given by 5
2n+ ε,

ε > 0. However, it is not clear what is the optimal general lower bound on t
guaranteeing validity of an expansion. In the case of a barrier (see Theorem
7.8) we only need t ≥ T0 for some fixed T0 [NSZ14, Main Theorem].

5. The order of χ and ψ(P (h)) on the left hand side of (7.5.14) does not
matter – see the remark following Theorem 7.15.

Proof. 1. Let W (h) be an admissible rectangle in the sense of Definition
7.17. Since [a, b] bW (h) ∩ R we have

a(h) < a < b < b(h).

We choose ψh ∈ C∞c (R) with satisfying

suppψh ⊂ (a(h)− c1h
n, b(h) + c1h

n),

ψh(s) = 1 for s ∈ [a(h), b(h)].
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In particular, ψh ≡ 1 on the support of ψ. Functional calculus (see the
remark following Theorem 7.15) then shows that

χ exp(−tP (h)/h)ψ(P (h))χ = χ exp(−tP (h)/h)ψh(P (h))ψ(P (h))χ

= χ exp(−tP (h)/h)ψh(P (h))χψ(P (h)) +O(h∞)L2→L2 .

This means that we can replace the left hand side of (7.5.14) by the first
term in the last line.

3. To apply the same procedure as in Step 2 of the proof of Theorems 7.15 we
consider an almost analytic extension of ψh. By taking an almost extensions
of s 7→ ψh(hn(s−α(h)), α(h) = a(h), b(h), we obtain ψ̃h ∈ C∞(C) satisfying

(7.5.15)

supp ψ̃h ⊂ (a(h)− c1h
n, b(h) + c1h

n) + iR, ∂x,yψ̃h = O(h−n),

∂̄zψ̃h(z) =


O(| Im z|/hn)∞,
0 if |Re z − a(h)| > c1h

n,
0 if |Re z + b(h)| > c1h

n.

Applying Green’s formula (D.1.1) and using the notation (7.5.6) we obtain

χe−itP (h)/hψh(P (h))χ = A(h) +B(h) + C(h),

A(h) :=
1

2πi

∫
Im z=c(h)

e−itz/hχ(R−(z, h)−R+(z, h))χψ̃(z)dz

B(h) :=
1

π

∫∫
W (h)

e−itz/hχ(R−(z, h)−R+(z, h))χ∂̄zψ̃(z)dm(z),

C(h) :=
∑

w∈W (h)

χResz=w

(
e−itz/hR(z, h)

)
χ.

(7.5.16)

We note that (7.5.15) shows that ψ̃h(w) = 1 for w ∈W (h)∩Res(P (h)) and

hence there is no ψ̃h in the formula for C(h).

4. To estimate A(h) we note that (7.5.12)

d({Im z = c(h)} ∩ supp ψ̃h,Res(P (h))) > c1h
n.

The estimate (7.2.12) in Theorem 7.5 then shows that

(7.5.17) ‖χR+(z, h)χ‖L2→L2 ≤ AeAh−n log 1
h ,

for z ∈ {Im z = c(h)} ∩ supp ψ̃h. Since (7.5.6) shows that the norm of
R−(z, h) is bounded by 1/c(h) = O(h−n) on for Im z = c(h), we obtain

‖A(h)‖L2→L2 ≤ Ce−tc(h)/2heAh
−n log 1

h

= O(h∞), for t ≥ h−n+1−ε, ε > 0.
(7.5.18)

5. To estimate B(h) we split it into two terms:

B(h) = B1(h) +B2(h)
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where the integration is over Im z > −hM and Im z < −hM respectively,
where M = Mn > n depending only on dimension n will be chosen later.
We start with B2 and we use the estimate (7.5.17) for both R± (since we
are now near the real axis and get no benefit from the sign of Im z) and the

properties of ∂̄zψ̃h (see (7.5.15)):

‖B2(h)‖L2→L2 ≤ Ch−n
∫ 2c0

s=hM
e−ts/heAh

−n log 1
hds

≤ Ch−ne−thM−1+Ah−n log 1
h

= O(h∞), for t ≥ h−n+1−ε, ε > 0.

(7.5.19)

6. To analyse B1(h) we apply the maximum principle in the form presented
in Lemma 7.7 using the estimates (7.5.17) and ‖R±(z, h)‖L2→L2 ≤ 1/| Im z|,
± Im z > 0. We take R = c1h

n and L = n+ε (see (7.5.17): ε > 0 is arbitrary
and will change from line to line). Hence we need h2n > Ch−3n−εδ(h)2,

which means that δ(h) < h
5
2
n+ε. Then the estimate (7.3.11) in the remark

after the proof of Lemma 7.7 gives

(7.5.20) ‖χR±(z, h)χ‖L2→L2 ≤ Ch−
5
2
n−ε, | Im z| ≤ h

5
2
n+ε,

for any ε > 0. We now take M := 5
2n+ ε in the splitting of B into B1 +B2.

The bound (7.5.20) and (7.5.15) give the following estimate

‖B2(h)‖L2→L2 ≤ CN
∫ hM

0
e−st/hh−Q(s/hn)Nds

= CNh
n−Q

∫ hM−n

0
e−rth

n−1
rNdr

≤ CNhn−Q+N(M−n).

(7.5.21)

Combining (7.5.18), (7.5.19) and (7.5.21) with (7.5.16) gives (7.5.14). �

7.5.3. Expansions of scattered waves for strong trapping. We now
adapt the results of this chapter to study the wave equation. The results
are valid for black box Hamiltonians of §4.1 and in particular for obstacle
problems or manifolds which have Euclidean ends – see [BZ01]. To keep
the presentation simple we restrict ourselves to the case of P = −∆g ≥ 0
where g is a Riemannian metric on Rn satisfying gij − δij ∈ C∞c (Rn).

We obtain a resonance expansion of scattered waves in the case of res-
onances converging to the real axis. It is much weaker than the expansion
(7.5.1) valid in the non-trapping case but it addresses a more realistic situ-
ation.
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a(h) b(h)

ψh

hM

2c1
h
n {c1h

n

supp ∂̄ψ̃h

c(h)

W (h)

Figure 7.7. The almost analytic continuation and the contour defor-
mation for the semiclassical expansion.

In the case of the wave equation we replace admissible rectangles of
Definition 7.17 by admissible contours:

DEFINITION 7.19. An admissible contour is the posively oriented con-
tour given by

Γ := {z = x− iγ(x), x ∈ R}
where γ(x) > 0 and for some M , N and c > 0,

c〈x〉−M < γ(x) < 1/c, |γ′(x)| ≤ 1/c,

d((x+ iγ(x))2,Res(P )) > c〈x〉−N .
(7.5.22)

REMARK. The global bound on the number of resonances in Theorem
4.13 (or rescaling of the local semiclassical bound (7.2.2)) show that we can
find admissible contours for any M and for N ≥ n.

THEOREM 7.20 (Resonance expansions of scattered waves). Sup-
pose that n is odd and P = −∆g, gij − δij ∈ C∞c (Rn,R) and put

U(t) := sin t
√
P/
√
P , R(λ) := (P − λ2)−1,

with R(λ) first defined for Imλ > 0 and the continued meromorphically. Let
χ ∈ C∞c (Rn) and let Γ be an admissible contour in the sense of Definition
7.19. Then for any M > M0 there exists ε > 0 and a function t 7→ c(t),
|c(t)− tε| ≤ C such that

(7.5.23) χU(t)χ =
∑

Imλ>−γ(Reλ)
1<|Reλ|<c(t)

χiResζ=λ

(
e−iζtR(ζ)

)
χ+ Eχ(t),

where

(7.5.24) ‖Eχ(t)‖HL→L2 =≤ Ct−ε(L−K0)
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with L ≥ 0 arbitrary and K0 a fixed constant.

INTERPRETATION. As in Theorems 2.9 and 3.11 the residues give
expansions of solutions to (∂2

t − ∆g)w = 0 with compact initial data: for
f ∈ C∞c (Rn),

(7.5.25) Resζ=λj

(
e−iζtR(ζ)

)
f(x) =

mj∑
`=0

t`e−iλjtf`,j(x).

The error term Eχ(t)f is then O(t∞) but each term in (7.5.25) eventually
decays much faster. However, we include more terms as t→ +∞ (|Reλj | ≤
c(t) ∼ tε). Hence resonances with Imλj = O(〈λj〉−∞) provide non-trivial
contributions to the expansion.

Proof. 1. Theorem 4.19 shows that there is no eigenvalue or resonance at
0. We start as in the proof of Theorem 2.9 and obtain the analogue of the
formula displayed after (2.3.11):

(7.5.26) χU(t)χ =
1

2π

∫
R
e−iλtχ(R(ζ)−R(−ζ))χdζ.

2. Let c(t) ∼ tε be a function of t yet to be chosen and let Γ be an admissible
contour. We define

Γ1 := Γ ∩ {|Reλ| ≤ c(t)}, Γ3 := R \ (−c(t), c(t)),
Γ2 := {−c(t)− iτ : τ ∈ (0, γ(c(t)))} ∪ {c(t)− iτ : τ ∈ (0, γ(c(t)))},

with the natural orientation agreeing with the positive orientation of R.
By deforming the contour in (7.5.26) to Γ1 + Γ2 + Γ3 (with the natural
orientations)

χU(t)χ =
∑

Imλ>−γ(Reλ)
1<|Reλ|<c(t)

χiResζ=λ

(
e−iζtR(ζ)

)
χ+ V1(t) + V2(t) + V3(t),

Vj(t) :=
1

2π

∫
Γj

e−iζtχ(R(ζ)−R(−ζ))χdζ.

We need to show that we can choose ε > 0 and c(t) ∼ tε so that

(7.5.27) Vj(t) = O(t−ε(L−K0))HL→L2 .

3. We start with V1. The separation of Γ1 from the set of resonances given
in (7.5.22) and the estimate (7.2.13) show that

χ(R(ζ)−R(−ζ)χ = O(eA|ζ|
n log |ζ|), ζ ∈ Γ1.



474 7. RESONANCE EXPANSIONS FOR STRONG TRAPPING

Hence

‖V1(t)‖L2→L2 ≤ Ce−at + C

∫ c(t)

1
e−tγ(x)eAx

n log x(1 + |γ′(x)|)dx

≤ Ce−at + C ′
∫ tε

1
e−tx

−M+xn log xdx

≤ Ce−at + C ′tεe−t
1−Mε+tεn log t

= O(t∞), if ε < 1
M+n .

(7.5.28)

Hence for ε small enough depending on M (that is, on the admissible con-
tour) we have (7.5.27) for j = 1.

4. To estimate V3(t) we note that Stone’s formula (Theorem B.10) shows
that

(R(λ)−R(−λ))(I −∆g)
L/2 = (R(λ)−R(−λ))〈λ〉L, |λ| > 1.

Hence for f ∈ HL

V3(t)f =

∫
R\[−c(t),c(t)]

e−iζtχ(R(ζ)−R(−ζ))〈ζ〉−L(I −∆g)
L/2χfdζ

Another application of Stone’s formula (see (2.3.11)) gives for an odd func-
tion ϕ

1

πi

∫ ∞
c(t)

(R(ζ)−R(−ζ))ϕ(ζ)dζ =

∫ ∞
c(t)

ϕ(λ)

λ
dEλ

=
ϕ(
√
−∆g)√
−∆g

1l[c(t),∞)(
√
−∆g)

= O(sup |ϕ(ζ)/ζ|)L2→L2 .

Applied with

ϕ(ζ) := 〈ζ〉−L 1l[c(t),∞)(ζ)e−iζt,

we obtain

‖V3(t)f‖L2 ≤ 〈c(t)〉−L−1 ≤ Ct−εL−ε,
which gives (7.5.27) for j = 3.

5. We now come to estimating V2(t) and this is where a choice of c(t) is
essential. We choose c(t) so that for some fixed N

(7.5.29) |c(t)− tε| ≤ 1, D((±c(t) + i[0, 1/c])2,Res(P )) > t−N .

This can always be accomplished for N > n because of the upper bound on
the number of resonances. As in Step 5 of the proof of Theorem 7.18, the
bound (7.2.13) and Lemma 7.7 imply that there exist M and Q such that

‖χR(±c(t) + iy)χ‖L2→L2 ≤ Cc(t)M , |y| ≤ c(t)−Q.
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Using this bound and the bound (7.2.13) (valid on Γ2 because of (7.5.29))
we estimate V2 as follows. Let χ0 ∈ C∞c be equal to 1 on suppχ. Then for
for f ∈ HL,

‖V2(t)f‖L2 ≤ Ct−εL
∫ γ(c(t))

−γ(c(t))
‖χ1R(c(t) + iy)χ1‖L2→L2e−ytdy‖χf‖HL

≤ C ′t−εL
∫ t−εQ

0
tεMe−tydy + C ′t−εL

∫ c

t−εQ
e−ty+Atεn log tdy

≤ C ′t−ε(L+M−Q) + C ′′t−εL, if ε < 1
n+1 .

This (7.5.27) for j = 2 with K0 = Q−M . �

7.6. NOTES

Theorem 7.1 was proved by Bony, Burq and Ramond [BBR10]. The com-
ment that C is independent of δ was made by Jean-François Bony. For more
connections between resolvent estimates and local smoothing for Schrödinger
propagators see [Bu04],[Da09], and references given there.

The local upper bounds on the number resonances were first established
by Sjöstrand [Sj90]. That paper also introduced geometric bounds in which
the number of resonances was estimated using the dimension of the trapped
set (6.1.3) and that started develompment of fractal Weyl laws. For more
recent developments and references see [SZ07a], Datchev–Dyatlov [DD13],
Nonnenmacher–Sjöstrand–Zworski [NSZ14], and also Naud [Na14], [Na15]
and Dyatlov [Dy19]. The only fractal lower bound was obtained in the set-
ting of quantum maps by Nonnenmacher–Zworski [NZ07], see also [No11]
and [NSZ11].

For a physics perspective on counting resonances see Lin [Li02], Lu–
Sridhar–Zworski [LSZ03], Potzuweit et al [P∗12], Körber et al [KMBK13]
and references given there. A somewhat distant offshoot of these develop-
ments was the study of fractal Weyl laws for networks – see the survey
[EFS15] by Ermann, Frahm and Shepelyansky.

The observation that bounds on the number of resonances imply the
bound on the resolvent was made in [Zw90]. It was used by Stefanov–Vodev
[SV96] to show that a sequence of quasimodes with energies converging to
infinity implies existence of resonances converging fast to the real axis. The
argument is related classical works on the completeness of sets of eigenfunc-
tions going back to Carleman [Ca36]. A quantitative generalization was
given by Tang–Zworski [TZ98] and that was refined further by Stefanov
[St99] – Theorem 7.6 comes from [TZ98] and Stefanov’s more precise ver-
sion is presented in Exercise 7.1. For exponentially decaying potentials (in
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which case resonances are defined in a strip and complex scaling may not
be available), Theorem 7.6 was proved by Gannot [Gan15].

The local trace formula for resonances (7.4.5) was proved by Sjöstrand
[Sj96a] in much greater generality and without the Of (h∞) error term.
That term is irrelevant to our application to lower bounds which comes from
Sjöstrand [Sj96b]: §7.4 is meant as an introduction to these two papers in
a simpler setting. Refinements of the trace formula were given in Petkov–
Zworski [PZ01] and in Bruneau–Petkov [BP03]. In particular it was shown
there that the bound (7.4.3) only needs to hold in Ω− ∩W . The two papers
were motivated by the closely related semiclassical version of the Breit–
Wigner approximation for the derivative of the scattering phase (scattering
shift). Trace formulas can also be used to obtain lower bounds on the
number of resonances using a singularity (in the wave trace) generated by a
closed orbit – see Sjöstrand–Zworski [SZ93], Guillopé–Zworski [GZ99]. The
local trace formula allows for the same strategy in semiclassical problems
– see Bony [Bo02], Bony–Sjöstrand [BS01] and Dimassi–Zerzeri [DZ03].
Related ideas have also been used in the setting of hyperbolic dynamical
systems in Jin–Naud–Zworski [JZ16] (see [Zw17, Chapter 4] for a general
introduction and references).

Under certain assumptions, Weyl asymptotics ∼ h−n for the number of
resonances of −h2∆ + V , V ∈ C∞c (Rn;R) with a small (with respect to h)
random perturbation, were obtained by Sjöstrand [Sj14].

The presentation of resonance expansions in §7.5 comes from Burq–
Zworski [BZ01] with some corrections and slight generalizations. Under
specific assumptions which imply isolation of resonances better results are
possible – see Gérard–Martinez [GM89], Merkli–Sigal [MS99] Nakamura–
Stefanov–Zworski [NSZ14], Soffer–Weinstein [SW98] and Stefanov [St01].
When some global conditions on separation of resonances are imposed stronger
expansions for the wave equation were given by Tang–Zworski [TZ00]. The
complex analytic techniques used for the resonance expansions have an older
tradition in the study of other non-self-adjoint problems such as damped
wave equations – see Markus [Mar88].

7.7. EXERCISES

Section 7.3

1. Prove Stefanov’s [St99] refinement of Theorem 7.6: suppose that we have
uj(h), j = 1, · · · , N(h) each satisfying the assumptions of Theorem 7.6 with
Ej(h) ∈ [a(h), b(h)], 0 < a0 < a(h) ≤ b(h) < b0:

(P (h)− Ej(h))uj(h) = ε0(h), ‖uj(h)‖ = 1, suppuj(h) ⊂ Ω b Rn
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where Ω is independent of h and ε0(h) = O(h∞) or all ε0(h) = O(e−S0/h),
S0 > 0. Suppose in addition that uj(h) are approximately orthogonal in the
sense that

(7.7.1) |〈uj(h), uk(h)〉 − δkj | ≤ δ(h),

where δ(h) = O(h∞). Then there exists ε(h) satisfying (7.3.6)

(7.7.2) |Res(P (h)) ∩ [a(h)− ε(h), b(h) + ε(h)]− [0, ε(h)]| ≥ N(h).

We outline the steps of the proof (see [St99] for more details):

1. Show that

(7.7.3) N(h) = O(h−n).

(Hint: construct a self-adjoint operator with a discrete spectrum for which
uj ’s are quasimodes; use (7.7.1) and the spectral theorem to show that the
number of eigenvalues close to Ej(h)’s is at least N(h). Then use the bound
(7.3.3).)

2. With ε(h) to be chosen (and satisfying (7.3.6)) let zj , j = 1, · · · ,M0(h)
be the resonances of P (h) in Ω(h) := (a(h) − ε(h), b(h) + ε(h)) − (0, ε(h)).
Let

Πj :=
1

2πi

∮
zj

χR(z, h)χdz,

where the integral is over a circle containing only zj . Let Π be the orthogonal
projection of L2 onto

Π1L
2 + Π2L

2 + · · ·+ ΠM0(h)L
2 ⊂ L2.

Then (1−Π)χR(z, h)χ is holomorphic in Ω(h). (Hint: use Theorem 4.7).

3. Choosing ε(h) suitably apply Lemma 7.7 to

Q(z, h) := (1−Π)χR(z, h)χ

to obtain

(7.7.4) ‖(1−Π)χR(E, h)χ‖ � hn/max ‖ε0(h)‖, E ∈ [a(h), b(h)].

4. As in Step 2 of the proof of Theorem 7.6 use (7.7.4) to show that

‖(1−Π)uj(h)‖ � hn.

From this and (7.7.1),(7.7.3) deduce that

(7.7.5) |〈Πuj(h),Πuk(h)〉 − δjk| � 1/N(h).

5. Show that if fj ∈ L2, j = 1, · · · , N and |〈fj , fk〉 − δjk| < 1/N then the
set of fj ’s is linearly independent. Deduce from (7.7.5) that the rank of Π
is at least N(h). This proves (7.7.2).
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c(t) ∼ tε

Im γ(c(t)) ∼ t−εM

Figure 7.8. An admissible contour for even dimensions.

2. Use (7.7.2) to show that for P (h) = −h2∆g + V with V and E satisfying
(7.3.2), we have for some S, δ > 0,

|Res(P (h)) ∩ [E − δ, E + δ]− i[0, e−S/h]| ≥ h−n/C.

(In fact, using Exercise 7.3 one can show the asymptotic formula (7.3.3) for
resonances – see [NSZ03, Corollary, §5].)

3. Show the following stronger version of Theorem 7.8: under the same
assumptions, suppose that uθ(h) satisfies (Pθ(h)−z(h))uθ = 0, ‖uθ‖L2(Γθ) =

1, that is uθ(h) is a resonant state. (Here, as in the proof of Theorem 7.8,
Pθ(h) is a complex scaled operator.) Let χ ∈ C∞c (Rn, [0, 1]) satisfy (7.3.17).
If |Re z(h)− E| < δ then either

Im z > −e−S/h, ‖χuθ(h)‖ = 1 +O(e−S/h)

or

Im z < −Mh log(1/h), ‖χuθ(h)‖ = O(e−S/h),

for some S > 0 and arbitrarily large M arbitrarily large, provided that h is
small enough. (Hint. From the proof of Theorem 7.8 we see that the only

new result is the statement that ‖χuθ‖ = 1 +O(e−S/h) when the resonance

is close to the real axis. Hence suppose that ‖(1 − χ)uθ‖ ≥ e−S/h and

define v := uθ/‖(1−χ)uθ‖. Then 1 ≤ ‖v‖ ≤ eS/h and if S > 0 small enough

Agmon estimates (see [Zw12, §7.1]) show that ‖[P (h), χ1]v‖ ≤ e−δ/h, where,
χ1 ∈ C∞c , (1−χ1)(1−χ) = 1−χ, and Pθ(h) and P (h) coincide on the support
of 1 − χ1. Applying the argument in Step 5 of the proof of Theorem 7.8
provides a contradiction.)

Section 7.5

4. This problem gives an analogue of (7.5.23) for n even – see [BZ01,
Theorem 2].

1. Assume that P is as in Theorem 7.20 and that n is even and n ≥ 4. The
same argument as in the proof of Theorem 4.19 shows that there cannot be
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0

Ψ = 1Ψ = 1

supp ∂̄Ψ̃supp ∂̄Ψ̃ Ψ̃ = 0

Figure 7.9. The almost analytic continuation and the contour defor-
mation for part 2 of Exercise 7.4.

a resonance or an eigenvalue at 0. The cut-off resolvent then satisfies

(7.7.6) χR(ζ)χ = F (ζ, ζn−2 log ζ), ζ ∈ C \ i(−∞, 0],

where F (ζ, ω) is holomorphic near (0, 0). (See Vodev [Vo94a].) Use (7.7.6)
to show that (7.5.23) holds with

‖Eχ(t)‖HL→L2 ≤ Ct−n+1, t→ +∞
provided that L is large enough. (Hint: use the contour shown in Fig. 7.8
and then deform it near 0 to intervals along the negative imaginary axis.)

2. Let Ψ ∈ C∞(R; [0, 1] be an even function equal to 0 near 0 and 1 for
s > 1. With the same assumptions as in part one , show that (7.5.23) and

(7.5.24) hold for χU(t)χ replaced by χU(t)Ψ(
√
P )χ. (Hint: use the contour

deformation with the almost analytic extension of Ψ shown in Fig. 7.9.)
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Appendix A

NOTATION

A.1 Basic notation
A.2 Functions
A.3 Spaces of functions
A.4 Operators
A.5 Estimates
A.6 Tempered distributions
A.7 Distributions on manifolds and Schwartz kernels

A.1. BASIC NOTATION

We list here some basic notational conventions used in the book. The index
provides pointers to the more specialized items.

We stress that unless confusion is likely, or specific values are important,
C denotes a constant the value of which may change from line to line. This
convention is often assume implicitely.

R+ = (0,∞)

Rn = n-dimensional Euclidean space

x, y denote typical points in Rn : x = (x1, . . . , xn), y = (y1, . . . , yn)

R2n = Rn × Rn

z = (x, ξ), w = (y, η) denote typical points in Rn × Rn :
z = (x1, . . . , xn, ξ1, . . . , ξn), w = (y1, . . . , yn, η1, . . . , ηn)

483
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C = complex plane

Cn = n-dimensional complex space

U b V means Ū is a compact subset of V

〈x, y〉 =
∑n

i=1 xiȳi = inner product on Cn

|x| = 〈x, x〉1/2

〈x〉 = (1 + |x|2)1/2

AT = transpose of the matrix A

I denotes both the identity matrix and the identity mapping.

|S| = cardinality of a finite set S

A.2. FUNCTIONS

The support of a function is denoted “supp”, and a subscript “c” on a space
of functions means those with compact support.

• Partial derivatives:

∂xj :=
∂

∂xj
, Dxj :=

1

i

∂

∂xj
, ϕxj = ∂xjϕ.

• Multiindex notation: A multiindex is a vector α = (α1, . . . , αn), the
entries of which are nonnegative integers. The size of α is

|α| := α1 + · · ·+ αn.

We then write for x ∈ Rn:

xα := x1
α1 . . . xn

αn ,

where x = (x1, . . . , xn). Also

∂α := ∂α1
x1 . . . ∂

αn
xn , Dα :=

1

i|α|
∂α1
x1 . . . ∂

αn
xn .

If ϕ : Rn → R, then we write

∇ϕ = ∂ϕ := (ϕx1 , . . . , ϕxn) = gradient.

• Poisson bracket: If f, g : R2n → R are C1 functions,

(A.2.1) {f, g} := 〈∂ξf, ∂xg〉 − 〈∂xf, ∂ξg〉 =

n∑
j=1

∂f

∂ξj

∂g

∂xj
− ∂f

∂xj

∂g

∂ξj
.
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More generally the Poisson bracket can be defined for functions on the cotan-
gent bundle T ∗M of any manifold M , see §E.1.3.

• Fourier transform:

(A.2.2) ϕ̂(ξ) = Fϕ(ξ) :=

∫
Rn
ϕ(x)e−i〈x,ξ〉dx.

(See also §A.6.)

A.3. SPACES OF FUNCTIONS

Here we present basic notation for functions and distributions on Rn: tem-
pered distributions are discussed in §A.6 the case of manifolds is discussed
in §A.7 and §E.1.8.

• C∞(Rn) denotes the space of smooth functions on Rn and C∞c (Rn) the
space of smooth functions of compact support, that is of smooth functions
which vanish outside of a compact set.

• D′(Rn) denotes the space of distributions on Rn (dual space of C∞c (Rn))
and E ′(Rn) the space of distributions with compact supports (dual space of
C∞(Rn) – see [HöI, §2.1, §2.3] respectively.

• L2(Rn) denotes the space of square integrable functions with respect
to the Lebesgue measure on Rn. We also write

L2
comp(Rn) := {u ∈ L2(Rn) : ∃R > 0 |x| > R =⇒ |u(x)| = 0}.

L2
loc(Rn) := {u ∈ D′(Rn) : ∀χ ∈ C∞c (Rn) χu ∈ L2(Rn)}.

The same notation is used in the case of Sobolev spaces, Hs(Rn).

A.4. OPERATORS

We present our notational conventions for operators. Spectral and Fredholm
theories of operators are presented in Appendices B and C.

• A∗ = adjoint of the operator A

[A,B] = adAB = AB −BA = commutator of A and B

σ(A) = symbol of the pseudodifferential operator A

Spec(A) = spectrum of A.

tr(A) = trace of A.
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• If A : X → Y is a bounded linear operator, we define the operator
norm

‖A‖ := sup{‖Au‖Y | ‖u‖X ≤ 1}.
We will often write this norm as

‖A‖X→Y
when we want to emphasize the spaces between which A maps.

The space of bounded linear operators from X to Y is denoted L(X,Y );
and the space of bounded linear operators from X to itself is denoted L(X).

A.5. ESTIMATES

We group here some basic estimates and conventions.

• If we want to specify boundedness in the space X, we write

f = O(F )X

to mean that there exists a constant C such that

‖f‖X ≤ CF.
If ft depends on a parameter t and bound depends on the parameter we
write

ft = Ot(F )X

to mean that that for each t there exists C(t) such that

‖f‖X ≤ C(t)F.

• If A is a bounded linear operator between the spaces X,Y , we will
often write

A = O(F )X→Y

to mean that for some constant C,

‖A‖X→Y ≤ CF.

• We write

f = O(h∞) as h→ 0

if for each positive integer N there exists a constant CN such that

|f | ≤ CNhN for all 0 < h ≤ 1.

• Grönwall’s inequality states that if B(s) ≥ 0 and

F (s) ≤ A(s) +

∫ s

0
B(σ)F (σ)dσ, 0 ≤ s ≤ t,
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then

(A.5.1) F (t) ≤ A(t) +

∫ t

0
B(s)A(s)e

∫ t
s B(σ)dσds.

• Young’s Inequality states that if

1

p
+

1

q
=

1

r
+ 1, 1 ≤ p, q, r ≤ ∞.

then for f ∈ Lp(Rn) and g ∈ Lq(Rn),

(A.5.2) ‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq , ‖h‖Lm :=

(∫
Rn
|h(x)|mdx

) 1
m

• Schur’s estimate states that if

Ku(x) :=

∫
Y
K(x, y)u(y)dy, x ∈ X

then

(A.5.3) ‖K‖2L2→L2 ≤ sup
x∈X

∫
|K(x, y)|dy × sup

y∈Y

∫
|K(x, y)|dx.

when the right hand side is finite.

• Interpolation estimate:

For m ≤ ` ≤ p, there exists C such that

(A.5.4) sup
|α|=`

‖∂αf‖L∞ ≤ C

(
sup
|α|=m

‖∂αf‖L∞
) p−`

p−m
(

sup
|α|=p

‖∂αf‖L∞
) `−m

p−m

.

A.6. TEMPERED DISTRIBUTIONS

A standard reference for this section is [HöI, §7.1].

• The Schwartz space is defined as

S = S (Rn) :=

{ϕ ∈ C∞(Rn) | sup
Rn
|xα∂βϕ| <∞ for all multiindices α, β}.

We say that

ϕj → ϕ in S

if

sup
Rn
|xα∂β(ϕj − ϕ)| → 0

for all multiindices α, β
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• We write S ′ = S ′(Rn) for the space of tempered distributions, which
is the dual of S = S (Rn). That is, u ∈ S ′ if u : S → C is linear and
ϕj → ϕ in S implies u(ϕj)→ u(ϕ).

Sometimes the distributional pairing is denoted by

(A.6.1) u(ϕ) = 〈u, ϕ〉 = 〈u(x), ϕ(x)〉.

We say

uj → u in S ′

if

uj(ϕ)→ u(ϕ) for all ϕ ∈ S .

• Fourier transform defined by (A.2.2) is an continuous invertible oper-
ator on S and

F−1ϕ(x) =
1

(2π)n

∫
Rn
ϕ(ξ)ei〈x,ξ〉dξ =

1

(2π)n
Fϕ(−x).

The Fourier transform is defined on S by duality:

for u ∈ S ′ we define Fu ∈ S by Fu(ϕ) := u(Fϕ).

A.7. DISTRIBUTIONS ON MANIFOLDS AND
SCHWARTZ KERNELS

• Homogeneous distribution on R: for s ∈ C, Re s > −1,

xs± :=

{
|x|s ±x > 0 ,
0 ±x ≤ 0 .

This family of distributions continues meromorphically to s ∈ C – see [HöI,
§3.2].

• Smooth functions on a manifold M :

We denote by C∞(M) the space of smooth functions and by C∞c (M)
the space of smooth compactly supported functions. The topology on C∞

is given by seminorms supK |∂αϕ|, α ∈ Nn and K bM . In other words

C∞(M) 3 ϕj → 0 ⇐⇒ ∀α ∈ Nn ∀K bM max
K
|∂αϕj | → 0.

The topology on C∞c (M) is determine by demanding that

C∞c (M) 3 ϕj → 0 ⇐⇒
∃K bM ∃ J ∈ N ∀α ∈ Nn and j > J suppϕj b K, max |∂αϕj | → 0.

• Distributions on a manifold M :
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We denote by D′(M) the space of distributions on M , that is the dual
space to C∞c (M), and by E ′(M) the space of compactly supported distribu-
tions.

We use the notation (A.6.1) for the distributional pairing. When there is
possibility of confusion with inner products on a Hilbert space H, we denote
that inner produce by 〈u, v〉H.

• Schwartz kernels:

Let M1,M2 be two manifolds and fix some smooth density dy on M2.
Each sequentially continuous operator

A : C∞c (M2)→ D′(M1)

is given using a Schwartz kernel:

(A.7.1) KA ∈ D′(M1 ×M2), Af(x) =

∫
M2

KA(x, y)f(y) dy.

Formally speaking, (A.7.1) means that

〈Af, g〉 = 〈KA(x, y), g(x)⊗ f(y)〉

for each f ∈ C∞c (M2), g ∈ C∞c (M1) – see [HöI, Theorem 5.2.1 and §6.3].

• Adjoint:

Fix smooth densities on M1, M2; this induces inner products on L2(M1),
L2(M2). If A : C∞c (M2) → D′(M1), then the adjoint A∗ : C∞c (M1) →
D′(M2) is defined by the identity

〈Au, v〉L2(M1) = 〈u,A∗v〉L2(M2) for all u ∈ C∞c (M2), v ∈ C∞c (M1).

The Schwartz kernel of A∗ is given by KA∗(y, x) = KA(x, y).

• Smoothing operators:

We say that A is smoothing if it is sequentially continuous E ′(M2) →
C∞(M1). This is equivalent to

KA ∈ C∞(M1 ×M2).

• Regular operators:

We say that A is regular if it is sequentially continuous C∞c (M2) →
C∞(M1) and the adjoint A∗ is sequentially continuous C∞c (M1)→ C∞(M2);
note that such A maps E ′(M2)→ D′(M1).

• Compactly supported operators:

We say that A is compactly supported if KA is compactly supported, that
is A maps C∞(M2)→ E ′(M1).
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• Properly supported operators:

We say that A is properly supported if for each χ1 ∈ C∞c (M1), there
exists χ2 ∈ C∞c (M2) such that

χ1A = χ1Aχ2

and same property holds for A∗.

IfA is properly supported thenAmaps C∞(M2)→ D′(M1) and C∞c (M2)→
E ′(M1).

Being properly supported can be formulated in terms of the support of
KA: if π1(x, y) = x, π2(x, y) = y, x ∈ M1, y ∈ M2 then A is properly
supported if

πj : suppKA →Mj , j = 1, 2, are proper maps.

(A map is proper if a pre-image of any compact set is compact.)

If A = A(h) is a family of operators depending on some parameter h,
then the support properties is understood in the sense independent of h.

If A : C∞c (M2) → D′(M1), B : C∞c (M3) → D′(M2) are two operators
and at least one of them is properly supported and regular, then the product
AB : C∞c (M3) → D′(M1) is well-defined. In particular, regular properly
supported operators on some manifold M form an algebra.

• Locally finite collections of sets

We say that a collection of open subsets {Uj ⊂ M} is locally finite if
for each compact set K ⊂M , we have Uj ∩K = ∅ for all but finitely many
indices j. We only work with paracompact manifolds, which implies that
any locally finite collection is at most countable.



Appendix B

SPECTRAL THEORY

B.1 Spectral theory of self-adjoint operators
B.2 Functional calculus
B.3 Singular values
B.4 The trace class
B.5 Weyl inequalities and Fredholm determinants
B.6 Lidskĭı’s theorem
B.7 Notes
B.8 Exercises

B.1. SPECTRAL THEORY OF SELF-ADJOINT
OPERATORS

B.1.1. Bounded operators. Let H be a complex Hilbert space with inner
product 〈·, ·〉. For a bounded operator, A : H → H, we define the adjoint
A∗ : H → H using the inner product:

〈Au, v〉 = 〈u,A∗v〉 .

An operator A is self-adjoint if A∗ = A.

THEOREM B.1 (Spectral theorem for bounded operators). Let
A be a bounded self-adjoint operator on H. Then there exist a measure
space (X,M, µ), a real-valued funtion f ∈ L∞(X,µ) and a unitary operator
U : H → L2(X,µ) such that

U∗MfU = A ,
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492 B. SPECTRAL THEORY OF SELF-ADJOINT OPERATORS

where Mf is the multiplication operator:

[Mfu](x) = f(x)u(x) , u ∈ L2(X,µ) .

The same theorem applies to normal operators, that is, operators satis-
fying

[A,A∗] = AA∗ −A∗A = 0 .

In that case f can be complex valued but otherwise the statement is the
same.

DEFINITION B.2. Suppose that A is a bounded operator on H. Then
the spectrum of A, Spec(A) ⊂ C, is defined by

Spec(A) = {{λ ∈ C : (A− λ)−1 : H → H exists} .
We say that λ ∈ Spec(A) is an eigenvalue of A, if there exists u ∈ H such
that

(B.1.1) Au = λu .

Theorem B.1 implies that for a self-ajoint bounded operator A,

Spec(A) = image (f) b R .

The following important result concerns spectrum of compact operators:
A : H → H is called compact if the image of {u : ‖u‖ ≤ 1} under A is a
pre-compact subset of H.

THEOREM B.3 (Spectra of compact operators). Suppose A is a
compact operator on H. Then

(i) Every λ ∈ Spec(A) \ {0} is an eigenvalue of A.

(ii) For all nonzero λ ∈ Spec(A) \ {0}, there exist N such that

ker(A− λ)N = ker(A− λ)N+1 .

(iii) The eigenvalues can only accumulate at 0.

(iv) Spec(A) is countable.

(v) Every λ ∈ Spec(A) \ {0} is a finite rank pole of the resolvent operator
λ 7−→ (A− λ)−1 (see §C.3).

(vi) Suppose in addition that A is self-adjoint. Then there exists an or-
thonormal set {uk}k∈K ⊂ H, K = {0, 1, 2, · · · , N} or K = N, such that

(B.1.2) Au(x) =
∑
k∈K

λkuk(x)〈u, uk〉 ,
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where λ0 ≥ λ1 ≥ · · · are the non-zero eigenvalues of A.

(vii) Conversely, if (B.1.2) holds with λj → 0 then A is compact.

One of the most frequently encountered classes of compact operators are
inclusions between Hilbert spaces. Here is one which is used in this book:

THEOREM B.4 (Rellich–Kondrachov theorem for unbounded do-
mains). Suppose that the Hilbert H ⊂ L2(Rn) is defined by the norm

‖u‖2H = ‖〈ξ〉αû‖2L2(Rn) + ‖a(x)−1u‖2L2(Rn) ,

α > 0 , a(x) > 0 , lim
|x|→∞

a(x) = 0 ,

where û is the Fourier transform of u and a is continuous.

Then the inclusion

H ↪→ L2 is compact .

B.1.2. Unbounded operators. We next review the more complicated
theory for unbounded operators.

DEFINITION B.5. (i) An unbounded operator A : H → H is given by a
subspace D(A) ⊂ H and a linear operator A : D(A) → H. We call D(A)
the domain of A, and say that A is densely defined if D(A) is dense in H.

(ii) The graph of A is

graph(A) := {(u,Au) | u ∈ D(A)} ⊂ H ×H.

(iii) If A,B are unbounded operators on H, we say that A ⊆ B if D(A) ⊆
D(B) and Au = Bu for all u ∈ D(A).

(iv) The operator A is closed if graph(A) is a closed subspace of H ×H
equipped with the norm ‖(u, v)‖2 = ‖u‖2 + ‖v‖2.

(v) An unbounded operator A is closable if there exists a closed un-
bounded operator Ā such that A ⊆ Ā. The operator Ā is unique and is
called the closure of A.

THEOREM B.6 (Adjoint operator). Suppose A : H → H is an un-
bounded, densely defined operator. Then there exists an unbounded operator
A∗ : H → H defined by the rule

(B.1.3) 〈A∗v, u〉 := 〈v,Au〉
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for all v ∈ D(A∗), u ∈ D(A), where

(B.1.4) D(A∗) := {v ∈ H | |〈Au, v〉| ≤ C(v)‖u‖ for all u ∈ D(A)}.

Here C(v) is a constant depending on v.

The unbounded operator A∗ is always closed. If A∗ is densely defined,
then A is closable and Ā = (A∗)∗, Ā∗ = A∗.

DEFINITION B.7. (i) An unbounded densely defined operator A is called
symmetric if

(B.1.5) A ⊆ A∗.

Equivalently, 〈Au, v〉 = 〈u,Av〉 for all u, v ∈ D(A).

(ii) An unbounded densely defined operator A is called self-adjoint if

(B.1.6) A = A∗.

(iii) A symmetric operator is called essentially self-adjoint if

(B.1.7) Ā = A∗.

THEOREM B.8 (Spectral Theorem for unbounded operators). Let
A be an unbounded self-adjoint operator on H. Then there exist a measure
space (X,M, µ), a real-valued measurable function f and a unitary operator

U : H → L2(X,µ)

such that

(B.1.8) x ∈ D(A) if and only if Mf (Ux) ∈ L2(X,µ)

and

(B.1.9) x ∈ D(A) implies U(Ax) = Mf (Ux).

Here Mf : x 7→ fx denotes the unbounded multiplication operator on
X.

As an immediate consequence we obtain this useful result valid for both
bounded and unbounded operators:

THEOREM B.9 (Distance to spectrum).

(i) If A is a self-adjoint operator, then

Spec(A) = ess-image (f) ⊂ R,

where f is given in the Spectral Theorems B.8, B.1 and

ess-image (f) := {t | µ(f−1((t− ε, t+ ε)) > 0 for all ε > 0}.
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(ii) Furthermore, if λ ∈ C \ Spec(A), then

(B.1.10) ‖(A− λ)−1‖ =
1

dist (λ,Spec(A))
.

The spectral projector is given by boundary values of the resolvent in
the following way:

THEOREM B.10 (Stone’s formula). Let E = E(P ) be the spectral
measure of a self-adjoint operator P . For a < b

1
2 (E((a, b)) + E([a, b])) =

lim
ε→0+

1

2πi

∫ b

a

(
(P − t− iε)−1 − (P − t+ iε)−1

)
dt.

(B.1.11)

If there exists a dense subspace V such that for f ∈ V the limit

lim
ε→0+

〈(P − t− iε)−1f, f〉 =: 〈(P − t− i0)−1f, f〉, a < t < b

exists, then Spec(P ) ∩ (a, b) is absolutely continuous and on (a, b)

(B.1.12) dEt(P ) =
1

2πi

(
(P − t− i0)−1 − (P − t+ i0)−1

)
dt .

REMARK. An informal but instructive way of writing (B.1.12) is

(B.1.13) δ(P − λ) =
1

2πi

(
(P − λ− i0)−1 − (P − λ+ i0)−1

)
There are many criteria determining if an operator is essentially self-

adjoint and there are many subtleties in the subject. Here we only need the
simplest one:

THEOREM B.11 (Criteria for essential self-adjointness). Suppose
that A : H → H is symmetric. Then the following conditions are equivalent:

(i) A is essentially self-adjoint.

(ii) For both signs, (A∗± i)x = 0, x ∈ D(A∗), implies x = 0.

(iii) For both signs, {(A± i)x | x ∈ D(A)} is dense in H.

THEOREM B.12 (Maximin and minimax principles). Suppose that
A : H → H is self-adjoint and semibounded, meaning A ≥ −c0. Assume
also that (A+ 2c0)−1 : H → H is a compact operator. Then the spectrum of
A is discrete: λ1 ≤ λ2 ≤ λ3 · · · and

(B.1.14) λj = max
V⊂H

codimV <j

min
v∈V
v 6=0

〈Av, v〉
‖v‖2

,
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and

(B.1.15) λj = min
V⊂H

dimV≤j

max
v∈V
v 6=0

〈Av, v〉
‖v‖2

.

(In these formulas, V denotes a linear subspace of H.)

B.2. FUNCTIONAL CALCULUS

If A is a self-adjoint operator on a Hilbert space H and ϕ ∈ L∞(R), the
spectral theorem (see Theorem B.8 for the statement and notation used
here) shows that we can define ϕ(A)x for x ∈ D(A) by

ϕ(A)x := U∗Mϕ(f)Ux.

Since ϕ(A) is bounded and D(A) is dense this defines a bounded operator

ϕ(A) ∈ L(H).

If ϕ ∈ C∞c (R) (or even ϕ ∈ C2
c (R)) an elegant and useful formula for ϕ(A)

was given by Helffer–Sjöstrand – see Dimassi–Sjöstrand [DS99, Chapter 8]
for proofs and for references.

To present the Helffer–Sjöstrand formula we recall the notion of an al-
most analytic extension: we say that ϕ̃ ∈ C∞c (C) is an almost analytic
extension of ϕ ∈ C∞c (R) if

(B.2.1) ϕ̃|R = ϕ, ∂̄zϕ̃(z) = O(| Im z|∞).

(Here ∂̄z := 1
2(∂x+ i∂y), z = x+ iy, is the Cauchy–Riemann operator.) Such

extensions can always be found – see [DS99, Chapter 8] or [HöI, after the
proof of Theorem 3.1.11].

Using this concept, for ϕ ∈ C∞c (R),

(B.2.2) ϕ(A) =
1

π

∫
C
∂̄zϕ̃(z)(A− z)−1dm(z),

where dm(z) = dxdy – see [DS99, Theorem 8.1]. In view of (B.2.1), the
integral converges in the sense of Riemann integration of operators in L(H).

B.3. SINGULAR VALUES

Let H,H1, H2 be separable Hilbert spaces and L(H1, H2) denotes the space
of bounded linear operators H1 → H2.

For a compact self-adjoint operator A : H → H, the Hilbert–Schmidt
theorem (part (iv) of Theorem B.3 says that there exists a complete or-
thonormal basis of eigenvectors e0, e1, . . . of A with eigenvalues λj(A)→ 0.
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We can write

(B.3.1) A =
∞∑
j=0

λj(A)(ej ⊗ ej),

where for e ∈ H1, f ∈ H2, we define their tensor product e⊗ f ∈ L(H1;H2)
by

(B.3.2) (e⊗ f)u := 〈u, e〉f, u ∈ H1.

(Note that we use here a different convention than in Chapters 2 and 3.) If
A is nonnegative, then we order λj(A) so that λj(A) ≥ λj+1(A), and note
that ‖A‖ = λ0(A).

For the case of a general (not necessarily self-adjoint) operator, the fol-
lowing decomposition holds:

PROPOSITION B.13. Assume that A : H1 → H2 is a compact operator.
Then we can write

(B.3.3) A =

∞∑
j=0

sj(ej ⊗ fj),

where s0 ≥ s1 ≥ . . . is a sequence converging to 0 and {ej | sj 6= 0} ⊂ H1

and {fj | sj 6= 0} ⊂ H2 are orthonormal systems.

Moreover, the numbers sj = sj(A), called the singular values of A, do
not depend on the choice of the decomposition (B.3.3), and in fact sj(A) =

λj(A
∗A)1/2.

Proof. 1. We first show the existence of the decomposition (B.3.3). The
operator A∗A : H1 → H1 is compact and self-adjoint, and nonnegative. Let
ej be an orthonormal basis of H1 composed of eigenvectors of A∗A with

eigenvalues sj(A)2 := λj(A
∗A). Put fj := s−1

j Aej for sj 6= 0 and fj = 0 for

sj = 0, so that (B.3.3) holds. It remains to note that for sj 6= 0, sk 6= 0, we
have

〈fj , fk〉 =
〈Aej , Aek〉

sjsk
=
〈A∗Aej , ek〉

sjsk
= δjk.

2. If A admits the decomposition (B.3.3) for some sequence non-increasing
sequence sj ≥ 0 and orthonormal sets {ej}, {fj}, then

A∗A =

∞∑
j=0

s2
jej ⊗ ej ,

and it follows immediately that s2
j = λj(A

∗A). �
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We note that

sup
‖u‖=1

‖Au‖2

‖u‖2
= sup
‖u‖=1

〈A∗Au, u〉
‖u‖2

= λ0(A∗A),

in other words,

(B.3.4) ‖A‖H1→H2 = s0(A).

We also have sj(A) = sj(A
∗) since the form of the decomposition (B.3.3)

persists under taking adjoints.

The singular values can also be characterized as follows:

PROPOSITION B.14. We have for each n,

sn(A) = min{‖A−K‖H1→H2 : K ∈ L(H1;H2), rankK ≤ n}.

Moreover, the minimum is achieved by an operator K such that sj(K) =
sj(A) for 0 ≤ j < n and sj−n(A−K) = sj(A) for j ≥ n.

Proof. 1. Assume that K ∈ L(H1;H2) and rankK ≤ n. We will show
that ‖A −K‖H1→H2 ≥ sn(A) and for that take the decomposition (B.3.3)
of A. Since n + 1 vectors e0, . . . , en are linearly independent, there exists
a nontrivial linear combination u of these vectors such that K(u) = 0. We
then have

‖(A−K)u‖2 = ‖Au‖2 = 〈A∗Au, u〉 ≥ s2
n‖u‖2

and thus ‖A−K‖ ≥ sn(A) as needed.

2. Using the decomposition (B.3.3), for

K :=

n−1∑
j=0

sj(ej ⊗ fj),

we have sj(K) = sj(A) for 0 ≤ j < n, sj−n(A−K) = sj(A) for j ≥ n, and
in particular ‖A−K‖ = s0(A−K) = sn(A). �

Proposition B.14 lets us prove the following inequalities:

PROPOSITION B.15. For compact operators A,B,

sj+k(A+B) ≤ sj(A) + sk(B),(B.3.5)

sj+k(AB) ≤ sj(A)sk(B).(B.3.6)

If A is compact and B is bounded then

(B.3.7) sj(AB), sj(BA) ≤ ‖B‖sj(A).
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Proof. Using Proposition B.14, we write A = KA + RA, B = KB + RB,
where rankKA ≤ j, rankKB ≤ k, ‖RA‖ ≤ sj(A), ‖RB‖ ≤ sk(B). Then

A+B = (KA +KB) + (RA +RB),

AB = (KAB +RAKB) +RARB,

and rank(KA + KB), rank(KAB + RAKB) ≤ j + k, ‖RA + RB‖ ≤ sj(A) +
sk(B), ‖RARB‖ ≤ sj(A)sk(B), so it remains to apply Proposition B.14 one
more time. �

The singular values of an operator are continuous in the norm topology:

PROPOSITION B.16. For compact operators A,B : H1 → H2,

|sj(A)− sj(B)| ≤ ‖A−B‖H1→H2 .

Proof. We have sj(A) ≤ sj(B) + ‖A−B‖ and sj(B) ≤ sj(A) + ‖A−B‖ by
Proposition B.15, with k = 0. �

EXAMPLE. Suppose that (M, g) is compact manifold n dimensional Rie-
mannian manifold and that −∆M is the Laplace-Beltrami operator on M .
Then the Weyl law for eigenvalue asymptotics states that

|{λ ≥ 0 : λ2 ∈ Spec(−∆M ) , |λ| ≤ r}| = cnvolg (M)rn(1 + o(1)) ,

cn = vol (BRn(0, 1))/(2π)n ,

see for instance [Zw12, Theorem 14.11, part (ii)]. If we order the eigenvalues
of −∆M as 0 = λ2

0 < λ2
1 ≤ λ2

2 ≤ · · · , it then follows that

(B.3.8) λj ≥ (cnvolg (M))−
1
n j

1
n (1− o(1)) , j →∞ ,

and

(B.3.9) sj((−∆M + 1)−s/2) ≤ CMj−
s
n , s > 0.

Suppose now that A : L2(M)→ Hs(M), s > 0. Then

sj(A) ≤ sj((−∆M + 1)−s/2)‖(−∆M − 1)s/2A‖L2→L2

≤ sj((−∆M + 1)−s/2)‖A‖L2→Hs

≤ CAj−
s
n .

(B.3.10)

It follows that if s > n then
∑∞

j=0 sj(A) < ∞. In the notation of the next

section, A is of trace class, A ∈ L1(L2(M)) – see (B.4.2).
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B.4. THE TRACE CLASS

We now discuss operators of trace class. First of all, if A : H → H is
bounded and has finite rank, then the trace, trA ∈ C, can be defined as
the trace of the restriction of A to any finite-dimensional subspace V ⊂ H
containing the range of A. In fact, if

A =
N−1∑
j=0

aj(uj ⊗ vj),

where aj ∈ C, uj , vj ∈ H, then

(B.4.1) trA =
N−1∑
j=0

aj〈vj , uj〉.

This gives a linear functional on the space of all finite-rank operators, and
moreover, as seen directly from (B.4.1),

tr(AB) = tr(BA), A : H1 → H2, B : H2 → H1, rankA <∞.

To extend the notion of trace to infinite rank operators, we give the following

DEFINITION B.17. Let A : H1 → H2 be a compact operator. We say
that A is of trace class, and write A ∈ L1(H1;H2), if the trace norm

(B.4.2) ‖A‖1 :=
∞∑
j=0

sj(A)

is finite. When H1 = H2 = H we write A ∈ L1(H).

Proposition B.13 gives the following alternative expression for the trace
class norm:

(B.4.3) ‖A‖1 = max
{ek},{f`}

∑
k,`

〈Aek, f`〉,

where the maximum is taken over all pairs of orthonormal bases of H1 and
H2.

We note that ‖A‖H1→H2 = s0(A) ≤ ‖A‖1. For finite rank opera-
tors (B.4.1) applied to (B.3.3) gives

(B.4.4) | trA| ≤ ‖A‖1.

The partial sums in the definition of ‖A‖1 can be characterized by the fol-
lowing result of Ky Fan:
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PROPOSITION B.18. Let A : H1 → H2 be compact. Then for each n,

n−1∑
j=0

sj(A) = max{| tr(QA)| | ‖Q‖H2→H1 ≤ 1, rankQ ≤ n}.

Proof. 1. If ‖Q‖H2→H1 ≤ 1, then by (B.3.6), sj(QA) ≤ sj(A) for all j. On
the other hand, since rank(QA) ≤ n, we see that sj(QA) = 0 for j ≥ n.
Therefore, by (B.4.4) we have

| tr(QA)| ≤
n−1∑
j=0

sj(QA) ≤
n−1∑
j=0

sj(A).

2. If we consider the decomposition (B.3.3) for A and put Q :=
∑n−1

j=0 fj⊗ej ,
then ‖Q‖H2→H1 ≤ 1, rankQ ≤ n, and by (B.4.1),

tr(QA) = tr

n−1∑
j=0

sj(A)(ej ⊗ ej) =

n−1∑
j=0

sj(A). �

To see that ‖ · ‖1 is in fact a norm, it suffices to prove

PROPOSITION B.19. For A,B : H1 → H2 compact operators, we have

‖A+B‖1 ≤ ‖A‖1 + ‖B‖1.

Proof. It suffices to prove that for each n,

n−1∑
j=0

sj(A+B) ≤
n−1∑
j=0

sj(A) +

n−1∑
j=0

sj(B).

This follows immediately from Proposition B.18, as for each Q : H2 → H1

with ‖Q‖H2→H1 ≤ 1 and rankQ ≤ n, we have tr(Q(A + B)) = tr(QA) +
tr(QB). �

The space L1(H1;H2) equipped with the norm ‖ • ‖1 is a Banach space,
but we do not prove or use this fact here.

Finite rank operators are dense in L1(H1;H2) since for eachA ∈ L1(H1;H2),
using (B.3.3) we have

(B.4.5)

n−1∑
j=0

sj(ej ⊗ fj)→ A in L1(H1;H2).

Another way of demonstrating this fact, which will be more convenient for
families of operators later, is given by
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PROPOSITION B.20. Assume that A ∈ L1(H1;H2), H2 is infinite di-
mensional, and (uj)

∞
j=1 is a Hilbert basis of H2 respectively. Let ΠN : H2 →

H2 be the orthogonal projection onto the subspace spanned by u1, . . . , uN .
Then

(B.4.6) ‖A−ΠNA‖1 → 0 as N →∞.

Proof. 1. Since A is compact and ΠN → I in the strong operator topology
(‖(ΠN − I)u‖H2 → 0 for all u ∈ H1),

f(N) := ‖(I −ΠN )A‖H1→H2 → 0, N →∞.

(We can for instance use (B.3.3) and sj → 0.)

2. From sj((I − ΠN )A) ≤ f(N), (B.3.6) and the dominated convergence
theorem we see that∑

j

sj((I −ΠN )A) ≤
∑
j

min(sj(A), f(N))→ 0, N →∞

which proves (B.4.6). �

By (B.3.6) and the fact that sj(A
∗) = sj(A), we see that for A ∈ L1.

(B.4.7) ‖AB‖1 ≤ ‖A‖1‖B‖H1→H2 , ‖A‖1 = ‖A∗‖1.

In particular, L1(H;H) is a two-sided ideal in the algebra of closed operators
on H.

By (B.4.4), the trace functional on finite-dimensional operators extends
uniquely to a bounded linear functional tr : L1(H;H) → C, and for each
Hilbert basis uj of H,

(B.4.8) trA =
∑
j

〈Auj , uj〉, A ∈ L1(H;H).

Indeed, this follows immediately from Proposition B.20, since tr(ΠNA) =∑N
j=1〈Auj , uj〉.

By approximation by finite rank operators, we see that for each A ∈
L1(H1;H2) and bounded B : H2 → H1, we have

(B.4.9) tr(AB) = tr(BA), A ∈ L1(H1;H2), B ∈ L(H2;H1).

The fundamental example of trace class operators is given by the following
proposition (see also the example at the end of §B.3).

PROPOSITION B.21. Let X be a manifold of dimension m and A :
Hs(X) → Hs′(X) be bounded, where s′ > s + m. Assume also that the
Schwartz kernel of A has compact support. Then A ∈ L1(Hs(X);Hs(X)).
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Proof. 1. Using coordinate charts and a partition of unity, we can reduce to
the case when X is the m-dimensional torus: X = (R/2πZ)m. By (B.4.7),

it is enough to show that the inclusion operator ι : Hs′(X) → Hs(X) is of
trace class.

2. An orthogonal basis of Hs(X) and Hs′(X) is given by eikx, where k ∈ Zm;
we have ι(eikx) = eikx and

‖eikx‖Hs ≤ C〈k〉s−s′‖eikx‖Hs′ .

This gives a decomposition (B.3.3) of ι, and we see that the singular value

corresponding to eikx is bounded by C〈k〉s−s′ . It remains to note that∑
k∈Zm

〈k〉s−s′ <∞ for s′ > s+m. �

To compute the trace of an operator on L2, the following formula is
particularly useful:

PROPOSITION B.22. Let X be a manifold with a fixed volume form
dVol (so that Schwartz kernels – see §A.7 – can be regarded as functions)
and A : D′(X) → C∞c (X) be an operator with Schwartz kernel KA(x, y) ∈
C∞c (X ×X). Then A : L2(X)→ L2(X) is of trace class and

(B.4.10) trA =

∫
KA(x, x) dVol(x).

Proof. 1. We start with the case when A has the form

(B.4.11) A =
N∑
j=1

aj(uj ⊗ vj)

where uj , vj ∈ C∞c (X) and uj ⊗ vj is defined by (B.3.2). Note that

KA(x, y) =

N∑
j=1

ajvj(x)uj(y).

Then by (B.4.1),

trA =

N∑
j=1

aj〈vj , uj〉 =

N∑
j=1

aj

∫
X
vj(x)uj(x) dVol(x)

=

∫
X
KA(x, x) dVol(x)

which proves (B.4.10).
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2. For general A, using coordinate charts and a partition of unity, we reduce
to the case when X = (R/2πZ)m. We write the Fourier series of KA,

KA(x, y) =
∑

`,r∈Zm
a`re

i`x+iry

and the series converges in C∞. If e`(x) = ei`x, then we can write

A =
∑

`,r∈Zm
a`re−r ⊗ e`,

and since the coefficients a`r are rapidly decreasing, the series converges
in the trace class norm ‖ • ‖1. Since the partial sum of the series has the
form (B.4.11), the proof is finished by the continuity of the trace with respect
to the trace class norm. �

EXAMPLE. Suppose that (M,dx), and (N, dω) are measure spaces and
that ej(x, ω) ∈ L2(M ×N). Then

Ku(x) :=

∫
M

∫
N
e1(x, ω)e2(y, ω)u(y)dωdy,

defines

(B.4.12) K ∈ L1(L2(M)), trK =

∫
M×N

e1(x, ω)e2(x, ω)dxdω.

In fact, K = E1E
∗
2 where Ej : L2(N) → L2(M) are defined by Ejg(x) =∫

N ej(x, ω)g(ω)dω. If {ψk} is an orthonormal basis of L2(M,dx), then∑
k

‖E∗jψk‖2L2(N) =

∫
M×N

|ej(x, ω)|2dxdω.

Using (B.4.3),

‖K‖L1 = max
{ϕ`},{ψk}

∑
k,`

〈Kϕ`, ψk〉L2(M)

≤ max
{ϕ`},{ψk}

∑
k,`

‖E∗1ψk‖2L2(N)‖E
∗
2ϕ`‖2L2(N)

= ‖e1‖2L2(M×N)‖e2‖2L2(M×N),

and

trK =
∑
k

〈E∗2ψk, E∗1ψk〉

=

∫
N

∑
k

〈ψk, e2(•, ω)〉L2(M)〈e1(•, ω), ψk〉L2(M)dω

= 〈e1, e2〉L2(M×N),
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which gives (B.4.12).

REMARK. The example above can be generalized. It leads to another
characterization of the trace class: K ∈ L1(H) if and only if K = E1E

∗
2

where Ej : H0 → H and

‖E∗j ‖L2(H,H0) :=
∑
k

‖E∗jψk‖2H0
<∞.

for any (or one) orthormal basis of H. The operators in L2(H,H0) are called
Hilbert–Schmidt operators.

B.5. WEYL INEQUALITIES AND FREDHOLM
DETERMINANTS

We now discuss the relation of singular values and the trace with the spec-
trum. Let A : H → H be a compact operator and λ0(A), λ1(A), . . . be its
eigenvalues, listed according to multiplicity and ordered so that

(B.5.1) |λ0(A)| ≥ |λ1(A)| ≥ |λ2(A)| ≥ . . .

If A has only finitely many eigenvalues, we put the rest of λj(A) equal to
zero. We always have λj(A) → 0 and A − λI is invertible unless λ = 0 or
λ is an eigenvalue. The spectral projection corresponding to an eigenvalue
λ 6= 0 of A is defined by

(B.5.2) Πλ :=
1

2πi

∮
λ
(zI −A)−1 dz, λ 6= 0,

where the integral is taken over a contour enclosing λ but no other eigen-
values or zero. By the Cauchy formula and the identity

(zI −A)−1(wI −A)−1 = (w − z)−1((zI −A)−1 − (wI −A)−1), z 6= w

we see that Π2
λ = Πλ (see Theorem C.9 for a detailed argument). Moreover,

Πλ, is compact since A is compact and

Πλ =
A

2πi

∮
λ
z−1(zI −A)−1 dz.

therefore, Πλ has finite rank. The (algebraic) multiplicity of λ, mA(λ), is
defined as

(B.5.3) mA(λ) := rank Πλ.

Since A commutes with Πλ and thus A(Ran Πλ) ⊂ Ran Πλ, and moreover λ
is the only eigenvalue of A|Ran Πλ , therefore

(A− λI)mA(λ)Πλ = 0.
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B.5.1. Weyl Inequalities. We start with

PROPOSITION B.23. In the notation of (B.5.1) we have, for each n,

(B.5.4)

n−1∏
j=0

|λj(A)| ≤
n−1∏
j=0

sj(A).

Proof. 1. We may assume that λn−1(A) 6= 0. Let H1 ⊂ H be the fi-
nite dimensional Hilbert space spanned by some linearly independent set
u0, . . . , un−1 of eigenvectors of A corresponding to λ0(A), . . . , λn−1(A). If

mA(λj) > dim ker(A− λjI),

for some λj , then, once we are out of eigenvectors of A, we add to the list
vectors in ker((A−λjI)2), then vectors in ker((A−λjI)3), and so on. Then
A(H1) ⊂ H1 and the restriction A|H1 has eigenvalues λ0(A), . . . , λn−1(A),
counted with multiplicity.

2. Denote by ι : H1 → H the inclusion map and by π : H → H1, the orthog-
onal projector. Then the operator A1 := πAι : H1 → H1 has eigenvalues
λ0(A), . . . , λn−1(A) and by (B.3.6), we find sj(A1) ≤ sj(A) for all j. Now,∣∣∣∣ n−1∏

j=0

λj(A)

∣∣∣∣ = | det(A1)| = |det(A∗1A1)|1/2 =

n−1∏
j=0

sj(A1) ≤
n−1∏
j=0

sj(A)

which proves (B.5.4). �

We next present the following inequality of Hardy–Littlewood–Pólya. It
holds under weaker assumptions but we only need the following version:

LEMMA B.24. Assume that Φ ∈ C∞(R;R), Φ′ ≥ 0, Φ′′ ≥ 0, and Φ(x)→
0, xΦ′(x)→ 0 as x→ −∞. Then for all a1 ≥ · · · ≥ an, b1 ≥ · · · ≥ bn such
that

k∑
j=1

aj ≤
k∑
j=1

bj , 1 ≤ k ≤ n,

we have
k∑
j=1

Φ(aj) ≤
k∑
j=1

Φ(bj), 1 ≤ k ≤ n.

Proof. 1. By Taylor’s formula, we have

Φ(x) = Φ(y) + (x− y)Φ′(y) +

∫ x

y
(x− t)Φ′′(t) dt.

Letting y → −∞, we see that

(B.5.5) Φ(x) =

∫ x

−∞
(x− t)Φ′′(t) dt =

∫ ∞
−∞

(x− t)+Φ′′(t) dt,
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where the integral converges absolutely as Φ′′ ≥ 0.

2. From (B.5.5) we see that

k∑
j=1

Φ(aj) =

∫ ∞
−∞

( k∑
j=1

(aj − t)+

)
Φ′′(t) dt.

Therefore, it suffices to prove that for each t ∈ R,

k∑
j=1

(aj − t)+ ≤
k∑
j=1

(bj − t)+.

Fix t and choose the largest ` ≤ k such that a` − t > 0. Then

k∑
j=1

(aj − t)+ =
∑̀
j=1

(aj − t) ≤
∑̀
j=1

(bj − t) ≤
k∑
j=1

(bj − t)+

and the proof is finished. �

Combining Proposition B.23 and Lemma B.24, we immediately get the
following general Weyl inequality :

PROPOSITION B.25. Assume that f ∈ C∞(0,∞) is real-valued, f ′ ≥ 0,
limx→+0 f(x) = 0, limx→+0 f

′(x)x log x = 0, and t 7→ f(et) is convex. Then
for each compact operator A and each n, we have

(B.5.6)

n−1∑
j=0

f(|λj(A)|) ≤
n−1∑
j=0

f(sj(A)).

Proof. Define Φ(t) := f(et) and note that Φ satisfies the assumptions of
Lemma B.24. Proposition B.23 shows that

k−1∑
j=0

log |λj(A)| ≤
k−1∑
j=0

log sj(A)

for all k and (B.5.6) follows. �

We write down two particularly useful special cases. Taking f(x) = x
in Proposition B.25, we obtain for all n,

(B.5.7)

n−1∑
j=0

|λj(A)| ≤
n−1∑
j=0

sj(A),

while taking f(x) = log(1 + x), we get

(B.5.8)

n−1∏
j=0

(1 + |λj(A)|) ≤
n−1∏
j=0

(1 + sj(A)).



508 B. WEYL INEQUALITIES AND FREDHOLM DETERMINANTS

Note that (B.5.7) in particular implies

(B.5.9)

∞∑
j=0

|λj(A)| ≤ ‖A‖1.

B.5.2. Fredholm determinants. Assume that A : H → H is a finite
rank operator and λ0(A), . . . , λn−1(A) are its non-zero eigenvalues ordered
as in (B.5.1). Then the determinant of I −A is defined as

(B.5.10) det(I −A) =

n−1∏
j=0

(1− λj(A)).

This is of course consistent with the definition for finite dimensional H. If for
some finite dimensional space V , Ran(A) ⊂ V if π : H → V is the orthogonal
projection onto V then the determinant is equal to the determinant of π(I−
A) : V → V . (To see this note if (A− λ)`v = 0, λ 6= 0 then v ∈ RanA ⊂ V .
Hence, the non-zero eigenvalues of A are the same as non-zero eigenvalues
of A|V .)

By (B.5.8), we find

(B.5.11) | det(I −A)| ≤
∞∏
j=0

(1 + sj(A)) ≤ e‖A‖1 .

From the properties of the determinant on finite dimensional spaces, we have
for finite rank operators A,B

det((I −A)(I −B)) = det(I −A) det(I −B),(B.5.12)

when rankA, rankB <∞, and

det(I −AB) = det(I −BA),(B.5.13)

when rankA <∞.

For the last identity we use the fact that the nonzero eigenvalues of AB
and BA coincide with multplicities – to see it, note that for each λ 6= 0 and
each j, the maps

ker((BA− λ)j)
A−→ ker((AB − λ)j)

B−→ ker((BA− λ)j)

are injective. We can also see it by noting that for λ 6= 0, (AB − λ)−1 =
λ−1A(BA− λ)−1B − λ−1.

We also see from (B.5.10) that I −A is invertible if and only if det(I −
A) 6= 0.

Another useful identity is given in the following lemma:
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LEMMA B.26. Suppose that t 7→ At, t ∈ [0, 1], is a C1 family of finite
rank operators such that for some fixed finite dimensional subspace V ⊂ H,

Ran(At) ⊂ V, I −At is invertible for t ∈ [0, 1].

Then

(B.5.14) ∂t log det(I −At) = − tr((I −At)−1∂tAt).

Proof. 1. Let π : H → V be the orthogonal projection then Bt := π(I−At) :
V → V and det(I − At) = detBt where detBt is defined as the determi-
nant on the finite dimensional space V . Similarly, trH(I − At)

−1∂tAt =
trV B

−1
t ∂Bt. Hence we need to prove that for a family, Bt, of invertible

operators on a finite dimensional Hilbert space,

(B.5.15) ∂ log detBt = trB−1
t ∂Bt.

2. We first prove a version of Jacobi’s formula: suppose τ 7→ C(τ) : Cn → Cn
is a C1 family of matrices such that C(0) = ICn . Then

(B.5.16) ∂τ detC(τ)|τ=0 = tr ∂τC(0).

In fact, let Cj(τ) be columns of C(τ) = [C1(τ), · · · , Cn(τ)] and ej be the
standard basis of Cn. Then

∂τ detC(τ)|τ=0 =

n∑
j=1

det[C1(0), · · · , ∂τCj(0), · · · , Cn(0)]

=
n∑
j=1

det[e1, · · · , ∂τCj(0), · · · , en]

=
n∑
j=1

∂τCjj(0) = tr ∂τC(0).

3. We now identify V with Cn and apply (B.5.16) to C(τ) := B−1
t Bt+τ so

that

∂t log detBt = ∂τC(τ)|τ=0 = tr ∂τC(0) = trB−1
t ∂tBt,

which is (B.5.16). �

We can now define the determinant for operator A of trace class.

PROPOSITION B.27. The the map A 7→ det(I − A) defined for finite
rank operators extends uniquely to a continuous (nonlinear) functional on
L1(H;H).
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Proof. 1. We first consider the case when I − A is invertible. Let Bk be a
family of finite rank operators such that ‖A−Bk‖1 → 0. If k and ` are large
enough than the there exists C such that for all t ∈ [0, 1],

‖(I − (tB` + (1− t)Bk))−1‖H→H ≤ C.

We then define B(t) := tB` + (1− t)Bk. By (B.5.14), for all t ∈ [0, 1]

|∂t log det(I −B(t))| = | tr((I −B(t))−1(B` −Bk))|

≤ ‖(I −B(t))−1(B` −Bk)‖1 ≤ C‖B` −Bk‖1.

Hence, as Bk is a Cauchy sequence in L1,

| log det(I −B`)− log(det(I −Bk))| ≤ C‖B` −Bk‖L1 → 0, k, `→∞.

In particular, for m sufficiently large, the limit

νm := lim
k→∞

(log det(I −Bk)− log det(I −Bm))

exists. We then put

det(I −A) = det(I −Bm)eνm

and the estimates above show that A 7→ det(I − A) is continuous on the
open subset of L1 consisting of operators for which I −A is invertible.

2. Suppose now that I−A is not invertible. If Bk are as in Step 1, we claim
that det(I −Bk)→ 0. Since for each j,

|det(I −Bk)| ≤ |1− λj(Bk)|
∏
r

(1 + |λr(Bk)|) ≤ |1− λj(Bk)|e‖Bk‖1 ,

it suffices to show that for each ε > 0 and each k large enough depending
on ε, there exists j such that |1− λj(Bk)| ≤ ε.
3. Suppose the opposite holds. Then, by passing to a subsequence, we may
assume that exists ε > 0 such that |1−λj(Bk)| ≥ ε for all j, k. We may also
choose ε so that 1 is the only eigenvalue of A such that |1 − λ| ≤ ε. Then
as k →∞,

0 =

∮
|1−λ|=ε

(z −Bk)−1 dz →
∮
|1−λ|=ε

(z −A)−1 dz,

however the right-hand side is nonzero applied to any eigenvector of A with
eigenvalue 1, a contradiction. �

This finishes the verification that det(I − A) extends to a continuous
functional on operators of trace class, A. The identities (B.5.12) and (B.5.13)
then extend to

det((I −A)(I −B)) = det(I −A) det(I −B),(B.5.17)
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for A,B ∈ L1(H;H) and

det(I −AB) = det(I −BA),

A ∈ L1(H1;H2), B ∈ L(H2;H1).
(B.5.18)

PROPOSITION B.28. If A ∈ L1(H;H), then I − A is invertible if and
only if det(I −A) 6= 0.

Proof. If I−A is not invertible, then det(I−A) = 0 by Step 2 of the proof of
Proposition B.27. If I−A is invertible, then (I−A)−1 = (I−B), where B =
−A(I −A)−1 is of trace class. Then by (B.5.12), 1 = det(I −A) det(I −B)
and hence det(I −A) 6= 0. �

The following estimates involving determinants will also be useful

PROPOSITION B.29. Suppose that A,B ∈ L1. Then

(B.5.19) | det(I +A)| ≤ e‖A‖1

and

(B.5.20) | det(I +A)− det(I +B)| ≤ ‖A−B‖1e1+‖A‖1+‖B‖1 .

In the case of matrices we know that (I − A)−1 can expressed using
Cramer’s rule and hence its norm can be estimated using | det(I − A)|−1.
There is also an infinite dimensional version of this result:

(B.5.21) ‖(I −A)−1‖ ≤ det(I + (A∗A)
1
2 )

|det(I −A)|
, A ∈ L1 ,

see [GK69, Theorem 5.1, Chapter 5.1].

We finally discuss determinants of holomorphic families of operators.
Assume that A(z) is a holomorphic family of operators in trace class for z
in some domain Ω ⊂ C. Using Proposition B.20, we write

(B.5.22) det(I −A(z)) = lim
N→∞

det(I −ΠNA(z)),

and the limit so far is pointwise in z. However, | det(I − ΠNA(z))| ≤
e‖ΠNA(z)‖1 ≤ e‖A(z)‖1 is bounded locally uniformly in z as N → ∞. These
uniform boundedness shows equicontinuity (using the Cauchy formula for
the derivative) and hence the limit (B.5.22) is actually uniform on compact
sets. As a corollary, the determinant det(I − A(z)) is a holomorphic func-
tion of z, and for z such that I − A(z) is invertible, we find using (B.5.14)
and (B.5.22),

(B.5.23) ∂z log det(I −A(z)) = − tr
(
(I −A(z))−1∂zA(z)

)
.
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B.6. LIDSKĬI’S THEOREM

Let A ∈ L1(H;H). In this section, we further explore the relation between
the spectrum of A, the trace trA, and the determinant det(I−A). Consider
the holomorphic function

D(z) := det(I − zA), z ∈ C.

By (B.5.23), away from the zeroes of D we have

∂z logD(z) = − tr((I − zA)−1A).

In this section, we prove

PROPOSITION B.30. For A ∈ L1(H;H),

det(I − zA) =
∏
j

(1− zλj(A)).

Before we start the proof, let us note that by taking the derivative at
z = 0, we get the following theorem of Lidskĭı:

PROPOSITION B.31. For A ∈ L1(H;H), we have

trA =
∑
j

λj(A).

The proof of Proposition B.30 starts with analyzing the zeroes of D(z):

LEMMA B.32. The zeroes of D(z) are given by λj(A)−1 for λj(A) 6= 0,
and the multiplicity of λj(A)−1 as a zero of D(z) is equal to the (algebraic)
multiplicity of λj(A) as an eigenvalue of A.

Proof. 1.The fact that the zeroes of D(z) are exactly λj(A)−1 follows imme-
diately from Proposition B.28.

2. To see that the multiplicities coincide, we fix λ = λj(A) and note that
the multiplicity of λ−1 as a zero of D(z) is equal to

(B.6.1)
1

2πi

∮
λ−1

∂z logD(z) dz = − 1

2πi
tr

∮
λ−1

(I − zA)−1Adz

where integration is over a contour containing λ−1 but no other zeroes of
D(z). Let Πλ be defined in (B.5.2), then using the change of variables
z 7→ z−1 we compute

− 1

2πi

∮
λ−1

(I − zA)−1Adz =
1

2πi

∮
λ
z−1(z −A)−1Adz = Πλ,

thus (B.6.1) is equal to tr Πλ, that is, the multiplicity of λ as an eigenvalue
of A. �
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Proof of Proposition B.30. 1. First we note that D(z) is of subexponential
growth, namely for each ε > 0, there exists Cε such that

(B.6.2) |D(z)| ≤ Cεeε|z|.

Indeed, by (B.5.11) and approximation by finite rank operators, for each n

|D(z)| ≤
∞∏
j=0

(1 + |z|sj(A)) ≤ e
∑∞
j=n sj(A)|z|

n−1∏
j=0

(1 + |z|sj(A)),

and we have
∑∞

j=n sj(A) ≤ ε for n large enough.

2. We now note that by (B.5.9),
∑∞

j=0 |λj(A)| < ∞. It follows that the

function W (z) :=
∏∞
j=0(1 − zλj(A)) is entire, satisfies the bound (B.6.2),

and has the same zeros as D(z), counted with multiplicities. Therefore

D(z) = eg(z)W (z), where g is an entire function. In terminology of entire
functions we have shown that D(z) is an entire of function of type 0. Hence,
see §D.2, g = 0, proving Proposition B.30. �

As an example of an application we record the following lemma which
is useful in the text:

LEMMA B.33. Suppose that

Hs := 〈x〉sL2(Rn), ‖u‖2Hs :=

∫
Rn
〈x〉−2s|u(x)|2dx.

and that a linear operator A : H0 → H0 extends to an operator Ã : H1 → H1.

If A ∈ L1(H0) and Ã ∈ L1(H1) then

(B.6.3) trH0 A = trH1 Ã.

Proof. 1. Lidskĭı’s theorem shows that the trace is the same for topologi-
cally equivalent inner products: the eigenvalues are independent of a specific
choice of the inner product.

2. Let B0 = B(0, 1) and Bj = B(0, 2j) \ B(0, 2j−1), j ≥ 1, and define the
following equivalent inner product on Hs:

(B.6.4) 〈u, v〉s :=

∞∑
j=0

2−2sj〈u, v〉L2(Bj).

Let {ej,`}∞`=0, supp ej,` ⊂ Bj be an orthonormal basis of L2(Bj). Then

{ej,`}∞j,`=0 is an orthonormal basis of H0 and {fj,`}∞j,`=0, fj,` := 2jsej,` is

an orthonormal basis of Hs (with respect to the innner product 〈•, •〉s in
(B.6.4)).
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3. We now have

trH0 A =
∞∑

j,`=0

〈Aej,`, ej,`〉0 =
∞∑

j,`=0

∫
Bj

Aej,`(x)ej,`(x)dx

=
∞∑

j,`=0

∫
Bj

Ãej,`(x)ej,`(x)dx =
∞∑
j=0

2−2sj
∞∑
`=0

∫
Bj

Ãfj,`(x)fj,`(x)dx

=

∞∑
j,`=0

〈Ãfj,`, fj,`〉1 = trH1 Ã,

completing the proof. �

B.7. NOTES

Standard references for the results presented in this appendix include Davies
[Da95], Helffer [He13], Reed–Simon [RS80] (spectral theory) and Gohberg–
Krein [GK69], Simon [Si79b] (singular values, trace class). Some of our
presention also follows [Sj02, Chapter 5].

B.8. EXERCISES

1. Show that if the operator f ⊗ g is defined by f ⊗ g(h) := g〈h, f〉H then

det(I + f ⊗ g) = 1 + 〈g, f〉.

2. Show that if A : H → H satisfies ‖A‖ < 1 and A ∈ L1(H) then

det(I −A) = exp

(
−
∞∑
k=1

1

k
trAk

)
.

Hint: Use the facts that the operator log(I−A) is defined using the Taylor
series and that ‖Ak‖L1 ≤ ‖A‖k−1‖A‖L1 .
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FREDHOLM
THEORY

C.1 Grushin problems
C.2 Fredholm operators
C.3 Meromorphic continuation of operators
C.4 Gohberg–Sigal theory
C.5 Notes
C.6 Exercises

In this appendix we will describe the role of the Schur complement for-
mula in spectral theory, in particular in analytic Fredholm theory.

C.1. GRUSHIN PROBLEMS

Linear algebra. The Schur complement formula for two-by-two systems
of matrices states that if(

P R−
R+ R+−

)−1

=

(
E E+

E− E−+

)
,

then P is invertible if and only if E−+ is invertible, with

(C.1.1) P−1 = E − E+E
−1
−+E−, E−1

−+ = R+− −R+P
−1R−.

Generalization. We can generalize to problems of the form

(C.1.2)

(
P R−
R+ R+−

)(
u
u−

)
=

(
v
v+

)
515
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where

P : X1 → X2, R+ : X1 → X+, R− : X− → X2, R+− : X− → X+.

are bounded operators on Banach spaces X1, X2, X+, X−. If the operator
(C.1.2) has a bounded inverse from X2 ⊕ X+ → X1 ⊕ X− then, just as
for matrices, invertibility of P is equivalent to the invertibility of E−+ and
(C.1.1) holds.

DEFINITION C.1. When R−+ = 0 we call (C.1.2) a Grushin problem:(
P R−
R+ 0

)(
u
u−

)
=

(
v
v+

)
,

P : X1 → X2, R+ : X1 → X+, R− : X− → X2,

(C.1.3)

If the Grushin problem (C.1.3) is invertible, we call it well-posed and we
write its inverse as follows:

(C.1.4)

(
u
u−

)
=

(
E E+

E− E−+

)(
v
v+

)
for operators

E : X2 → X1, E−+ : X+ → X−, E+ : X+ → X1, E− : X2 → X−.

In practice, we start with an operator P and build a Grushin problem
by choosing R± so taht (C.1.3) is invertible.

The following lemma is immediate:

LEMMA C.2 (The operators in a Grushin problem). If (C.1.3) is
well-posed, then the operators R+, E− are surjective, and the operators E+,
R− are injective.

The next lemma is a result of a Neumann series calculation:

LEMMA C.3 (Perturbation of a Grushin problem). Suppose that
(C.1.3) is well posed with the inverse given by (C.1.4). If A : X1 → X2 is a
bounded operator satisfying

(C.1.5) max (‖EA‖X1→X1 , ‖AE‖X2→X2) < 1.

Then the Grushin problem

(C.1.6)

(
P +A R−
R+ 0

)
,

is well posed with the inverse (
F F+

F− F−+

)
,
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where

(C.1.7) F−+ = E−+ +
∞∑
k=1

(−1)kE−A(EA)k−1E+.

Proof. Since(
P +A R−
R+ 0

)
=(

P R−
R+ 0

)((
IX1 0
0 IX−

)
+

(
E E+

E− E−+

)(
A 0
0 0

))
(
P R−
R+ 0

)((
IX1 0
0 IX−

)
+

(
EA 0
E−A 0

))
,

and

(C.1.8)

(
EA 0
E−A 0

)k
=

(
(EA)k 0

E−A(EA)k−1 0

)
, k ≥ 1,

we find the right inverse, and similarly the left inverse, of (C.1.6) by a
Neumann series if (C.1.5) holds. A simple calculation then gives (C.1.7). �

C.2. FREDHOLM OPERATORS

DEFINITIONS. (i) A bounded linear operator P : X1 → X2 is called a
Fredholm operator if the kernel of P ,

kerP := {u ∈ X1 | Pu = 0},

and the cokernel of P ,

cokerP := X2/PX1, where PX1 := {Pu | u ∈ X1},

are both finite dimensional. Here the cokernel of P is defined algebraically,
that is a vector space of cosets, u+ PX1, u ∈ X2.

(ii) The index of a Fredholm operator is

indP := dim kerP − dim cokerP.

EXAMPLE. Many important Fredholm operators have the form

(C.2.1) P = I +K,

where K a compact operator mapping a Banach space X to itself. See
Example 2 later in this section for a simple proof when X is a Hilbert space.



518 C. FREDHOLM OPERATORS

Theorem C.5 below shows that the index does not change under con-
tinuous deformations of Fredholm operators (with respect to operator norm
topology). Hence for operators of the form (C.2.1) the index is 0:

(C.2.2) indP = ind(I + tK) = ind I = 0 (0 ≤ t ≤ 1).

The connection between Grushin problems and Fredholm operators is
this:

THEOREM C.4 (Grushin problem for Fredholm operators). (i)
Suppose that P : X1 → X2 is a Fredholm operator.

Then there exist finite dimensional spaces X± and operators R− : X− →
X2, R+ : X1 → X+, for which the Grushin problem (C.1.3) is well posed.
In particular, PX1 ⊂ X2 is closed.

(ii) Conversely, suppose that that for some choice of spaces X± and operators
R±, the Grushin problem (C.1.3) is well posed.

Then P : X1 → X2 is a Fredholm operator if and only if E−+ : X+ → X−
is a Fredholm operator. In that case we have

(C.2.3) indP = indE−+.

Assertion (ii) is particularly useful when the spaces X± are finite dimen-
sional.

Proof. 1. Assume P : X1 → X2 is a Fredholm operator. Let n+ := dim kerP
and n− := dim cokerP , and write X+ := Cn+ , X− := Cn− . If kerP is
spanned by xj ∈ X1, j = 1, · · · , n+ then, by the Hahn-Banach theorem we
can find x∗j : X1 → R, such that x∗j (xi) = δij and ‖x∗j‖ ≤ 1. It follows that

R+ : X1 → Cn+ , R+(x) := (x∗1(x), · · · , x∗n+
(x)),

has maximal rank, that is ker(R+|kerP ) = {0}.
Now choose yj ∈ X2, j = 1, · · · , n− so that yj + PX1 form a basis of

X2/PX1. Then define

R− : Cn+ → X2, R−(a1, · · · an−) :=

n−∑
j=1

ajyj .

The operator R− has maximal rank and R−X− ∩ PX1 = {0}.
We conclude that the operator(

P R−
R+ 0

)
: X1 ⊕ Cn− → X2 ⊕ Cn+

has a trivial kernel and is onto. Hence it is invertible, and by the Open
Mapping Theorem the inverse is continuous.
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In particular, consider P acting on the quotient space X1/ kerP , which
is a Banach space since kerP is closed. We have n+ = 0, and

PX1 = P (X1/ kerP ) =
(
P R−

)( X1/ kerP
{0}

)
is a closed subspace (the image of a closed subspace by the invertible operator
(P R−)).

2. Conversely, suppose that Grushin problem (C.1.3) is well-posed. Accord-
ing to Lemma C.2, the operators R+, E− are surjective, and the operators
E+, R− are injective. If we take u− = 0 then

(C.2.4)

{
the equation Pu = v is equivalent to

u = Ev + E+v+, 0 = E−v + E−+v+.

This means that

E− : PX1 → E−+X+,

and we can define the induced map

E#
− : X2/PX1 → X−/E−+X+.

Since E− is surjective, so is E#
− . We also see that kerE#

− = {0}. In fact,
if E−v ∈ E−+X+, we can use (C.2.4) to obtain u ∈ X1 such that v = Pu.

Hence E#
− is a bijection of the cokernels X2/PX1 and X−/E−+X+.

3. Next, we claim that

E+ : kerE−+ → kerP

is a bijection. Indeed, if u ∈ kerP , then for v+ := R+u, u = E+v+ and
E−+v+ = 0. Therefore E+ is onto; and this is all we need check, since E+

injective.

We conclude that

dim kerP = dim kerE−+, dim cokerP = dim cokerE−+.

In particular, the indices of P and E−+ are equal. �

EXAMPLES. 1. Suppose X is a Banach space and K : X → X. Then

(C.2.5) dimKX <∞ =⇒ I +K is a Fredholm operator.

Proof of (C.2.5). 1. A finite rank operator can be written asK =
∑J

j=1 vjw
∗
j

where vj ∈ X, w∗j ∈ X∗ (the dual space to X) and J = rankK := dimKX.
In particular the sets

{vj}Jj=1 ⊂ X, {w∗j}Jj=1 ⊂ X∗,

are linearly independent. This shows that kerK =
⋂j
j=1 kerw∗j is a closed

subspace of X of codimension J .
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2. Independence of w∗j ’s shows that can find wk ∈ X, k = 1, · · · , J such

that w∗j (wk) = δjk. Then Π :=
∑

j=1wjw
∗
j : X → X is a projection on a

finite dimensional space and kerK = (I −Π)X.

3. We write

I +K = I +KΠ = I + ΠKΠ + (I −Π)KΠ

= (I + ΠKΠ)(I + (I −Π)KΠ),

where the second factor is invertible:

(I + (I −Π)KΠ)−1 = I − (I −Π)KΠ.

4. Hence we only need to check that the finite dimensionality of the kernel
and cokernel of I + ΠKΠ and that follows from the properties of the finite
dimensional operator IΠX + ΠKΠ. �

2. Suppose now that X is a Hilbert space. Then

(C.2.6) K is a compact operator =⇒ I +K is a Fredholm operator.

The compactness of K means that KBX(0, 1) b X, where BX(0, 1) is the
unit ball in X. (Property (C.2.6) holds in Banach spaces as well but a little
more work is needed and in this book only Hilbert spaces are considered.)

Proof of (C.2.6). 1. Any compact operator K : X → X, where X is a
Hilbert space can be approximated in norm by finite rank operators. This
implies that there exists K0 : X → X, dimK0X <∞ such that ‖K−K0‖ <
1
2 . In particular I +K −K0 is invertible,

2. We write

I +K = (I +K −K0)(I + (I + (K −K0))−1K0).

The first factor is invertible and (I+K−K0)−1K0 is a finite rank operator.
Hence (C.2.6) follows from (C.2.5). �

THEOREM C.5 (Invariance of the index under deformations). The
set of Fredholm operators is open in L(X1, X2), and the index is constant in
each component of that set.

Proof. When P is a Fredholm operator, we can use Theorem C.4 to obtain
E−+ : Cn+ → Cn− , with

(C.2.7) indE−+ = n+ − n−.

by the Rank-Nullity Theorem of linear algebra. The Grushin problem re-
mains well-posed (with the same operators R±) if P is replaced by P ′, pro-
vided ‖P − P ′‖ < ε for some sufficiently small ε > 0. Hence the set of
Fredholm operators is open.
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Using (C.2.7) we see that the index of P ′ is the same as the index of P .
Consequently it remains constant in each connected component of the set
of Fredholm operators. �

REMARKS. 1. A bounded linear operator P : X1 → X2 is a Fredholm
operator if and only if there exists a bounded linear operator E : X2 → X1

such that

PE = IX2 +K2, EP = IX1 +K1,

where Kj : Xj → Xj are finite rank operators.
(C.2.8)

In fact, if P is a Fredholm operator then we use Theorem C.4 and obtain
(C.2.8) with K2 = −R−E− and K1 = −E+R+. On the other hand, if
(C.2.8) holds then kerP ⊂ ker(I +K1) and cokerP ⊂ coker(I +K2), hence
both spaces are finite dimensional.

In particular (C.2.8) shows that adding a finite rank operator to a Fred-
holm operator, maintain the Fredholm property. Theorem C.5 shows that
the index does not change.

2. If P : X1 → X2 has index 0, Theorem C.4 shows that we can take
X− = X+ = Cn, for some n. In that case, we check easily that

(C.2.9) (P −R−(ICn − E−+)R+) (E − E+E−) = IX2 .

That means putting

K := −R−(I − E−+)R+, rankK ≤ n,

makes P +K invertible.

C.3. MEROMORPHIC CONTINUATION OF
OPERATORS

DEFINITION C.6. Let Ω ⊂ C be a connected open set. If X and Y
are Banach spaces then, z 7→ B(z) ∈ L(X,Y ) is holomorphic in Ω if for
any x ∈ X and y∗ ∈ Y ∗ (the dual of Y ), z 7→ y∗(B(z)x) is a holomorphic
function in Ω.

We recall that the notion of differentiability used in Definition C.6 is
equivalent to the existence the holomorphic derivate of B(z) in the norm
topology – see [Ka80, Chapter III, Theorem 3.12].

DEFINITION C.7. We say that z 7→ B(z) is a meromorphic family of
operators in Ω if for any z0 ∈ Ω there exist operators Bj, 1 ≤ j ≤ J , of
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finite rank and a family of operators z 7→ B0(z), holomorphic near z, such
that

B(z) = B0(z) +
B1

z − z0
+ · · · BJ

(z − z0)J
, near z0.

We say that B(z) is a meromorphic family of Fredholm operators if for
every z0, B0(z) is a Fredholm operator for z near z0. For nonsingular z0,
B0(z) = B(z).

REMARK. The Cauchy formula is valid for holomorphic families of oper-
ators:

B(µ) =
1

2πi

∮
γ

B(λ)

λ− µ
dλ,

the integral is over a positively oriented curve enclosing µ. Consequently,
the Cauchy estimates hold:

(C.3.1) ‖∂λB(λ)‖X→Y ≤
1

R
max
|λ−ζ|≤R

‖B(ζ)‖X→Y .

The Grushin problem framework provides a proof of the following stan-
dard result:

THEOREM C.8 (Analytic Fredholm Theory). Suppose Ω ⊂ C is
a connected open set and {A(z)}z∈Ω is a holomorphic family of Fredholm
operators.

If A(z0)−1 exists at some point z0 ∈ Ω, then the family z 7→ A(z)−1,
z ∈ Ω, is a meromorphic family of operators with poles of finite rank.

REMARK. The result also holds when the family z 7→ A(z) is meromor-
phic. We present the simpler holomorphic case here with the more general
result following from the finer analysis in §C.4

Proof. 1. For any w ∈ Ω we produce a Grushin problem for P = A(w), as
described in the proof of Theorem C.4. The same operators Rw± also provide
a well-posed Grushin problem for P = A(z) for z in some sufficiently small
neighborhood V (w) of w. According to Theorem C.5

indA(z) = indA(z0) = 0.

Consequently

n+ = n− = n,

and Ew−+(z) is an n × n matrix with holomorphic coefficients. The invert-
ibility of Ew−+(z) is equivalent to the invertibility of A(z).

2. It follows that for any w ∈ Ω there exists a function fw(z) := detEw−+(z),
holomorphic in a neighbourhood of w such that A(z) is invertible if and only
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if fw(z) 6= 0. Since Ω is connected and since A(z0) is invertible for at least
one z0 ∈ Ω, none of fw’s can be identically zero.

3. Since detEw−+(z) is not identically 0, Ew−+(z)−1 is a meromorphic family
of matrices in a neighbourhood of w. Applying (C.1.1), we conclude that

A(z)−1 = E(z)− E+(z)Ew−+(z)−1E−(z)

is a meromorphic family of operators in the neighborhood w. As w was
arbitrary, A(z)−1 is meromorphic in all of Ω. �

As a simple consequence we present

THEOREM C.9. Let Ω ⊂ C be a connected open set. Suppose that X1, X2

are Banach spaces and X1 ⊂ X2 is a continuous inclusion. If for z ∈ Ω,

P − z : X1 −→ X2,

is a Fredholm operator and for some z0 ∈ Ω, P − z0 is invertible then
z 7→ (P − z)−1 : X2 → X1 is a meromorphic family of operators on Ω.

For z ∈ Ω define

(C.3.2) Πz :=
1

2πi

∮
z
(w − P )−1dw,

where the integral is over a positively oriented circle centered at z and includ-
ing no poles of (w−P )−1 except possibly z Then Πz is a bounded projection
of finite rank:

Π2
z = Πz, Πz : X2 → X1 ⊂ X2.

Proof. In view of Theorem C.8 we only need to prove that Π2
z = Πz. For

that we choose two positively oriented circles γj : t 7→ z + rje
it, 0 ≤ t ≤ 2π,

0 < r1 < r2 � 1. Then

Πz =
1

2πi

∫
γj

(wj − P )−1dwj , j = 1, 2,

and, using the resolvent identity,

Π2
z =

1

2πi

1

2πi

∫
γ2

∫
γ1

(w1 − P )−1(w2 − P )−1dw1dw2

=
1

2πi

1

2πi

∫
γ2

∫
γ1

(
(w1 − P )−1 − (w2 − P )−1

) dw1dw2

w2 − w1

Since for w2 ∈ γ2,
∫
γ1
dw1/(w2 − w1) = 0 and for w1 ∈ γ1,

∫
γ2
dw2/(w2 −

w1) = 2πi, we see that

Π2
z =

1

2πi

1

2πi

∫
γ2

∫
γ1

(w1 − P )−1 dw1dw2

w2 − w1
=

1

2πi

∫
γ1

(w1 − P )−1dw1 = Πz,

completing the proof. �
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C.4. GOHBERG–SIGAL THEORY

Suppose A(λ) : X → X, , λ ∈ Ω, is a meromorphic family of Fredholm
operators with poles of finite rank acting on a Banach space X. Here Ω a
connected open subset of C. From the definition in §C.3 this means that
near any µ ∈ Ω, we have

(C.4.1) A(λ) =
J∑
j=1

Aj
(λ− µ)k

+A0(λ) ,

where λ 7→ A0(λ) is holomorphic near µ. If K = 0 that means that A(λ) =
A0(λ) is holomorphic near µ.

The main result of this section is the following factorization theorem.

THEOREM C.10. Suppose that

λ 7→ A(λ), λ ∈ Ω,

is a meromorphic family of Fredholm operators (see Definition C.7). If
A0(µ) in (C.4.1) has index 0 then there exist families of operators λ 7→
Uj(λ), j = 1, 2, holomorphic and invertible near µ, and operators Pm, 1 ≤
m ≤M , such that, near µ,

A(λ) = U1(λ)(P0 +
M∑
m=1

(λ− µ)kmPm)U2(λ) , k` ∈ Z \ {0} ,

P`Pm = δ`mPm , rankP` = 1 , ` > 0 , rank(I − P0) <∞ .

(C.4.2)

INTERPRETATION. 1. The inverse, A(λ)−1 exists, near µ, as a mero-

morphic family of operators if and only if P0 +
∑M

m=1 Pm = I, in which
case

(C.4.3) A(λ)−1 = U2(λ)−1(P0 +

M∑
m=1

(λ− µ)−kmPm)U1(λ)−1 .

This shows that if A(λ0)−1 exists at some λ0 ∈ Ω then, as Ω is connected,
A(λ)−1 is a meromorphic family of operators in Ω. Hence Theorem C.10
implies the stronger version of Theorem C.8 in which we allow z 7→ A(z) to
be meromorphic.

2. The factorization of A(λ) provides a definition of a null multiplicity of A
at µ: in the notation of (C.4.2),

(C.4.4) Nµ(A) =


∑

k`>0 k` , if M = rank(I − P0),

∞ , if M < rank(I − P0).
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When Nµ(A) <∞ then A(λ)−1 is meromorphic and

(C.4.5) Nµ(A−1) = −
∑
k`<0

k` .

Theorem C.10 and the definitions (C.4.4), (C.4.5) give the following
result about multiplicities of poles and zeros of operators:

THEOREM C.11. Suppose that A(λ) and A(λ)−1, λ ∈ Ω are meromor-
phic families of Fredholm operators on a Hilbert space X.

Then the operator
∮
µ ∂λA(λ)A(λ)−1dλ has finite rank and

(C.4.6)
1

2πi
tr

∮
µ
∂λA(λ)A(λ)−1dλ = Nµ(A)−Nµ(A−1).

Here the integral is over a positively oriented circle which includes µ and no
other pole of ∂λA(λ)A(λ)−1.

REMARKS. 1. We stated the theorem in the special case of Hilbert spaces.
However, since in (C.4.6) we are taking a trace of a finite rank operator, that
trace can be defined in the Banach space case and the result remains valid
– see [GS71, §2.2].

2. When A(λ) = I + K(λ) where K(λ) is a meromorphic family of trace
class operators then we obtain a formula for the multiplicity of zeros and
poles of det(I +K(λ)) given by the right hand side of (C.4.6):

1

2πi
tr

∮
µ

D′(λ)

D(λ)
dλ = n+(µ)− n−(µ) ,

D(λ) := det(I +K(λ)) , n±(µ) := Nµ((I +K)±1) .

(C.4.7)

Proof of Theorem C.11 assuming Theorem C.10. 1. We use (C.4.2), put

P (λ) := P0 + P+(λ), P±(λ) :=
M∑
m=1

(λ− µ)±kmPm

and calculate:

(∂λA)A−1 = ∂λU1U
−1
1 + U1(∂λP )P−1U−1

1

+ U1P (∂λU2)U−1
2 P−1U−1

1 .
(C.4.8)

2. The first term is holomorphic near µ and hence the integral vanishes.
The last term we rewrite as

U1P0(∂λU2)U−1
2 P0U

−1
1 + U1P+(∂λU2)U−1

2 P0U
−1
1

+ U−1
1 P0(∂λU2)U−1

2 P−U
−1
1 + U1P+(∂λU2)U−1

2 P−U
−1
1 .
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The first term is holomorphic and the integral vanishes. Because P± factors
have finite rank we can apply cyclicity of the trace to see that the traces of
the first two terms vanish and the trace of the last one is holomorphic.

3. Hence the only contribution to tr
∮
µ ∂λAA

−1 comes from the middle term

on the right hand side of (C.4.8). Since ∂λP has finite rank, we again apply
the cyclicity of the trace to conclude that

tr

∮
µ
∂λA(λ)A(λ)−1dλ =

∮
µ

tr ∂λP (λ)P (λ)−1dλ =
∑
k`>0

k` −
∑
k`<0

k`,

which is (C.4.6). �

Another consequence is an operator valued version of Rouché’s theorem:

THEOREM C.12 (Rouché’s Theorem for operator valued func-
tions). Suppose that A(λ) and B(λ) satisfy the assumptions of Theorem
C.11 and that U b Ω is a simply connected open set with a C1 boundary ∂U
on which A and B have not zeros or poles. If A(λ)−1(A(λ) − B(λ)) is of
trace class and

(C.4.9) ‖A(λ)−1(A(λ)−B(λ))‖X→X < 1, λ ∈ U,

then

(C.4.10)
∑
µ∈U

Nµ(A)−Nµ(A−1) =
∑
µ∈U

Nµ(B)−Nµ(B−1).

EXAMPLE. Suppose that A(λ) and B(λ) are holomorphic families of ma-
trices. Then ‖A(λ)−1(A(λ) − B(λ)‖ < 1 on ∂U implies that the number
of zeros (counted with multiplicities) of detA(λ) in U is the same as the
number of zeros of detB(λ) in U .

Proof of Theorem C.12 assuming Theorem C.11. 1. Theorem C.11 and the
Cauchy formula show that to prove (C.4.10) we need to show that

(C.4.11) tr

∫
∂U
∂λB(λ)B(λ)−1dλ = tr

∫
∂U
∂λA(λ)A(λ)−1dλ.

2. If we put C(λ) := A(λ)−1(A(λ)−B(λ)) then (C.4.9) gives

C(λ) ∈ L1(X), ‖C(λ)‖L(X) < 1, B(λ) = A(λ)(I − C(λ)).

In addition I − C(λ) satisfies the assumptions of Theorem C.11. We write,

(C.4.12) (∂λB)B−1 = (∂λA)A−1 −A(∂λC)(I − C)−1A−1.

We claim that the trace of the integral of the last term over ∂U vanishes.
That will prove (C.4.11) and hence (C.4.10).
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3. We first note that

(C.4.13) A(∂λC)(I − C)−1A−1 = A(∂λC)A−1 +
∞∑
k=1

A(∂λC)CkA−1.

Since

‖A(∂λC)CkA−1‖L1(X) ≤ ‖A‖L(X)‖∂λC‖L(X)‖A−1‖L(X)‖C‖L1(X)‖C‖k−1
L(X),

the infinite sum converges in L1(X). (The first term in (C.4.13) does not
need to be in L1(X); however Theorem C.11 guarantees that its integral
over ∂U is of trace class.)

4. We first show that the trace of the integral of the first term on the right
hand side of (C.4.13) is zero. In fact,

A(∂λC)A−1 = ∂λ(ACA−1)− (∂λA)CA−1 +ACA−1(∂λA)A−1,

where the last two terms on the right hand side are of trace class and using
the cyclicity of the trace,

tr
(
(∂λA)CA−1

)
− tr

(
ACA−1(∂λA)A−1

)
= 0.

Hence

tr

∫
∂U
A(∂λC)A−1dλ = tr

∫
∂U
∂λ
(
ACA−1

)
dλ = 0.

5. It remains to handle the second term on the right hand side of (C.4.13):

tr

∫
∂U

∞∑
k=1

A(∂λC)CkA−1dλ =
∞∑
k=1

∫
∂U

tr
(
A(∂λC)CkA−1

)
dλ

=

∞∑
k=1

1

k + 1
tr

∫
∂U
∂λ(Ck+1)dλ = 0,

where we used cyclicity of the trace. (Note that for k ≥ 1, λ 7→ ∂λ(Ck+1) =∑k
`=0C

`(∂λC)Ck−` is a continuous famuly of trace class operators on ∂U .)

6. Steps 4 and 5 showed that the trace of the integral of the left hand side
of (C.4.13) over ∂U is equal to 0. Going back to (C.4.12) and (C.4.11) we
obtain (C.4.10). �

The first step in the proof of Theorem C.10 is the following Lemma
concerning matrix valued meromorphic functions. It is the finite dimensional
version of Theorem C.10

LEMMA C.13. Suppose that λ 7→ M(λ), λ ∈ D(0, r), is a family of
n×n matrices with meromorphic entries. Then there exist families of n×n
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matrices, λ 7→ E(λ), F (λ), holomorphic and invertible in D(0, ρ) for some
ρ ≤ r and such that

(C.4.14) M(λ) = E(λ)



λk1 0 . . . 0 0 . . . 0
0 λk2 . . . 0 0 . . . 0
...

...
. . .

...
... . . .

...
...

... . . . λkN 0 . . .
...

...
... . . . 0 0 . . .

...
...

... . . .
...

...
. . .

...
0 0 . . . 0 0 . . . 0


F (λ),

where N ≤ n and kj ∈ Z.

Proof. 1. Since the entries of M(λ) are meromorphic near 0 we have

M(λ) = (λpijaij(λ))1≤i,j≤n, ,

We can choose ρ small enough so that

|aij(λ)| > ε > 0 in D(0, ρ) or aij ≡ 0 .

2. By row and column operations, that is by multliplying M(λ) by invertible
matrices on the left and on the right respectively, we can transform A(λ) to
a matrix with p11 = min1≤i,j≤n pij , |a11(λ)| > ε in D(0, ρ). Then

λpijapij (λ)

λp11a11(λ)
, 1 ≤ i, j ≤ q,

are holomorphic in D(0, ρ). Hence, further row and column operations de-
pending holomorphically on λ produce

M(λ) = E1(λ)


λp11 0 . . . 0

0
... M1(λ)
0

F1(λ),

where M1(λ) is now an (n − 1) × (n − 1) matrix with meromorphic coeffi-
cients, and E1(λ) and F1(λ) are invertible n× n matrices with holomorphic
coefficients.

3. We can apply the same procedure to M1(λ) until we reach Mn(λ) 6= 0 or
MN (λ) = 0(n−N)×(n−N). �

We also need two general facts:
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LEMMA C.14. Suppose that X0 is a Banach space and Y0 ⊂ X is a finite
dimensional subspace of X0. Then there exists a closed subspace X0 ⊂ X
such that

X0 ∩ Y0 = {0}, and Z0 + Y0 = X.

Proof. 1. Let y1, · · · yN be a basis of Y0, and let ỹ∗j : Y0 → R be defined by

ỹ∗j (yi) = δij . By the Hahn-Banach Theorem we can extend ỹ∗j to y∗j : X0 → R
so that ‖y∗j ‖ = ‖ỹ∗j ‖ = 1.

2. We then define a continuous linear transformation Π : X0 → X0 by

Π(x) =
∑N

j=1 yjy
∗
j , so that ΠX0 = Y0, Π2 = Π. Since ker Π = (I − Π)X0,

putting Z0 := ker Π provides a closed subspace complementing Y0 in X. �

LEMMA C.15. Suppose X is a Banach space and X1 ⊂ X is a closed
subspace of X satisfying dimX/X1 <∞. Suppose also that a finite dimen-
sional subspace Y0 ⊂ X satisfies Y0 ∩X1 = {0}. Then there exists a finite
dimensional subspace Y1 such that Y0 ⊂ Y1, Y1 +X1 = X, Y1 ∩X1 = {0}.

Proof. 1. Let Π be the projection constructed for Y0 as in step 2 of the proof
of Lemma C.14. The subspace X2 = X1 +Y0 ⊂ X has finite codimension as
X/(X1 + Y0) → X/X1, x + X1 + Y0 7→ (I − Π)x + X1 is injective. (Recall
that X1 ∩ Y0 = {0}.)
2. If X2 6= X we now need to find a complement of the subspace X2. For
that we find a set x1, · · ·xJ such that xj +X2 are a basis of X/X2 and put
Y2 := Span{x1, · · ·xJ}. The desired space is then Y1 := Y2 + Y0. �

Proof of Theorem C.10. 1. Without loss of generality we can assume that
µ = 0. Since we assumed that A0(0) is a Fredholm operator of index 0,
Remark 2 in §C.2 shows that there exists a finite rank operator C such that
A0(0) + C is invertible. Consequently for λ in a small neighourhood of 0,

B(λ) := A0(λ) + C

is also invertible and

A(λ) = B(λ)(I +K(λ)), K(λ) := B(λ)−1

 J∑
j=1

Ajλ
−j − C

 .

We can now consider the Laurent series of K(λ),

K(λ) =

J∑
j=1

Kjλ
−j +K0(λ),

where Kj ’ s have finite rank and K0(λ) is holomorphic in D(0, ρ).
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2. We define

X0 = kerC ∩
J⋂
j=1

kerAj ⊂ X,

which is a closed subspace of finite codimension. We note that

(C.4.15) K(λ)v = 0, v ∈ X0, λ ∈ D(0, ρ).

Applying Lemma C.14 with

X0 =
J⋂
j=1

kerKj , Y0 =
J⋂
j=1

kerKj ∩
J∑
i=1

KiX,

shows that there exists Z0 ⊂ X0, a closed subspace of finite codimension
satisfying

J⋂
j=1

kerKj = Z0 +
J⋂
j=1

kerKj ∩
J∑
i=1

KiX, Z0 ∩
J∑
i=1

KiX = {0}.

We then put

X1 = X0 ∩ Z0 ⊂
J⋂
j=1

kerKj ,

which is a closed subspace of finite codimension. Because of the construction
of Z0,

X1 ∩
J∑
j=1

KjX = {0}.

Lemma C.15 used with Y0 =
∑

jKjX shows that there exists a finite di-

mensional complement of X1, Y1, invariant under Kj ’s (since Y0 ⊂ Y1):

X1 + Y1 = X, X1 ∩ Y1 = {0}, dimY1 <∞,
Kj |X1 = 0, KjY1 ⊂ Y1, j = 1, · · · J, K(λ)|X1 = 0.

(C.4.16)

3. We define P : X → Y1 as the projection onto Y1 with kerP = X1. Since
X1 is closed the Closed Graph Theorem implies that P is continuous. (If
xj → x and Pxj =: yj → y then xj = x̃j + yj , X1 3 x̃j → x − y. That
implies that x− y ∈ X1 and that Px = y. That means that the graph of P
is closed.)

The properties (I−P )KjP = 0 (invariance of Y1 under Kj ’s ), X1 ⊂ X0,
and (C.4.15) show that

I +K(λ) = I +K(λ)P

= I + PK(λ)P + (I − P )K0(λ)P

= (I + PK(λ)P )(I + (I − P )K0(λ)P ).
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The projection property, P (I − P ) = 0, shows that the last factor is invert-
ible:

(I + (I − P )K0(λ)P )−1 = I − (I − P )K0(λ)P.

Hence,

A(λ) = B(λ)(I + PK(λ)P )C(λ), C(λ) := I + (I − P )K0(λ)P,(C.4.17)

and both B(λ) and C(λ) are invertible and holomorphic in D(0, ρ).

4. The operator P (I + PK(λ)P )P acts on the finite dimensional space Y1

and hence we can apply Lemma C.13 to it:

(C.4.18) P (I + PK(λ)P )P = E(λ)

 N∑
j=1

λkjP ′j

F (λ)P,

where P ′j : Y1 → Y1 are one dimensional projections satisftying P ′jP
′
i = δijP

′
j ,

N ≤ dimY0, and

E(λ), F (λ) : PX → PX are holomorphic and invertible,

for λ ∈ D(0, ρ1), where 0 < ρ1 < ρ.

5. Let us put denote ιP : PX ↪→ X the inclusion map, and

P0 := I − P, Pj = ιPP
′
jP : X → X, P 2

j = Pj , dimPjX = 1.

From (C.4.18) we get

I + PK(λ)P = P0 + P (I + PK(λ)P )P

= P0 + ιPE(λ)

 N∑
j=1

λkjP ′j

F (λ)P

= (P0 + ιPE(λ))

P0 +

N∑
j=1

λkjPj

 (P0 + ιPF (λ)P ).

The outside factors are invertible:

(P0 + ιPE(λ)P )−1 = P0 + ιPE(λ)−1P,

(P0 + ιPF (λ)P )−1 = P0 + ιPF (λ)−1P,

and hence (C.4.17) shows that (C.4.2) holds with

U1(λ) = B(λ)(P0 + ιPE(λ)P ), U2(λ) = (P0 + ιPF (λ)P )C(λ).

This completes the proof of Theorem C.10. �
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C.5. NOTES

For more about Grushin problems and connection to Feshbach reduction and
other linear algebra constructions useful in spectral theory see Sjöstrand–
Zworski [SZ07b] and references given there. We refer to Hörmander [HöII,
Sect.19.1] for an introduction to Fredholm operators.

The Gohberg–Sigal generalization of residue theory to operator valued
meromorphic functions comes from the classical paper [GS71] which can be
consulted for additional results, in particular for a stronger version of Theo-
rem C.12. The proof of Lemma C.13 comes from Vodev [Vo94a, Appendix].

C.6. EXERCISES

1. Find the decomposition of Lemma C.13 for the following matrices:

A(λ) =

(
λ 1
0 λ

)
, A(λ) =

(
1 λ−1

0 1

)
.

2. Assume that A(λ) : X → X is a holomorphic family of Fredholm oper-
ators of index zero on a Banach space X depending on λ ∈ Ω ⊂ C, 0 ∈ Ω.
Assume also that there exist u1, . . . , uN ∈ X, v1, . . . , vN ∈ X∗ such that

kerA(0) = span {uj}Nj=1, A(0)∗vj = 0, vj(A
′(0)uk) = δjk.

Show that near λ = 0, A(λ)−1 has the expansion

A(λ)−1 =
N∑
j=1

uj ⊗ vj
λ

+A0(λ), (f ⊗ g)(u) := g(u)f, f ∈ X, g ∈ X∗.

where A0(λ) is holomorphic at 0. Hint: Set up a Grushin problem for A(0)
(use the procedure in Step 1 of the proof of Theorem C.4 with x∗j (ui) = δij
and vj(yi) = δij) and then apply Lemma C.3 with P = A(0) and A =
A(λ)−A(0).

3. Assume that A(λ) : X → X is a holomorphic family of Fredholm oper-
ators of index zero on a Banach space X depending on λ ∈ Ω, 0 ∈ Ω. For
` ∈ N0, define the space V` of polynomials p(λ) : C → X in λ of order no
more than ` such that A(λ)p(λ) = O(λ`+1)X near λ = 0. In particular, V0

is the kernel of A(0).

(a) Let T` : V` → V`−1 be the homomorphism erasing the λ` term; here
V−1 := 0. Show that the kernel of T` is isomorphic to V0. Consider also the
injective homomorphism S` : V` → V`+1 defined by multiplication by λ.

(b) Show that all the spaces V` are finite dimensional and S` is an isomor-
phism for ` large enough. Hint: Use Theorem C.10.
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(c) Show that the algebraic multiplicity of 0 as a pole of A(λ)−1 is equal to
the limit lim`→∞ dimV`.





Appendix D

COMPLEX
ANALYSIS

D.1 General facts
D.2 Entire functions

D.1. GENERAL FACTS

For a function f of two variables, (x, y), z = x+ iy, we write

∂zf =
∂f

∂z
:=

1

2

(
∂f

∂x
− i∂f

∂y

)
, ∂̄zf = ∂z̄f =

∂f

∂z̄
:=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

A function is holomorphic in an open set Ω ⊂ C if and only if ∂z̄f ≡ 0,
where the derivatives are taken in the sense of distributions.

If U has a C1 boundary ∂U , positively oriented in the sense U is always
to the left of the direction on γ, we have the following consequence of Green’s
formula: for f ∈ C1(U),

∫
∂U
f(w)dw = 2i

∫
U

∂f

∂w̄
(w)dm(w), w = x+ iy, dm(w) := dxdy

f(z) =
1

2πi

∫
∂U

f(w)

w − z
dw − 1

π

∫
U

1

w − z
∂f

∂w̄
(w)dm(w),

(D.1.1)

see for instance [HöI, (3.1.9),(3.1.11)]. This is sometimes referred to as the
Cauchy–Green formula.

535
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D.1.1. Maximum principle. The following quantitative application of
the maximum principle is useful in the study of resonances.

LEMMA D.1 (Three line theorem in a rectangle). Suppose that f(z)
is holomorphic in a neighbourhood of Ω := [−2R, 2R] + i[−δ−, δ+]. Suppose
also that for M,M+,M− > 0, and 0 ≤ δ+ < δ− < 1,

(D.1.2)
|f(z)| ≤M±, Im z = ±δ±, |Re z| ≤ 2R,

|f(z)| ≤M, z ∈ Ω.

and that

(D.1.3) R2δ−2
− ≥ log

(
M

min±M±

)
.

Then for Im z = 0 and |Re z| ≤ R,

(D.1.4) |f(z)| ≤ eM θ
+M

1−θ
− , θ :=

δ−
δ+ + δ−

.

Proof. 1. If we replace Ω by Ω′ := [−R,R] + i[−δ−, δ+] then it is enough

to prove that |f(0)| ≤ eM θ
+M

1−θ
− under the assumption (D.1.2) with 2R

replaced by R and Ω by Ω′.

2. Putting m := logM , m± := logM± and z = x + iy, we consider the
following subharmonic function defined in a neighbourhood of Ω′:

u(z) := log |f(x+ iy)| − (δ− + y)m+ + (δ+ − y)m−
δ+ + δ−

− δ−2
− (x2 − y2).

We now use (D.1.2) for Im z = ±δ±, |Re z| ≤ R:

u(z) ≤ m± −m± − δ−2
− (x2 − δ2

±) ≤ δ−2
− δ2
± ≤ 1.

Also, (D.1.3) gives for |Re z| = R, −δ− ≤ Im z ≤ δ+,

u(z) ≤ m−minm± − δ−2
− (R2 − δ2

−) ≤ 1.

The maximum principle for subharmonic functions now shows that

(D.1.5) log |f(iy)| ≤ 1 +
δ− + y

δ− + δ+
m+ +

δ+ − y
δ− + δ+

m− + δ−2
− y2,

and in particular,

|f(0)| ≤ eM θ
+M

1−θ
− , θ =

δ−
δ+ + δ−

.

That concludes the proof. �
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We also use the Borel–Carathéodory theorem: for f holomorphic in the

closed disc D(0, R) and 0 < r < R we have

(D.1.6) max
|z|≤r
|f(z)| ≤ 2r

R− r
max
|z|≤R

Re f(z) +
R+ r

R− r
|f(0)| ,

see [Ti39, §5.5].

A more general version of (D.1.6) can be given as follows: suppose that
for two open sets Ωj , j = 1, 2,

(D.1.7)
Ω0 b Ω1 b C, Ω1 is simply connected,

f is holomorphic in a neighbourhood of Ω1, z0 ∈ Ω1.

Then there exists C0 = C0(Ω0,Ω1, z0) such that

(D.1.8) sup
z∈Ω0

|f(z)| ≤ C0( sup
z∈Ω1

Re f(z) + |f(z0)|).

This follows applying the Riemman mapping theorem to obtain a biholo-
morphic mapping, F , of Ω1 onto D(0, 1) such that F (z0) = 0. We then find
r < 1 such that F (Ω0) ⊂ D(0, r) and apply (D.1.6) with R = 1. (We can
easily do away with the simple connectedness assumption.)

D.1.2. Estimates on the number of zeros. The basic result relating
the growth of a holomorphic function f to the growth of the number of its
zeros is the Jensen formula:

Suppose that f(0) 6= 0. Then

(D.1.9)

∫ r

0

n(t)

t
dt+ log |f(0)| = 1

2π

∫ 2π

0
log |f(eiθr)|dθ ,

where n(t) is the number of zeros of f(z) with |z| < t, see [Ti39, §3.6].

From this we get an estimate on the number of zeros of f in a disc of
radius r:

n(r) ≤ 1

log 2

∫ 2r

r

n(t)

t
dt

≤ 1

log 2

(
log max
|z|=2r

|f(z)| − log |f(0)|
)
.

(D.1.10)

If f(0) = 0 we apply the formula to f(z)/zp where p is the order of vanishing
of f at 0.

A more general version of the upper bound on the number of zeros,
which follows from the version for discs, can be stated as follows: if (D.1.7)
holds then then there exists a constant C1 = C1(Ω0,Ω1, z0) such that the
number of zero of f in Ω0, nΩ0 , satisfies

(D.1.11) nΩ0 ≤ C1(max
z∈Ω1

log |f(z)| − log |f(z0)|).
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An estimate due to Carleman gives information about zeros of functions
bounded in a halfplane [Ti39, §3.71]: suppose that f is holomorphic in
Im z ≥ 0 and that

|f(z)| ≤ C, Im z ≥ 0.

If {zj}∞j=0 are the zeros of f in Im z > 0 (included according to their multi-

plicities) then

(D.1.12)

∞∑
j=0

Im zj
|zj |2

<∞.

The estimate (D.1.12) is a consequence of Carleman’s Theorem [Ti39, §3.7]
which is a version of Jensen’s formula (D.1.9) for a half-plane.

D.1.3. Lower bounds on moduli. An upper bound in Ω1 and a lower
bound at a point z0 also give lower bounds for the function away from zeros:
suppose zj , j = 1, 2, . . . , are the zeros of f in Ω1. The simplest version
can be stated as follows: there exists C2 = C2(Ω0,Ω1, z0) such that for any
sufficiently small δ > 0

log |f(z)| ≥ −C2 log
1

δ

(
max
z∈Ω1

log |f(z)| − log |f(z0)|
)
,

z ∈ Ω0 \
⋃
j

D(zj , δ).
(D.1.13)

To prove (D.1.13) we proceed as follows: choose an open simply connected
set Ω so that Ω0 b Ω b Ω1. Then

(D.1.14) f(z) = eiαeg(z)P (z), P (z) :=
∏
zj∈Ω

(z − zj), z ∈ Ω,

where g is holomorphic in a neighbourhood of Ω, Im g(z0) = 0, and α ∈ R.
We will prove that we can choose g (by changing its value by an imaginary
constant) so that for some constant C4 = C4(Ω0,Ω1, z),

(D.1.15) |g(z)| ≤ C4M, z ∈ Ω0, M := max
z∈Ω1

log |f(z)| − log |f(z0)|.

Since the bound on the number of zeros (D.1.11) shows that

(D.1.16) log |P (z)| ≥ − log
1

δ
C1M, z ∈ C \

⋃
j

D(zj , δ)

the estimate (D.1.13) follows from (D.1.15). (That estimate is stronger than
what is needed for (D.1.13) but we use it in an essential way in §7.4.)

Proof of (D.1.15). 1. The key component of the following estimate due to
Cartan: given arbitrary numbers zn ∈ C, n = 1, ..., N and any η > 0 there
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exists a set,
⋃L
l=1D(al, rl), formed by the union of L ≤ N discs, D(al, rl),

centered at some points al ∈ C, such that
∑L

`=1 r` < 2eη and

(D.1.17)
N∏
n=1

|z − zn| > ηM , z ∈ C \
L⋃
`=1

D(a`, r`) .

For the proof see for instance [Ha89, Lemma 6.17].

2. Returning to (D.1.14) we see from (D.1.11) and (D.1.17) that

(D.1.18)

Re g(z) = log |f(z)| − log |P (z)| ≤ (1 + log
1

η
C1)M,

z ∈ Ω \
L⋃
`=1

D(a`, r`).

If η is small enough, there exists an open, simply connected Ω′ such that
Ω0 b Ω′ b Ω and ∂Ω′ ∩ D(a`, r`) = ∅, 1 ≤ ` ≤ L. (We again use the
Riemann mapping theorem to obtain a bi-holomorphic F from Ω to D(0, 1)
and note that the sum of diameters F (D(al, r`)) is bounded by Cη. Hence
there exists r > 1−Cη such that ∂D(0, r) is disjoint from the union of these
images. We then choose η small enough so that F (Ω0) b D(0, r).)

The maximum principle and (D.1.18) now give

(D.1.19) Re g(z) ≤ C5M, z ∈ Ω′.

Since log |P (z)| ≤ C5M ,

Re g(z0) ≥ log |f(z0)| − log |P (z0)| ≥ −C6M,

and Im g(z0) = 0 (by assumption) we get |g(z0)| ≤ C7M . This and (D.1.19)
now show that we can apply (D.1.8) with Ω1 replaced by Ω′ to obtain
(D.1.15). �

D.2. ENTIRE FUNCTIONS

We recall some facts about entire referring to [Le64] for proofs and more
details.

Suppose that f : C→ C is a holomorphic function. We then say that f
is an entire function. We can use canonical products to factorize f and that
is particularly nice for functions with a polynomial growth of the number of
zeros. For that we recall the definition

Ep(z) = (1− z) exp

(
z +

z2

2
+ · · · z

p

p

)
.
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If a sequence {zk}∞k=1, zk ∈ C, satisfies

(D.2.1)
∑ 1

|zn|p+1
<∞

then the infinite Weierstrass product

(D.2.2) P (z) :=

∞∏
k=1

Ep(z/zk)

conveges and

mP (z) :=
1

2πi
lim
ε→0

∮
γε(z)

P ′(w)

P (w)
dw = |{k : zk = z}| .

where γε(z) is the positively oriented circle [0, 2π) 3 t 7→ z + εeit.

Using the notation n(r) above we have the following estimate:

(D.2.3) max
|z|≤r

log |P (z)| ≤ kprp
(∫ r

0

n(t)

tp+1
dt+ r

∫ ∞
r

n(t)

tp+2
dt

)
.

In particular, when

(D.2.4) n(r) ≤ Crp ,

we have

(D.2.5) log |P (z)| ≤ C|z|p log |z|.

A lower bound also holds and here is the case we use. When (D.2.4) is
satisfied then for any ε > 0 there existst r0 such that

(D.2.6) log |P (z)| ≥ −|z|p+ε , z /∈
⋃

mP (w)>0

D(w, 〈w〉−p−ε) , |z| ≥ r0 .

One consequence of these two bounds and of (D.1.6) is a version of
Hadarmard’s factorization theorem: suppose that f is entire and that

|f(z)| ≤ CeC|z|p .

If {zk}∞k=1 are the zeros of f (included according to their multiplicities)
then

(D.2.7) f(z) = eg(z)P (z),

where P (z) is given by (D.2.2) and g is a polynomial of degree less than or
equal to p.

We say that f is of exponential type τ ∈ [0,∞] if

lim sup
r→∞

log supλ≤r |f(r)|
r

= τ .
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When the type satisfies 0 < τ < ∞ the function is of normal type. The
indicator function h gives a more precise notion of order:

h(θ) := lim sup
r→∞

log |f(reiθ)|
r

.

It turns out that the function h is an indicator function of a convex set
K ⊂ C:

h(θ) = sup
z∈K

(cos θ Re z + sin θ Im z) .

The set K is called the indicator diagram of f .

When h(θ) is a limit along a density one sequence of r’s (not just lim sup)
and the convergence is uniform in θ, the function f is said to have completely
regular growth. In that case we can describe the distribution of zeros in
sectors using the indicator function – see [Le64]. Here we quote a specific
result which is used in Section 2.5:

THEOREM D.2 (Asymptotics of zeros). If f is of exponential type in
C and if

(D.2.8)

∫
R

log+ |f(x)|
1 + x2

dx <∞ , log+ r := max(log r, 0).

then f has completely regular growth and the indicator diagram of f is given
by an interval If ⊂ iR.

For ε > 0 define Λε := {z = eiθx : x ∈ R, |θ| < ε}. Then, writing mf (z)
for the multiplicity of a zero of f ,

lim
r→∞

1

r

∑
z∈{Λε∩D(0,r)

mf (z) = 0, lim
r→∞

1

r

∑
z∈Λε∩D(0,r)

mf (z) =
|If |
2π

.

It is not difficult to check that if f satisfies (D.2.8) and it has normal
type τ then

(D.2.9) |f(z)| ≤ (1 + |z|)Neτ(Im z)− =⇒ If = [−iτ, 0] .





Appendix E

SEMICLASSICAL
ANALYSIS

E.1 Pseudodifferential operators
E.2 Wavefront sets and ellipticity
E.3 Semiclassical defect measures
E.4 Propagation estimates
E.5 Hyperbolic estimates
E.6 Notes
E.7 Exercises

In this appendix we present results from microlocal and semiclassical
analyses. They use the notion of a semiclassical pseudodifferential operator.
Roughly speaking, these operators have the form

Oph(a) = a(x, hDx), Dx :=
1

i
∂x

where a(x, ξ) is a smooth function called the symbol of the operator. The
expression Oph(a) is called a quantization of a. The small parameter h > 0
corresponds to the expected wave length of the functions that we study. In
applications to high frequency behaviour of resonances, we will often have
h ∼ (Reλ)−1 where λ is a resonance.

The emphasis is on aspects of the theory not easily accessible in recent
texts. When easy references to [DS99] or [Zw12] are available we use them
instead of referring to this appendix. Its most important application is to
the material in Chapter 5.
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E.1. PSEUDODIFFERENTIAL OPERATORS

The class of pseudodifferential operators includes all differential operators,
however it is considerably more versatile. For instance, if a is nonzero (or,
more precisely, elliptic – see §E.2.2 below), then we can consider the operator
Oph(a−1) which will be an approximate inverse to Oph(a).

One can also quantize symbols which are compactly supported in some
set in the (x, ξ) space. By applying the resulting operator to a function,
we can microlocalize this function to the corresponding set, and define the
notion of wavefront set – see §E.2. Other advantages of pseudodifferential
calculus, such as propagation of singularities, will become apparent later in
this appendix.

The price to pay is that semiclassical calculus will always yield errors
that are smoothing operators of norm O(h∞). This means that the h → 0
semiclassical calculus is best suited to analysis at high frequencies, while the
fixed h calculus only specifies the location of C∞ singularities.

E.1.1. Differential operators. To motivate the construction that follows,
we first introduce the algebra of semiclassical differential operators Diffkh(M)
of order k on a manifold M . In local coordinates, these have the form

(E.1.1) A =
∑
|α|≤k

k−|α|∑
j=0

hjaαj(x)(hDx)α : C∞(M)→ C∞(M)

where α is a multiindex, aαj are smooth functions on M , and Dx = 1
i ∂x. In

this book, we will often consider the semiclassical Helmholtz operator

(E.1.2) h2(−∆g − λ2) ∈ Diff2
h(M)

on a Riemannian manifold (M, g), where h is chosen small enough so that
ω := hλ is bounded. The h → 0 limit corresponds to λ → ∞, and semi-
classical calculus is particularly suited to analysing high energy behaviour
of resonances. Another example of a semiclassical differential operator is
hX + V ∈ Diff1

h(M) where X is a C∞ vector field and V is a C∞ potential.

The restriction |α|+ j ≤ k in (E.1.1) means that terms which are higher
order in h also have to be lower order as differential operators. (For instance,
h3∆g /∈ Diff2

h(M).) This implies that the principal symbol defined in (E.1.3)

below is independent of h and determines the operator modulo hDiffk−1
h (M).

This also corresponds to the class of symbols of pseudodifferential operators
that we introduce in Definition E.3 below.

Note that if A is a (nonsemiclassical) differential operator of order k

on M , then hkA belongs to Diffkh(M). Moreover, if A ∈ Diffkh(M) and

B ∈ Diff`h(M), then the composition AB lies in Diffk+`
h (M).
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The class Diffkh(M) is independent of the choice of coordinates on M ,
but the individual coefficients aα(x) are not. However, one can invariantly

define the (semiclassical) principal symbol of A ∈ Diffkh(M)

(E.1.3) σh(A)(x, ξ) =
∑
|α|≤k

aα0(x)ξα ∈ Polyk(T ∗M),

where T ∗M is the cotangent bundle of M , x is a coordinate system on M ,
(x, ξ) is the induced coordinate system on T ∗M , and Polyk(T ∗M) stands for
the class of smooth functions on T ∗M which are polynomials of degree at
most k on each cotangent space. Note that the kernel of the map A 7→ σh(A)

on Diffkh(M) is equal to hDiffk−1
h (M).

To justify the use of the cotangent bundle in the definition of σh(A) we

consider the case when A = h
iX, where X is a vector field on M ; then

σh(A)(x, ξ) = 〈ξ,Xx〉, x ∈M, ξ ∈ T ∗xM,

where 〈·, ·〉 stands for the natural pairing between covectors and vectors. The

coordinate invariance of σh(A) for a general A ∈ Diffkh(M) can be proved

by writing A as a polynomial in operators of the form h
iX and using the

multiplicativity property (E.1.4) below.

As an example, the principal symbol of the operator (E.1.2) is

σh
(
h2(−∆g − λ2)

)
(x, ξ) = 〈ξ, ξ〉gx − ω2, ω := hλ.

A direct calculation shows that the symbol map is multiplicative:

(E.1.4) σh(AB) = σh(A)σh(B), A ∈ Diffkh(M), B ∈ Diff`h(M).

Since multiplication of functions is commutative, this implies that the com-
mutator [A,B] lies in hDiffk+`−1

h (M). The principal symbol of this commu-
tator is computed by the formula

(E.1.5) σh(h−1[A,B]) =
1

i
{σh(A), σh(B)},

where {·, ·} is the Poisson bracket defined in (A.2.1).

E.1.2. Symbols. We start the construction of pseudodifferential calculus
by specifying which functions on T ∗M can be quantized. In general, one
can quantize a function a(x, ξ;h) of (x, ξ) ∈ T ∗M and h ∈ (0, h0), where
h0 > 0 is a fixed constant, satisfying the following derivative bounds:

(E.1.6) sup
h∈(0,h0)

sup
x∈K

ξ∈T∗xM

〈ξ〉|β|−k|∂αx ∂
β
ξ a(x, ξ;h)| <∞

for some k ∈ R (called the order of the symbol), all multiindices α, β, and all

compact subsets K ⊂M . Here 〈ξ〉 := (1+ |ξ|2)1/2 and |ξ| denotes the length
of the covector ξ with respect to some Riemannian metric on M (whose
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choice does not matter in the definition). The left-hand sides of (E.1.6)
define a Fréchet space of symbols, which we denote

Sk1,0(T ∗M).

The subscript ‘1, 0’ corresponds to gaining 1 power of ξ when differentiating
in ξ and 0 powers of ξ when differentiating in x. The class Sk1,0(T ∗M) is
independent of the choice of coordinates – see Exercise E.2.

In order to simplify exposition (in particular to avoid using quotient
spaces for principal symbols – see the end of §E.1.7), we further restrict
ourselves to the class Skh(T ∗M) of polyhomogeneous symbols, which have
an asymptotic expansion in powers of h and ξ. These symbols may have
complex order, so for notational convenience we define Sk1,0 := SRe k

1,0 for
k ∈ C. The building blocks of polyhomogeneous symbols are given by

DEFINITION E.1. We say that a ∈ C∞(T ∗M) is positively homoge-
neous of order k ∈ C, if there exists a continuous function F : M → (0,∞)
such that

a(x, sξ) = ska(x, ξ) for all s ≥ 1, |ξ| ≥ F (x).

If a is positively homogeneous of order k, then a ∈ Sk1,0(T ∗M). To ob-
tain general h-independent polyhomogeneous symbols, we use the following
asymptotic expansion as |ξ| → ∞:

DEFINITION E.2. Let b(x, ξ) ∈ Sk1,0(T ∗M) be h-independent. We write

(E.1.7) b(x, ξ) ∼
∞∑
`=0

b`(x, ξ)

for some h-independent b` ∈ Sk−`1,0 (T ∗M), ` = 0, 1, . . . if

b−
N−1∑
`=0

b` ∈ Sk−N1,0 (T ∗M) for all N ∈ N0.

If (E.1.7) holds for some b` which are positively homogeneous of order k−`,
then we say that b is a polyhomogeneous symbol of order k and denote
b ∈ Sk(T ∗M).

As an example, if k is a nonnegative integer then the class of polynomial
symbols Polyk(T ∗M) lies inside Sk(T ∗M), with (E.1.7) having only finitely
many nonzero terms. An example of a function in S0

1,0(T ∗M) which is not

polyhomogeneous is b(x, ξ) = 1 + 〈ξ〉−1/2.

The class of h-dependent polyhomogeneous symbols is given by
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DEFINITION E.3. Let a(x, ξ;h) ∈ Sk1,0(T ∗M). We write

(E.1.8) a(x, ξ;h) ∼
∞∑
j=0

hjaj(x, ξ;h),

for some aj ∈ Sk−j1,0 (T ∗M), j = 0, 1, . . . if

a−
N−1∑
j=0

hjaj ∈ hNSk−N1,0 (T ∗M) for all N ∈ N0.

If (E.1.8) holds for some polyhomogeneous aj(x, ξ) ∈ Sk−j(T ∗M), then we
say that a is a semiclassical polyhomogeneous symbol of order k and
denote a ∈ Skh(T ∗M).

As an example, in a fixed coordinate system the full symbol of a differ-
ential operator of the form (E.1.1),

(E.1.9) a(x, ξ;h) =
∑
|α|≤k

k−|α|∑
j=0

hjaαj(x)ξα

lies in Skh(T ∗M). Here aj(x, ξ) :=
∑
|α|≤k−j aαj(x)ξα ∈ Polyk−j(T ∗M) is

equal to zero for j > k.

For each sequence aj ∈ Sk−j1,0 (T ∗M), j = 0, 1, . . . there exists a ∈
Skh(T ∗M) such that (E.1.8) holds. In fact we can take

a(x, ξ;h) :=

∞∑
j=0

χ
(λjh
〈ξ〉

)
hjaj(x, ξ;h)

where we fix χ ∈ C∞c ((−2, 2); [0, 1]) such that χ ≡ 1 on [−1, 1] and choose
an increasing sequence of positive numbers {λj}j≥0 which converges to ∞
fast enough depending on the symbols aj . This is a version of Borel’s The-
orem, see [Zw12, Theorem 4.15]. A similar statement is true for (E.1.7),
see [HöIII, Proposition 18.1.3].

Given the sequence b0, b1, . . . , the choice of b satisfying the expansion (E.1.7)
is unique modulo an element of the residual class

S−∞(T ∗M) :=
⋂
k∈R

Sk1,0(T ∗M).

Similarly the choice of a satisfying (E.1.8) is unique modulo an element of
the class h∞S−∞(T ∗M) defined as follows: a ∈ h∞S−∞(T ∗M) if

(E.1.10) ∂αx ∂
β
ξ a(x, ξ;h) = O(hN 〈ξ〉−N ) for all N,

uniformly when x varies in any compact subset of M .
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E.1.3. Fiber-radial compactification. To better understand the behaviour
of symbols as ξ → ∞, we consider them as functions on the fiber-radially
compactified cotangent bundle T

∗
M . This bundle is a manifold with interior

T ∗M and boundary diffeomorphic to the sphere bundle

∂T
∗
M ' S∗M = (T ∗M \ 0) /R+,

where the group R+ acts on T ∗M \ 0 := {(x, ξ) ∈ T ∗M : ξ 6= 0} by setting

s.(x, ξ) = (x, sξ), s ∈ R+. We call ∂T
∗
M the fiber infinity. Denote by

(E.1.11) κ : T ∗M \ 0→ ∂T
∗
M

the natural projection map. Then for each (x, ξ) ∈ T ∗M \ 0 the ray (x, sξ)

converges to κ(x, ξ) in T
∗
M as s→∞.

More precisely, if g is a smooth Riemannian metric on M , then we can
model T

∗
M by the coball bundle

B∗M = {(x, ξ) ∈ T ∗M : |ξ|g ≤ 1}.

An embedding T ∗M → B∗M is given by

(x, ξ) 7→
(
x,

ξ

1 + 〈ξ〉

)
, 〈ξ〉 :=

√
1 + |ξ|2g

and the map κ : T ∗M \ 0→ ∂B∗M is given by

(x, ξ) 7→
(
x,

ξ

|ξ|g

)
.

The smooth structure of T
∗
M does not depend on the metric g. Moreover,

the function ρ(x, ξ) = 〈ξ〉−1 extends to a boundary defining function on

T
∗
M in the sense that ρ = 0 and dρ 6= 0 on ∂T

∗
M , and ρ > 0 on T ∗M .

Note that we cannot use the simpler embedding (x, ξ) 7→ (x, ξ
〈ξ〉) since the

resulting boundary defining function behaves like |ξ|−2 rather than |ξ|−1.

If x1, . . . , xn are local coordinates on M and j ∈ {1, . . . , n}, then

x1, . . . , xn,
ξ1

ξj
, . . . ,

ξj−1

ξj
,

1

ξj
,
ξj+1

ξj
, . . . ,

ξn
ξj

give a coordinate system on T
∗
M in the cone {|ξj | > c|ξ|} for any c > 0.

Moreover, 1
ξj

is a boundary defining function. It follows that ∂x1 , . . . , ∂xn ,

ξj∂ξ1 , . . . , ξj∂ξn form a frame for smooth vector fields on T
∗
M tangent to

the boundary ∂T
∗
M . Therefore we have a ∈ Sk1,0(T ∗M) if and only if the

function 〈ξ〉−kX1 . . . Xma(x, ξ) is bounded uniformly for x in compact sets

for any choice of vector fields X1, . . . , Xm on T
∗
M which are tangent to the

boundary. This implies a characterization of polyhomogeneous symbols:
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PROPOSITION E.4. Let a(x, ξ) ∈ C∞(T ∗M). Then a ∈ Sk(T ∗M) if

and only if 〈ξ〉−ka extends to a smooth function on T
∗
M .

We finally study Hamiltonian vector fields. Define the canonical 1-form

ξ · dx :=

n∑
j=1

ξj dxj ∈ C∞(T ∗M ;T ∗(T ∗M)).

This form is independent of the choice of coordinates, since for each vector
field W on T ∗M we have (ξ · dx)(W ) = 〈ξ, dπ ·W 〉 where π : T ∗M →M is
the canonical projection map. Define the symplectic 2-form on T ∗M by

(E.1.12) ω := d(ξ · dx).

For p(x, ξ) ∈ C∞(T ∗M ;R), define the Hamiltonian vector field Hp on T ∗M
by the formula

(E.1.13) ω(W,Hp) = dp(W ) for all vector fields W on T ∗M.

In local coordinates we have

ω =
n∑
j=1

dξj ∧ dxj , Hp =
n∑
j=1

∂p

∂ξj

∂

∂xj
− ∂p

∂xj

∂

∂ξj
.

In particular, if a ∈ C∞(T ∗M) then Hpa = {p, a} where {•, •} is the Poisson
bracket defined in (A.2.1).

A direct calculation shows that an appropriate rescaling of the Hamil-
tonian vector field of a polyhomogeneous symbol can be extended to T

∗
M :

PROPOSITION E.5. Let p ∈ Sk(T ∗M ;R). Then 〈ξ〉1−kHp extends to a

smooth vector field on T
∗
M which is tangent to ∂T

∗
M .

E.1.4. Method of stationary phase. The proofs of properties of pseu-
dodifferential calculus rely on asymptotic expansions as h → 0 of integrals
of the form

IΦ,a(h) =

∫
M
e
i
h

Φ(x)a(x) dx, h > 0.

Here M is an n-dimensional manifold, dx is some smooth density on M ,
a ∈ C∞c (M), and Φ ∈ C∞(M ;R) is a Morse function, as defined below:

DEFINITION E.6. Let Φ ∈ C∞(M ;R). We say that x ∈M is a critical
point of Φ, if dΦ(x) = 0. For a critical point x, denote by

∇2Φ(x) ∈ T ∗xM ⊗ T ∗xM

the Hessian of Φ at x. We say that Φ is a Morse function if ∇2Φ(x) is
nondegenerate for each critical point x.



550 E. PSEUDODIFFERENTIAL OPERATORS

REMARKS. 1. At a critical point x, the Hessian is well defined by the
formula ∇2Φ(x)(V,W ) = VWΦ(x) = WV Φ(x) for all vector fields V,W
on M . Here we use that the commutator [V,W ] is a vector field and thus
[V,W ]Φ(x) = 0, which implies that VWΦ(x) = WV Φ(x) depends only
on Vx, Wx. This also shows that ∇2Φ(x) is symmetric.

2. The critical points of Morse functions are necessarily isolated. If x is a
critical point, we denote by sgn∇2Φ(x) the signature of the corresponding
Hessian, equal to δ+ − δ−, where δ± are the maximal dimensions of sub-
spaces on which ±∇2Φ(x) is positive definite. Also, let det∇2Φ(x) be the
determinant of the matrix of ∇2Φ(x) in any basis of TxM which has unit
volume with respect to the density dx.

PROPOSITION E.7 (Method of stationary phase). Assume that Φ
is a Morse function and let x1, . . . , xR be the critical points of Φ lying in
supp a. Then for each N ∈ N0, we have

(E.1.14) IΦ,a(h) =
N−1∑
j=0

R∑
k=1

e
i
h

Φ(xk)hj+n/2Lja(xk) +O(hN+n/2)‖a‖C2N+n+1

for some differential operators Lj of order 2j. The operators Lj and the
constants in O(·) depend on Φ, but not on a. Moreover,

L0a(xk) = (2π)n/2 exp
( iπ

4
sgn∇2Φ(xk)

)
| det∇2Φ(xk)|−1/2a(xk).

A proof can be found for instance in [HöI, Theorem 7.7.5] or [Zw12,
Theorem 3.16]. As a special case we have

(E.1.15) IΦ,a(h) = O(h∞) if dΦ 6= 0 on supp a.

This fact, sometimes known as the method of nonstationary phase, can also
be proved directly using repeated integration by parts.

We often apply the method of stationary phase in a situation when Φ, a
depend smoothly on some parameter y, in which case (E.1.14) is locally
uniform in y – see [HöI, Theorem 7.7.6]. One can also differentiate the
expansion (E.1.14) any number of times in y.

E.1.5. Quantization on the Euclidean space. We now define pseudo-
differential operators on Rn. For that, consider the class of symbols

(E.1.16) S
k
1,0(T ∗Rn) ⊂ Sk1,0(T ∗Rn)

defined using (E.1.6) but with K := Rn. In other words, the correspond-
ing derivatives are bounded uniformly as x → ∞. We define the classes

S
k
(T ∗Rn) and S

k
h(T ∗Rn) similarly to §E.1.2, where in Definition E.1 we

require F to be constant and use the Euclidean metric.
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REMARK ON NOTATION. Since in scattering theory we consider op-
erators on non-compact manifolds the class Sk1,0(T ∗M) cannot be defined
using uniform growth estimates unless additional structure is introduced.
In the case of Rn we use affine structure and that leads to the definition
of S

k
1,0(T ∗Rn): the bounds in (E.1.6) are invariant under symplectic lifts of

affine transformations of Rn but not under lifts of arbitrary diffeomorphisms.

For a ∈ Sk1,0(T ∗Rn), define the operator

(E.1.17) Oph(a) = a(x, hDx) : S (Rn)→ S (Rn), S ′(Rn)→ S ′(Rn)

quantizing a by the following formula (known as standard quantization):

(E.1.18) Oph(a)f(x) = (2πh)−n
∫
R2n

e
i
h
〈x−y,ξ〉a(x, ξ)f(y) dydξ.

The integral in (E.1.18) does not converge, however it can be calculated
by first integrating in y and then using that the Fourier transform acts
on S (Rn) to integrate in ξ. It can also be defined using the concept of an
oscillatory integral, see [HöI, §7.8] or [Zw12, §3.6].

We remark that [Zw12] uses the Weyl quantization which is different
from the standard quantization (E.1.17) used here. The two quantizations
give the same class of operators and we will use the results of [Zw12] here:
the proofs can be easily adapted to standard quantization or one can use
the change of quantization formula [Zw12, Theorems 4.13 and 4.17].

For the mapping property (E.1.17) we refer to [Zw12, Theorem 4.16].
In fact, each S → S seminorm of Oph(a) and of its adjoint is bounded
polynomially in h. More precisely, for each N1 there exists N2 (depending
only on N1, n, k) and C (depending also on a) such that for all u ∈ S (Rn)

(E.1.19)
∑

|α|+|β|≤N1

‖xα∂βx Oph(a)u‖L∞ ≤ Ch−N2
∑

|α|+|β|≤N2

‖xα∂βxu‖L∞ .

It also follows from (E.1.18) that if a ∈ h∞S−∞(T ∗Rn) (defined by requir-
ing (E.1.10) uniformly in x) then Oph(a) has Schwartz kernel in C∞(Rn×Rn)
and each C∞ seminorm of this kernel is O(h∞).

By the Fourier inversion formula, differential operators are quantizations
of polynomials in ξ:

(E.1.20) Oph

(∑
α

aα(x)ξα
)

=
∑
α

aα(x)(hDx)α.

In particular, Oph(1) is the identity operator.

The algebraic properties of (E.1.18) are given by

PROPOSITION E.8. Let a ∈ Sk1,0(T ∗Rn), b ∈ S`1,0(T ∗Rn). Then:
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1. We have Oph(a) Oph(b) = Oph(a#b), where a#b ∈ Sk+`
1,0 (T ∗Rn) and

(E.1.21) a#b(x, ξ;h) ∼
∞∑
j=0

(−ih)j

j!
〈∂ξ, ∂y〉j

(
a(x, ξ;h)b(y, η;h)

)∣∣
y=x
η=ξ

.

2. We have Oph(a)∗ = Oph(a∗), where a∗ ∈ Sk1,0(T ∗Rn) and

(E.1.22) a∗(x, ξ;h) ∼
∞∑
j=0

(−ih)j

j!
〈∂ξ, ∂x〉j a(x, ξ;h).

The asymptotic expansions are understood in the sense of (E.1.8) in the
classes S1,0.

For the proofs the reader is referred to [Zw12, Theorems 9.5 and 4.14].

We note the following corollaries of the expansions (E.1.21) and (E.1.22),
the first two of which generalize (E.1.4) and (E.1.5):

a#b = ab+O(h)
S
k+`−1
1,0 (T ∗Rn)

,(E.1.23)

a#b− b#a =
h

i
{a, b}+O(h2)

S
k+`−2
1,0 (T ∗Rn)

,(E.1.24)

a∗ = ā+O(h)
S
k−1
1,0 (T ∗Rn)

,(E.1.25)

a#b = O(h∞)
S
−∞

(T ∗Rn)
, if supp a ∩ supp b = ∅.(E.1.26)

We also remark that the class of semiclassical polyhomogeneous symbols
(see Definition E.3) is preserved under the operations in Proposition E.8.

That is, if a ∈ S
k
h(T ∗Rn), b ∈ S

`
h(T ∗Rn), then a#b ∈ S

k+`
h (T ∗Rn) and

a∗ ∈ Skh(T ∗Rn).

E.1.6. Change of variables for pseudodifferential operators. The
independence of the class of pseudodifferential operators on a manifold on
the choice of local charts follows from a change of variables statement for
quantization on Rn, see Proposition E.10 below. To state it we make the
following definition which will also be useful in §E.1.7 below.

DEFINITION E.9. Let M be a manifold. A cutoff chart on M is a pair
(ϕ, χ) where ϕ : U → V is a C∞ diffeomorphism, U ⊂ M and V ⊂ Rn are
open sets, and χ ∈ C∞c (U). We define the lifted diffeomorphism

(E.1.27) ϕ̃ : T ∗U → T ∗V, (x, ξ) 7→
(
ϕ(x), (dϕ(x))−T ξ

)
.

Here (dϕ(x))−T denotes the inverse of the adjoint of the map dϕ(x).
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REMARKS. 1. The operators χϕ∗ : u 7→ χ(u ◦ ϕ) and (ϕ−1)∗χ : u 7→
(χu) ◦ ϕ−1 map

χϕ∗ : C∞(V )→ C∞c (U), (ϕ−1)∗χ : C∞(U)→ C∞c (V )

and thus naturally extend to operators

(E.1.28) χϕ∗ : C∞(Rn)→ C∞c (M), (ϕ−1)∗χ : C∞(M)→ C∞c (Rn).

2. The lifted diffeomorphism in (E.1.27) ϕ̃ is a symplectomorphism in the
sense that ϕ̃∗ωV = ωU where ωU , ωV are the symplectic forms on T ∗U and
T ∗V respectively (see (E.1.12)).

PROPOSITION E.10 (Change of variables). Let (ϕ, χ) be a cutoff

chart on Rn. Then for each a ∈ S
k
1,0(T ∗Rn), there exists b ∈ S

k
1,0(T ∗Rn)

such that

(E.1.29) χϕ∗Oph(a)(ϕ−1)∗χ = Oph(b).

Moreover we have the following asymptotic expansion in the sense of (E.1.8)
in the classes S1,0:

(E.1.30) b ∼
∞∑
j=0

hjLj(a ◦ ϕ̃)

where Lj are h-independent differential operators of order 2j on T ∗U with

coefficients compactly supported in x, mapping Sk(T ∗U)→ Sk−j(T ∗U), and
L0 = χ(x)2.

REMARK. If a is a semiclassical polyhomogeneous symbol in S
k
h(T ∗Rn),

then by (E.1.30) b lies in S
k
h(T ∗Rn) as well.

Proof. We argue similarly to [Zw12, Theorem 9.9], with the difference being
that [Zw12] avoided the use of the cutoff χ by requiring that ϕ be a global
diffeomorphism on Rn.

We recover the symbol b by oscillatory testing [Zw12, Theorem 4.19]:
we have (E.1.29) where

b(x, ξ) = e−
i
h
〈x,ξ〉χϕ∗Oph(a)(ϕ−1)∗χ(e

i
h
〈•,ξ〉)

= (2πh)−n
∫
R2n

e
i
h

(〈ϕ(x)−y′,η〉+〈ϕ−1(y′)−x,ξ〉)χ(x)χ(ϕ−1(y′))a(ϕ(x), η) dy′dη

= (2πh)−n
∫
R2n

e
i
h

(〈ϕ(x)−ϕ(y),η〉+〈y−x,ξ〉)χ(x)χ(y)a(ϕ(x), η)J(y) dydη

where we make the change of variables y′ = ϕ(y) and J(y) = | det dϕ(y)| is
the Jacobian. The integrals above converge absolutely when a ∈ S (T ∗Rn).

For general a ∈ Sk1,0(T ∗Rn) we can define them as oscillatory integrals, using
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integration by parts in y′ or y – see [HöI, §7.8] or [Zw12, §3.6]. Equivalently
we can integrate in y′ or y first and then use the method of nonstationary
phase (E.1.15) to show that the resulting integral decays like O(〈η〉−∞) for
each fixed x, ξ, h.

It remains to show that b ∈ Sk1,0(T ∗Rn) and prove the expansion (E.1.30).
Note that due to the factors χ(x)χ(y) we may restrict to the case x, y ∈ U .

To handle the case of large values of ξ, we put ξ = rξ′ where r = 〈ξ〉 ≥ 1,
so that |ξ′| ≤ 1. Making the change of variables η = rη′, we get

b(x, rξ′) = (2πh′)−n
∫
R2n

eiΦ/h
′
χ(x)χ(y)a(ϕ(x), rη′)J(y) dydη′,

Φ = 〈ϕ(x)− ϕ(y), η′〉+ 〈y − x, ξ′〉, h′ := h/r.

To obtain the expansion (E.1.30), we use the method of stationary phase
(Proposition E.7). The critical points of the phase are given by the equations

ϕ(x) = ϕ(y), ξ′ = (dϕ(y))T η′.

Therefore for each x ∈ U, ξ′ ∈ Rn there exists unique critical point given by

y = x, η′ = (dϕ(x))−T ξ′.

At the critical point we have Φ = 0 and

∇2Φ = −〈∇2ϕ(y), η′〉 − 〈dϕ(y), dη′〉.

Therefore, Φ is a Morse function and sgn∇2Φ = 0, |det∇2Φ| = J(y)2 at
the critical point.

The amplitude χ(x)χ(y)a(ϕ(x), rη′)J(y) is compactly supported in y ∈
U , but not necessarily in η′. We thus write it as a sum a1 + a2, where

a1 ∈ C∞c (U × Rn), supp a2 ∩ {ξ′ = (dϕ(y))T η′} = ∅.

We expand the integral featuring a1 by Proposition E.7, obtaining (E.1.30);
note that since the asymptotic parameter is h′ = h/r, each next term in
the expansion gains one power of h and 〈ξ〉−1. As for the integral featuring
a2, it is O((h′)∞) = O(h∞〈ξ〉−∞) by repeated integration by parts in y, as
|∂yΦ|−1 ≤ C〈η′〉−1 on supp a2. �

E.1.7. Quantization on general manifolds. We are now ready to define
pseudodifferential operators on a manifold M , by piecing together pullbacks
of pseudodifferential operators on Rn by cutoff charts. We use the following
general residual class:

DEFINITION E.11. Let A = A(h) : C∞c (M2)→ D′(M1) be an operator.
We write that A ∈ h∞Ψ−∞, or A = O(h∞)Ψ−∞, if A is smoothing and each
C∞(M1 ×M2) seminorm of the Schwartz kernel of A is O(h∞).
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We also use the notion of properly supported, compactly supported, and
regular operators, see §A.7. For h-dependent families of properly supported
or compactly supported operators, we require that the support property
hold uniformly in h.

DEFINITION E.12. Let M be a manifold and k ∈ C. Define the class of
semiclassical pseudodifferential operators Ψk

h(M) as follows: a family

of operators A = A(h) : C∞c (M) → C∞(M) lies in Ψk
h(M) if and only if it

can be written as

(E.1.31) A =
∑
j

χjϕ
∗
j Oph(aj)(ϕ

−1
j )∗χj +O(h∞)Ψ−∞ ,

for some cutoff charts (ϕj , χj) and symbols aj ∈ S
k
h(T ∗Rn), where the do-

mains of ϕj form a locally finite collection (see §A.7).

Note that all pseudodifferential operators are necessarily regular, and
each C∞c → C∞ seminorm of A and A∗ is bounded polynomially in h simi-
larly to (E.1.19). Moreover⋂

j∈N0

hjΨk−j
h (M) =

⋂
N∈R

hNΨ−Nh (M) = h∞Ψ−∞.

Alternatively we can define pseudodifferential operators by requiring that
the Schwartz kernel of A be O(h∞)C∞ away from the diagonal and the
localization of A to each cutoff chart be a pseudodifferential operator on Rn:

PROPOSITION E.13. An operator A : C∞c (M)→ D′(M) lies in Ψk
h(M)

if and only if both of the following conditions hold:

1. For each ψ,ψ′ ∈ C∞(M) such that suppψ ∩ suppψ′ = ∅, we have
ψAψ′ ∈ h∞Ψ−∞.

2. For each cutoff chart (ϕ, χ), there exists aϕ,χ ∈ S
k
h(T ∗Rn) such that

(E.1.32) (ϕ−1)∗χAχϕ∗ = Oph(aϕ,χ).

Proof. 1. Assume first that A ∈ Ψk
h(M). To verify property 1, it suffices

to show that χ̃ψAψ′χ̃ ∈ h∞Ψ−∞ for all χ̃ ∈ C∞c (M), thus we may assume
that ψ,ψ′ ∈ C∞c (M). We then write by (E.1.31)

ψAψ′ =
∑
j

ψχjϕ
∗
j Oph(aj)(ϕ

−1
j )∗χjψ

′ +O(h∞)Ψ−∞

=
∑
j

ϕ∗j
(
(ψχj) ◦ ϕ−1

j ) Oph(aj)
(
(ψ′χj) ◦ ϕ−1

j )(ϕ−1
j )∗ +O(h∞)Ψ−∞

and the sum above has finitely many nonzero terms due to the local finiteness
condition. The supports of the functions (ψχj)◦ϕ−1

j , (ψ′χj)◦ϕ−1
j ∈ C∞c (Rn)

do not intersect, therefore by (E.1.26) we have ψAψ′ ∈ h∞Ψ−∞.
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To verify property 2, we write by (E.1.31)

(E.1.33) (ϕ−1)∗χAχϕ∗ =
∑
j

χ′j(ϕ
′
j)
∗Oph(aj)((ϕ

′
j)
−1)∗χ′j +O(h∞)S ′→S

where (ϕ′j , χ
′
j) are the following cutoff charts on Rn:

ϕ′j = ϕj ◦ ϕ−1, χ′j = (χχj) ◦ ϕ−1.

By Proposition E.10, and since operators in O(h∞)S ′→S are pseudodiffer-
ential with symbols in the class h∞S (R2n), we have (E.1.32) with some

aϕ,χ ∈ S
k
h(T ∗Rn).

2. Now, assume that A satisfies properties 1 and 2 in the statement of this
proposition. We will write it in the form (E.1.31). Take a collection of cutoff
charts (ϕj , χj) on M such that the domains Uj of ϕj form a locally finite
covering of M and

∑
j χj = 1. Take also χ′j , χ

′′
j ∈ C∞c (Uj) such that χ′j = 1

near suppχj and χ′′j = 1 near suppχ′j . We write

(E.1.34) A =
∑
j

χjA =
∑
j

χjAχ
′
j +

∑
j

χjA(1− χ′j).

By property 1, we see that the second term on the right-hand side is in
h∞Ψ−∞. As for the first term, we write it as

(E.1.35)

∑
j

χjAχ
′
j =

∑
j

χ′jϕ
∗
jAj(ϕ

−1
j )∗χ′j ,

Aj := (χj ◦ ϕ−1
j )(ϕ−1

j )∗χ′′jAχ
′′
jϕ
∗
j .

This has the form (E.1.31) as (ϕj , χ
′′
j ) are cutoff charts and thus Aj =

Oph(aj) for some aj ∈ S
k
h(T ∗Rn) by property 2. �

Proposition E.13, together with (E.1.9) and (E.1.20), implies that the

class of semiclassical differential operators Diffkh(M) defined in §E.1.1 is
contained in Ψk

h(M).

We now define the principal symbol of a pseudodifferential operator on
a manifold, extending the definition (E.1.3) given for differential operators.

For a ∈ Skh(T ∗Rn), we say that a0 ∈ Sk(T ∗Rn) is the principal part of a if
it is the leading term in the expansion (E.1.8) of a.

PROPOSITION E.14. Let A ∈ Ψk
h(M). Then there exists a unique

σh(A) ∈ Sk(T ∗M),

called the principal symbol of A, with the following properties:

1. For each representation (E.1.31) of A, we have

(E.1.36) σh(A) =
∑

j
χj(x)2(a0

j ◦ ϕ̃j)
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with ϕ̃j defined in (E.1.27) and a0
j ∈ S

k
(T ∗Rn) the principal part of aj.

2. For each cutoff chart (ϕ, χ) and aϕ,χ defined in (E.1.32),

(E.1.37) χ(x)2σh(A) = a0
ϕ,χ ◦ ϕ̃ on T ∗U

where a0
ϕ,χ ∈ S

k
(T ∗Rn) is the principal part of aϕ,χ, supported inside T ∗U .

Proof. Take a representation (E.1.31) of A and define σh(A) by (E.1.36).
It follows from (E.1.33) and Proposition E.10 that (E.1.37) holds for each
cutoff chart (ϕ, χ) and thus σh(A) is independent of the choice of the repre-
sentation (E.1.31). �

We also define a (non-canonical) quantization procedure:

PROPOSITION E.15. Let (ϕj , χj) be cutoff charts and χ′j functions sat-

isfying the conditions of the paragraph preceding (E.1.34), and ϕ̃j be defined

by (E.1.27). For a ∈ Skh(T ∗M), consider the operator

(E.1.38) OpMh (a) :=
∑
j

χ′jϕ
∗
j Oph

(
(χja) ◦ ϕ̃−1

j

)
(ϕ−1

j )∗χ′j .

Then A ∈ Ψk
h(M) is properly supported and

(E.1.39) σh(OpMh (a)) = a0

where a0 ∈ Sk(T ∗M) is the principal part of a. If the projection of supp a

onto M is compact, then OpMh (a) is compactly supported. Moreover, if a =

a(x;h) is independent of ξ, then OpMh (a)u = au for all u. In particular,

OpMh (1) is the identity operator.

Proof. The fact that A ∈ Ψk
h(M) follows immediately from Definition E.12,

and (E.1.39) follows from (E.1.36). The support properties of OpMh (a) follow
from the fact that suppχj ⊂ Uj and Uj form a locally finite collection. The

formula for OpMh (a) when a = a(x;h) follows directly from (E.1.20). �

When there is no risk of confusing the quantization map OpMh defined

above with the map Oph defined in (E.1.17), we denote OpMh by Oph.

PROPOSITION E.16 (Basic properties of σh, OpMh ). The map

(E.1.40) A ∈ Ψk
h(M) 7→ σh(A) ∈ Sk(T ∗M)

is onto and its kernel is given by hΨk−1
h (M). Moreover, for each A ∈ Ψk

h(M)

there exists a ∈ Skh(T ∗M) such that

(E.1.41) A = OpMh (a) +O(h∞)Ψ−∞ .
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Proof. The fact that (E.1.40) is onto follows from (E.1.39) and the fact

that the kernel of (E.1.40) contains hΨk−1
h (M) follows from (E.1.36). Now,

assume that A ∈ Ψk
h(M) and σh(A) = 0. By (E.1.37) the operator h−1A

satisfies conditions 1 and 2 of Proposition E.13 with k replaced by k − 1,
therefore h−1A ∈ Ψk−1

h (M).

Finally, let A ∈ Ψk
h(M); we construct a ∈ Skh(M) such that (E.1.41)

holds. Let a0 := σh(A). Then by (E.1.39) and the first part of the current

proposition, we have A − OpMh (a0) ∈ hΨk−1
h (M). Repeating this process,

we construct symbols aj ∈ Sk−j(T ∗M) by the formula

(E.1.42) aj = σh

(
h−j
(
A−

j−1∑
`=0

h` OpMh (a`)

))
.

It remains to take a in the form (E.1.8): a ∼
∑∞

j=0 h
jaj . �

We now prove basic algebraic properties of the class Ψk
h(M):

PROPOSITION E.17. 1. For all properly supported A ∈ Ψk
h(M), B ∈

Ψ`
h(M), we have AB ∈ Ψk+`

h (M) and

σh(AB) = σh(A)σh(B),(E.1.43)

σh(h−1[A,B]) =
1

i
{σh(A), σh(B)}.(E.1.44)

2. For A ∈ Ψk
h(M), we have A∗ ∈ Ψk

h(M) (where the adjoint is taken
with respect to any fixed smooth density on M) and

(E.1.45) σh(A∗) = σh(A).

Proof. 1. We first note that if either A or B lies in h∞Ψ−∞ then AB lies
in h∞Ψ−∞ as well, as follows from the fact that A,B,A∗, B∗ are bounded
C∞c (M)→ C∞c (M) and C∞(M)→ C∞(M) polynomially in h.

Now, to show that AB ∈ Ψk+`
h (M) in general we use Proposition E.13.

First of all, assume that ψ,ψ′ ∈ C∞(M) and suppψ ∩ suppψ′ = ∅; we
will show that ψABψ′ = O(h∞)Ψ−∞ . As in the beginning of the proof of
Proposition E.13 we may assume that ψ,ψ′ are compactly supported. Take
ψ′′ ∈ C∞c (M) with suppψ∩ supp(1−ψ′′) = suppψ′′∩ suppψ′ = ∅ and write

ψABψ′ = ψA(1− ψ′′)Bψ′ + ψAψ′′Bψ′.

Since ψA(1− ψ′′), ψ′′Bψ′ = O(h∞)Ψ−∞ , we get ψABψ′ = O(h∞)Ψ−∞ .

Next, let (ϕ, χ) be a cutoff chart on M and U ⊂ M be the domain
of ϕ. Choose χ′ ∈ C∞c (U) such that χ′ = 1 near suppχ, then by property 1
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in Proposition E.13 we have χABχ = χA(χ′)2Bχ+O(h∞)Ψ−∞ . We write

(ϕ−1)∗χABχϕ∗ = (χ ◦ ϕ−1)ÃB̃(χ ◦ ϕ−1) +O(h∞)Ψ−∞ ,

Ã := (ϕ−1)∗χ′Aχ′ϕ∗, B̃ := (ϕ−1)∗χ′Bχ′ϕ∗.

We have Ã = Oph(a), B̃ = Oph(b) for some a ∈ Skh(T ∗Rn), b ∈ S`h(T ∗Rn),
therefore by Proposition E.8 we get (ϕ−1)∗χABχϕ∗ = Oph(c) for some

c ∈ Sk+`
h (T ∗Rn). This shows that AB ∈ Ψk+`

h (M).

Next, by (E.1.23) and (E.1.37) we have c ◦ ϕ̃ = χ(x)2σh(A)σh(B) +
O(h)Sk+`−1

h (T ∗U). This shows (E.1.43). Moreover,

(ϕ−1)∗χ[A,B]χϕ∗ = (χ ◦ ϕ−1)[Ã, B̃](χ ◦ ϕ−1) +O(h∞)Ψ−∞

which together with (E.1.24) gives (E.1.44).

2. To show that A∗ ∈ Ψk
h(M), we again use Proposition E.13. First of

all, if ψ,ψ′ ∈ C∞(M) and suppψ ∩ suppψ′ = ∅, then ψA∗ψ′ = (ψ′Aψ)∗ =
O(h∞)Ψ−∞ . Next, let (ϕ, χ) be a cutoff chart, ϕ : U → V , then

(E.1.46) (ϕ−1)∗χAχϕ∗ = Oph(a) for some a ∈ Skh(T ∗Rn).

Let J ∈ C∞(V ) be the Jacobian of ϕ−1 with respect to the density fixed
on M and the standard density on Rn. By the change of variables formula
we see that the adjoints of the operators (E.1.28) are given by

(χϕ∗)∗ = J(ϕ−1)∗χ, ((ϕ−1)∗χ)∗ = χϕ∗J−1.

Fix χ̃ ∈ C∞c (V ) with χ̃ = 1 on ϕ(suppχ). The adjoint of (E.1.46) implies

(E.1.47) (ϕ−1)∗χA∗χϕ∗ = χ̃J−1 Oph(a)∗Jχ̃.

By Proposition E.8 the right-hand side of (E.1.47) is equal to Oph(a?) for

some a? ∈ S
k
h(T ∗Rn), showing that A∗ ∈ Ψk

h(M). Moreover by (E.1.23),

(E.1.25), and (E.1.37) we have a? ◦ ϕ̃ = χ(x)2σh(A) +O(h)Sk−1
h (T ∗U), which

shows (E.1.45). �

REMARKS ON GENERALIZATIONS. 1. Instead of the semiclas-
sical polyhomogeneous class Skh(T ∗M) one can consider pseudodifferential

operators with symbols in the larger class Sk1,0(T ∗M). In fact, we can use

an even larger class Skδ (T ∗M), δ ∈ [0, 1
2) consisting of symbols satisfying the

derivative bounds

(E.1.48) sup
h∈(0,h0)

hδ(|α|+|β|) sup
x∈K

ξ∈T∗xM

〈ξ〉|β|−k|∂αx ∂
β
ξ a(x, ξ;h)| <∞

That is, the derivative ∂αx ∂
β
ξ a is allowed to grow like h−δ(|α|+|β|)〈ξ〉k−|β|.

See [Zw12, §4.4.1]. We denote the corresponding pseudodifferential class
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by Ψk
δ,h(M). The principal symbol now lies in a quotient space:

A ∈ Ψk
δ,h(M) 7−→ σh(A) ∈ Skδ (T ∗M)/h1−2δSk−1

δ (T ∗M)

and the kernel of the map σh is equal to h1−2δΨk−1
δ,h (M). The product and

adjoint formulas (E.1.43) and (E.1.45) are still valid and the commutator

formula (E.1.44) takes the form σh(h2δ−1[A,B]) = h2δ

i {σh(A), σh(B)} where

{σh(A), σh(B)} ∈ h−2δSk+`−1
δ (T ∗M)/h1−4δSk+`−2

δ (T ∗M).

2. An invariant definition of the principal symbol modulo h2Sk−2
h (T ∗M)

can be obtained by using Weyl quantization for operators acting on half-
densities, see [Zw12, Theorem 14.3].

3. If A = A(h) ∈ Ψk
h(M) then for h := 1, A(h) is a nonsemiclassical pseudo-

differential operator with principal symbol σh(A), see [HöIII, §18.1]. Note
that even for fixed h the properties of pseudodifferential calculus are nontriv-
ial since the asymptotic expansions give an improvement in the differential
order k in addition to h.

E.1.8. Sobolev spaces. We now introduce Hilbert spaces on which semi-
classical pseudodifferential operators act naturally. We start with the case
of Rn:

DEFINITION E.18. For s ∈ R, the semiclassical Sobolev space

Hs
h(Rn), S (Rn) ⊂ Hs

h(Rn) ⊂ S ′(Rn),

is defined as the Sobolev space Hs(Rn) with the h-dependent norm

(E.1.49) ‖u‖Hs
h(Rn) := ‖〈hξ〉sû(ξ)‖L2(Rn).

For notational convenience, we put Hs
h(Rn) := HRe s

h (Rn) for s ∈ C.

We have ‖u‖Hs
h

= ‖〈hDx〉su‖L2 where 〈hDx〉s = Oph(〈ξ〉s) is defined

by (E.1.18). Thus for any operator A : S (Rn)→ S ′(Rn)

(E.1.50) ‖A‖Hs
h(Rn)→Ht

h(Rn) = ‖〈hDx〉tA〈hDx〉−s‖L2(Rn)→L2(Rn).

Therefore pseudodifferential operators act on semiclassical Sobolev spaces:

PROPOSITION E.19 (Boundedness of pseudodifferential opera-

tors on Rn). Let a ∈ Sk1,0(T ∗Rn). Then for each s the operator

Oph(a) : Hs
h(Rn)→ Hs−k

h (Rn)

is bounded uniformly in h, and its operator norm is bounded above by some

fixed S
k
1,0 seminorm of a.



E.1. PSEUDODIFFERENTIAL OPERATORS 561

Proof. By (E.1.50) it suffices to show boundedness of 〈hDx〉s−k Oph(a)〈hDx〉−s
on L2(Rn). From the pseudodifferential calculus in Proposition E.8 we see

that the latter operator is given by Oph(b) where b ∈ S0
1,0(T ∗Rn). The op-

erator Oph(b) is uniformly bounded on L2(Rn) – see for instance [Zw12,

Theorem 4.23] and for Hörmander’s simple proof for the class S
0
1,0, Exer-

cise E.6. �

For each cutoff chart (ϕ, χ) on Rn and all s we have ‖χϕ∗‖Hs
h→H

s
h
≤ C,

where χϕ∗ : C∞(Rn)→ C∞c (Rn) is defined by (E.1.28). Indeed, by (E.1.50)
it suffices to show L2 boundedness of the operator

〈hDx〉sχϕ∗〈hDx〉−s = B1 +B2,

B1 := 〈hDx〉sχ(χ′ϕ∗〈hDx〉−s(ϕ−1)∗χ′)χ′ϕ∗,

B2 := 〈hDx〉sχ′ϕ∗(χ ◦ ϕ−1)〈hDx〉−s
(
1− (χ′ ◦ ϕ−1)2

)
where ϕ : U → V and we fix χ′ ∈ C∞c (U) such that χ′ = 1 near suppχ.
By Propositions E.8 and E.10 we have B1 = Oph(b1)χ′ϕ∗ for some b1 ∈
S

0
1,0(T ∗Rn), thus by Proposition E.19 we get ‖B1‖L2→L2 ≤ C. On the

other hand by (E.1.26) we have B2 = 〈hDx〉sχ′ϕ∗Oph(b2) for some b2 ∈
h∞S

−∞
1,0 (T ∗Rn), which implies that ‖B2‖L2→L2 = O(h∞).

We can now define Sobolev spaces on manifolds:

DEFINITION E.20. Let M be a manifold. For s ∈ R, define the local
semiclassical Sobolev space Hs

h,loc(M), C∞(M) ⊂ Hs
h,loc(M) ⊂ D′(M), as

the Fréchet space with inner product seminorms

‖(ϕ−1)∗χu‖Hs
h(Rn)

for all cutoff charts (ϕ, χ). Let Hs
h,comp(M) consist of all compactly sup-

ported elements of Hs
h,loc(M).

For each cutoff chart (ϕ, χ) the operators (E.1.28) are continuous

χϕ∗ : Hs
h(Rn)→ Hs

h,comp(M), (ϕ−1)∗χ : Hs
h,loc(M)→ Hs

h(Rn)

with operator seminorms bounded uniformly in h. It follows that C∞c (M)
is dense in Hs

h,comp(M) and C∞(M) is dense in Hs
h,loc(M).

For each u ∈ Hs
h,comp(M), we can define the norm ‖u‖Hs

h
by

(E.1.51) ‖u‖2Hs
h

:=
∑
j

‖(ϕ−1
j )∗χju‖2Hs

h(Rn)

where (ϕj , χj) is a collection of cutoff charts such that the domains of ϕj form
a locally finite covering of M and

∑
j |χj | > 0 everywhere on M . Moreover,

the norms resulting from two different choices of (ϕj , χj) are equivalent with
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constants uniform in h as long as we require that u is supported in some
fixed compact subset of M . In particular, when the manifold M is compact,
the norm (E.1.51) produces a Hilbert space Hs

h(M).

If M is compact, then Hs
h(M) is dual to H−sh (M). More precisely, if we

fix a smooth density onM then the L2 inner product 〈u, v〉L2 , u, v ∈ C∞(M),
extends continuously to u ∈ Hs

h(M), v ∈ H−sh (M). Moreover, if u ∈ D′(M)
and we have the norm bound |〈u, v〉L2 | ≤ L‖v‖H−sh (M) for all v ∈ C∞(M),

then u ∈ Hs
h(M) and ‖u‖Hs

h
≤ CL. The constants in the above bounds

are independent of h. For noncompact manifolds M , Hs
h,comp(M) is dual

to H−sh,loc(M).

The spaces Hs
h,loc(M) for different values of h consist of the same func-

tions and the norms ‖u‖Hs
h

for different choices of h are equivalent, with
constants depending on h. We thus may use the h-independent notation
(with M compact in the third case below)

(E.1.52) Hs
loc(M), Hs

comp(M), Hs(M)

for these spaces, where to define the norm we put h := 1. However, the
h-dependent norms ‖ · ‖Hs

h
will be used in the semiclassical estimates below,

to ensure that the constants in these estimates are uniform in h.

PROPOSITION E.21 (Interpolation inequality in Sobolev spaces).
Let M be a manifold, V ⊂ M a compact set. Fix real numbers s1 < r < s2

and the corresponding norms (E.1.51). Then there exists a constant C such
that for each α > 0 and each u ∈ Hs2

comp(M) with suppu ⊂ V , we have

(E.1.53) ‖u‖Hr
h
≤ α‖u‖Hs2

h
+ Cα(s1−r)/(s2−r)‖u‖Hs1

h
.

Proof. By (E.1.51), we reduce to the classes Hs
h(Rn). Then (E.1.53) follows

immediately from (E.1.49) and the following inequality:

〈hξ〉r ≤ α〈hξ〉s2 + α(s1−r)/(s2−r)〈hξ〉s1 .

The latter can be verified directly by multiplying both sides by αr/(s2−r)

and using the inequality ar ≤ as2 + as1 for a := α1/(s2−r)〈hξ〉. �

We now study the action of pseudodifferential operators on Sobolev
spaces. The following is a direct corollary of (E.1.31) and Proposition E.19:

PROPOSITION E.22 (Boundedness of pseudodifferential opera-
tors on manifolds). Each A ∈ Ψk

h(M) is bounded uniformly in h on com-
pact sets as an operator

A : Hs
h,comp(M)→ Hs−k

h,loc(M).

We also use the following version of the sharp G̊arding inequality:



E.1. PSEUDODIFFERENTIAL OPERATORS 563

PROPOSITION E.23. Let A ∈ Ψ2k+1
h (M) be compactly supported, fix

some smooth density on M , and assume that Reσh(A) ≥ 0 everywhere.

Then there exists a constant C such that for each u ∈ Hk+1/2
comp (M),

(E.1.54) Re〈Au, u〉L2 ≥ −Ch‖u‖2
Hk
h
.

Proof. By Proposition E.16 we have A = OpMh (a0) + O(h)Ψ2k
h (M) where

a0 := σh(A). It suffices to prove (E.1.54) for the operator OpMh (a0); recalling

the definition (E.1.38) of OpMh we reduce to the case when A = Oph(a) for

a ∈ S
2k+1
1,0 (T ∗Rn), a ≥ 0, and Oph is the standard quantization (E.1.18).

Then (E.1.54) follows from the sharp G̊arding inequality on Rn, see [Zw12,
Theorem 9.11]. �

As an application of Proposition E.23, we give the following improved
bound on norms of pseudodifferential operators:

PROPOSITION E.24. Let A ∈ Ψ0
h(M) be compactly supported and fix

some smooth density on M . Then there is a constant C depending on A
such that

(E.1.55) ‖A‖L2→L2 ≤ sup
(x,ξ)∈T ∗M

|σh(A)(x, ξ)|+ Ch1/2.

REMARK. In fact, we have (see [Zw12, Theorem 13.13])

‖A‖L2→L2 = sup
(x,ξ)∈T ∗M

|σh(A)(x, ξ)|+O(h).

Proof. Let C0 := sup(x,ξ)∈T ∗M |σh(A)(x, ξ)|. Take χ ∈ C∞c (M) such that

|χ| ≤ 1 everywhere and χ = 1 near suppσh(A). Then

σh(|C0χ|2 −A∗A) = |C0χ(x)|2 − |σh(A)|2 ≥ 0.

By Proposition E.23, we have for all u ∈ L2(M),

C2
0‖χu‖2L2 − ‖Au‖2L2 = 〈(|C0χ|2 −A∗A)u, u〉L2 ≥ −Ch‖u‖2L2

and thus, using the fact that ‖χu‖L2 ≤ ‖u‖L2 ,

‖Au‖2L2 ≤ C2
0‖u‖2L2 + Ch‖u‖2L2 ,

which implies (E.1.55). �

We finally review Sobolev spaces on manifolds with boundary. We refer
the reader to [HöIII, Appendix B.2] and [TaI, §§4.4,4.5] for a compre-
hensive treatment. Let M be a compact manifold with boundary ∂M and
interior M . We embed M into a compact manifold without boundary, de-
noted Mext. One way to do this is to let Mext be the double space of M ,
obtained by gluing together two copies of M along the boundary.
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DEFINITION E.25 (Sobolev spaces on manifolds with boundary).
Let M ⊂M ⊂Mext be as above. For s ∈ R, define the spaces

H̄s
h(M) ⊂ D′(M), Ḣs

h(M) ⊂ D′(Mext)

as follows:

• H̄s
h(M) consists of restrictions to M of elements of Hs

h(Mext);

• Ḣs
h(M) consists of elements of Hs

h(Mext) whose supports are con-

tained in M .

The space Ḣs
h(M) is a closed subspace of the Hilbert space Hs

h(Mext)
and inherits the norm of this ambient space. As for H̄s

h(M), we make it
into a Hilbert space by identifying it with the orthogonal complement of
Ḣs
h(Mext \M) in Hs

h(Mext). We have the inclusions

Hs
h,comp(M) ⊂ Ḣs

h(M), H̄s
h(M) ⊂ Hs

h,loc(M).

Similarly to (E.1.52), we use the notation

H̄s(M), Ḣs(M)

for the spaces H̄s
h(M), Ḣs

h(M) when the h-dependence of the norm is irrel-

evant. The space C∞(M) of functions smooth up to the boundary is dense

in H̄s(M) and C∞c (M) is dense in Ḣs(M) – see [HöIII, Theorem B.2.1].

The spaces H̄s
h(M) and Ḣ−sh (M) are dual to each other with respect to the

natural L2 pairing.

E.2. WAVEFRONT SETS AND ELLIPTICITY

We now define semiclassical wavefront sets, which consist of points in the
phase space T ∗M where a pseudodifferential operator or a family of distri-
butions is not O(h∞). To handle in a uniform way the case of large values
of ξ, we embed wavefront sets into the fiber-radially compactified cotangent
bundle T

∗
M introduced in §E.1.3.

E.2.1. Wavefront sets of pseudodifferential operators. The wave-
front set of a pseudodifferential operator A ∈ Ψk

h(M) is the essential sup-
port of its full symbol. Here the essential support is the set of points in
T
∗
M near which the symbol is not O(h∞〈ξ〉−∞): To control the behavior

of the symbol as |ξ| → ∞ we make the essential support a subset of the

fiber-radially compactified cotangent bundle T
∗
M defined in §E.1.3.

DEFINITION E.26 (Essential support of a symbol). Let a ∈ Sk1,0(T ∗M).

Define ess-supp a ⊂ T
∗
M as follows: a point (x0, ξ0) ∈ T ∗M does not lie
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in ess-supp a if there exists a neighbourhood W of (x0, ξ0) in T
∗
M such that

for all multiindices α, β and all N there exists CαβN such that

|∂αx ∂
β
ξ a(x, ξ)| ≤ CαβNhN 〈ξ〉−N , (x, ξ) ∈W ∩ T ∗M.

It is clear from the definition that ess-supp a is a closed subset of T
∗
M .

Moreover, it follows from the compactness of the fibers of T
∗
M that

ess-supp a = ∅ ⇐⇒ a ∈ h∞S−∞(T ∗M)

where the residual class h∞S−∞(T ∗M) is defined in (E.1.10).

DEFINITION E.27 (Wavefront set of a pseudodifferential opera-
tor). Let A ∈ Ψk

h(M). Define the set

WFh(A) ⊂ T ∗M

as follows: a point (x0, ξ0) ∈ T ∗M does not lie in WFh(A) if and only if for
each cutoff chart (ϕ, χ) such that x0 lies in the domain of ϕ, if aϕ,χ is defined
by (E.1.32) and ϕ̃ is defined by (E.1.27), then ϕ̃(x0, ξ0) /∈ ess-supp aϕ,χ.

In other words, WFh(A) is the union of the sets ϕ̃−1(ess-supp aϕ,χ) over
all cutoff charts (ϕ, χ).

Recalling that 〈ξ〉−kσh(A) extends to T
∗
M by Proposition E.4, we have

(E.2.1) supp
(
〈ξ〉−kσh(A)

)
⊂ WFh(A).

If a, b ∈ S
k
1,0(T ∗Rn) are the symbols in the change of variables formula,

Proposition E.10, then by (E.1.30) we have ess-supp b ⊂ ϕ̃−1(ess-supp a).
Thus by (E.1.33), if A ∈ Ψk

h has the form (E.1.31) for some symbols aj ∈
S
k
h(T ∗Rn) then

WFh(A) ⊂
⋃
j

ϕ̃−1
j (ess-supp aj).

Therefore, if OpMh is a quantization procedure from Proposition E.15 then

for every a ∈ Skh(M) we have

(E.2.2) WFh(OpMh (a)) ⊂ ess-supp a.

Conversely, if A ∈ Ψk
h(M) and a ∈ Skh(T ∗M) is the symbol constructed in

Proposition E.16 such that A = OpMh (a) + O(h∞)Ψ−∞ , then ess-supp a ⊂
WFh(A). In particular, WFh(A) ⊂ T ∗M is closed and

(E.2.3) WFh(A) = ∅ ⇐⇒ A = O(h∞)Ψ−∞ .

Moreover, the expansions in Proposition E.8 and the proof of Proposi-
tion E.17 imply the following properties:

WFh(A+B) ⊂ WFh(A) ∪WFh(B),(E.2.4)
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WFh(AB) ⊂ WFh(A) ∩WFh(B),(E.2.5)

WFh(A∗) = WFh(A).(E.2.6)

We give two more useful definitions involving wavefront sets:

DEFINITION E.28 (Compactly microlocalized pseudodifferential
operators). A compactly supported operator A ∈ Ψk

h(M) is called com-
pactly microlocalized if WFh(A) is a compact subset of T ∗M . We denote
the class of such operators by Ψcomp

h (M).

That is, A ∈ Ψcomp
h (M) if A is compactly supported and WFh(A) does

not intersect the fiber infinity ∂T
∗
M . Note that Ψcomp

h (M) ⊂ Ψ`
h(M) for

all `, thus by Proposition E.22 every A ∈ Ψcomp
h (M) is bounded uniformly

in h as an operator H−Nh,loc(M) → HN
h,comp(M) for all N . In particular A is

smoothing, more precisely it maps D′(M)→ C∞c (M).

DEFINITION E.29 (Microlocal equivalence). Let A,B ∈ Ψk
h(M) and

U ⊂ T ∗M be open or closed. We say that

A = B +O(h∞)Ψ−∞ microlocally on U,

in the case when U is open, or

A = B +O(h∞)Ψ−∞ microlocally near U,

in the case when U is closed, if WFh(A−B) ∩ U = ∅.

We conclude with the construction of a partition of unity made of pseu-
dodifferential operators:

PROPOSITION E.30 (Microlocal partition of unity). Assume that

V ⊂ T ∗M is compact and

U1, . . . , Um ⊂ T
∗
M

is an open cover of V . Then there exist compactly supported X1, . . . , Xm ∈
Ψ0
h(M) such that WFh(Xj) ⊂ Uj and

m∑
j=1

Xj = I +O(h∞)Ψ−∞ microlocally near V.

Proof. Take a partition of unity

χj ∈ C∞c (Uj), j = 1, . . . ,m;
m∑
j=1

χj = 1 near V.

By Proposition E.4 we have χj ∈ S0(T ∗M). Put Xj := OpMh (χj) where

OpMh is a quantization procedure defined in Proposition E.15. Then we

have WFh(Xj) ⊂ Uj by (E.2.2). Moreover, since OpMh (1) = I we have
WFh(I −X1 − · · · −Xm) ∩ V = ∅. �
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E.2.2. Ellipticity. We next define the elliptic set of a pseudodifferential
operator, consisting of points where its principal symbol does not vanish.
Recall that by Proposition E.4 for every a ∈ Sk(T ∗M) the function 〈ξ〉−ka
extends smoothly to T

∗
M .

DEFINITION E.31 (Elliptic set). Let A ∈ Ψk
h(M). Define the set

ellh(A) := {(x0, ξ0) ∈ T ∗M |
(
〈ξ〉−kσh(A)

)
(x0, ξ0) 6= 0}.

If (x0, ξ0) ∈ ellh(A), then we say that A is elliptic at (x0, ξ0).

REMARK. For more general operator classes Ψk
δ,h discussed at the end

of §E.1.7, ellipticity is defined by requiring that |σh(A)| ≥ c〈ξ〉k in a neigh-
borhood of (x0, ξ0) for some constant c > 0.

Note that ellh(A) is an open subset of T
∗
M . The significance of elliptic-

ity comes from our ability to invert A microlocally near its elliptic points:

PROPOSITION E.32 (Elliptic parametrix). Let A ∈ Ψ`
h(M), B ∈

Ψk
h(M) be properly supported and satisfy WFh(A) ⊂ ellh(B). Then there

exist properly supported Q,Q′ ∈ Ψ`−k
h (M) such that

(E.2.7) A = BQ+O(h∞)Ψ−∞ = Q′B +O(h∞)Ψ−∞ .

Moreover, WFh(Q) ∪WFh(Q′) ⊂WFh(A).

Proof. We construct Q; the operator Q′ is constructed similarly. By consid-
ering 〈ξ〉−`σh(A) and 〈ξ〉−kσh(B) as smooth functions on T

∗
M and using

that supp(〈ξ〉−`σh(A)) ⊂WFh(A) ⊂ ellh(B), we construct the symbol

q0 :=
σh(A)

σh(B)
∈ S`−k(M), supp(〈ξ〉k−`q0) ⊂WFh(A).

Fix a quantization procedure Oph = OpMh from Proposition E.15. Then
by (E.1.43) we have σh(A−BOph(q0)) = 0, therefore

A = BOph(q0) + hA1, A1 ∈ Ψ`−1
h (M), WFh(A1) ⊂WFh(A).

Arguing by induction, we construct a sequence of operators Aj ∈ Ψ`−j
h (M)

and symbols qj ∈ S`−k−j(M), j ∈ N0, such that A0 = A and

Aj = BOph(qj) + hAj+1, WFh(Aj) ⊂WFh(A).

To obtain (E.2.7), it remains to take

Q := Oph(q), q ∼
∞∑
j=0

hjqj

where the asymptotic sum is understood in the sense of (E.1.8). �

An immediate corollary of the elliptic parametrix is the following
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THEOREM E.33 (Elliptic estimate). Let P ∈ Ψk
h(M) be properly sup-

ported. Assume that A,B1 ∈ Ψ0
h(M) are compactly supported and

WFh(A) ⊂ ellh(P ) ∩ ellh(B1).

Fix s,N ∈ R. Then for each u ∈ D′(M), if B1Pu ∈ Hs−k
comp(M), then

Au ∈ Hs
comp(M) and

(E.2.8) ‖Au‖Hs
h
≤ C‖B1Pu‖Hs−k

h
+O(h∞)‖χu‖H−Nh

where the constant C and the function χ ∈ C∞c (M) do not depend on u or h.

REMARKS. 1. The O(h∞) remainder term cannot be removed – see
Exercise E.9.

2. We do not need to assume that A,B1 are operators of order 0. If instead
A ∈ Ψm

h (M), B1 ∈ Ψ`
h(M), then (E.2.8) becomes

(E.2.9) ‖Au‖Hs−m
h
≤ C‖B1Pu‖Hs−k−`

h
+O(h∞)‖χu‖H−Nh .

Proof. We have WFh(A) ⊂ ellh(B1P ). By Proposition E.32, there exists

Q ∈ Ψ−kh (M) such that

A = QB1P +R, R = O(h∞)Ψ−∞ .

Since Q,P are properly supported and A,B1 are compactly supported, R is
compactly supported; therefore, R = Rχ for some χ ∈ C∞c (M).

Let u ∈ D′(M) and assume that B1Pu ∈ Hs−k
comp(M). By Proposi-

tion E.22, QB1Pu ∈ Hs
comp(M) and ‖QB1Pu‖Hs

h
≤ C‖B1Pu‖Hs−k

h
. We also

have Ru ∈ Hs
comp(M) and ‖Ru‖Hs

h
= O(h∞)‖χu‖H−Nh for all N . Adding

these estimates together, we get (E.2.8). �

Using the elliptic estimate we prove a microlocal version of sharp G̊arding
inequality which will be used in the positive commutator estimates of §E.4:

PROPOSITION E.34 (Microlocal G̊arding inequality). Assume that
A ∈ Ψ2s

h (M), B,B1 ∈ Ψ0
h(M) are compactly supported and

〈ξ〉−2s Reσh(A) ≥ 0 in a neighbourhood of T
∗
M \ ellh(B),

WFh(A) ⊂ ellh(B1).

Then there exists a constant C and χ ∈ C∞c (M) such that for each N and
all u ∈ Hs

loc(M),

Re〈Au, u〉 ≥ −C‖Bu‖2Hs
h
− Ch‖B1u‖2

H
s−1/2
h

−O(h∞)‖χu‖2
H−Nh

.

Proof. Take compactly supported B2 ∈ Ψs
h(M) such that

WFh(A) ⊂ ellh(B2), WFh(B2) ⊂ ellh(B1).
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The closure of the set {〈ξ〉−2s Reσh(A) < 0} ⊂ T
∗
M is compact and con-

tained in ellh(B). Therefore there exists a constant C0 > 0 such that

〈ξ〉−2s(Reσh(A) + C0|σh(B2B)|2) ≥ 0 everywhere.

Consequently for the compactly supported operator

Y := A+ C0(B2B)∗(B2B) ∈ Ψ2s
h (M)

we have

〈ξ〉−2s Reσh(Y ) ≥ 0, WFh(Y ) ⊂ ellh(B1).

By Proposition E.30 there exists compactly supported X ∈ Ψ0
h(M) with

WFh(Y ) ∩WFh(I −X) = ∅, WFh(X) ⊂ ellh(B1).

Now the standard G̊arding inequality, Proposition E.23, gives

Re〈Y u, u〉 = Re〈Y Xu,Xu〉+O(h∞)‖χu‖2
H−Nh

≥ −Ch‖Xu‖2
H
s−1/2
h

+O(h∞)‖χu‖2
H−Nh

.

To finish the proof, it remains to note that

Re〈Y u, u〉 = Re〈Au, u〉+ C0‖B2Bu‖2L2 , ‖B2Bu‖L2 ≤ C‖Bu‖Hs
h
,

‖Xu‖
H
s−1/2
h

≤ C‖B1u‖Hs−1/2
h

+O(h∞)‖χu‖H−Nh
where the last statement follows by Theorem E.33 with P := I. �

E.2.3. Wavefront sets of distributions. We now define semiclassical
wavefront sets of h-dependent families of distributions and operators. For
that, we need to impose polynomial growth assumptions:

DEFINITION E.35 (h-tempered distributions and operators).

1. A family of distributions u = u(h) ∈ D′(M), h ∈ (0, h0), is called
h-tempered, if for each χ ∈ C∞c (M), there exist constants C and N such
that ‖χu‖H−Nh ≤ Ch−N .

2. A family of operators B(h) : C∞c (M2)→ D′(M1) is called h-tempered,
if the Schwartz kernels KB(h) form an h-tempered family in D′(M1 ×M2).

The definition of an h-tempered distribution is motivated by the follow-
ing property: if u ∈ D′(M2) is h-tempered then for any properly supported
family of operators A = A(h) : D′(M2)→ C∞(M1) we have

(E.2.10) A = O(h∞)Ψ−∞ =⇒ Au = O(h∞)C∞ .

Here the notation O(h∞)C∞ means that each C∞ seminorm is O(h∞).

The definition of wavefront set below is motivated by the following def-
inition of the support of a distribution u ∈ D′(M): a point x ∈M does not
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lie in suppu if and only if there exists a neighbourhood U of x such that for
each χ ∈ C∞c (M) with suppχ ⊂ U , we have χu = 0.

DEFINITION E.36 (Semiclassical wavefront set).

1. Let u = u(h) ∈ D′(M) be h-tempered. The semiclassical wavefront

set WFh(u) ⊂ T
∗
M is defined as follows: a point (x0, ξ0) ∈ T ∗M does not

lie in WFh(u) if and only if there exists a neighbourhood U of (x0, ξ0) in

T
∗
M such that for every properly supported A ∈ Ψk

h(M) with WFh(A) ⊂ U ,

Au = O(h∞)C∞ .

2. Let B = B(h) : C∞c (M2)→ D′(M1) be an h-tempered family of operators.

Then WF′h(B) ⊂ T ∗(M1 ×M2) is defined as follows:

(E.2.11) WF′h(B) = {(x, ξ, y, η) : (x, ξ, y,−η) ∈WFh(KB)}

where KB(x, y) ∈ D′(M1 ×M2) is the Schwartz kernel of B.

Note that WFh(u) and WF′h(B) are closed sets. Using a pseudodiffer-
ential partition of unity, Proposition E.30, we see that

WFh(u) = ∅ ⇐⇒ u = O(h∞)C∞ ,(E.2.12)

WF′h(B) = ∅ ⇐⇒ B = O(h∞)Ψ−∞ .(E.2.13)

The switch of sign of η in (E.2.11) is motivated by the identity

WF′h(B∗) = {(y, η, x, ξ) : (x, ξ, y, η) ∈WF′h(B)}.

This follows from the fact that KB∗(y, x) = KB(x, y) (if the densities used to
define the adjoint and the Schwartz kernels are the same) and the following
formula for the wavefront set of the complex conjugate:

(E.2.14) WFh(ū) = {(x,−ξ) : (x, ξ) ∈WFh(u)}.

To see (E.2.14), we use Definition E.36 and the following identity for the
quantization formula (E.1.18):

(E.2.15) Oph(a)u = Oph(a′)u, a′(x, ξ) = a(x,−ξ).

A fundamental example of wavefront set calculation is given by

PROPOSITION E.37 (Wavefront set of an oscillatory integral).
Assume that

ϕ(x, θ) ∈ C∞(U ;R), U ⊂Mx × Rmθ
is a smooth function and

a(x, θ;h) ∈ C∞c (U)



E.2. WAVEFRONT SETS AND ELLIPTICITY 571

is supported inside an h-independent compact set Ka ⊂ U and has all deriva-
tives bounded uniformly in h. Then the family of smooth functions

(E.2.16) u(x;h) :=

∫
Rm

e
i
h
ϕ(x,θ)a(x, θ;h) dθ, x ∈M,

is h-tempered and satisfies

WFh(u) ⊂ {(x, ∂xϕ(x, θ)) : (x, θ) ∈ Ka, ∂θϕ(x, θ) = 0}.

Proof. By differentiation under the integral sign, we see immediately that u
is h-tempered, in fact each of its C∞(M) seminorms is bounded polynomially
in h. By a partition of unity applied to a, we reduce to the case when

M = Rn. Then it suffices to prove that for each b ∈ Sk1,0(T ∗Rn) such that

(E.2.17) supp b ∩ {(x, ∂xϕ(x, θ)) : (x, θ) ∈ Ka, ∂θϕ(x, θ) = 0} = ∅,

we have Oph(b)u = O(h∞)C∞ where Oph is defined by (E.1.18). We write

Oph(b)u(x) = (2πh)−n
∫
R2n+m

eiΦ/hb(x, ξ;h)a(y, θ;h) dθdydξ,

Φ = 〈x− y, ξ〉+ ϕ(y, θ)

where to define the integral we can first integrate in θ, y variables and then
in ξ. The critical points of the phase Φ in the (θ, y, ξ) variables are given by

y = x, ∂θϕ(x, θ) = 0, ξ = ∂xϕ(x, θ).

By (E.2.17), all critical points lie outside of the support of the amplitude
b(x, ξ;h)a(y, θ;h). If b(x, ξ;h) is compactly supported in ξ, then the method
of nonstationary phase (E.1.15) gives Oph(b)u = O(h∞)C∞ . For the case
of general b, we first integrate in θ, y and then in ξ. For ξ large enough,
the integral is O(h∞〈ξ〉−∞) by repeated integration by parts in y, using the
inequality |∂yΦ|−1 ≤ C〈ξ〉−1 valid when |ξ| � 1. �

We next study the behaviour of wavefront sets under pseudodifferential
operators:

PROPOSITION E.38. Let u = u(h) ∈ D′(M) be h-tempered and A ∈
Ψ`
h(M) properly supported. Then

WFh(Au) ⊂ WFh(A) ∩WFh(u),(E.2.18)

WFh(u) ⊂ WFh(Au) ∪ (T
∗
M \ ellh(A)).(E.2.19)

Proof. 1. To see (E.2.18), take first (x0, ξ0) /∈WFh(A). Define the open set

U := T
∗
M \WFh(A). Then for each properly supported B ∈ Ψk

h(M) such
that WFh(B) ⊂ U , by (E.2.5) and (E.2.3) we have BA = O(h∞)Ψ−∞ and
thus by (E.2.10), B(Au) = O(h∞)C∞ ; this implies that (x0, ξ0) /∈WFh(Au).
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Now, assume instead that (x0, ξ0) /∈ WFh(u). Then there exists an

open neighbourhood V of (x0, ξ0) in T
∗
M such that for each properly sup-

ported B ∈ Ψk
h(M) with WFh(B) ⊂ V , we have Bu = O(h∞)C∞ . Since

WFh(BA) ⊂ V by (E.2.5), we have BAu = O(h∞)C∞ as well, which implies
that (x0, ξ0) /∈WFh(Au). This finishes the proof of (E.2.18).

2. To prove (E.2.19), we use an elliptic parametrix. Let

(x0, ξ0) ∈ U := ellh(A) \WFh(Au).

Let B ∈ Ψk
h(M) be properly supported and WFh(B) ⊂ U . By Proposi-

tion E.32, there exists properly supported Q ∈ Ψk−`
h (M) such that

B = QA+O(h∞)Ψ−∞ .

Moreover, WFh(Q) ⊂WFh(B) ⊂ U . Therefore by (E.2.18) we have

WFh(Bu) = WFh(QAu) ⊂WFh(Q) ∩WFh(Au) = ∅

which by (E.2.12) gives Bu = O(h∞)C∞ . Thus (x0, ξ0) /∈ WFh(u) as re-
quired. �

We give the analog of Proposition E.38 for wavefront sets of operators,
where we restrict to the class Ψcomp

h of compactly microlocalized operators
(see Definition E.28):

PROPOSITION E.39. Let B(h) : C∞c (M2) → D′(M1) be an h-tempered
family of operators and A1 ∈ Ψcomp

h (M1), A2 ∈ Ψcomp
h (M2). Then

WF′h(A1BA2) ⊂ WF′h(B) ∩ (WFh(A1)×WFh(A2)),(E.2.20)

WF′h(B) ∩ (ellh(A1)× ellh(A2)) ⊂ WF′h(A1BA2).(E.2.21)

Proof. The Schwartz kernel of A1BA2 is given by

KA1BA2(x, y) = (A1 ⊗AT2 )KB(x, y)

where A1 ⊗AT2 : D′(M1 ×M2)→ D′(M1 ×M2) is the tensor product of A1

and the operator

AT2 : D′(M2)→ D′(M2), A∗2v = AT2 v.

By (E.2.15), we see that AT2 ∈ Ψcomp
h (M2) and WFh(AT2 ), ellh(AT2 ) are ob-

tained from WFh(A2), ellh(A2) by the map (y, η) 7→ (y,−η).

Since WFh(A1),WFh(A2) do not intersect the fiber infinity and the
quantization procedure (E.1.18) satisfies

Oph(a⊗ b) = Oph(a)⊗Oph(b), a ∈ C∞c (T ∗Rn), b ∈ C∞c (T ∗Rn
′
),

we have A1 ⊗AT2 ∈ Ψcomp
h (M1 ×M2),

WFh(A1 ⊗AT2 ) = {(x, ξ, y,−η) : (x, ξ) ∈WFh(A1), (y, η) ∈WFh(A2)}
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and a similar statement is true for the elliptic set. It remains to apply
Proposition E.38 to the Schwartz kernel KB and the operator A1 ⊗AT2 . �

As an application of Propositions E.38 and E.39, we show

PROPOSITION E.40 (Composition formulæ for wavefront sets).

1. Let B(h) : C∞c (M2) → D′(M1) and u(h) ∈ D′(M2) be h-tempered,
and Q ∈ Ψcomp

h (M2). Then

(E.2.22)
WFh(BQu) ∩ T ∗M1 ⊂ {(x, ξ) :

∃(y, η) ∈WFh(u) ∩WFh(Q) : (x, ξ, y, η) ∈WF′h(B)}.

2. Let B1(h) : C∞c (M2) → D′(M1) and B2(h) : C∞c (M3) → D′(M2) be
h-tempered, and Q ∈ Ψcomp

h (M2). Then

(E.2.23)

WF′h(B1QB2) ∩ T ∗(M1 ×M3) ⊂ {(x, ξ, z, ζ) :

∃(y, η) ∈WFh(Q) : (x, ξ, y, η) ∈WF′h(B1),

(y, η, z, ζ) ∈WF′h(B2)}.

Proof. We give a proof of part 2; part 1 is proved in a similar way. As-
sume that (x0, ξ0, z0, ζ0) ∈ T ∗(M1 ×M3) does not lie in the right-hand side
of (E.2.23). This implies that V1 ∩ V2 ∩WFh(Q) = ∅, where

V1 = {(y, η) ∈ T ∗M2 : (x0, ξ0, y, η) ∈WF′h(B1)},
V2 = {(y, η) ∈ T ∗M2 : (y, η, z0, ζ0) ∈WF′h(B2)}

are closed subsets of T ∗M2. That is, WFh(Q) ⊂ W1 ∪ W2 where Wj =
T ∗M2 \ Vj . By a microlocal partition of unity, Proposition E.30, we write

Q = Q1 +Q2, Qj ∈ Ψcomp
h (M2), WFh(Qj) ∩ Vj = ∅.

Then there exist A1 ∈ Ψcomp
h (M1), A2 ∈ Ψcomp

h (M3) such that

(x0, ξ0) ∈ ellh(A1), (WFh(A1)×WFh(Q1)) ∩WF′h(B1) = ∅;
(z0, ζ0) ∈ ellh(A2), (WFh(Q2)×WFh(A2)) ∩WF′h(B2) = ∅.

By part 1 of Proposition E.39, we have WF′h(A1B1Q1) = ∅, therefore
by (E.2.13), A1B1Q1 = O(h∞)Ψ−∞ . Similarly Q2B2A2 = O(h∞)Ψ−∞ . Then

A1(B1QB2)A2 = (A1B1Q1)B2A2 +A1B1(Q2B2A2) = O(h∞)Ψ−∞ .

By part 2 of Proposition E.39, we have (x0, ξ0, z0, ζ0) /∈ WF′h(B1QB2) as
required. �

REMARK. Without a compactly microlocalized operator Q the products
Bu and B1B2 are only well-defined under a certain wavefront set condi-
tion, and the rules for computing their wavefront sets are more complicated.
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For the h-independent case, where WFh is related to the nonsemiclassical
wavefront set (see Exercise E.16), see [HöI, Theorems 8.2.13 and 8.2.14].

E.3. SEMICLASSICAL DEFECT MEASURES

In this section, we briefly review the concept of semiclassical defect mea-
sures. We refer the reader to [Zw12, Chapter 5] for a comprehensive in-
troduction. We use the class Ψcomp

h of compactly supported and compactly
microlocalized semiclassical pseudodifferential operators, introduced in Def-
inition E.28.

DEFINITION E.41 (Semiclassical measures). Let M be a manifold
with a fixed volume form and consider sequences

hj → 0, uj ∈ D′(M).

Let µ be a nonnegative Radon measure on T ∗M . We say that uj converges
to µ in the sense of semiclassical measures, if for all A = A(h) ∈ Ψcomp

h (M),

(E.3.1) 〈A(hj)uj , uj〉L2(M) →
∫
T ∗M

σh(A) dµ.

THEOREM E.42 (Existence of semiclassical measures). Assume
that hj → 0, uj ∈ D′(M) are sequences such that for some N ,

(E.3.2) ‖χuj‖H−Nhj
≤ Cχ for all χ ∈ C∞c (M)

with the constant Cχ depending on χ but not on j. Then there exists a
subsequence {jk} such that ujk converges to some measure µ on T ∗M .

REMARK. One cannot a priori guarantee that (E.3.1) holds for all A ∈
Ψ0
h(M), even ifM is compact and ‖uj‖L2(M) ≤ C. In fact, having ‖uj‖L2(M) =

1 does not imply that µ is a probability measure – see Exercise E.22.

Proof. 1. Fix a quantization procedure Oph = OpMh , see Proposition E.15.
To prove (E.3.1) it is enough to show that for all a ∈ C∞c (T ∗M) we have

(E.3.3) Ij(a)→
∫
T ∗M

a dµ where Ij(a) := 〈Ophj (a)uj , uj〉.

Indeed, let A ∈ Ψcomp
h (M) and put a := σh(A). Then a ∈ C∞c (T ∗M)

and A = Oph(a)+O(h)Ψcomp
h (M). Since operators in Ψcomp

h (M) are bounded

H−Nh,loc(M)→ HN
h,comp(M) uniformly in h, we see that 〈A(hj)uj , uj〉 = Ij(a)+

O(hj), implying (E.3.1).

2. For each compact set K ⊂ T ∗M there exists a constant CK such that we
have the following bound for all a ∈ C∞c (T ∗M) with supp a ⊂ K:

(E.3.4) lim sup
j→∞

|Ij(a)| ≤ CK sup |a|.
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Indeed, there exists χ ∈ C∞c (M) depending only on K such that Oph(a) =
χOph(a)χ. Denote vj := Ophj (〈ξ〉

−N )χuj ∈ L2
comp(M). Then

Oph(a) = Oph(〈ξ〉−N )∗Oph(〈ξ〉2Na) Oph(〈ξ〉−N ) +O(h)H−Nh →HN
h
,

‖vj‖L2 ≤ C‖χuj‖H−Nhj
≤ C.

Therefore

(E.3.5)

|Ij(a)| = |〈Ophj (〈ξ〉
2Na)vj , vj〉|+O(hj)‖χuj‖2H−Nhj

≤ C sup |〈ξ〉2Na|+ Ch
1/2
j

where the last inequality follows from Proposition E.24. This implies (E.3.4).

3. We now follow the proof of [Zw12, Theorem 5.2] which we briefly review
here. Let {a`} ⊂ C∞c (T ∗M) be a countable set which is dense in the space
Cc(T

∗M) of compactly supported continuous functions with the sup-norm.
For each `, the sequence Ij(a`) is bounded by (E.3.4). Using a diagonal
argument we extract a subsequence {jk} such that Ijk(a`) converges as k →
∞ for each `. By (E.3.4) we see that for each a ∈ C∞c (T ∗M) and `

lim sup
k,k′→∞

|Ijk(a)− Ijk′ (a)| ≤ lim sup
k,k′→∞

|Ijk(a`)− Ijk′ (a`)|+ C sup |a− a`|,

where C does not depend on `, as long as supp a` is contained in a fixed
compact set. Therefore Ijk(a) is a Cauchy sequence. Denote

I(a) := lim
k→∞

Ijk(a) ∈ C, a ∈ C∞c (T ∗M).

4. The map I is a linear functional on C∞c (T ∗M) and (E.3.4) implies that

|I(a)| ≤ CK sup |a| when supp a ⊂ K.

We have I(a) ∈ R if a is real-valued as follows from the fact that Oph(a)∗ =
Oph(a) + O(h)H−Nh →HN

h
. Moreover, I(a) ≥ 0 if a ≥ 0 as follows from the

sharp G̊arding inequality, Proposition E.23. Thus I(a) extends to a nonnega-
tive continuous linear functional on Cc(T

∗M), and by a Riesz representation
theorem there exists a Radon measure µ on T ∗M such that

I(a) =

∫
T ∗M

a dµ for all a ∈ C∞c (T ∗M).

We thus obtain (E.3.3) for the subsequence {jk}. �

We now study semiclassical measures associated to solutions of pseudo-
differential equations

(E.3.6) P (hj)uj = fj
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where P = P (h) ∈ Ψk
h(M) is properly supported. The first result, similar

to [Zw12, Theorem 5.3], gives a support property under the assumption
that fj = o(1):

THEOREM E.43 (Support of semiclassical measures). Assume that
(E.3.1), (E.3.2), (E.3.6) hold and there exists N such that

(E.3.7) ‖χfj‖H−Nhj
= o(1) as j →∞ for all χ ∈ C∞c (M).

Then the support of the measure µ is contained in {σh(P ) = 0}, that is

(E.3.8) µ({σh(P ) 6= 0}) = 0.

Proof. We have for each A ∈ Ψcomp
h (M), by (E.3.2) and (E.3.7),

〈APuj , uj〉 = 〈Afj , uj〉 → 0 as j →∞.

On the other hand, AP ∈ Ψcomp
h (M), so by (E.1.43) we have

〈APuj , uj〉 →
∫
T ∗M

σh(A)σh(P ) dµ.

It follows that for each a ∈ C∞c (T ∗M)∫
T ∗M

σh(P )a dµ = 0,

which immediately implies (E.3.8). �

The next statement, which is a generalization of [Zw12, Theorem 5.4],
in particular shows that when P ∗ = P and fj = o(hj), the measure µ is
invariant under the Hamiltonian flow of σh(P ):

THEOREM E.44 (Semiclassical measures and Hamiltonian flow).
Assume that (E.3.1), (E.3.2), (E.3.6) hold, p := σh(P ) is real-valued, and
for some N

(E.3.9) ‖χfj‖H−Nhj
= O(hj) as j →∞ for all χ ∈ C∞c (M).

Then for every compact set K ⊂ T ∗M there exists a constant CK such that
for all a ∈ C∞c (T ∗M) with supp a ⊂ K

(E.3.10)
∣∣∣ ∫

T ∗M
Hpa dµ

∣∣∣ ≤ CK sup |a|.

Under the stronger assumption that ‖χfj‖H−Nhj
= o(hj), we have

(E.3.11)

∫
T ∗M

(Hpa+ 2ba) dµ = 0 for all a ∈ C∞c (T ∗M),

where b := σh(h−1 ImP ) and ImP := 1
2i(P − P

∗) ∈ hΨk−1
h (M).
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Proof. 1. It is enough to handle the case of real-valued a. Take A ∈
Ψcomp
h (M) such that σh(A) = a and A∗ = A. We compute

(E.3.12)

Im〈fj , Auj〉
hj

=
〈APuj , uj〉 − 〈P ∗Auj , uj〉

2ihj

=
〈[A,P ]uj , uj〉

2ihj
+
〈(ImP )Auj , uj〉

hj
.

We have [A,P ], (ImP )A ∈ hΨcomp
h (M) and

σh(h−1[A,P ]) = iHpa, σh(h−1(ImP )A) = ba,

therefore by (E.3.1), the right-hand side of (E.3.12) converges as j →∞ to∫
T ∗M

(Hpa

2
+ ba

)
dµ.

2. Similarly to (E.3.4), if supp a ⊂ K then by (E.3.2) and (E.3.9)

lim sup
j→∞

∣∣h−1
j Im〈fj , Auj〉

∣∣ ≤ CK sup |a|

and (E.3.10) follows. If instead ‖χfj‖H−Nhj
= o(hj), then the left-hand side

of (E.3.12) converges to zero and (E.3.11) follows. �

E.4. PROPAGATION ESTIMATES

In this section, we consider general equations of the form

(E.4.1) Pu = f, u ∈ Hs
loc(M).

Here P ∈ Ψk
h(M) is a properly supported semiclassical pseudodifferential

operator on a manifold M . We use the boldface notation for P because the
corresponding principal symbol can be complex valued:

(E.4.2) p := σh(P) = p− iq, p, q ∈ Sk(T ∗M ;R).

Our goal is to prove estimates of the form

(E.4.3) ‖Au‖Hs
h
≤ C‖Bu‖Hs

h
+ Ch−1‖B1f‖Hs−k+1

h
+O(h∞)‖χu‖H−Nh

where A,B,B1 ∈ Ψ0
h(M) are compactly supported and satisfy certain dy-

namical conditions, χ ∈ C∞c (M) is some function depending on the supports
of A,B,B1,P, and N can be any number. More precisely we will prove

• propagation of singularities, Theorem E.47;

• high regularity radial estimate, Theorem E.52; and

• low regularity radial estimate, Theorem E.54.



578 E. PROPAGATION ESTIMATES

The estimate (E.4.3) should be compared with the elliptic estimate (E.2.8),
which is stronger in the sense that the term ‖Bu‖ is absent and a weaker
norm ‖B1f‖Hs−k

h
is used. However, (E.2.8) only holds when WFh(A) ⊂

ellh(P), while the propagation estimates of this section are valid on the
characteristic set {〈ξ〉−kσh(P) = 0} as well.

E.4.1. Approximation by smooth functions. In the non-elliptic case,
the appearance of the norm ‖B1f‖Hs−k+1

h
on the right-hand side of (E.4.3)

shows that a stronger regularity assumption on f is needed to obtain a
propagation estimate. Equation (E.4.1) with u ∈ Hs

loc implies only f ∈
Hs−k

loc . In other words ‖B1f‖Hs−k+1
h

might be infinite.

The following lemma shows that if f = Pu ∈ Hs−k+1
loc then it is enough

to verify (E.4.3) for the case of u ∈ C∞:

LEMMA E.45 (Approximation lemma). Let P ∈ Ψk
h(M) be properly

supported. Assume that

(E.4.4) u ∈ Hs
loc(M), Pu ∈ Hs−k+1

loc (M).

Fix h > 0. Then there exists a sequence uj ∈ C∞(M) such that for all
χ ∈ C∞c (M)

(E.4.5) ‖χ(uj − u)‖Hs
h
→ 0, ‖χ(Puj −Pu)‖Hs−k+1

h
→ 0.

Proof. Let Oph = OpMh be a quantization procedure from Proposition E.15.
Take ψ ∈ C∞c (R) which is equal to 1 near the origin and define for u satis-
fying (E.4.4),

uj := Oph(aj)u, aj(x, ξ) := ψ(|ξ|/j).

We have aj ∈ S−N (T ∗M) for all N , thus uj ∈ C∞(M).

Since Oph(1) = I we compute

(E.4.6) uj − u = Aju, Puj −Pu = AjPu+Bju,

where

Aj := Oph(aj − 1), Bj := [P,Aj ].

Fix χ ∈ C∞c (M) and take arbitrary m ∈ R. By Proposition E.22, for each
` ≥ 0 the norms ‖χAj‖Hm+`

h →Hm
h

and ‖χBj‖Hm+`
h →Hm−k+1

h
are bounded by

some S`1,0(T ∗M)-seminorm of aj − 1. A direct calculation shows that the

symbols aj − 1 are bounded uniformly in j in the class S0
1,0(T ∗M) and

converge to 0 in the class S1
1,0(T ∗M). Therefore, as j →∞ we have

‖χAj‖Hm
h →H

m
h
≤ C, ‖χAj‖Hm+1

h →Hm
h
→ 0.
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In particular, ‖χAjv‖Hm
h
→ 0 for all v ∈ Hm+1

loc (M). Since Hm+1
loc (M) is

dense in Hm
loc(M), we see that

(E.4.7) ‖χAjv‖Hm
h
→ 0 for all v ∈ Hm

loc(M).

Similarly we have

(E.4.8) ‖χBjv‖Hm−k+1
h

→ 0 for all v ∈ Hm
loc(M).

Applying (E.4.7),(E.4.8) with v := u ∈ Hs
loc(M) and v := Pu ∈ Hs−k+1

loc (M)
and recalling (E.4.6), we get (E.4.5). �

As an immediate corollary of Lemma E.45, we obtain

LEMMA E.46. Let P ∈ Ψk
h(M) be properly supported and assume that

u ∈ Hs
loc(M), v ∈ H−s+k−1

comp (M) satisfy

(E.4.9) Pu ∈ Hs−k+1
loc (M), P∗v ∈ H−scomp(M).

Then

(E.4.10) 〈Pu, v〉L2 = 〈u,P∗v〉L2 .

Proof. Let χ ∈ C∞c (M) be equal to 1 near supp v and near supp(P∗v). By
Lemma E.45, there exist a sequence uj ∈ C∞(M) such that

‖χ(uj − u)‖Hs
h
→ 0, ‖χ(Puj −Pu)‖Hs−k+1

h
→ 0.

Since uj is smooth and v is compactly supported, we have

〈Puj , v〉L2 = 〈uj ,P∗v〉L2 ,

and (E.4.10) follows by taking the limit j →∞. �

E.4.2. Propagation of singularities. The most standard situation when
the bound (E.4.3) holds is when the wavefront set of A (see Definition E.27)
is controlled by the elliptic set of B (see Definition E.31) via the Hamiltonian
flow of p = Reσh(P), provided that q = − Imσh(P) has the correct sign:

THEOREM E.47 (Propagation of singularities). Let P ∈ Ψk
h(M) be

properly supported, p, q ∈ Sk(T ∗M) be defined in (E.4.2), and

(E.4.11) ϕt := exp(t〈ξ〉1−kHp) : T
∗
M → T

∗
M

be the flow of the vector field defined in Proposition E.5. Let A,B,B1 ∈
Ψ0
h(M) be compactly supported and the following sign condition hold:

(E.4.12) 〈ξ〉−kq ≥ 0 on WFh(B1).

Assume finally the following control condition: for each (x, ξ) ∈WFh(A),
there exists T ≥ 0 such that (see Figure E.1)

(E.4.13) ϕ−T (x, ξ) ∈ ellh(B); ϕt(x, ξ) ∈ ellh(B1) for all t ∈ [−T, 0].
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WFh(A)ellh(B)

ellh(B1)

WFh(A)ellh(B)

ellh(B1)

Imσh(P) ≤ 0 Imσh(P) ≥ 0

Figure E.1. Propagation of singularities (Theorem E.47), with the flow
lines of 〈ξ〉1−kHp. The dashed rectangle on the left is the wavefront set
of the operator B2 used in the last step of the proof.

Then there exists χ ∈ C∞c (M) such that for all s,N and all u ∈ Hs
loc(M)

such that f := Pu ∈ Hs−k+1
loc (M),

(E.4.14) ‖Au‖Hs
h
≤ C‖Bu‖Hs

h
+ Ch−1‖B1f‖Hs−k+1

h
+ ChN‖χu‖H−Nh .

REMARKS. 1. The operators A,B,B1 do not need to be of order 0. For
instance, we could instead take B ∈ Ψ`

h(M) in which case the first term
on the right-hand side of (E.4.14) is replaced by C‖Bu‖Hs−`

h
. This can

be deduced from the original (E.4.14) by introducing the operator B′ :=
Oph(〈ξ〉−`)B where Oph is defined in Proposition E.15.

2. The normalization (E.4.11) of the Hamiltonian flow is convenient since

it extends to the fiber-radial compactification T
∗
M and thus lets us handle

singularities at fiber infinity as well. When M is noncompact, the flow ϕt
might not be defined for all t; it is then implied in (E.4.13) that ϕt(x, ξ)
exists for t ∈ [−T, 0].

3. Applying Theorem E.47 to the operator −P, we can reverse the direction
of propagation in (E.4.13) provided that we also reverse the sign condi-
tion (E.4.12). (See Figure E.1 and Exercise E.27.) In particular, if q = 0,
then propagation of singularities applies in both directions. To make the
presentation shorter, we state the results for one direction of propagation,
but use them in both directions.

4. Propagation of singularities holds under weaker regularity assumptions:
if u is merely a distribution and we know that Bu ∈ Hs

comp, B1f ∈ Hs−k+1
comp ,

then Au ∈ Hs
comp and (E.4.14) holds. See Exercise E.31.

5. The power h−1 and the norm ‖B1f‖Hs−k+1
h

in (E.4.14) are sharp, see

Exercises E.27 and E.29.

The first step of the proof of Theorem E.47 is
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0 δ−T − δ
2 −T + δ

2

ellh(B1)

ellh(B) WFh(A)

Figure E.2. The escape function ψ0 along one flow line and the restric-
tions of WFh(A), ellh(B), ellh(B1) to this line

LEMMA E.48 (Escape function construction). Assume that the con-
trol condition (E.4.13) holds for all (x, ξ) ∈ WFh(A) and fix β ≥ 0. Then

there exists g ∈ C∞c (T
∗
M) such that supp g ⊂ ellh(B1) and

• g ≥ 0 everywhere;

• g > 0 on WFh(A);

• 〈ξ〉1−kHpg ≤ −βg in a neighbourhood of T
∗
M \ ellh(B).

Proof. 1. We first consider the case when WFh(A) = {(x0, ξ0)} consists of a

single point. If (x0, ξ0) ∈ ∂T ∗M , then we embed T
∗
M in a manifold without

boundary and extend the vector field 〈ξ〉1−kHp there. Using (E.4.13), take
T ≥ 0 such that

ϕ−T (x0, ξ0) ∈ ellh(B); ϕt(x0, ξ0) ∈ ellh(B1) for all t ∈ [−T, 0].

If 〈ξ〉1−kHp(x0, ξ0) = 0, then ϕt(x0, ξ0) = (x0, ξ0) for all t. This implies that
(x0, ξ0) ∈ ellh(B) ∩ ellh(B1) and it suffices to take any g such that g ≥ 0
everywhere, g(x0, ξ0) > 0, and supp g ⊂ ellh(B) ∩ ellh(B1).

We now assume that 〈ξ〉1−kHp(x0, ξ0) 6= 0. Taking a smaller value of T if
necessary we can guarantee that the trajectory {ϕt(x0, ξ0) | t ∈ [−T, 0]} has
no self-intersections. Then there exist δ > 0 and a hypersurface Σ passing
through (x0, ξ0) such that the map

Φ : (−T − δ, δ)× Σ→ T
∗
M, Φ(t, x, ξ) = ϕt(x, ξ),

is a diffeomorphism onto its image and

Φ
(
(−T − δ,−T + δ)× Σ

)
⊂ ellh(B), Φ

(
(−T − δ, δ)× Σ

)
⊂ ellh(B1).

Take a function ψ ∈ C∞c ((−T − δ, δ)) with the following properties:

• ψ ≥ 0 everywhere;
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• ψ(0) > 0;

• ψ′ ≤ −βψ outside of (−T − δ/2,−T + δ/2).

A function ψ0 with these properties for β = 0 is easy to construct explicitly,
see Figure E.2; for general β, it suffices to put ψ(t) := e−βtψ0(t). Take also
nonnegative χ ∈ C∞c (Σ) such that χ(x0, ξ0) > 0. Then the function

g := (ψ ⊗ χ) ◦ Φ−1,

extended by zero outside of the image of Φ, has the required properties.

2. We now consider the general case. For each (x0, ξ0) ∈ WFh(A), let

g(x0,ξ0) ∈ C∞c (T
∗
M) be the function constructed in part 1 of the proof. Then

g(x0,ξ0) > 0 on some open neighbourhood U(x0,ξ0) of (x0, ξ0). Using compact-
ness of WFh(A), we cover it with finitely many sets U(x1,ξ1), . . . , U(xm,ξm).
The sum of the corresponding functions

g = g(x1,ξ1) + · · ·+ g(xm,ξm)

then has the required properties. �

Armed with Lemma E.48, we now prove Theorem E.47 by means of a
positive commutator argument (more pedantically, a negative commutator
argument but we will use the standard nomenclature). The argument below
is technically complicated, so we suggest considering the following special
case at first reading:

s = 0, k = 1, P∗ = P ∈ Ψ1
h(M),

where steps 3 and 5 of the proof are not needed, we have

G = Oph(g), Y = I, σh(Z) = gHpg,

but we get an additional term Ch1/2‖B1u‖H−1/2
h

on the right-hand side.

Proof of Theorem E.47. 1. Fix a volume form on M . We use the notation

(E.4.15) ReR :=
R+R∗

2
, ImR :=

R−R∗

2i

for operators R : C∞c (M)→ D′(M).

Fix a constant β > 0, to be chosen later, and let g be the escape function
constructed in Lemma E.48. By Proposition E.4, g is a symbol in the class
S0(T ∗M). We also fix a metric on M and define 〈ξ〉 :=

√
1 + |ξ|2.

Let Oph = OpMh be a quantization procedure defined in (E.1.38). Take
the compactly supported operator

(E.4.16) G := Oph(〈ξ〉s+
1−k
2 g) ∈ Ψ

s+ 1−k
2

h (M), WFh(G) ⊂ ellh(B1),
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and the properly supported operator

Y := Oph(〈ξ〉
k−1
2 ) ∈ Ψ

k−1
2

h (M).

Using Lemma E.45 we reduce to the case u ∈ C∞(M). Denoting f = Pu,
we write

(E.4.17) Im〈f,G∗Gu〉 = Im〈(Re P)u,G∗Gu〉+ Re〈(Im P)u,G∗Gu〉.

We will proceed by bounding from above the terms on the right-hand side.

2. We first write (using that u ∈ C∞(M))

Im〈(Re P)u,G∗Gu〉 =
〈(Re P)u,G∗Gu〉 − 〈G∗Gu, (Re P)u〉

2i

=
〈G∗G(Re P)u, u〉 − 〈(Re P)G∗Gu, u〉

2i
= h〈Zu, u〉,

where the symmetric compactly supported operator Z is a commutator:

(E.4.18) Z =
i

2h
[Re P, G∗G] ∈ Ψ2s

h (M), WFh(Z) ⊂ ellh(B1).

The semiclassical principal symbol of Z is

(E.4.19)

σh(Z) =
1

2
{p, 〈ξ〉2s+1−kg2}

= 〈ξ〉2s
(
g〈ξ〉1−kHpg +

(
s+

1− k
2

)〈ξ〉1−kHp〈ξ〉
〈ξ〉

g2
)
.

Choose a constant C1 ≥ 0 independent of the choice of G such that

(E.4.20)
(
s+

1− k
2

)〈ξ〉1−kHp〈ξ〉
〈ξ〉

≤ C1 on ellh(B1) ⊃ supp g.

By Lemma E.48, we have in a neighbourhood of T
∗
M \ ellh(B),

〈ξ〉−2sσh
(
Z + (β − C1)(Y G)∗(Y G)

)
≤ 0.

By the microlocal G̊arding inequality, Proposition E.34, applied to the op-
erator −

(
Z + (β − C1)(Y G)∗(Y G)

)
∈ Ψ2s

h (M), we get the bound

(E.4.21)
h〈Zu, u〉 ≤ (C1 − β)h‖Y Gu‖2L2 + Ch‖Bu‖2Hs

h

+ Ch2‖B1u‖2
H
s−1/2
h

+O(h∞)‖χu‖2
H−Nh

.

3. We next compute (using again that u ∈ C∞(M))

Re〈(Im P)u,G∗Gu〉 = Re〈G(Im P)u,Gu〉
= 〈(Im P)Gu,Gu〉+ Re〈[G, Im P]u,Gu〉.
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We have σh(Im P) = −q. The sign condition (E.4.12) implies that

〈ξ〉−kσh(Im P) ≤ 0 on ellh(B1) ⊃WFh(G).

Using a pseudodifferential partition of unity (Proposition E.30), we write
Im P as a sum of two operators, one of which has nonpositive principal
symbol and the wavefront set of the other one does not intersect WFh(G).
Applying sharp G̊arding inequality, Proposition E.23, to the first of these
operators, we get

(E.4.22)
〈(Im P)Gu,Gu〉 ≤ C ′2h‖Gu‖2H(k−1)/2

h

+O(h∞)‖χu‖2
H−Nh

≤ C2h‖Y Gu‖2L2 +O(h∞)‖χu‖2
H−Nh

for some constants C ′2, C2 which are independent of the choice of G; for the
last inequality, we used the elliptic estimate, Theorem E.33. Next,

Re〈[G, Im P]u,Gu〉 = 〈Re(G∗[G, Im P])u, u〉.

The operator G∗[G, Im P] lies in hΨ2s
h (M) and

σh(h−1G∗[G, Im P]) = ig{g, q}

is purely imaginary; therefore we have Re(G∗[G, Im P]) ∈ h2Ψ2s−1
h (M).

Since WFh(G∗[G, Im P]) ⊂ ellh(B1), we get by Theorem E.33

(E.4.23) 〈Re(G∗[G, Im P])u, u〉 ≤ Ch2‖B1u‖2
H
s−1/2
h

+O(h∞)‖χu‖2
H−Nh

.

Adding together (E.4.22) and (E.4.23), we get

(E.4.24)
Re〈(Im P)u,G∗Gu〉 ≤ C2h‖Y Gu‖2L2

+ Ch2‖B1u‖2
H
s−1/2
h

+O(h∞)‖χu‖2
H−Nh

.

4. Adding (E.4.21) and (E.4.24) and using (E.4.17), we arrive to

Im〈f,G∗Gu〉 ≤ (C1 + C2 − β)h‖Y Gu‖2L2 + Ch‖Bu‖2Hs
h

+ Ch2‖B1u‖2
H
s−1/2
h

+O(h∞)‖χu‖2
H−Nh

.

We now put β := C1 +C2 +1 and use the following corollary of the Cauchy–
Schwarz inequality and Theorem E.33:

(E.4.25)
|〈f,G∗Gu〉| = |〈Gf,Gu〉| ≤ C‖Gf‖

H
(1−k)/2
h

‖Gu‖
H

(k−1)/2
h

≤ C‖B1f‖Hs−k+1
h

‖Y Gu‖L2 +O(h∞)‖χu‖2
H−Nh

to get

(E.4.26)
‖Y Gu‖2L2 ≤ C‖Bu‖2Hs

h
+ Ch−1‖B1f‖Hs−k+1

h
‖Y Gu‖L2

+ Ch‖B1u‖2
H
s−1/2
h

+O(h∞)‖χu‖2
H−Nh

.
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This implies the following estimate:

(E.4.27)
‖Au‖Hs

h
≤ C‖Bu‖Hs

h
+ Ch−1‖B1f‖Hs−k+1

h

+ Ch1/2‖B1u‖Hs−1/2
h

+O(h∞)‖χu‖H−Nh
where we have used Theorem E.33 and the fact that WFh(A) ⊂ ellh(G) to
bound ‖Au‖Hs

h
in terms of ‖Y Gu‖L2 .

5. We finally remove the term Ch1/2‖B1u‖Hs−1/2
h

in (E.4.27). For that, we

use induction to prove the following estimate for each ` ∈ N:

(E.4.28)
‖Au‖Hs

h
≤ C‖Bu‖Hs

h
+ Ch−1‖B1f‖Hs−k+1

h

+ Ch`/2‖B1u‖Hs−`/2
h

+O(h∞)‖χu‖H−Nh .

For ` = 1, this is exactly (E.4.27). Now, assuming that (E.4.28) is true
for some `, we prove it for ` + 1. Take compactly supported B2 ∈ Ψ0

h(M)
such that the control condition (E.4.13) holds for (A,B,B1) replaced by
(A,B,B2) and by (B2, B,B1); in particular, WFh(B2) ⊂ ellh(B1). To con-
struct B2, it suffices to make it microlocalized in a small neighbourhood of
the union of segments {ϕt(x, ξ) | t ∈ [−T, 0]} with (x, ξ) ∈ WFh(A) and T
given by (E.4.13) – see Figure E.1.

Applying (E.4.28) to (A,B,B2) and (E.4.27) to (B2, B,B1), we get

‖Au‖Hs
h
≤ C‖Bu‖Hs

h
+ Ch−1‖B2f‖Hs−k+1

h

+ Ch`/2‖B2u‖Hs−`/2
h

+O(h∞)‖χu‖H−Nh ,

‖B2u‖Hs−`/2
h

≤ C‖Bu‖
H
s−`/2
h

+ Ch−1‖B1f‖Hs−`/2−k+1
h

+ Ch1/2‖B1u‖Hs−`/2−1/2
h

+O(h∞)‖χu‖H−Nh .

Combining these estimates (and using Theorem E.33 to bound ‖B2f‖ via
‖B1f‖) we obtain (E.4.28) for ` + 1. The fact that (E.4.28) holds for all `
immediately implies (E.4.14), finishing the proof. �

We now state a basic positive commutator estimate for the case when P
has real principal symbol, which assumes the existence of an escape function
which satisfies a sign condition (E.4.29). This estimate will be used in the
proofs of radial source/sink estimates in §E.4.3 below.

LEMMA E.49. Let P ∈ Ψk
h(M) be properly supported, p := Reσh(P),

A,B,B1 ∈ Ψ0
h(M) be compactly supported, and g ∈ C∞c (T

∗
M) satisfy

(1) 〈ξ〉−k Imσh(P) = 0 in a neighborhood of supp g;

(2) g ≥ 0 everywhere, WFh(A) ⊂ {g > 0}, and supp g ⊂ ellh(B1);
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(3) we have in a neighbourhood of T
∗
M \ ellh(B), for some constant

δ > 0 and a fixed Riemannian metric on M in the definition of 〈ξ〉,

(E.4.29) 〈ξ〉1−k
(
Hpg + σh(h−1 Im P)g +

(
s+

1− k
2

)Hp〈ξ〉
〈ξ〉

g
)
≤ −δg.

Then there exists χ ∈ C∞c (M) such that for all N and u ∈ Hs
loc(M), f :=

Pu ∈ Hs−k+1
loc (M),

(E.4.30)
‖Au‖Hs

h
≤C‖Bu‖Hs

h
+ Ch−1‖B1f‖Hs−k+1

h

+ Ch1/2‖B1u‖Hs−1/2
h

+O(h∞)‖χu‖H−Nh .

REMARK. The expression 〈ξ〉1−kσh(h−1 Im P) does not make sense glob-
ally unless σh(Im P) = Imσh(P) is identically zero. However, we can define
this expression as a smooth real valued function on a neighborhood of supp g
in T

∗
M , since supp(〈ξ〉−kσh(Im P)) ∩ supp g = ∅. Namely we put

(E.4.31) σh(h−1 Im P) := σh(X(h−1 Im P)) near supp g

where X ∈ Ψ0
h(M) is properly supported and

WFh(X) ∩ supp(〈ξ〉−kσh(Im P)) = ∅,
X = I +O(h∞) microlocally near supp g.

Here X Im P ∈ hΨk−1
h (M) and two different choices of X produce the same

function in a neighbourhood of supp g.

Proof. Using Lemma E.45 we reduce to the case u ∈ C∞(M). As in the
proof of Theorem E.47 we put

G := Oph(〈ξ〉s+
1−k
2 g), Y := Oph(〈ξ〉

k−1
2 ).

Following steps 1–2 in the proof of Theorem E.47, we obtain

Im〈f,G∗Gu〉 = hRe〈Z ′u, u〉,

where

Z ′ = Z + h−1G∗G(Im P) ∈ Ψ2s
h (M), WFh(Z ′) ⊂ ellh(B1),

Z ∈ Ψ2s
h (M) is defined in (E.4.18), and h−1G∗G(Im P) ∈ Ψ2s

h (M) since
σh(G∗G(Im P)) = 0 by assumption (1). Using (E.4.19), we calculate

〈ξ〉−2sσh(Z ′) = g〈ξ〉1−kHpg

+
(
〈ξ〉1−kσh(h−1 Im P) +

(
s+

1− k
2

)〈ξ〉1−kHp〈ξ〉
〈ξ〉

)
g2.

By (E.4.29), we see that

〈ξ〉−2sσh
(
Z ′ + δ(Y G)∗(Y G)

)
≤ 0 in a neighbourhood of T

∗
M \ ellh(B).
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By Proposition E.34 applied to −
(
Z ′ + δ(Y G)∗(Y G)

)
, we have

hRe〈Z ′u, u〉 ≤ − δh‖Y Gu‖2L2 + Ch‖Bu‖2Hs
h

+ Ch2‖B1u‖2
H
s−1/2
h

+O(h∞)‖χu‖2
H−Nh

.

Arguing similarly to step 4 of the proof of Theorem E.47, we obtain (E.4.30).
�

E.4.3. Radial source/sink estimates. We now show that the control
condition (E.4.13) can in some situations be relaxed. In these cases, the posi-
tivity in the positive commutator argument comes not from the Hamiltonian
derivative of the escape function Hpg, but from the other terms in (E.4.29).

More specifically, our estimates will be associated to radial sources/sinks,
defined as follows:

DEFINITION E.50 (Radial source/sink). Let κ : T ∗M \ 0 → ∂T
∗
M

be the projection map, see (E.1.11). Take p ∈ Sk(T ∗M ;R) and consider the
flow (see Proposition E.5)

(E.4.32) ϕt := exp(t〈ξ〉1−kHp) : T
∗
M → T

∗
M.

We say that a nonempty compact ϕt-invariant set

L ⊂ {〈ξ〉−kp = 0} ∩ ∂T ∗M

is a radial source for p, if there exists a neighbourhood U ⊂ T
∗
M of L

such that uniformly in (x, ξ) ∈ U ∩ T ∗M ,

κ(ϕt(x, ξ))→ L, t→ −∞;(E.4.33)

|ϕt(x, ξ)| ≥ C−1eθ|t||ξ|, t ≤ 0,(E.4.34)

for some C, θ > 0. Here | · | denotes a norm on the fibers of T ∗M .

A radial sink for p is by definition a radial source for −p. (See Fig-
ure E.4 below.)

REMARKS. 1. The convergence in (E.4.33) is understood as follows: if d

is a distance function on T
∗
M then

sup
(x,ξ)∈U

d
(
κ(ϕt(x, ξ)), L

)
→ 0 as t→ −∞.

2. Note that (E.4.33) and (E.4.34) together imply

(E.4.35) ϕt(x, ξ)→ L in T
∗
M as t→ −∞.

3. In order for p ∈ Sk(T ∗M ;R) to have a radial source or sink we need
k > 0. Indeed, assume instead that k ≤ 0. Let L be a radial source and
U be the neighborhood of L from Definition E.50. Denote p̃ := 〈ξ〉−kp.
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L

L

∂T
∗
M

∂T
∗
M

{ξ = 0}

Figure E.3. The phase space picture of the Hamiltonian flow of p = xξ
on T

∗R. The horizontal direction is x and the vertical direction is a
compactification of ξ; the top and bottom lines correspond to {ξ =

±∞} ⊂ ∂T ∗M . The set L, consisting of two points, is a radial source.

Take any (x, ξ) ∈ U ∩ T ∗M , then p(ϕt(x, ξ)) = p(x, ξ). On the other
hand p̃(ϕt(x, ξ)) → 0 as t → −∞ since p̃|L = 0. By (E.4.34) we get
p(x, ξ) = 0. That is, p vanishes on U . In particular, Hp = 0 on U which
contradicts (E.4.34).

4. We say that (x, ξ) ∈ ∂T ∗M is a radial point if it is a fixed point for ϕt,
that is 〈ξ〉1−kHp(x, ξ) = 0. (If p is homogeneous, this means that on the ray
κ−1(x, ξ) the vector field Hp is radial, i.e. it is parallel to ξ ·∂ξ. This explains
the term ‘radial point’.) The radial sources/sinks arising in the study of
asymptotically hyperbolic manifolds in Chapter 5 do consist of radial points.
However, the radial estimates presented here also apply to settings where
L contains non-radial points, such as Kerr–de Sitter metrics [Va13] and
Anosov flows [DZ16].

EXAMPLE. Consider the following operator P ∈ Ψ1
h(R):

(E.4.36) P := x(hDx) + iγh = −ihx∂x + iγh, γ ∈ C.

Its principal symbol p := σh(P) is given by

p(x, ξ) = xξ, Hp = x∂x − ξ∂ξ.

Then the following set is a radial source for p (consisting of radial points):

L := ∂T
∗R ∩ {x = 0}.

See Figure E.3 for a phase space picture of the flow ϕt = etHp . We encourage
the reader to look at Exercises E.34 and E.37 which explain the definitions
and statements below for this example.
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To make the subprincipal condition in our estimates invariant, we use
the following definition. Recall that by Proposition E.4, for a ∈ Sk−1(T ∗M)

the function 〈ξ〉1−ka extends smoothly to T
∗
M .

PROPOSITION E.51 (Eventual positivity/negativity). Assume that

p ∈ Sk(T ∗M ;R), ϕt is defined by (E.4.32), L ⊂ T
∗
M is a compact ϕt-

invariant set, and a ∈ Sk−1(T ∗M ;R). The following are equivalent:

(1) there exists T > 0 such that

(E.4.37)

∫ T

0
(〈ξ〉1−ka) ◦ ϕt dt > 0 on L;

(2) there exists b ∈ S0(T ∗M ;R) such that

(E.4.38) 〈ξ〉1−k(a+Hpb) > 0 on L.

If the above conditions hold, we say that a is eventually positive on L with
respect to p. We say a is eventually negative if −a is eventually positive.

REMARKS. 1. It follows from (E.4.38) that eventual positivity of a does
not depend on the choice of the Riemannian metric in the definition of 〈ξ〉.
Moreover, since L is ϕt-invariant, the direction of propagation in (E.4.37)
does not matter.

2. In the case when 〈ξ〉1−kHp vanishes on L (in particular, in the application

in Chapter 5), eventual positivity of a is simply equivalent to 〈ξ〉1−ka being
positive on L.

Proof. 1. Assume that there exists T > 0 such that (E.4.37) holds. Put

b :=
1

T

∫ T

0
(T − t)(〈ξ〉1−ka) ◦ ϕt dt ∈ S0(T ∗M),

then integration by parts shows that

〈ξ〉1−kHpb =
1

T

∫ T

0
(T − t)∂t

(
(〈ξ〉1−ka) ◦ ϕt

)
dt

= −〈ξ〉1−ka+
1

T

∫ T

0
(〈ξ〉1−ka) ◦ ϕt dt,

therefore

〈ξ〉1−k(a+Hpb) =
1

T

∫ T

0
(〈ξ〉1−ka) ◦ ϕt dt > 0 on L

and (E.4.38) follows.

2. Now, assume that (E.4.38) holds. Fix ε > 0 such that

a1 := 〈ξ〉1−k(a+Hpb) ≥ ε on L,
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and a constant C such that |b| ≤ C on L. Since L is ϕt-invariant, we have∫ T

0
(〈ξ〉1−ka) ◦ ϕt dt =

∫ T

0
a1 ◦ ϕt dt−

∫ T

0
(〈ξ〉1−kHpb) ◦ ϕt dt

≥ εT − b ◦ ϕT + b

≥ εT − 2C

on L. For T large enough, this implies (E.4.37). �

We are now ready to state the first radial estimate, which gives a priori
bounds near a radial source provided we are in sufficiently high Sobolev
regularity. (See Figure E.4.)

THEOREM E.52 (High regularity radial estimate). Let P ∈ Ψk
h(M)

be properly supported, k > 0, p := Reσh(P) ∈ Sk(T ∗M),

L ⊂ {〈ξ〉−kp = 0} ∩ ∂T ∗M

be a radial source for p (see Definition E.50) and 〈ξ〉−k Imσh(P) = 0 near L.
Let s ∈ R satisfy the following threshold condition: the symbol

(E.4.39) σh(h−1 Im P) +
(
s+

1− k
2

)Hp〈ξ〉
〈ξ〉

is eventually negative on L with respect to p as defined in Proposition E.51.

Fix compactly supported B1 ∈ Ψ0
h(M) such that L ⊂ ellh(B1). Then

there exists compactly supported A ∈ Ψ0
h(M) such that L ⊂ ellh(A) and

χ ∈ C∞c (M) such that for all N and u ∈ Hs
loc(M), f := Pu ∈ Hs−k+1

loc (M)

(E.4.40) ‖Au‖Hs
h
≤ Ch−1‖B1f‖Hs−k+1

h
+ ChN‖χu‖H−Nh .

REMARKS. 1. The symbol σh(h−1 Im P) ∈ Sk−1(T ∗M ;R) is defined
near L using (E.4.31).

2. The condition that (E.4.39) is eventually negative is independent of
the choice of the density in the definition of Im P and the metric in the
definition of 〈ξ〉. Moreover, this condition is satisfied for s > 0 large enough.
See Exercises E.32 and E.33 for details.

3. Changing P to −P, we obtain an estimate for the case when L is a radial
sink. Similarly Theorem E.54 below can be applied to radial sources.

4. Combining Theorem E.47 and Theorem E.52, we get bounds of the
form (E.4.40) for each A such that every backwards trajectory of ϕt starting
at WFh(A) converges to L, as long as the sign condition (E.4.12) holds.

5. A stronger statement is available which gives a priori regularity of u
assuming that u lies in a sufficiently high Sobolev class – see Exercise E.35.
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∂T
∗
ML

A

B1

B2

∂T
∗
ML

A

B1

B

Figure E.4. An illustration of Theorem E.52 for radial sources (left)
and Theorem E.54 for radial sinks (right). The horizontal line on the

top denotes ∂T
∗
M . The dashed half-disk on the left denotes the wave-

front set of the operator B2 used in the proof of Theorem E.52. The
dashed half-annulus on the right denotes the wavefront set of B, reflect-
ing the fact that WFh(A)∩WFh(B) 6= ∅ for the specific operators A,B
constructed in the proof of Theorem E.54.

Similarly to Theorem E.47, the proof of Theorem E.52 relies on an escape
function construction:

LEMMA E.53. Assume that L ⊂ ∂T
∗
M is a radial source for p and let

U ⊂ T
∗
M be an open neighbourhood of L. Then there exists a function

χ ∈ C∞c (U) such that

• χ ≥ 0 everywhere;

• χ > 0 on L;

• 〈ξ〉1−kHpχ ≤ 0 everywhere.

Proof. By (E.4.35), we may shrink U so that ϕt(x, ξ) → L as t → −∞
uniformly in (x, ξ) ∈ U . Take ψ ∈ C∞c (U ; [0, 1]) such that ψ = 1 near L.
Then for T > 0 large enough, we have

(E.4.41) t ≥ T, (x, ξ) ∈ suppψ =⇒ ψ
(
ϕ−t(x, ξ)

)
= 1.

Put

χ :=

∫ 2T

T
ψ ◦ ϕt dt.

Then χ ≥ 0 everywhere and, since L is ϕt-invariant, χ > 0 on L. We also
see from (E.4.41) that suppχ ⊂ U . It remains to show that

〈ξ〉1−kHpχ = ψ ◦ ϕ2T − ψ ◦ ϕT ≤ 0.

Indeed, suppose that ψ(ϕ2T (x, ξ)) > ψ(ϕT (x, ξ)) for some (x, ξ). Since 0 ≤
ψ ≤ 1 everywhere, this implies that ψ(ϕ2T (x, ξ)) > 0 and ψ(ϕT (x, ξ)) < 1.
By (E.4.41) applied to ϕ2T (x, ξ), we arrive to a contradiction. �

We now give the proof of the high regularity radial estimate, using the
positive commutator estimate from Lemma E.49:
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Proof of Theorem E.52. 1. Using Proposition E.51 and the fact that (E.4.39)

is eventually negative on L, choose b ∈ C∞(T
∗
M ;R) such that

(E.4.42) 〈ξ〉1−k
(
σh(h−1 Im P) +

(
s+

1− k
2

)Hp〈ξ〉
〈ξ〉

+Hpb
)
< 0 on L.

Let B2 ∈ Ψ0
h(M) be compactly supported and satisfy L ⊂ ellh(B2); we will

fix it in the second step of the proof. Take a neighbourhood U of L such
that for some constant δ > 0,

U ⊂ ellh(B2),(E.4.43)

〈ξ〉−k Imσh(P) = 0 on U,(E.4.44)

〈ξ〉1−k
(
σh(h−1 Im P) +

(
s+

1− k
2

)Hp〈ξ〉
〈ξ〉

+Hpb
)
≤ −δ on U.(E.4.45)

Let χ ∈ C∞c (U) be the function constructed in Lemma E.53 and put

g := ebχ ∈ C∞c (U).

Put B := 0 and take A ∈ Ψ0
h(M) which is elliptic on L and satisfies

WFh(A) ⊂ {χ > 0}. Then the assumptions of Lemma E.49 are satis-
fied, with B1 replaced by B2. In particular, (E.4.29) follows from (E.4.45)
together with the inequality 〈ξ〉1−kHpχ ≤ 0. The estimate (E.4.30) then
gives

(E.4.46)
‖Au‖Hs

h
≤ Ch−1‖B2f‖Hs−k+1

h

+ Ch1/2‖B2u‖Hs−1/2
h

+O(h∞)‖χu‖H−Nh .

2. It remains to remove the term Ch1/2‖B2u‖Hs−1/2
h

from (E.4.46). Let

V be a neighbourhood of L such that

V ⊂ ellh(B1), 〈ξ〉−k Imσh(P) = 0 on V.

We choose B2 elliptic on L and with the following property: for each (x, ξ) ∈
WFh(B2), the trajectory ϕt(x, ξ) converges to L as t→ −∞ and lies inside V
for all t ≤ 0. The existence of such operator is guaranteed by (E.4.35).

By propagation of singularities (Theorem E.47), we have

‖B2u‖Hs−1/2
h

≤ C‖Au‖
H
s−1/2
h

+ Ch−1‖B1f‖Hs−k+1/2
h

+ ChN‖χu‖H−Nh .

Combined with (E.4.46), this gives (using the elliptic estimate, Theorem E.33,
to bound ‖B2f‖Hs−k+1

h
in terms of ‖B1f‖Hs−k+1

h
)

‖Au‖Hs
h
≤ Ch−1‖B1f‖Hs−k+1

h
+ Ch1/2‖Au‖

H
s−1/2
h

+ ChN‖χu‖H−Nh .
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By the interpolation inequality, Proposition E.21, with α := (2Ch1/2)−1,
r := s − 1/2, s1 := −N , s2 := s, and putting the resulting term 1

2‖Au‖Hs
h

on the left-hand side, we get

‖Au‖Hs
h
≤ Ch−1‖B1f‖Hs−k+1

h
+ ChN+s‖Au‖H−Nh + ChN‖χu‖H−Nh .

Since N can be chosen arbitrarily large, this implies (E.4.40). �

The second radial estimate bounds the solution near a radial sink, pro-
vided that we control it in a punctured neighbourhood of the sink and work
in sufficiently low Sobolev regularity. (See Figure E.4.)

THEOREM E.54 (Low regularity radial estimate). Let P ∈ Ψk
h(M)

be properly supported, k > 0, p := Reσh(P) ∈ Sk(T ∗M),

L ⊂ {〈ξ〉−kp = 0} ∩ ∂T ∗M

be a radial sink for p (see Definition E.50), and 〈ξ〉−k Imσh(P) = 0 near L.
Let s ∈ R satisfy the following threshold condition: the symbol

(E.4.47) σh(h−1 Im P) +
(
s+

1− k
2

)Hp〈ξ〉
〈ξ〉

is eventually negative on L with respect to p as defined in Proposition E.51.

Fix compactly supported B1 ∈ Ψ0
h(M) such that L ⊂ ellh(B1). Then

there exist compactly supported A,B ∈ Ψ0
h(M) such that L ⊂ ellh(A),

WFh(B) ⊂ ellh(B1) \ L and there exists χ ∈ C∞c (M) such that for all N

and u ∈ Hs
loc(M), f := Pu ∈ Hs−k+1

loc (M), we have

(E.4.48) ‖Au‖Hs
h
≤ C‖Bu‖Hs

h
+ Ch−1‖B1f‖Hs−k+1

h
+ ChN‖χu‖H−Nh .

REMARKS. 1. Similarly to Theorem E.52, the expression (E.4.47) makes
sense near L and its eventual negativity is invariant. Moreover, the threshold
condition is satisfied for large negative s – see Exercise E.33.

2. A stronger statement is available: if u is merely a distribution and Bu ∈
Hs

comp(M), B1f ∈ Hs−k+1
comp (M), then Au ∈ Hs

comp. See Exercise E.36.

Proof. As in the proof of Theorem E.52, choose b ∈ C∞(T
∗
M ;R) and a

neighbourhood U of L such that for some constant δ > 0,

U ⊂ ellh(B1),(E.4.49)

〈ξ〉−k Imσh(P) = 0 on U,(E.4.50)

〈ξ〉1−k
(
σh(h−1 Im P) +

(
s+

1− k
2

)Hp〈ξ〉
〈ξ〉

+Hpb
)
≤ −δ on U.(E.4.51)
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Let χ1, χ2 ∈ C∞c (U ; [0, 1]) and ψ ∈ C∞c (U \ L; [0, 1]) satisfy

χ2 = 1 near L, χ1 = 1 near suppχ2,

ψ = 1 near suppχ1 ∩ supp(1− χ2).

Using a quantization procedure Oph = OpMh from Proposition E.15, put

g := ebχ1, A := Oph(χ2), B := Oph(ψ), B2 := A+B.

Then the assumptions of Lemma E.49 are satisfied, with B1 replaced by B2.
In particular, the condition (E.4.29) follows from (E.4.51) and the fact that
supp(Hpχ1) ⊂ {ψ = 1}. The estimate (E.4.30) (using Theorem E.33 to
bound ‖B2f‖Hs−k+1

h
in terms of ‖B1f‖Hs−k+1

h
) then gives

(E.4.52)
‖Au‖Hs

h
≤C‖Bu‖Hs

h
+ Ch−1‖B1f‖Hs−k+1

h

+ Ch1/2‖B2u‖Hs−1/2
h

+O(h∞)‖χu‖H−Nh .

Recalling that B2 = A+B, we see that

(E.4.53)
‖Au‖Hs

h
≤C‖Bu‖Hs

h
+ Ch−1‖B1f‖Hs−k+1

h

+ Ch1/2‖Au‖
H
s−1/2
h

+O(h∞)‖χu‖H−Nh .

It remains to use Proposition E.21 as in the proof of Theorem E.52. �

E.5. HYPERBOLIC ESTIMATES

In this last section we provide a self-contained account of hyperbolic esti-
mates for second order differential operators. They are used in §5.5.

Before presenting the general case, we discuss these estimates in a simple
one-dimensional example, explaining their relation to propagation of singu-
larities. Thus, consider the differential operator

(E.5.1) P = (hDt)
2 − 1 = −h2∂2

t − 1 ∈ Ψ2
h(R).

Take cutoff functions χ1, χ2 ∈ C∞(R) satisfying (see Figure E.5)

(E.5.2) χ1 = 1 near [1,∞), χ2 = 1 near (−∞, 1].

Then the elliptic estimate (Theorem E.33) and propagation of singularities
(Theorem E.47) together imply for every N (see Exercise E.38)

(E.5.3)
‖(1− χ1)u‖H1

h([0,∞)) ≤Ch−1‖χ2Pu‖L2(R) + C‖χ1χ2u‖H1
h(R)

+ ChN‖u‖L2([−1,2]).

Here we assume for simplicity that u ∈ C∞(R). However, by direct ODE
analysis we can obtain an estimate without the hN‖u‖L2([−1,2]) remainder:

(E.5.4) ‖(1− χ1)u‖H1
h([0,∞)) ≤ Ch−1‖χ2Pu‖L2([0,∞)) + C‖χ1χ2u‖H1

h(R).
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t

χ2χ1

0 1

Figure E.5. The cutoffs χ1, χ2 from (E.5.2).

It is easy to see (E.5.4) in the special case Pu = 0, since then u = c+e
it/h +

c−e
−it/h for some c± ∈ C and the term ‖χ1χ2u‖H1

h(R) controls |c±|. See

Exercise E.39 for the general case.

The estimate (E.5.4) is stronger than (E.5.3) but it holds under more
restrictive assumptions. Indeed, if we instead consider P = (hDt)

2 + 1
then (E.5.3) still holds (we can even remove the term C‖χ1χ2u‖H1

h(R) since

P is semiclassically elliptic everywhere), but (E.5.4) fails even when Pu = 0

(taking for instance u = e−t/h).

Coming back to (E.5.1), we also have the estimate for all v ∈ C∞(R)

(E.5.5) ‖(1− χ1)v‖H1
h(R) ≤ Ch−1‖χ2Pv‖L2(R) if supp v ⊂ [0,∞).

The estimates (E.5.4)–(E.5.5) can be interpreted in terms of uniqueness for
the initial value problem for the operator P : (E.5.4) means that if Pu = 0
on [0, 1], then u|[0,1] is controlled by the Cauchy data (u(1), hu′(1)). Simi-

larly (E.5.5) means that if Pv = 0 on [0, 1] and the Cauchy data (v(0), hv′(0))
is equal to 0, then v = 0 on [0, 1].

The main results of this section, Theorems E.56 and E.57, prove es-
timates of the form (E.5.4) and (E.5.5) when P is a hyperbolic operator.
These are related to well-posedness of the initial value problem for the wave
equation (see Theorem E.61 below).

E.5.1. Statements of the estimates. Throughout this section we assume
that M is a compact manifold with interior M and boundary ∂M , fix a
boundary defining function t : M → [0,∞) (see Definition 5.1) and a product
structure (see (5.1.2))

(E.5.6) (t, y) : t−1
(
[0, 1)

)
→ [0, 1)t × (∂M)y.

We use this product structure to identify {t < 1} = t−1([0, 1)) ⊂ M with
[0, 1) × ∂M . (The theorems below apply also to the case when M is non-
compact but has a compact boundary. The example (E.5.1) corresponds to
M = [0,∞).) Using Definition E.25, we consider the Sobolev spaces

H̄s(M), Ḣs(M),

and the semiclassical norms ‖ • ‖H̄s
h(M), ‖ • ‖Ḣs

h(M) on these spaces.
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We assume that

P ∈ Diff2
h(M)

is a second order semiclassical differential operator (see §E.1.1) with coef-
ficients which are smooth up to the boundary ∂M . Then P is bounded
uniformly in h on the following spaces:

P : H̄s
h(M)→ H̄s−2

h (M), P : Ḣs
h(M)→ Ḣs−2

h (M).

The semiclassical principal symbol of P is a second order polynomial in ξ,

p := σh(P ) ∈ Poly2(T ∗M).

We also consider the nonsemiclassical principal symbol p0, the leading part
of p which is a homogeneous second order polynomial in ξ. On {t < 1}, p and
p0 are functions of (t, y, τ, η) where τ ∈ R, η ∈ T ∗y (∂M) are the momentum
variables corresponding to t ∈ [0, 1), y ∈ ∂M and

p0(t, y, τ, η) := 1
2〈[∂

2
(τ,η)p(t, y, 0, 0)](τ, η), (τ, η)〉.

DEFINITION E.55 (Hyperbolic operators). We say that:

• P is hyperbolic with respect to t on {t < 1}, if p is real-valued and for
each (t, y, η) ∈ [0, 1)× T ∗(∂M), η 6= 0, the equation

(E.5.7) p0(t, y, τ, η) = 0, τ ∈ R,

has two distinct real solutions τ±.

• P is semiclassically hyperbolic with respect to t on {t < 1}, if it is
hyperbolic and for each (t, y, η) ∈ [0, 1)× T ∗(∂M), the equation

(E.5.8) p(t, y, τ, η) = 0, τ ∈ R,

has two distinct real solutions τ±.

EXAMPLE. Consider the following operator on M = [0, 1)t × S1
y:

P = (hDt)
2 − (hDy)

2 + V (t, y), V ∈ C∞(M ;R);

p(t, y, τ, η) = τ2 − η2 + V (t, y), p0(t, y, τ, η) = τ2 − η2.

Then P is hyperbolic for any V , but semiclassically hyperbolic only if V < 0
on M . As another example, the operator (hDt)

2 − 1 on the same mani-
fold M is not semiclassically hyperbolic (since it is not hyperbolic), even
though (E.5.8) has two real solutions for each (t, y, η).

We now state the main estimates of this section. We start with the case
when P is hyperbolic and the constants in the estimates depend on h:



E.5. HYPERBOLIC ESTIMATES 597

THEOREM E.56 (Hyperbolic estimate I). Assume that P is hyper-
bolic with respect to t on {t < 1}. Take χ1, χ2 ∈ C∞(M) satisfying

(E.5.9) χ1 = 1 near {t ≥ 1}, χ2 = 1 near {t ≤ 1}.
Then for each u ∈ H̄s(M) such that Pu ∈ H̄s−1(M), we have

(E.5.10) ‖(1− χ1)u‖H̄s(M) ≤ C‖χ2Pu‖H̄s−1(M) + C‖χ1χ2u‖H̄s(M),

and for each v ∈ Ḣs(M) such that Pv ∈ Ḣs−1(M), we have

(E.5.11) ‖(1− χ1)v‖Ḣs(M) ≤ C‖χ2Pv‖Ḣs−1(M).

In both cases the constant C may depend on h.

REMARKS. 1. The estimates (E.5.10), (E.5.11) are analogous to the well-
posedness of the Cauchy problem for hyperbolic equations. Indeed, the norm
‖χ1χ2u‖H̄s(M) on the right-hand side of (E.5.10) controls the behaviour of u

near {t = 1}, and the left-hand side of (E.5.10) controls the norm of u in
the region {t < 1 − ε} provided suppχ1 ⊂ {t > 1 − ε}. For (E.5.11),

the requirement that v ∈ Ḣs(M) corresponds to the vanishing of v, ∂tv
on {t = 0}. The somewhat peculiar formulation of the estimates (E.5.10),
(E.5.11) is useful in proving the Fredholm property of the modified Laplacian
in §5.6, see §5.5.2.

2. A stronger version is available, without assuming a priori regularity of u,
v – see Exercise E.41.

In general the constants in (E.5.10), (E.5.11) may grow exponentially
fast in h, as can be seen by considering the operator P = −h2D2

t + 1 on
M = [0,∞). However, when P is semiclassically hyperbolic, we can control
these constants uniformly as h→ 0:

THEOREM E.57 (Hyperbolic estimate II). Assume that P is semi-
classically hyperbolic with respect to t on {t < 1}. Take cutoff functions
χ1, χ2 satisfying (E.5.9). Then for each u, v as in Theorem E.56,

‖(1− χ1)u‖H̄s
h(M) ≤ Ch−1‖χ2Pu‖H̄s−1

h (M) + C‖χ1χ2u‖H̄s
h(M),(E.5.12)

‖(1− χ1)v‖Ḣs
h(M) ≤ Ch

−1‖χ2Pv‖Ḣs−1
h (M).(E.5.13)

In both cases the constant C is independent of h.

E.5.2. Energy estimate and well-posedness. We start the proofs of
Theorems E.56 and E.57 with an energy estimate, proved by a semiclassical
version of the factorization method presented in [HöIII, §23.2]. In this
section we work on the manifold with boundary [t0, t1]t×∂My where t0 < t1.
(We could in fact replace ∂M with any compact manifold but we keep the
notation to be consistent with §E.5.1.) We consider a differential operator
P ∈ Diff2

h([t0, t1] × ∂M) with coefficients smooth up to the boundary and



598 E. HYPERBOLIC ESTIMATES

say that P is (semiclassically) hyperbolic if it is (semiclassically) hyperbolic
with respect to t on the entire [t0, t1]× ∂M , see Definition E.55.

Denote Hs
y := Hs(∂M). For j ∈ N0 and s ∈ R we use the spaces

(E.5.14)
CjtH

s
y = Cj([t0, t1];Hs(∂M)) ⊂ D′((t0, t1)× ∂M),

‖u‖Cj([t0,t1];Hs(∂M)) = max
0≤`≤j

sup
t∈[t0,t1]

‖D`
tu(t)‖Hs(∂M).

For k ∈ R, denote by C∞t Ψk
h(∂M) the class of operators in Ψk

h(∂M) depend-

ing smoothly on t ∈ [t0, t1]. Then Dt : Cj+1
t Hs

y → CjtH
s
y and any operator

in C∞t Ψk
h(∂M) maps CjtH

s
y → CjtH

s−k
y . Later we will also use the spaces

(E.5.15) LqtH
s
y := Lq((t0, t1);Hs(∂M)).

For u ∈ C1
tH

s
y define the quantity

(E.5.16) Es,u(t) = ‖u(t)‖Hs
h(∂M) + h‖Dtu(t)‖Hs−1

h (∂M), t ∈ [t0, t1].

LEMMA E.58 (Energy estimate). Let s ∈ R. Then:

1. Assume that P is semiclassically hyperbolic. Then, in the notation of
(E.5.16), for all t ∈ [t0, t1] and u ∈ C2([t0, t1];Hs+1(∂M))

(E.5.17) Es,u(t) ≤ CEs,u(t0) + Ch−1

∫ t

t0

‖Pu(r)‖Hs−1
h (∂M) dr

with the constant C independent of h, t, u.

2. Assume that P is hyperbolic. Then the estimate (E.5.17) holds, but with
C depending on h.

REMARKS. 1. Note that we make a stronger regularity assumption on u
than requiring the right-hand side of (E.5.17) to be finite. This is the reason
for the complications in the proof of well-posedness of the Cauchy problem
(Theorem E.61) below.

2. It is not hard to show that Lemma E.58 implies Theorems E.56 and E.57
in the special case s = 1, u ∈ C∞(M), v ∈ C∞c (M). However we need the
general case which requires the additional arguments in §E.5.3.

Proof. We assume that P is semiclassically hyperbolic, indicating in Step 4
below what changes should be made for the second statement of the lemma.

1. The coefficient of −h2∂2
t = (hDt)

2 in P is h-independent and nonva-
nishing. Multiplying P by a nonvanishing function, we may assume that
this coefficient is equal to 1. Since P is semiclassically hyperbolic, using the
quadratic formula we factorize

(E.5.18) p(t, y, τ, η) =
(
τ − a1(t, y, η)

)(
τ − a2(t, y, η)

)
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where the functions aj(t, y, η) are real-valued symbols in S1(T ∗∂M) smooth
in t ∈ [t0, t1] and satisfying for some c > 0

(E.5.19) a2(t, y, η)− a1(t, y, η) ≥ c〈η〉.

(The lower bound ∼ 〈η〉 follows from standard hyperbolicity which is part
of the semiclassical definition.)

Using a quantization procedure Oph = Op∂Mh on ∂M (see Proposi-
tion E.15), consider the operators

Aj(t) = Oph(aj(t, •)) ∈ C∞t Ψ1
h(∂M).

We have the approximate factorization

(E.5.20)
P =

(
hDt −A1(t)

)(
hDt −A2(t)

)
+ hC∞t Ψ0

h(∂M)hDt + hC∞t Ψ1
h(∂M)

and same is true when A1(t), A2(t) switch places.

2. We first prove the following estimate for the operators hDt−Aj(t), valid
for any s ∈ R, j = 1, 2, v ∈ C1

tH
s+1
y , and t ∈ [t0, t1]:

(E.5.21)

‖v(t)‖Hs
h(∂M) ≤C‖v(t0)‖Hs

h(∂M)

+ Ch−1

∫ t

t0

‖(hDr −Aj(r))v(r)‖Hs
h(∂M) dr.

To show (E.5.21), take an invertible elliptic operator Ys ∈ Ψs
h(∂M) (see

Exercise E.11) and put

F (t) := ‖Ysv(t)‖L2(∂M), C−1‖v(t)‖Hs
h(∂M) ≤ F (t) ≤ C‖v(t)‖Hs

h(∂M).

Since aj is real-valued, we have Im(Y ∗s YsAj(t)) ∈ hC∞t Ψ2s
h (∂M). Therefore

h∂t
(
F (t)2

)
= −2 Im〈YshDtv(t), Ysv(t)〉L2(∂M)

≤ −2 Im〈Ys(hDt −Aj(t))v(t), Ysv(t)〉L2(∂M) + Ch‖v(t)‖2Hs
h(∂M)

≤ CF (t) ‖(hDt −Aj(t))v(t)‖Hs
h(∂M) + ChF (t)2.

The function Fε(t) :=
√
F (t)2 + ε is in C1([t0, t1]) for all ε > 0 and

∂tFε(t) ≤ Ch−1‖(hDt −Aj(t))v(t)‖Hs
h(∂M) + CF (t).

Integrating and letting ε→ 0, we obtain for all t ∈ [t0, t1]

F (t) ≤ F (t0) + Ch−1

∫ t

t0

‖(hDr −Aj(r))v(r)‖Hs
h(∂M) dr + C

∫ t

t0

F (r) dr.

Grönwall’s inequality (A.5.1) (applied with B(t) ≡ C) gives (E.5.21).
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3. Assume that u ∈ C2
tH

s+1
y . Applying (E.5.21) (with s replaced by s− 1)

to the operator hDt − A3−j(t) and v(t) := (hDt − Aj(t))u(t), j = 1, 2, and
using (E.5.20), we obtain for all t ∈ [t0, t1],

(E.5.22)

‖(hDt −Aj(t))u(t)‖Hs−1
h (∂M) ≤ CEs,u(t0)

+Ch−1

∫ t

t0

‖Pu(r)‖Hs−1
h (∂M) dr + C

∫ t

t0

Es,u(r) dr.

By (E.5.19), the operator A1(t)−A2(t) is elliptic in the class Ψ1
h(∂M) and

hence, by the elliptic estimate (Theorem E.33), we have for all t ∈ [t0, t1]

(E.5.23)
‖u(t)‖Hs

h(∂M) ≤C‖(A1(t)−A2(t))u(t)‖Hs−1
h (∂M)

+ Ch‖u(t)‖Hs−1
h (∂M).

The first term on the right-hand side is estimated by (E.5.22) and the second
one, by h‖u(t0)‖Hs−1

h (∂M) and the integral of h‖Dtu(t)‖Hs−1
h (M); thus

‖u(t)‖Hs
h(∂M) ≤CEs,u(t0) + Ch−1

∫ t

t0

‖Pu(r)‖Hs−1
h (∂M) dr

+ C

∫ t

t0

Es,u(r) dr, t ∈ [t0, t1].

We also have

h‖Dtu(t)‖Hs−1
h (∂M) ≤ ‖(hDt −A1(t))u(t)‖Hs−1

h (∂M) + C‖u(t)‖Hs
h(∂M)

where the first term on the right-hand side is estimated by (E.5.22). Com-
bining the last two estimates, we obtain

(E.5.24)

Es,u(t) ≤CEs,u(t0) + Ch−1

∫ t

t0

‖Pu(r)‖Hs−1
h (∂M) dr

+ C

∫ t

t0

Es,u(r) dr, t ∈ [t0, t1].

The estimate (E.5.17) now follows by Grönwall’s inequality (A.5.1).

4. We finally make the weaker assumption that P is hyperbolic and explain
how to obtain (E.5.17) with the constant depending on h.

As before, we may assume that the coefficient of (hDt)
2 in P is equal

to 1. The discriminant of the quadratic equation p(t, y, τ, η) = 0 in τ is
asymptotic as |η| → ∞ to the discriminant of the equation p0(t, y, τ, η) = 0.
Since P is hyperbolic, there exists a constant C0 > 0 such that the operator
P − C0 is semiclassically hyperbolic. Thus for all t ∈ [t0, t1]

Es,u(t) ≤ CEs,u(t0) + Ch−1

∫ t

t0

‖(P − C0)u(r)‖Hs−1
h (∂M) dr.
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This implies

Es,u(t) ≤ CEs,u(t0) + Ch−1

∫ t

t0

‖Pu(r)‖Hs−1
h (∂M) dr + Ch−1

∫ t

t0

Es,u(r) dr.

By Grönwall’s inequality (A.5.1) now applied with B(t) = C/h we ob-

tain (E.5.17) with the constant CeC/h. �

The rest of this section is devoted to the proof of well-posedness of the
Cauchy problem for P – see Theorem E.61 below. Although that is not part
of Theorems E.56 and E.57 it is convenient to have it in place. We again
adapt the presentation in [HöIII, §23.2].

Henceforth we assume that P is hyperbolic. As in the proof of Lemma E.58
we may additionally assume that the coefficient of (hDt)

2 in P is identically
equal to 1. We then write

(E.5.25) P = (hDt)
2 + (hDt)P1 + P0

where P0 ∈ Diff2
h(∂M), P1 ∈ Diff1

h(∂M) depend smoothly on t ∈ [t0, t1].

The following statement will be useful to establish enough regularity in t
so that Lemma E.58 can be applied, at the cost of reducing regularity in y.
This is an intermediate step in the proof of well-posedness and a stronger
statement is eventually valid for solutions to the Cauchy problem (E.5.28).
In particular if the right-hand side f and the initial data ϕj lie in C∞ then
we will see that u lies in C∞ as well – see Theorem E.61.

LEMMA E.59 (Regularity of weak solutions). Assume that u ∈ L2
tH

s
y

satisfies Pu = f in the sense of distributions on (t0, t1) × ∂M , and f ∈
C∞([t0, t1]× ∂M). Then we have u ∈ CjtH

s−2−j
y for all j ∈ N0.

Proof. 1. We need to prove the statement for every fixed h, and for simplicity
we may put h := 1. It suffices to prove that for all j ∈ N0

(E.5.26) Dj
tu ∈ L2

tH
s−1−j
y

where Dj
t is defined in the sense of distributions on (t0, t1) × ∂M . Indeed,

(E.5.26) implies that u ∈ Cj−1
t Hs−1−j

y by Sobolev embedding in one dimen-

sion (writing Dj−1
t u as the sum of an antiderivative of Dj

tu and a distribution
constant in t similarly to step 2 below).

2. For j = 0, (E.5.26) is immediate. Next, recalling the definition (E.5.25)
of P0, P1 and using that f − P0u ∈ L2

tH
s−2
y , define

w1 ∈ C0
tH

s−2
y , w1(t, y) :=

∫ t

t0

(f(r, y)− P0u(r, y)) dr.
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Put

(E.5.27) w2 := Dtu+ P1u− iw1 ∈ D′((t0, t1)× ∂M).

From the definition of w1 and the equation Pu = f we see that Dtw2 = 0
in the sense of distributions. It follows (see [HöI, Theorem 3.1.4′ ]) that w2

is independent of t, namely w2(t, y) = w3(y) where

w3(y) =

∫ t1

t0

χ(t)w2(t, y) dt ∈ D′(∂M)

for any fixed χ ∈ C∞c ((t0, t1)) satisfying
∫
R χ(r)dr = 1. Recalling (E.5.27)

we see that

w3(y) = −
∫ t1

t0

(Dtχ(t))u(t, y) dt+

∫ t1

t0

χ(t)(P1u(t, y)− iw1(t, y)) dt.

Since u ∈ L2
tH

s
y and P1u − iw1 ∈ L2

tH
s−2
y we have w3 ∈ Hs−2

y . Writing

Dtu = iw1 +w2−P1u we see that Dtu ∈ L2
tH

s−2
y , giving (E.5.26) for j = 1.

3. For j ≥ 2, we argue by induction. Assume that (E.5.26) holds for

0, 1, . . . , j − 1. We write the equation Dj−2
t Pu = Dj−2

t f as

Dj
tu = Dj−2

t f −Dj−1
t P1u−Dj−2

t P0u.

From the inductive hypothesis we see that Dj
tu ∈ L2

tH
s−1−j
y , giving (E.5.26)

for j. �

The next statement uses the energy estimate (E.5.17) and the Hahn–
Banach theorem to show existence of solutions to the Cauchy problem

(E.5.28) Pu = f, u|t=t0 = ϕ0, hDtu|t=t0 = ϕ1

which have weak regularity. Here the equation Pu = f is understood in the
sense of distributions on (t0, t1)× ∂M .

LEMMA E.60 (Existence of weak solutions). Assume that s ∈ R,
f ∈ C∞([t0, t1] × ∂M), ϕ0, ϕ1 ∈ C∞(∂M). Then there exists a solution u
to (E.5.28) in the class

(E.5.29) u ∈
⋂
j≥0

CjtH
s−j
y .

REMARK. In principle the solution u could depend on the choice of s (we
have not established uniqueness yet), thus we do not claim that u ∈ C∞.

Proof. 1. As before we put h := 1. We fix some smooth density on ∂M ,
which naturally induces a density on (t0, t1) × ∂M . Define the following
anti-linear form on C∞c ([t0, t1)× ∂M) (where P1 is given by (E.5.25)):

Φ(v) := 〈f, v〉L2((t0,t1)×∂M)−i〈ϕ0, Dtv(t0)+P ∗1 v(t0)〉L2(∂M)−i〈ϕ1, v(t0)〉L2(∂M).



E.5. HYPERBOLIC ESTIMATES 603

Take arbitrary s ∈ R. The operator P ∗ is hyperbolic on [t0, t1]×∂M with re-
spect to the function −t. Thus the energy estimate (E.5.17) (with s replaced
by 1− s) gives

‖v‖C0
tH

1−s
y

+ ‖v‖C1
tH
−s
y
≤ C‖P ∗v‖L1

tH
−s
y

for all v ∈ C∞c ([t0, t1)× ∂M).

Therefore (using that L2
tH
−s
y ⊂ L1

tH
−s
y )

(E.5.30) |Φ(v)| ≤ C‖P ∗v‖L2
tH
−s
y

for all v ∈ C∞c ([t0, t1)× ∂M).

Define the anti-linear form on the space {P ∗v | v ∈ C∞c ([t0, t1)× ∂M)}

Φ̃(g) := Φ(v), v ∈ C∞c ([t0, t1)× ∂M), g = P ∗v

where Φ̃(g) does not depend on the choice of v by (E.5.30).

By (E.5.30) and the Hahn–Banach Theorem, Φ̃ extends to a bounded
anti-linear form on L2

tH
−s
y . Hence there exists u ∈ L2

tH
s
y such that

(E.5.31) Φ(v) = 〈u, P ∗v〉L2((t0,t1)×∂M) for all v ∈ C∞c ([t0, t1)× ∂M).

2. Taking v ∈ C∞c ((t0, t1) × ∂M) in (E.5.31) and recalling the definition
of Φ, we see that Pu = f in D′((t0, t1) × ∂M). By Lemma E.59 we get

u ∈ CjtH
s−2−j
y for all j ∈ N0. Replacing s by s + 2 in the argument in

part 1, we obtain a solution to Pu = f in the class (E.5.29).

It remains to show that u satisfies the initial conditions u(t0) = ϕ0,
Dtu(t0) = ϕ1. Using (E.5.25) with the equation Pu = f and integrating by
parts in t, we obtain for all v ∈ C∞c ([t0, t1)× ∂M)

〈f, v〉L2((t0,t1)×∂M) = 〈u, P ∗v〉L2((t0,t1)×∂M)

+ i〈u(t0), Dtv(t0) + P ∗1 v(t0)〉L2(∂M) + i〈Dtu(t0), v(t0)〉L2(∂M).

Then (E.5.31) gives

〈u(t0)− ϕ0, Dtv(t0) + P ∗1 v(t0)〉L2(∂M) + 〈Dtu(t0)− ϕ1, v(t0)〉L2(∂M) = 0.

Since this is true for all v ∈ C∞c ([t0, t1)×∂M) we obtain the required initial
conditions. �

We are now ready to prove

THEOREM E.61 (Well-posedness of the Cauchy problem). Sup-
pose that P is hyperbolic with respect to t on [t0, t1] × ∂M in the sense of
Definition E.55. Fix h > 0 and s ∈ R. Then for any ϕj ∈ Hs−j(∂M),
j = 0, 1 and f ∈ L1((t0, t1);Hs−1(∂M)) the Cauchy problem (E.5.28) has a
unique solution u in the class

u ∈ C0([t0, t1];Hs(∂M)) ∩ C1([t0, t1];Hs−1(∂M))(E.5.32)

and the estimate (E.5.17) holds. Moreover, if P is semiclassically hyperbolic
then (E.5.17) holds with constants independent of h.
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REMARK. Combining Theorem E.61 and Lemma E.59 we see that if
f ∈ C∞([t0, t1]× ∂M) and ϕj ∈ C∞(∂M) then u ∈ C∞([t0, t1]× ∂M).

Proof. 1. We first show existence. Using the notation (E.5.15), choose
f ` ∈ C∞([t0, t1]× ∂M) and ϕ`0, ϕ

`
1 ∈ C∞(∂M) such that as `→∞,

f ` → f in L1
tH

s−1
y , ϕ`j → ϕj in Hs−j

y .

By Lemma E.60 there exist solutions u` ∈ C2
tH

s+1
y of the Cauchy problems

Pu` = f `, (hDt)
ju`(t0) = ϕ`j . Applying the energy estimate, Lemma E.58,

to the differences u` − um, we get

‖u` − um‖C0
tH

s
y

+ ‖u` − um‖C1
tH

s−1
y

≤ C
1∑
j=0

‖ϕ`j − ϕmj ‖Hs−j
y

+ C‖f ` − fm‖L1
tH

s−1
y

.

It follows that u` is a Cauchy sequence in C0
tH

s
y and in C1

tH
s−1
y . Therefore

there exists u ∈ C0
tH

s
y ∩ C1

tH
s−1
y such that

‖u` − u‖C0
tH

s
y

+ ‖u` − u‖C1
tH

s−1
y
→ 0 as `→∞.

Then u is a solution to the Cauchy problem (E.5.28).

2. Writing the energy estimate (E.5.17) for each u` and passing to the limit,
we obtain the energy bound uniform in t ∈ [t0, t1]

(E.5.33)

‖u(t)‖Hs
h(∂M) + h‖Dtu(t)‖Hs−1

h (∂M)

≤ C
( 1∑
j=0

‖ϕj‖Hs−j
h (∂M)

+ h−1

∫ t

t0

‖f(r)‖Hs−1
h (∂M) dr

)
.

Moreover, if P is semiclassically hyperbolic, then the constants in (E.5.33)
are independent of h.

3. It remains to establish uniqueness. To this end, assume that u ∈ C0
tH

s
y ∩

C1
tH

s−1
y satisfies Pu = 0 and u(t0) = Dtu(t0) = 0. We have u ∈ L2

tH
s
y , thus

by Lemma E.59 we get u ∈ C2
tH

s−4
y . Applying the energy estimate (E.5.17)

with s replaced by s− 5 we obtain Es−5,u ≡ 0 on [t0, t1] and thus u ≡ 0. �

Theorem E.61 immediately implies the following uniqueness statement
for the Cauchy problem in distributions, where we replace vanishing of the
Cauchy data by a support property:

PROPOSITION E.62. Under the conditions of Theorem E.61, assume

u ∈ D′((t0, t1)× ∂M), Pu = 0, suppu ⊂ (t′0, t
′
1)× ∂M

where t0 ≤ t′0 ≤ t′1 ≤ t1 and either t0 < t′0 or t′1 < t1. Then u = 0.
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Proof. Without loss of generality we assume that suppu ⊂ (t0, t
′
1] × ∂M

where t0 < t′1 < t1. As in the proof of Lemma E.60, fix a density on ∂M .

Take arbitrary f ∈ C∞c ((t0, t1)× ∂M). Since P ∗ is hyperbolic, by The-
orem E.61 there exists

v ∈ C∞([t0, t1]× ∂M), P ∗v = f, v|t=t0 = 0, Dtv|t=t0 = 0.

We have supp f ⊂ [t̃, t1) × ∂M for some t̃ ∈ (t0, t1). By the uniqueness for
the Cauchy problem for P ∗ on [t0, t̃ ]× ∂M , we get supp v ⊂ [t̃, t1)× ∂M as
well. Thus suppu∩ supp v is a compact subset of (t0, t1)× ∂M , which gives

0 = 〈Pu, v〉 = 〈u, P ∗v〉 = 〈u, f〉.

Since f was chosen arbitrary, we see that u = 0. �

E.5.3. Proofs of hyperbolic estimates. Theorem E.61 uses the spaces

CjtH
s−j
y , while Theorems E.56 and E.57 are stated in the spaces Hs

t,y. To
pass between these spaces, we introduce the family Hs,r of Sobolev spaces
indexed by two parameters s, r ∈ R. (See [HöIII, Appendix B] for a more
detailed introduction in the nonsemiclassical setting.) We first define these
on Rn+1 = Rt × Rny : Hs,r(Rn+1) ⊂ S ′(Rn+1) has the semiclassical norm

(E.5.34)
‖u‖Hs,r

h (Rn+1) = ‖〈hDy〉r〈(hDt, hDy)〉su‖L2(Rn+1)

= ‖〈hη〉r〈(hτ, hη)〉sû(τ, η)‖L2(Rn+1).

Here 〈hη〉 =
√

1 + |hη|2, 〈(hτ, hη)〉 =
√

1 + (hτ)2 + |hη|2, and we use the
unitary Fourier transform. The spaces Hs,r

h belong to the class of generalized
Sobolev spaces in the sense of [Zw12, §8.3].

If Oph is the standard quantization on Rn+1 defined in (E.1.18) and a
symbol a(t, y, τ, η) satisfies the derivative bounds

|∂α(t,y,τ,η)a(t, y, τ, η)| ≤ Cα〈η〉r
′〈(τ, η)〉s′

then by [Zw12, Theorem 8.10] we have

(E.5.35) ‖Oph(a)‖Hs,r(Rn+1)→Hs−s′,r−r′ (Rn+1) ≤ C.

Similarly to §E.1.8 we define Sobolev spaces of compactly supported distri-
butions Hs,r

h,comp(R × ∂M) modeled locally on Hs,r
h (Rn+1). An equivalent

norm on Hs,r
h,comp (for elements supported in a fixed compact set) is given

by ‖Yru‖Hs
h(R×∂M) where Yr ∈ Ψr

h(∂M) is an invertible elliptic operator

independent of t (see Exercise E.11).

As in §E.5.2 we will work on the manifold with boundary [t0, t1] × ∂M
where t0 < t1. Define the space

H̃s,r = H̃s,r([t0, t1)× ∂M) ⊂ D′((−∞, t1)× ∂M)
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consisting of distributions in Hs,r which have supported (Ḣ) behavior on
{t0} × ∂M and extendable (H̄) behavior on {t1} × ∂M . More precisely,

u ∈ H̃s,r ⇐⇒
{
∃U ∈ Hs,r

comp(R× ∂M), suppU ⊂ [t0, t1 + 1]× ∂M,
such that u = U |(−∞,t1)×∂M .

The semiclassical norm on H̃s,r is defined as

‖u‖
H̃s,r
h

:= inf ‖U‖Hs,r
h
,

with the infimum over all possible extensions U . Similarly we define the

space H̃s
h, replacing Hs,r

h,comp by the usual Sobolev space Hs
h,comp.

Using (E.5.35) we have the following properties, with constants in the
norm equivalence and the norm bounds uniform in h (see the beginning
of §E.5.2 for notation):

• H̃s,0
h = H̃s

h and H̃0,r
h = L2((t0, t1);Hr

h(∂M));

• A ∈ C∞t Ψk
h(∂M) =⇒ A : H̃s,r

h → H̃s,r−k
h ;

• hDt : H̃s,r
h → H̃s−1,r

h .

The local model for H̃s,r
h ([t0, t1)× ∂M) is

H̃s,r
h ([t0, t1)× Rn)

= {U |(−∞,t1)×Rn : U ∈ Hs,r
h (Rn+1), suppU ⊂ [t0,∞)× Rn}.

(Here the restriction suppU ⊂ [t0, t1 + 1] is removed by multiplying by a
cutoff function in t. The only reason we made this restriction in the first
place is to avoid defining a global norm on Hs,r

h (R× ∂M).)

Following [HöIII, Theorem B.2.4], we next consider the Fourier multi-
plier on S ′(Rn+1)

Λs,r =
(
ihDt + 〈hDy〉

)s〈hDy〉r, s, r ∈ R.

Here (iτ + 〈η〉)s is well defined as Re(iτ + 〈η〉) ≥ 1 with the branch chosen
positive at τ = 0.

It follows from (E.5.34) that Λs,r : Hs′,r′

h (Rn+1)→ Hs′−s,r′−r
h (Rn+1) is a

unitary operator for all s′, r′.

For any t0 ∈ R the operator Λs,r preserves the space of tempered distri-
butions supported in [t0,∞)× Rn. Indeed, Λs,r is the convolution operator
with the inverse Fourier transform of (ihτ + 〈hη〉)s〈hη〉r, which is supported
in [0,∞)×Rn. The latter can be seen either by a direct computation [HöI,
Example 7.1.17] or by the Paley–Wiener–Schwartz Theorem [HöI, Theorem
7.3.1], since for each η, the function τ 7→ (ihτ + 〈hη〉)s is holomorphic and
polynomially bounded in Im τ ≤ 0.
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Since H̃s,r
h ([t0, t1) × Rn) is the quotient of the space of distributions in

Hs,r
h (Rn+1) supported in [t0,∞) × Rn by those supported in [t1,∞) × Rn,

we see that Λs,r induces a unitary operator

(E.5.36) Λ̃s,r : H̃s′,r′

h ([t0, t1)× Rn)→ H̃s′−s,r′−r
h ([t0, t1)× Rn).

We collect further properties of the spaces H̃s,r
h used below in

LEMMA E.63. We have

s+ r ≤ s′ + r′, s ≤ s′ =⇒ ‖u‖
H̃s,r
h
≤ C‖u‖

H̃s′,r′
h

,(E.5.37)

‖u‖
H̃s,r
h
≤ C

(
‖u‖

H̃s−1,r+1
h

+ ‖hDtu‖H̃s−1,r
h

)
.(E.5.38)

Moreover, for each f ∈ H̃s−1,r there exist fj ∈ H̃s,r−j, j = 0, 1, such that

(E.5.39) f = f1 + hDtf0, ‖fj‖H̃s,r−j
h

≤ C‖f‖
H̃s−1,r
h

.

Proof. 1. The inequality (E.5.37) follows from the inequality ‖u‖Hs,r
h (Rn+1) ≤

‖u‖
Hs′,r′
h (Rn+1)

which is immediate from (E.5.34).

2. Applying a partition of unity to u we see that to show (E.5.38) it suffices
to prove that

‖u‖
H̃s,r
h ([t0,t1)×Rn)

≤ ‖u‖
H̃s−1,r+1
h ([t0,t1)×Rn)

+ ‖hDtu‖H̃s−1,r
h ([t0,t1)×Rn)

.

By (E.5.36) this is equivalent to

‖Λ̃s,ru‖L2 ≤ ‖Λ̃s−1,r+1u‖L2 + ‖Λ̃s−1,rhDtu‖L2 ,

and this follows from the identity

Λ̃s,ru = Λ̃s−1,r+1u+ iΛ̃s−1,rhDtu.

3. Applying a partition of unity to f , we reduce (E.5.39) to the case f ∈
H̃s−1,r([t0, t1)× Rn). Then we put

f = f1 + hDtf0, f0 := iΛ̃−1,0f, f1 := Λ̃−1,1f

and use (E.5.36). �

We now show well-posedness for the operator P in the spaces H̃s,r. Here
the support condition at t = t0 forces the Cauchy data to be equal to 0.

THEOREM E.64. Assume that P is hyperbolic with respect to t on [t0, t1]×
∂M in the sense of Definition E.55. Fix h > 0 and s, r ∈ R. Denote

H̃s,r = H̃s,r([t0, t1)× ∂M). Then for any f ∈ H̃s−1,r there exists unique

(E.5.40) u ∈ H̃s+1,r−1, Pu = f in D′((−∞, t1)× ∂M).
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Moreover we have the estimate

(E.5.41) ‖u‖
H̃s+1,r−1
h ([t0,t1)×∂M)

≤ Ch−1‖f‖
H̃s−1,r
h ([t0,t1)×∂M)

.

If P is semiclassically hyperbolic, then the constant in (E.5.41) is indepen-
dent of h.

Proof. 1. We extend P to a hyperbolic operator on [t0 − ε, t1] × ∂M for
some ε > 0. Then uniqueness of solutions to (E.5.40) follows immediately

from Proposition E.62 and the fact that u ∈ H̃s+1,r−1 implies suppu ⊂
[t0, t1)× ∂M . Similarly to (E.5.25) we assume that the coefficient of (hDt)

2

in P is equal to 1 and write

(E.5.42) P = (hDt)
2 + (hDt)P1 + P0, Pj ∈ C∞t Diff2−j

h (∂M).

In the estimates below, the constants are independent of h if P is assumed
to be semiclassically hyperbolic.

2. We first consider the case s = 1, establishing weaker regularity of u. We
have

f ∈ H̃0,r = L2((t0, t1);Hr(∂M)) ⊂ L1((t0 − ε, t1);Hr(∂M)),

where we extend f by 0 in (t0 − ε, t0)× ∂M . By Theorem E.61 there exists

u ∈ C0([t0 − ε, t1];Hr+1(∂M)) ∩ C1([t0 − ε, t1];Hr(∂M)),

Pu = f, u|t=t0−ε = Dtu|t=t0−ε = 0,

sup
t
‖u(t)‖Hr+1

h (∂M) ≤ Ch
−1‖f‖

H̃0,r
h
.

By the uniqueness for the Cauchy problem for P on [t0 − ε, t0] × ∂M , u
defines a distribution in D′((−∞, t1) × ∂M) supported in [t0, t1) × ∂M .
Since C0 ⊂ L2 we get

(E.5.43) ‖u‖
H̃0,r+1
h

≤ Ch−1‖f‖
H̃0,r
h
.

3. We now consider the case s ≥ 1. By (E.5.37)

(E.5.44) ‖f‖
H̃0,s+r−1
h

≤ C‖f‖
H̃s−1,r
h

.

Let u be the solution to Pu = f constructed in Step 2. Then by (E.5.43)
and (E.5.44)

(E.5.45) ‖u‖
H̃0,s+r
h

≤ Ch−1‖f‖
H̃s−1,r
h

.

To improve the regularity of u we claim the following bound valid for all
m ≤ s:

(E.5.46) ‖u‖
H̃m+1,s+r−m−1
h

≤ C‖u‖
H̃m,s+r−m
h

+ C‖f‖
H̃s−1,r−1
h

.
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To show (E.5.46) we use (E.5.42) to write (hDt)
2u = f − (hDt)P1u − P0u

and (E.5.37) to estimate

‖(hDt)
2u‖

H̃m−1,s+r−m−1
h

≤ C‖u‖
H̃m,s+r−m
h

+ C‖f‖
H̃s−1,r−1
h

,

‖hDtu‖H̃m−1,s+r−m
h

≤ C‖u‖
H̃m,s+r−m
h

.

By (E.5.38) these give

‖hDtu‖H̃m,s+r−m−1
h

≤ C‖u‖
H̃m,s+r−m
h

+ C‖f‖
H̃s−1,r−1
h

.

Applying (E.5.38) again we obtain (E.5.46).

Now, arguing by induction on m with (E.5.45) as the base and (E.5.46)
as the step, we get

‖u‖
H̃m+1,s+r−m−1
h

≤ Ch−1‖f‖
H̃s−1,r
h

for m = −1, 0, 1, . . . , bsc.

Applying this with m := bsc and using (E.5.37) we get

‖u‖
H̃s,r
h
≤ Ch−1‖f‖

H̃s−1,r
h

.

Finally, by another application of (E.5.46) we get the desired bound (E.5.41):

‖u‖
H̃s+1,r−1
h

≤ Ch−1‖f‖
H̃s−1,r
h

.

4. It remains to consider the case s < 1. We handle it by decreasing
induction on s. Namely, we assume that the statement of the theorem

holds for s + 1 (and any r) and show it for s. Take f ∈ H̃s−1,r and write
using (E.5.39)

f = f1 + hDtf0, ‖fj‖H̃s,r−j
h

≤ C‖f‖
H̃s−1,r
h

.

By the inductive hypothesis there exist wj ∈ H̃s+2,r−j−1
h satisfying

Pwj = fj , ‖wj‖H̃s+2,r−j−1
h

≤ Ch−1‖f‖
H̃s−1,r
h

.

Put u1 := w1 + hDtw0, then by (E.5.37)

‖u1‖H̃s+1,r−1
h

≤ Ch−1‖f‖
H̃s−1,r
h

,

Pu1 − f = g := [P, hDt]w0,

‖g‖
H̃s,r−1
h

≤ Ch‖w0‖H̃s+1,r
h

≤ C‖f‖
H̃s−1,r
h

.

Here we used that [P, hDt] ∈ (hDt)hC
∞
t Diff1

h +hC∞t Diff2
h by (E.5.42).

Using the inductive hypothesis again, we find u2 such that

Pu2 = −g, ‖u2‖H̃s+2,r−2
h

≤ Ch−1‖f‖
H̃s−1,r
h

.

It remains to put u := u1+u2 and recall the uniqueness proved in step 1. �

We can finally give
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Proofs of Theorems E.56 and E.57. We give a single proof of both theorems,
noting that the estimates below are uniform in h if we assume that P is
semiclassically hyperbolic. We fix cutoffs χ1, χ2 satisfying (E.5.9), put t0 :=
0, and take t1 ∈ (0, 1) such that supp(1− χ1) ⊂ {t < t1}.
1. First assume that u ∈ H̄s(M) and Pu ∈ H̄s−1(M). Fix

χ ∈ C∞(M), supp(1− χ1) ∩ supp(1− χ) = ∅, suppχ ⊂ {t < t1}.

Put w := χu, then suppw ⊂ {t < t1}. Thus w lies in the space H̃s((0, t1]×
∂M) defined similarly to H̃s([t0, t1) × ∂M) but with the roles of t0, t1 re-
versed: w is extendable on t = 0 and supported on t = t1. Similarly we
have

f := Pw = χPu+ [P, χ]u ∈ H̃s−1((0, t1]× ∂M).

Applying Theorem E.64 (with t replaced by −t and r := 0) to w, and using

that H̃s+1,−1 ⊂ H̃s by (E.5.37), we get the bound

‖w‖
H̃s
h((0,t1]×∂M)

≤ Ch−1‖f‖
H̃s−1
h ((0,t1]×∂M)

.

Combining this with the estimates (where in the second estimate below we
use that χ1χ2 = 1 near the support of [P, χ] ∈ hDiff1

h(M))

‖(1− χ1)u‖H̄s
h(M) ≤ C‖w‖H̃s

h((0,t1]×∂M)
,

‖f‖
H̃s−1
h ((0,t1]×∂M)

≤ C‖χ2Pu‖H̄s−1
h (M) + Ch‖χ1χ2u‖H̄s

h(M)

we get (E.5.10), (E.5.12).

2. Now assume that v ∈ Ḣs(M) and Pv ∈ Ḣs−1(M). Let w be the restric-
tion of v to [0, t1)× ∂M . Then by Theorem E.64 we get

‖w‖
H̃s
h([0,t1)×∂M)

≤ Ch−1‖Pv‖
H̃s−1
h ([0,t1)×∂M)

Combining this with the estimates

‖(1− χ1)v‖Ḣs
h(M) ≤ C‖w‖H̃s

h([0,t1)×∂M)
,

‖Pv‖
H̃s−1
h ([0,t1)×∂M)

≤ C‖χ2Pv‖Ḣs−1
h (M)

we get (E.5.11), (E.5.13). �

E.6. NOTES

For a fixed h, say h = 1, the theory presented here is the standard theory
of pseudodifferential operators known as microlocal analysis. Good intro-
ductions include Alinhac–Gérard [AG07] and Grigis–Sjöstrand [GS94]. A
major treatise is Hörmander [HöI]–[HöIV].

The semiclassical theory with various applications is presented in sev-
eral texts: Robert [Ro05], Helffer [He88] (potential wells, Witten complex),
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Martinez [Ma02a] (FBI transform), Dimassi–Sjöstrand [DS99] (fine spec-
tral asymptotics), Zworski [Zw12] (broad introduction, semiclassical defect
measures), Guillemin–Sternberg [GS13] (functorial approach, Maslov in-
dices), Combescure–Robert [CR12] (coherent states). The reader can con-
sult these works for history of the subject and further references. Here we
only mention that in the semiclassical setting, the defect measures of §E.3
were introduced by Gérard [Gé91] and Lions–Paul [LP93].

Although most of the material reviewed in this appendix can be found in
the abovementioned texts, Chapter 5 requires an extension of the theory in
which propagation estimates are provided uniformly in the standard microlo-
cal and semiclassical senses. This includes our definition of the semiclassical
wave front as subset of T ∗M ∪ ∂T ∗M coming from [Dy12] and [DZ16]
and radial propagation estimates, also from [DZ16]. The latter were origi-
nally presented in the context of scattering theory by Melrose [Me94] and
were first used for scattering on asymptotically hyperbolic manifolds by
Vasy [Va13]. See Dyatlov–Guillarmou [DG14] for more general propaga-
tion estimates.

The presentation of semiclassical hyperbolic estimates in §E.5 is a self-
contained adaptation of Hörmander’s treatment in [HöIII, §23.2 and Ap-
pendix B.2].

E.7. EXERCISES

Section E.1

1. Let M be a manifold and A : C∞(M) → C∞(M) a linear operator.
For f ∈ C∞(M), let adf (A) = [f,A] be the commutator of A with the
multiplication operator by f . Let k ∈ N0.

(a) Show that A = A(h) ∈ Diffkh(M) if and only if adf A ∈ hDiffk−1
h (M),

h∂hA− kA ∈ Diffk−1
h (M) for each f ∈ C∞(M), with Diff−1

h (M) := 0.

(b) Let A ∈ Diffkh(M). Show that σh(A) = a0 + a1 + · · ·+ ak, where a` is a
homogeneous polynomial of degree ` on the fibers of T ∗M satisfying

(ad`f A)g(x) = `!(ih)`a`(x, df(x))g(x) +O(h`+1)

for all h-independent f, g ∈ C∞(M).

2. Let M be a compact manifold, a ∈ C∞(T ∗M), and fix a Riemannian
metric g on M . Show that a ∈ S0

1,0(T ∗M) if and only if

sup
τ>1
‖aτ‖CN ({1≤|ξ|g≤2}) <∞

for each N , where aτ (x, ξ) := a(x, τξ).
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3. Suppose a ∈ Sk1,0(T ∗M) for some k > 0 and |a| ≤ 1 everywhere. Show

that a ∈ Sε1,0(T ∗M) for all ε > 0.

4. Construct a symbol a ∈ S0
1,0(T ∗R) and a diffeomorphism ϕ : R→ R such

that a(ϕ(x), ϕ′(x)−1ξ) does not lie in S
0
1,0(T ∗R).

5. This exercise shows that for each fixed h, the class of operators Ψk
h(M)

does not depend on h, and explains how to change semiclassical parameter
in quantization. Let h, τ ∈ (0, 1], a ∈ Sk(T ∗M) be h-independent, and OpMh
be a quantization procedure defined in Proposition E.15. Show that

(E.7.1) OpMτh(a) = OpMh (aτ ) where aτ (x, ξ) := a(x, τξ).

6. This exercise outlines an alternative proof of Proposition E.19.

(a) Use (E.1.50) to reduce to case k = s = 0.

(b) Fix constants N ∈ N0, C0 > sup |a|. Use induction on N to construct

bN ∈ S
0
1,0(T ∗Rn), rN ∈ S

−N
1,0 (T ∗Rn) such that

C2
0 = Oph(a)∗Oph(a) + Oph(bN )∗Oph(bN ) + hN Oph(rN ).

(c) Show that for r ∈ S−N1,0 (T ∗Rn) and N ≥ n+1, the norm ‖Oph(r)‖L2→L2

is bounded uniformly in h. (Hint: use integration by parts in ξ to show that
the Schwartz kernel KOph(r)(x, y) is O(h−n〈(x− y)/h〉−R) for each R ∈ N0.
Then apply Schur’s inequality (A.5.3).)

(d) Argue similarly to the proof of Proposition E.24 to show

‖Oph(a)u‖L2(Rn) ≤ C‖u‖L2(Rn), u ∈ S (Rn),

where C is independent of u and h, and finish the proof.

7. Let M be a compact manifold with boundary ∂M 6= ∅ and interior M .
Consider the map

(E.7.2) Ts : Ḣs(M)→ H̄s(M), u 7→ u|M .

(a) Assume that s ∈ (−1
2 ,

1
2). Show that Ts is an isomorphism. (Hint:

show that multiplication operators by 1M and 1Mext\M extend to bounded
operators on Hs(Mext), see e.g. [TaI, Proposition 4.5.3]. From here deduce
the bound

‖u‖Hs + ‖v‖Hs ≤ C‖u+ v‖Hs , u ∈ Ḣs(M), v ∈ Ḣs(Mext \M).

This shows that Ts is injective and has closed range. To show surjectivity,
use that Ḣs is dual to H̄−s.)

(b) Assume that s < −1
2 . Show that Ts is not injective. (Hint: take a delta

function.)

(c) Assume that s > 1
2 . Show that Ts is not surjective.
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Section E.2

8. Let (M, g) be a Riemannian manifold and u ∈ D′(M). Use Theorem E.33
to show that if ∆gu is smooth, then so is u. (Hint: let P = −h2∆g and use

the fact that A ∈ Ψ0
h(M) is smoothing when WFh(A) ∩ ∂T ∗M = ∅.)

Is the result still true if (M, g) is a Lorentzian manifold (see §5.7) and
∆g is replaced by the d’Alembert–Beltrami operator?

9. Use Theorem E.33 to show that for each χ0 ∈ C∞c (R), there exists χ ∈
C∞c (R) such that

(E.7.3) ‖χ0u‖L2 ≤ C‖χ(hDx + i)u‖L2 +O(h∞)‖χu‖L2

for all u ∈ C∞(R). Give a direct proof of (E.7.3) and show that the O(h∞)
term there cannot be removed.

10. This exercise introduces a family of regularizing operators which is used
in Exercises E.31, E.35, and E.36 to show stronger versions of propagation
of singularities and radial estimates.

We fix h := 1 and denote by Ψk
0(M) the class of nonsemiclassical

pseudodifferential operators with symbols in Sk1,0(T ∗M), see the remark at

the end of §E.1.7. We use a regularization parameter ε ∈ (0, 1] and let
Ψk

0,ε(M) be the class of semiclassical pseudodifferential operators with sym-

bols in Sk1,0(T ∗M) where ε takes the role of h. Let Op and Opε be the

corresponding quantization procedures, defined in (E.1.38). Fix r > 0 and
define (recalling (E.7.1))

Xε := Op(〈εξ〉−r) = Opε(〈ξ〉−r) ∈ Ψ−r0,ε(M).

(a) Using Proposition E.32, construct

Yε := Op(qε) = Opε(q) ∈ Ψr
0,ε(M), qε(x, ξ) := q(x, εξ; ε)

where q = 〈ξ〉r +O(ε)Sr−1
1,0 (T ∗M), such that

(E.7.4) XεYε = I +O(ε∞)Ψ−∞ , YεXε = I +O(ε∞)Ψ−∞ .

(b) Show that Xε ∈ Ψ0
0(M), Yε ∈ Ψr

0(M) are bounded uniformly in ε.

(c) Let A = Op(a) ∈ Ψk
0(M). Show that uniformly in ε,

(E.7.5) XεAYε = A+ iOp
(
〈εξ〉r{a, 〈εξ〉−r}

)
+O(1)Ψk−2

0 (M)

and 〈εξ〉r{a, 〈εξ〉−r} is bounded uniformly in ε in the class Sk−1
1,0 (T ∗M).

Show moreover that the wavefront set WF(XεAYε) (a subset of ∂T
∗
M ob-

tained by fixing h := 1 in Definition E.27) is contained in WF(A) with
estimates uniform in ε. (Hint: write XεAYε − A = [Xε, A]Yε +O(ε∞)Ψ−∞ .
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Write N terms of the full nonsemiclassical symbol of [Xε, A]Yε, with N large
enough depending on r, and estimate the remainder using part (b).)

(d) Let u ∈ Hs−r
comp(M). Assume that ‖Xεu‖Hs is bounded uniformly as

ε → 0. Show that u ∈ Hs
comp(M). (Hint: use part (c) to reduce to the

case s = 0 and M = Rn. Then use the Monotone Convergence Theorem.)

11. Let M be a compact manifold and k ∈ R; fix a quantization proce-
dure (E.1.38). For ε > 0 define

A := Oph(〈εξ〉k) ∈ Ψk
h(M).

Arguing similarly to part (a) of Exercise E.10, show that if ε is fixed small
enough and h ∈ (0, 1] then A is invertible as an operator on D′(M) and

A−1 ∈ Ψ−kh (M).

12. Show that a family of operators B : C∞c (M2) → D′(M1) is h-tempered
if and only if for each χ1 ∈ C∞c (M1), χ2 ∈ C∞c (M2) there exist C,N such
that ‖χ1Bχ2‖HN

h →H
−N
h
≤ Ch−N .

13. Under the assumptions of Proposition E.37, use stationary phase in the
y, ξ variables to show that for each B ∈ Ψk

h(M), Bu has the form (E.2.16)
modulo an O(h∞)C∞ remainder, with the amplitude

b(x, θ;h) = σh(B)(x, ∂xϕ(x, θ))a(x, θ) +O(h)C∞c .

14. Assume that the conditions of Proposition E.37 are satified, and ϕ is
nondegenerate in the sense that ∂θ1ϕ, . . . , ∂θmϕ are linearly independent on
the set {∂θϕ = 0}. Show that the set

Λϕ = {(x, ∂xϕ(x, θ)) | ∂θϕ(x, θ) = 0}
is an immersed Lagrangian submanifold of T ∗M .

15. Let u = u(h) ∈ D′(Rn) be h-tempered. Use Proposition E.38 to show
that (x0, ξ0) /∈ WFh(u) if and only if there exists a function χ ∈ C∞c (Rn),
χ(x0) 6= 0, and a neighbourhood V of ξ0 in the radial compactification of
Rn such that the Fourier transform χ̂u satisfies

χ̂u(ξ/h) = O(h∞〈ξ〉−∞), ξ ∈ V.

16. Let u ∈ D′(Rn) and define the standard (nonsemiclassical) wavefront
set

(E.7.6) WF(u) ⊂ T ∗Rn \ 0

following [HöI, §8.1]: a point (x0, ξ0) ∈ T ∗Rn \ 0 does not lie in WF(u) if
and only if there exists a function χ ∈ C∞c (Rn), χ(x0) 6= 0, and a conic
neighbourhood V of ξ0 in Rn such that

χ̂u(ξ) = O(〈ξ〉−∞), ξ ∈ V.
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(a) Prove that if u ∈ D′(Rn) is independent of h, then

WFh(u) = WF(u) ∪ κ(WF(u)) ∪ (suppu× {0})

where κ : T ∗Rn \ 0→ ∂T
∗Rn is defined in (E.1.11). In particular, WF(u) =

WFh(u)∩ (T ∗Rn \ 0). This formula gives a way to define WF(u) ⊂ T ∗M \ 0
for a distribution u on a manifold M .

(b) Show that

singsuppu = π(WF(u))

where π(x, ξ) = x and singsuppu is the complement of elements of Rn having
open neighbourhoods U such that u|U ∈ C∞(U).

17. Calculate the semiclassical wavefront sets of the following distributions
on Rn:

(a) e−
|x|2
2h ;

(b) χ(x/h), where χ ∈ S (Rn);

(c) e−1/hδ0(x).

18. For two manifolds M1,M2, show that the natural map

T ∗M1 × T ∗M2 → T ∗(M1 ×M2)

extends to continuous maps

T
∗
M1 × T ∗M2 → T

∗
(M1 ×M2), T ∗M1 × T

∗
M2 → T

∗
(M1 ×M2),

but not to a continuous map T
∗
M1×T

∗
M2 → T

∗
(M1×M2). (This explains

why we do not handle the fiber infinity in Proposition E.40.)

19. Let A ∈ Ψk
h(M). Prove that

WF′h(A) = {(x, ξ, x, ξ) : (x, ξ) ∈WFh(A)},

where the left-hand side uses (E.2.11) and the right-hand side, Definition E.27.

20. Let B(h) : C∞c (M2) → D′(M1) be h-tempered. Show that a point
(x, ξ, y, η) ∈ T ∗(M1 × M2) does not lie in WF′h(B) if and only if there
exists neighbourhoods U(x, ξ) ⊂ T ∗M1, V (y, η) ⊂ T ∗M2 such that for each
h-tempered family of functions f ∈ C∞c (M2), we have

WFh(f) ⊂ V =⇒ WFh(Bf) ∩ U = ∅.

(Hint: use Propositions E.38 and E.39.)

Section E.3

21. Compute the semiclassical limiting measures for the following families
of functions on Rn:

(a) u(x;h) = (πh)−n/4e−
|x−x0|

2

2h
+
i〈x,ξ0〉
h where (x0, ξ0) ∈ T ∗Rn is fixed;
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(b) u(x;h) = e
iϕ(x)
h b(x) where ϕ ∈ C∞(Rn;R) and b ∈ C∞c (Rn);

(c) u(x;h) = h−n/2χ(x/h) where χ ∈ S (Rn).

22. Assume that M is a compact manifold and u(x;h) = e
ir(h)ϕ(x)

h b(x) where
ϕ ∈ C∞(M ;R), b ∈ C∞(M), dϕ 6= 0 on supp b, and r(h) > 0, r(h) → ∞
as h → 0. Show that u converges to the measure µ = 0. Conclude that
when b 6≡ 0 we cannot have (E.3.1) for all A ∈ Ψ0

h(M), for any choice of the
sequence hj → 0.

23. Assume that M is a compact manifold and P = P (h) ∈ Ψk
h(M) is elliptic

at fiber infinity, that is ∂T
∗
M ⊂ ellh(P ). Assume that hj → 0, uj ∈ L2(M)

satisfy as j →∞
‖uj‖L2 ≤ C, ‖P (hj)uj‖H−kh → 0,

and uj converges to some measure µ. Show that the convergence state-
ment (E.3.1) is satisfied for all A ∈ Ψ0

h(M). In the special case when
‖uj‖L2 = 1, show that µ is a probability measure.

Section E.4

24. Fix ε > 0. Show that Lemma E.46 does not hold under the assumptions

u ∈ Hs
loc, Pu ∈ Hs−k+1+ε

loc , v ∈ H−s+k−1−ε
comp , P∗v ∈ H−scomp,

using the example P = x ∈ Ψ0
h(R), u = (x+ i0)−1, and v = δ0.

25. Let M be a compact manifold with a fixed smooth density and X be a
divergence free vector field. Using Lemma E.46, prove that the operator

P :=
1

i
X : DP → L2(M), DP = {u ∈ L2(M) | Pu ∈ L2(M)}

is self-adjoint on L2(M) where Pu is understood in the sense of distributions.

26. Let P ∈ Ψk
h(M) be properly supported and p = σh(P) be real-valued.

Consider a segment

γ := {et〈ξ〉1−kHp(x0, ξ0) | t ∈ [0, T ]}, (x0, ξ0) ∈ T ∗M.

Use Theorem E.47 to prove the following statement: for each h-tempered
family u(h) ∈ C∞(M) such that γ ∩WFh(Pu) = ∅, we have either γ ⊂
WFh(u) or γ ∩WFh(u) = ∅.

27. Let q ∈ C∞(R) be a nonnegative function and χ1, χ2 ∈ C∞c (R) satisfy
suppχ1 ⊂ (0,∞) and χ2(0) 6= 0.

(a) Use Theorem E.47 to show that there exists χ ∈ C∞c (R) such that

(E.7.7) ‖χ1u‖L2 ≤ C‖χ2u‖L2 + Ch−1‖χ(hDx − iq)u‖L2 +O(h∞)‖χu‖L2

for all u ∈ C∞(R). Give a direct proof of (E.7.7).
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(b) When q ≡ 0, show h−1 cannot be replaced in (E.7.7) by h−δ for δ < 1.

(c) Does (E.7.7) still hold when q is allowed to be negative? (Hint: consider
q(x) = x− 1.)

28. Let χ1, χ2 be as in Exercise E.27. Conjugating by h−x = elog(1/h)x, show
that (E.7.7) implies the following estimate for all u ∈ C∞(R):

(E.7.8)
‖χ1u‖L2 ≤Ch−R‖χ2u‖L2 + Ch−1−R‖χ(hDx + ih log(1/h))u‖L2

+O(h∞)‖χu‖L2

for some choice of χ ∈ C∞c (R) and some R > 0 depending on χ1, χ2.
(Note that (E.7.7) does not apply to the operator hDx + ih log(1/h) since
in this case q = −h log(1/h) is not O(h) and has the wrong sign.) The
estimate (E.7.8) can be viewed as a toy model for the resolvent bound in
logarithmic regions in §6.4.

29. Let P := hDx on M := Rx × S1
θ. Show that Ch−1‖B1f‖Hs−k+1

h
cannot

in general be replaced in (E.4.14) by Ch−1‖B1f‖Hs−k+δ
h

for δ < 1.

30. Show that Theorem E.47 applies under the following weaker regularity
assumption: u ∈ D′(M), B1u ∈ Hs

comp(M), B1f ∈ Hs−k+1
comp (M). (Hint:

apply the original version of the theorem to B2u for the right choice of
B2 ∈ Ψ0

h(M).)

31. This exercise outlines a proof of the following strengthening of Theo-
rem E.47: if u ∈ D′(M), f = Pu, then

(E.7.9) Bu ∈ Hs
comp(M), B1f ∈ Hs−k+1

comp (M) =⇒ Au ∈ Hs
comp(M).

The estimate (E.4.14) then follows from Exercise E.30 (arguing similarly to
step 5 in the proof of Theorem E.47, showing that B2u ∈ Hs

comp(M)). It is
enough to show (E.7.9) for any fixed h, for simplicity we put h := 1.

(a) Fix r > 0 and let Xε = Op(〈εξ〉−r) ∈ Ψ−r0,ε(M), Yε ∈ Ψr
0,ε(M), ε > 0, be

the families of operators from Exercise E.10. Put

Pε := XεPYε ∈ Ψk
0(M).

Applying Exercise E.30 to Pε and Xεu and using Exercise E.10(c), show the
following estimate with bounds uniform in ε:

‖XεAu‖Hs ≤ C‖XεBu‖Hs + C‖XεB1f‖Hs−k+1 + C‖χu‖H−N

for all u ∈ D′(M), f := Pu such that B1u ∈ Hs−r
comp(M) and B1f ∈

Hs−r−k+1
comp (M).

(b) Complete the proof by noting that B1u,B1f ∈ H−Ncomp for large enough
N , fixing r large enough depending on N , and using Exercise E.10(d).
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32. Show that if a is eventually positive on L with respect to p (see Propo-
sition E.51) and a1 ∈ S0(T ∗M ;R), then a + Hpa1 is eventually positive as
well. Use this to show that eventual negativity of (E.4.39) and (E.4.47) is
independent of:

(a) the metric in the definition of 〈ξ〉; in fact 〈ξ〉 may be replaced by any
positive symbol in S1(T ∗M) which is elliptic on L; and

(b) the density on M in the definition of Im P. (Hint: use the identity
ψ−1P∗ψ = P∗ + ψ−1[P∗, ψ] valid for positive ψ ∈ C∞(M).)

33. Use (E.4.34) and (E.4.37) to show that 〈ξ〉−1Hp〈ξ〉 is eventually negative
on a radial source and eventually positive on a radial sink. Deduce that

(a) if s1 < s2 and (E.4.39) is eventually negative for s = s1, then it is
eventually negative for s = s2;

(b) if s1 < s2 and (E.4.47) is eventually negative for s = s2, then it is
eventually negative for s = s1;

(c) (E.4.39) is eventually negative for s > 0 large enough;

(d) (E.4.47) is eventually negative for −s > 0 large enough.

34. Consider the operator P := x(hDx) + iγh and its radial source L =

∂T
∗R ∩ {x = 0}, see (E.4.36) and Figure E.3.

(a) Show that (E.4.39) is eventually negative on L if and only if s > Re γ+ 1
2 .

(b) Let s > Re γ + 1
2 . Use Theorems E.47 and E.52 to show that for each

compactly supported A ∈ Ψ0
h(R) such that WFh(A) ∩ {ξ = 0} = ∅, there

exists χ ∈ C∞c (R) such that for each

u ∈ Hs
loc(R), f := Pu ∈ Hs

loc(R),

we have the following estimate for all N :

(E.7.10) ‖Au‖Hs
h
≤ Ch−1‖χf‖Hs

h
+ ChN‖χu‖H−Nh .

(c) Assume that s < Re γ + 1
2 and γ /∈ N0. Show that (E.7.10) no longer

holds, by taking u(x) = xγ+/Γ(γ + 1) and using Exercise E.16 and the for-
mulas for the Fourier transform of u, see [HöI, Example 7.1.17].

35. Following the strategy of Exercise E.31, obtain the following strength-
ening of Theorem E.52: if (E.4.39) is eventually negative for some s′ < s,

u ∈ D′(M), f = Pu, and B1u ∈ Hs′
comp(M), B1f ∈ Hs−k+1

comp (M), then
Au ∈ Hs

comp(M) and (E.4.40) holds.

Hint: The main difference from Exercise E.31 is to use (E.7.5) and Exer-
cise E.33 to verify that the threshold condition holds on Hs for Pε uniformly
in ε when r := s− s′. For that you need to analyse the contribution of the



E.7. EXERCISES 619

second term on the right-hand side of (E.7.5). Assume for simplicity that
〈ξ〉−kHp〈ξ〉 < 0 near L and use the identity

〈εξ〉rHp〈εξ〉−r = −rε
2〈ξ〉2

〈εξ〉2
· Hp〈ξ〉
〈ξ〉

.

36. Following the strategy of Exercise E.31, obtain the following strength-
ening of Theorem E.54: if u ∈ D′(M), f = Pu, and Bu ∈ Hs

comp(M),

B1f ∈ Hs−k+1
comp (M), then Au ∈ Hs

comp(M) and (E.4.48) holds. (As in Exer-
cise E.35, the new component is the verification of the threshold condition
for Pε. However, now it is reasonable to assume that 〈ξ〉−kHp〈ξ〉 > 0.)

37. Show that the conclusion of Exercise E.36 is false for operator −P,
where P was studied in Exercise E.34, when s > Re γ + 1

2 (that is, the

threshold condition fails). (Hint: consider u(x) = xγ+/Γ(γ + 1) and use that
it is smooth away from zero.)

Section E.5

38. Prove the estimate (E.5.3). (Hint: first bound ‖(1 − χ1)u‖H1
h([0,∞)) by

‖χ3(1− χ1)u‖H1
h(R) where χ3 ∈ C∞c ((−1, 2)), χ3 ≡ 1 near [0, 1]. Now, write

χ3(1 − χ1) = A1 + A2 where A1 ∈ Ψ0
h(R), A2 ∈ Ψcomp

h (R) are compactly
supported on (−1, 1), WFh(A1) ⊂ ellh(P ), and for each (t, τ) ∈ WFh(A2)
there exists s ∈ R such that esHp(t, τ) ∈ {χ1χ2 = 1} where p = σh(P ).)

39. Prove the estimates (E.5.4) and (E.5.5):

(a) Show that it is enough to prove the estimates

‖u‖H1
h([0,1]) ≤ Ch−1‖Pu‖L2([0,1]) + C‖u‖H1

h([1−ε,1])(E.7.11)

‖v‖H1
h([0,1]) ≤ Ch−1‖Pv‖L2([0,1])(E.7.12)

where ‖u‖2
H1
h([a,b])

:= ‖u‖2L2([a,b]) + ‖h∂tu‖2L2([a,b]) and χ1χ2 = 1 on [1− ε, 1].

(b) Prove (E.7.11)–(E.7.12), integrating the identities

hDt

(
e±it/h(hDt ∓ 1)u(t)) = e±it/hPu(t).

40. Show that an operator P is hyperbolic (in the sense of Definition E.55)
if and only if for each (x, ξ) ∈ T ∗M with x ∈ {t < 1} and ξ /∈ span(dt), the
equation p0(x, ξ + τdt) = 0 has two distinct real solutions τ±. Show a simi-
lar statement for semiclassical hyperbolicity. Conclude that (semiclassical)
hyperbolicity depends only on P and t, but not on the choice of the product
structure (E.5.6).

41. Following the proofs of Theorems E.56–E.57 and using Proposition E.62
obtain the following strengthening of these theorems:
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(a) if u ∈ D′(M) and χ2Pu ∈ H̄s−1(M), χ1χ2u ∈ H̄s(M), then (1−χ1)u ∈
H̄s(M) and (E.5.10), (E.5.12) hold;

(b) if v ∈ D′(M) extends by 0 to a distribution on a manifold without

boundary containing M and χ2Pv ∈ Ḣs−1(M), then (1 − χ1)v ∈ Ḣs(M)
and (E.5.11), (E.5.13) hold.
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[BC71] E. Balslev and J.M. Combes, Spectral properties of many-body Schrödinger oper-
ators wth dilation analytic interactions, Comm. Math. Phys. 22(1971), 280–294.

[BGR82] C. Bardos, J.-C. Guillot and J. Ralston, La relation de Poisson pour l’équation
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obstacle, Journées “Équations aux Dérivées partielles”, Saint-Jean de Monts, 1984.

[Me88] R.B. Melrose, Weyl asymptotics for the phase in obstacle scattering, Comm. Par-
tial Differential Equations 13(1988), 1431–1439.



Bibliography 631

[Me94] R.B. Melrose, Spectral and scattering theory for the Laplacian on asymptotically
Euclidian spaces, in Spectral and scattering theory (M. Ikawa, ed.), Marcel Dekker,
1994.

[Me95] R.B. Melrose, Geometric Scattering Theory, Cambridge University Press, 1995.
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[SV97] J. Sjöstrand and G. Vodev, Asymptotics of the number of Rayleigh resonances.
With an appendix by Jean Lannes, Math. Ann. 309(1997), 287–306.



634 Bibliography
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