EXERCISES FOR THE MINICOURSE ON
FRACTAL UNCERTAINTY PRINCIPLE
(WITH SOLUTIONS)

SEMYON DYATLOV

Abstract. These are companion exercises to the minicourse given at the Spring School on Transfer Operators, organized by the Bernoulli Center, Lausanne, in March 2021.

1. Describe all the elements $\gamma \in \text{SL}(2, \mathbb{R})$ such that
$$\gamma(\mathbb{R} \setminus I_2^o) = I_1$$
where $I_1 := [1, 2]$, $I_2 := [-1, 0]$.

Note that these γ are all hyperbolic, i.e. $|\text{tr} \gamma| > 2$, which implies that γ has two fixed points on \mathbb{R}, one attractive and one repulsive. Find these fixed points. Show that any point in I_1^o is the attractive point of some γ and similarly for repulsive points and I_2^o.

Solution: We need
$$\gamma(-1) = 2, \quad \gamma(0) = 1.$$
Writing
$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad ad - bc = 1$$
we get the equations
$$\frac{b - a}{d - c} = 2, \quad \frac{b}{d} = 1.$$
Writing out in terms of a, b, we get
$$c = \frac{a + b}{2}, \quad d = b,$$
and using the equation $ad - bc = 1$ we get
$$(a - b)b = 2.$$
So it makes sense to parametrize by $b \neq 0$, obtaining
$$\gamma = \begin{pmatrix} \frac{b + 2}{b} & b \\ \frac{b + 1}{b} & b \end{pmatrix}, \quad \gamma(x) = 1 + \frac{x}{(b^2 + 1)x + b^2}.$$
The fixed point equation is $\gamma(x) = x$, which can be written as the quadratic equation
$$cx^2 + (d - a)x - b = 0.$$
which has solutions
\[x_\pm = \frac{a - d \pm \sqrt{(a + d)^2 - 4}}{2c} = \frac{1 \pm \sqrt{b^4 + b^2 + 1}}{b^2 + 1}. \]

To see which one is attractive and which one is repulsive, compute
\[\gamma'(x_\pm) = \frac{1}{(cx_\pm + d)^2} \quad \text{where} \quad cx_\pm + d = \frac{a + b \pm \sqrt{(a + d)^2 - 4}}{2}. \]

We see that \(\gamma'(x_+) < 1 < \gamma'(x_-) \), so \(x_+ \) is the attractive point and \(x_- \) is the repulsive one. From the mapping properties of \(\gamma \), or by direct computation, we see that \(x_+ \in I_1 \) and \(x_- \in I_2 \). Moreover, as \(b \to 0 \) we have
\[x_+ \to 2, \quad x_- \to 0 \]
and as \(b \to \infty \) we have
\[x_+ \to 1, \quad x_- \to -1 \]
which gives the last statement.

2. Let \(\Gamma \subset \text{SL}(2, \mathbb{R}) \) be a Schottky group, with generators \(\gamma_1, \ldots, \gamma_r \). Show that it is a free group with these generators, i.e. for any word \(a \in \mathcal{W} \), if \(\gamma_a = I \) then \(a = \emptyset \).

Solution: Assume that \(a = a_1 \ldots a_n \) is a nonempty word. Since \(\infty \) is contained in the complement of \(I_{\overline{a_n}} \), we have \(\gamma_{a_n}(\infty) \in I_{a_n} \). Since \(a_n \neq \overline{a_{n-1}} \), \(\gamma_{a_n}(\infty) \) is in the complement of \(I_{\overline{a_{n-1}}} \), thus \(\gamma_{a_{n-1}} \gamma_{a_n}(\infty) \in I_{a_{n-1}} \). Repeating this argument, we get \(\gamma_a(\infty) \in I_{a_1} \). In particular, \(\gamma_a(\infty) \neq \infty \), so \(\gamma_a \) cannot be the identity.

3. This exercise explains why elements of Schottky groups have bounded distortion.

(a) We first discuss the way that a general element \(\gamma \in \text{SL}(2, \mathbb{R}) \) can map an interval to another interval. Assume that \(I, J \subset \mathbb{R} \) are intervals such that \(\gamma(I) = J \). Define the **distortion factor** of \(\gamma \) on \(I \) by
\[\alpha(\gamma, I) := \log \frac{\gamma^{-1}(\infty) - x_1}{\gamma^{-1}(\infty) - x_0} \in \mathbb{R} \quad \text{where} \quad I = [x_0, x_1]. \]
(If \(\gamma^{-1}(\infty) = \infty \), that is \(\gamma \) is an affine map, then we put \(\alpha(\gamma, I) := 0 \).) Show that \(\gamma \) can be factorized as
\[\gamma = \gamma_J \gamma_a(\gamma, I) \gamma_I^{-1}, \quad \gamma_I := \begin{pmatrix} e^{\alpha/2} & 0 \\ e^{-\alpha/2} - e^{\alpha/2} & e^{-\alpha/2} \end{pmatrix} \in \text{SL}(2, \mathbb{R}) \]
where \(\gamma_I, \gamma_J \in \text{SL}(2, \mathbb{R}) \) are the affine maps such that \(\gamma_I([0, 1]) = I, \gamma_J([0, 1]) = J \).

(b) Show that for each \(R \) there exists \(C \) such that in the notation of part (a)
\[|\alpha(\gamma, I)| \leq R \quad \Rightarrow \quad C^{-1} \frac{|J|}{|I|} \leq \gamma'(x) \leq C \frac{|J|}{|I|} \quad \text{for all} \quad x \in I. \]
(c) Let Γ be a Schottky group generated by $\gamma_1, \ldots, \gamma_r \in \text{SL}(2, \mathbb{R})$. Show that there exists C_Γ such that for all nonempty $a = a_1 \ldots a_n \in \mathcal{W}$ we have
\[C_\Gamma^{-1} |I_a| \leq \gamma'_a(x) \leq C_\Gamma |I_a| \quad \text{for all} \quad x \in I_{a_n}. \]
That is, the derivatives of the map γ_a are of comparable size at different points of I_{a_n}.

(d) Using the following special case of Γ-equivariance of the Patterson–Sullivan measure μ:
\[\mu(I_a) = \int_{I_{a_n}} (\gamma'_a(x))^\delta \, d\mu(x) \]
and the fact that $\mu(I_a) > 0$ for every $a \in \mathcal{A}$, show that for some constant C_Γ depending only on Γ
\[C_\Gamma^{-1} |I_a| \delta \leq \mu(I_a) \leq C_\Gamma |I_a| \delta. \]
Using this, show that Λ_Γ is δ-regular up to scale 0 with some constant depending only on Γ.

Solution: See §2 in arXiv:1704.02909.

4. This exercise explains why the transfer operator is of trace class on $\mathcal{H}(D)$. (See for instance Dyatlov–Zworski, *Mathematical Theory of Scattering Resonances*, Appendix B.4, for an introduction to trace class operators.) We consider the following simpler setting: $D \subset \mathbb{C}$ is the unit disk, $\mathcal{H}(D)$ is the space of holomorphic functions in $L^2(D)$ (it is a closed subspace of L^2 and thus a Hilbert space), and we consider the operator
\[L : \mathcal{H}(D) \to \mathcal{H}(D), \quad Lf(z) = f(z/2). \]
Show that L is trace class using one or both of the following methods:

(a) the fact that $\{z^k\}_{k \in \mathbb{N}_0}$ is an orthogonal basis in $\mathcal{H}(D)$;

Solution: We have $L(z^k) = 2^{-k}z^k$, so L is self-adjoint on $\mathcal{H}(D)$ and has eigenvalues 2^{-k}, $k \in \mathbb{N}_0$. The series $\sum_{k=0}^\infty 2^{-k}$ converges, so L is trace class.

(b) the Cauchy integral formula, where $\gamma \subset D$ is a contour surrounding the disk $\{|z| \leq \frac{1}{2}\}$
\[Lf(z) = \frac{1}{2\pi i} \oint_{\gamma} L_w f(z) \, dw, \quad L_w f(z) = \frac{f(w)}{w - z/2}, \]
together with the fact that each L_w is a rank 1 operator. (This solution easily adapts to the transfer operators that we study, where the key fact is that $\gamma_a(D_b) \not\subset D_a$ when $a \neq b$.)

Solution: Each L_w is a rank 1 operator, in fact $L_w = u_w \otimes \delta_w$ where $\delta_w : \mathcal{H}(D) \to \mathbb{C}$ is the delta function at w, $\delta_w(f) = f(w)$, and $u_w(z) = \frac{1}{w - z/2} \in \mathcal{H}(D)$. Thus in particular L_w is trace class. Since both δ_w and u_w depend continuously on w (the first one as a functional on $\mathcal{H}(D)$ with operator norm, the second one as an element of $\mathcal{H}(D)$), L_w depends continuously on w in the Banach space of trace class operators.
on $\mathcal{H}(D)$. So the integral above converges in that Banach space, which shows that L is trace class.

5. Assume that Γ is a Schottky group generated by just two intervals I_1, I_2. (The corresponding convex co-compact hyperbolic surface is a hyperbolic cylinder.) Let $x_1 \in I_1, x_2 \in I_2$ be the fixed points of γ_1 (and thus of $\gamma_2 = \gamma_1^{-1}$). Let $L_s : \mathcal{H}(D) \to \mathcal{H}(D)$ be the transfer operator where $D = D_1 \cup D_2 \subset \mathbb{C}$.

Show that the resonances (i.e. the values $s \in \mathbb{C}$ for which the equation $L_s u = u$ has a nonzero solution $u \in \mathcal{H}(D)$) are given by

$$s = -j + \frac{2\pi i}{\ell} k, \quad j \in \mathbb{N}_0, \quad k \in \mathbb{Z}, \quad \ell := -\log \gamma_1'(x_1) = -\log \gamma_2'(x_2) > 0.$$

(In fact, ℓ is the length of the closed geodesic on the cylinder $\Gamma \backslash \mathbb{H}^2$.)

Hint: if $L_s u = u$, then let j be the vanishing order of u at x_1 and expand the equation at $z = x_1$.

Solution: First of all, putting $x := x_1, y := x_2$ in the identity $|\gamma_1(x) - \gamma_1(y)|^2 = \gamma_1'(x)\gamma_1'(y)|x - y|^2$ we get $\gamma_1'(x_1)\gamma_1'(x_2) = 1$. Thus the definition of ℓ makes sense.

We have for $u \in \mathcal{H}(D)$

$$L_s u(z) = \begin{cases} (\gamma_1'(z))^s u(\gamma_1(z)), & z \in D_1; \\ (\gamma_2'(z))^s u(\gamma_2(z)), & z \in D_2. \end{cases}$$

The disks D_1, D_2 do not interact so we can consider u separately on these two. Let us focus on D_1.

Assume that $L_s u = u$ for some $s \in \mathbb{C}$ and $u \in \mathcal{H}(D_1) \setminus \{0\}$. Let $j \in \mathbb{N}_0$ be the vanishing order of u at $z = x_1$. Multiplying u by a constant we may assume that

$$u(z) = (z-x_1)^j + \mathcal{O}(|z-x_1|^{j+1}) \quad \text{as} \quad z \to x_1.$$

Expanding the identity $u(z) = L_s u(z)$ at $z = x_1$ and using that

$$\gamma_1(z) - x_1 = e^{-\ell}(z-x_1) + \mathcal{O}(|z-x_1|^2)$$

we get

$$(z-x_1)^j + \mathcal{O}(|z-x_1|^{j+1}) = e^{-\ell(s+j)}(z-x_1)^j + \mathcal{O}(|z-x_1|^{j+1})$$

which implies that $e^{-\ell(s+j)} = 1$ and thus

$$s = -j + \frac{2\pi i}{\ell} k \quad \text{for some} \quad k \in \mathbb{Z}. \quad (0.1)$$

Now, assume that s has the form (0.1) for some $j \in \mathbb{N}_0, k \in \mathbb{Z}$. We construct a nonzero $u \in \mathcal{H}(D)$ such that $L_s u = u$. Let us write

$$\gamma_1'(z) = e^{-\psi(z)}, \quad \gamma_1(z) - x_1 = (z-x_1)e^{-\psi(z)}, \quad z \in D_1$$

where $\psi(z)$ is a function such that $\psi(x_1) = 0$ and $\lim_{z \to x_1} \psi(z) \neq 0$. Then $u(z) = (z-x_1)^j + \mathcal{O}(|z-x_1|^{j+1})$ satisfies $L_s u(z) = u(z)$ for $z \in D_1$. The case $z \in D_2$ is similar.
where \(\varphi, \psi \) are holomorphic and bounded on \(D_1 \) and \(\varphi(x_1) = \psi(x_1) = \ell \). We look for \(u \) in the form
\[
u(z) = (z - x_1)^j e^{v(z)}
\]
where \(v \) is some bounded holomorphic function on \(D_1 \). Then \(L_s u = u \) is equivalent to the following equation for \(v \):
\[
e^{v(z)} = e^{-s\varphi(z) - j\psi(z) + v(\gamma_1(z))}, \quad z \in D_1.
\]
To satisfy the latter it suffices to construct \(v \) such that
\[
v(z) = v(\gamma_1(z)) + \theta(z), \quad z \in D_1
\]
where \(\theta(z) := -s\varphi(z) - j\psi(z) + 2\pi ik \) is holomorphic and bounded on \(D_1 \) and \(\theta(x_1) = 0 \).

Now, to solve (0.2) we put
\[
v(z) := \sum_{n=0}^{\infty} \theta(\gamma_1^n(z)), \quad z \in D_1
\]
where the terms of the series are holomorphic in \(D_1 \) and the series converges uniformly in \(D_1 \) since \(\gamma_1^n(z) \to x_1 \) exponentially fast as \(n \to \infty \).

6. Show the following version of the ‘Patterson–Sullivan’ gap: if \(\Re s > \delta \) then the equation \(L_s u = u \) has no nonzero solution \(u \in \mathcal{H}(D) \). To do this, show that a sufficiently large power \(L^n_s \) is a contracting operator on \(C(I) \) with the supremum norm, by writing out \(L^n_s \) as a sum over words in \(\mathcal{W}^n \) and using the results of Exercise 3.

Solution: Put \(\alpha := \Re s > \delta \). Take large \(n \). Then for any \(f \in C(I) \) we have
\[
L^n_s f(x) = \sum_{\substack{a \in \mathcal{W}^n \\text{\scriptsize{a} \rightarrow b}}} (\gamma'_a(x))^a f(\gamma_a(x)), \quad x \in I_b
\]
where \(a \rightarrow b \) means that \(a_n \neq \tilde{b} \) where \(a = a_1 \ldots a_n \).

By Exercise 3(c) we have \(|(\gamma'_a(x))^a| = |\gamma'_a(x)|^\alpha \leq C|I_a|^\alpha \) for \(x \in I_b, a \rightarrow b \). Here \(C \) is a constant independent of \(n \). Therefore
\[
\sup_I |L^n_s f| \leq r_n \sup_I |f|, \quad r_n := C \sum_{a \in \mathcal{W}^n} |I_a|^\alpha.
\]
Now by Exercise 3(d) we have
\[
\sum_{a \in \mathcal{W}^n} |I_a|^\delta \leq C \sum_{a \in \mathcal{W}^n} \mu(I_a) \leq C.
\]
Since \(\alpha > \delta \) and \(\max_{a \in \mathcal{W}^n} |I_a| \to 0 \) as \(n \to \infty \), we get \(r_n \to 0 \) as \(n \to \infty \). Thus for \(n \) large enough, \(L^n_s \) is a contraction on \(C(I) \) with the uniform norm. If \(u \in \mathcal{H}(D) \) and \(L_s u = u \), then it is easy to see that \(f := u|_I \in C(I) \) and \(L^n_s f = f \), which implies that \(u|_I = 0 \) and thus (by analytic continuation for instance) \(u = 0 \).
7. Fix $\delta \in [0, 1]$ and define the h-dependent intervals

$$X = Y = [-h^{1-\delta}, h^{1-\delta}].$$

Show that there exists a constant $c > 0$ such that

$$\| 1_{X} \mathcal{F}_h 1_{Y} \|_{L^2(\mathbb{R})} \to L^2(\mathbb{R}) \geq ch^{\max(0, \frac{1}{2} - \delta)}.$$

(Hint: apply this operator to a dilated cutoff function supported in Y.)

Solution: Fix $\chi \in C^\infty_c((-1, 1))$ such that $\| \chi \|_{L^2} = 1$ and $\hat{\chi}(0) \neq 0$ and define

$$u(y; h) = h^{\frac{1-\delta}{2}} \chi(h^{\delta-1}y), \quad \| u \|_{L^2} = 1, \quad \text{supp } u \subset Y.$$

Then

$$\mathcal{F}_h u(x) = \frac{h^{-\delta/2}}{\sqrt{2\pi}} \hat{\chi}(h^{-\delta}x),$$

so we compute

$$\| 1_{X} \mathcal{F}_h 1_{Y} u \|_{L^2(\mathbb{R})} = \frac{1}{\sqrt{2\pi}} \| \hat{\chi} \|_{L^2([-h^{1-2\delta}, h^{1-2\delta}])} \geq ch^{\max(0, \frac{1}{2} - \delta)}.$$

8. Let $Z \subset W$ be a partition, i.e. a finite set of nonempty words such that

$$\Lambda_{\Gamma} = \bigcup_{a \in Z} (\Lambda_{\Gamma} \cap I_a).$$

Let $\mathcal{Z} := \{ \bar{a} \mid a \in Z \}$ where $\bar{a} := a_n \ldots a_1$. Define the transfer operator $\mathcal{L}_{z,s}$ by

$$\mathcal{L}_{z,s} f(z) = \sum_{a \in \mathcal{Z}, \ a \sim b} (\gamma_{a'}(z))^s f(\gamma_{a'}(z)), \quad z \in D_b$$

where for $a = a_1 \ldots a_n$ we put $a' := a_1 \ldots a_{n-1}$ and say $a \sim b$ if $a_n = b$. Assume that $u \in \mathcal{H}(D)$ satisfies $\mathcal{L}_s u = u$. Show that $\mathcal{L}_{z,s} u = u$.

Solution: See Lemma 2.4 in arXiv:1704.02909.