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Abstract. This is a translation of the paper “Статистические свойства собственных
функций” which appeared in the Proceedings of the All-USSR School in Differential
Equations with Infinite Number of Independent Variables and in Dynamical Systems
with Infinitely Many Degrees of Freedom, Dilijan, Armenia, May 21–June 3, 1973;
published by the Armenian Academy of Sciences, Erevan, 1974. Translated from the
Russian original by Semyon Dyatlov.

1. Introduction

1.1. Let M be a compact smooth manifold and L be an elliptic differential operator
on M ; if M has a boundary, let us impose for instance Dirichlet boundary conditions.
What is the structure of eigenfunctions of L?

We restrict ourselves to the case when L = ∆ is the Laplace operator of a Riemannian
metric on M . If dimM = n = 1 then there is only one Laplace operator and its
eigenfunctions (up to a change of variables) have the form e±iλx.

A natural generalization of this to the higher dimensional case is the “quasianalytic”
asymptotic, looking for a high frequency eigenfunction with eigenvalue −λ2 in the
(local) form

m∑
j=1

gj(x)eiλfj(x).

See [1, p.69].

We look for the amplitude gj(x) and phase fj(x) in the form of asymptotic series

gj(x) ∼ g
(0)
j (x) + g

(1)
j (x)/λ+ . . . ;

fj(x) ∼ f
(0)
j (x) + f

(1)
j (x)/λ+ . . . (λ→∞).

(1)

Substituting these asymptotic series into the equation ∆u + λ2u = 0 we obtain a se-
quence of equations on the functions f (k)

j and g(k)j , starting from the following equation
on f (0)

j (x):

| grad f
(0)
j (x)| ≡ 1. (2)

1
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When considering this equation globally one has to keep in mind that λf (0)
j (x) plays the

role of phase, so when going around a loop it may increase by a multiple of 2π. More-
over, the number of leaves m of the function f (0)(x) is different at different points ofM
and these leaves are glued to each other along certain n− 1 dimensional submanifolds
(those submanifolds, known as caustics, are boundaries of envelopes of characteristics
of the equation (2)). In particular, in some region in M (known as the shadow region)
the function f (0) is not defined at all.

When crossing a caustic from one leaf to the other, the phase has a shift which is a
multiple of π

2
(the Arnold–Maslov index [2]). IfM has a boundary, then pairs of leaves

are also glued to each other there as well, and there is a phase shift when crossing from
one leaf to the other, depending on the boundary conditions used.

Typically there exists no global solution of the equation (2) with prescribed multi-
valued behavior. This is certainly true for compact Riemannian manifolds of negative
curvature. More ‘real-life’ examples are given by Laplace operators on domains with
concave boundary (for instance the interior of a hypocycloid, or a square minus a
disk). In these cases the eigenfunctions, which undoubtedly exist at arbitrarily large
frequencies, certainly do not have the “quasiclassical” form. So what do they look like?

1.2. The above question is not well-defined since we did not specify what information
we want to know about an eigenfunction. For instance, one could interpret this question
literally. Let the manifold M be very large (the entire universe). Assume that it is
excited at a wavelength in the visible light range. Then our eyes, observing at some
point of M , will see something on the ‘celestial sphere’.

What our eyes see is to some extent the answer to the question ‘what does an
eigenfunction look like?’.

In the ‘quasiclassical’ case we will see on the celestial sphere several separate ‘stars’.
If we move on the manifold, then the relative position of these ‘stars’ and their bright-
ness will vary. In particular, when crossing a caustic we will see that two ‘stars’ merge
into one (at which point their brightness increases by a scale) and then disappear (or
the same events in reverse).

If M has negative curvature, then we will see something opposite. Typically the
entire celestial sphere will appear uniformly bright ; moreover, the brightness does not
depend on our position and direction. This is the result whose precise formulation and
a sketch of the proof are given in the rest of this talk.
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2. The result

2.1. Let ∆ be the Laplace operator onM and put Λ =
√
−∆. We may define Sobolev

spaces Hs(M) as follows:

Hs = (Λ + 1)−sL2, ‖u‖s = ‖(Λ + 1)su‖L2 = ‖(Λ + 1)su‖0. (3)

In particular if u = uk is an eigenfunction of the operator ∆ with eigenvalue −λ2k, then
‖uk‖s = (λk + 1)s, since from now on we assume that eigenfunctions are normalized:
‖uk‖0 = 1.

Denote by T ∗M the cotangent bundle of M , T ∗xM be the cotangent space at a
point x ∈M , S∗M be the unit cotangent bundle, and S∗xM be the unit sphere in T ∗xM .

Let A(x, ξ) (x ∈ M , ξ ∈ T ∗xM) be a pseudodifferential symbol of order 0, i.e. A is
homogeneous of order 0 in ξ and smooth when ξ 6= 0.

Let Â be a pseudodifferential operator with symbol A(x, ξ). Our object of study
is the asymptotic behavior of the expression (Âuk, uk) (where (•, •) denotes the inner
product of L2(M)) as k →∞.

Note that the above inner product depends only on the symbol A(x, ξ). Indeed, if
Â1 and Â2 are two pseudodifferential operators with the symbol A(x, ξ), then ‖(Â1 −
Â2)u‖0 ≤ C‖u‖−1; in particular, ‖(Â1 − Â2)uk‖0 ≤ Cλ−1k .

Thus we may fix a way to construct a pseudodifferential operator Â from its symbol
(i.e. fix local coordinates on M , partition of unity etc.); the relation between the
pseudodifferential operator Â and its symbol will be bijective and linear.

Next, the symbol A(x, ξ) is determined (as it is homogeneous) by its restriction
A(x, ω) to S∗M (x ∈M , ω ∈ S∗xM). Denote by 〈A〉 the average of A(x, ω) over S∗M :

〈A〉 =
1

V (M)Ωn

∫
S∗M

A(x, ω) dxdω;

here V (M) is the volume ofM and Ωn is the area of the unit sphere in the n-dimensional
Euclidean space.

We assume that the eigenvalues of ∆ are simple. Then we introduce the probability
measure Ps(k) on the set Z+ of natural numbers depending on a parameter s > 0:

Ps(k) =
e−λ

2
ks∑∞

j=1 e
−λ2js

. (4)

A subsequence {ukj} of the sequence {uk} is called a density one subsequence if

lim
s→0

∞∑
j=1

Ps(kj) = 1, (5)
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this definition of the density of a sequence is somewhat more general than the usual
one.

We may now formulate the main result:

Theorem 1. Let B be a bounded set in C∞(S∗M). Then there exists a density one
subsequence {ukj} of {uk} such that limj→∞(Âukj , ukj) = 〈A〉 for each A(x, ω) ∈ B

(here Â is the pseudodifferential operator constructed from the symbol A(x, ω)).

An equivalent formulation is the following: let Fs(A; t) = Ps{k | (Âuk, uk) < t} be
the distribution function of the ‘random variable’ (Âuk, uk) with respect to the measure
Ps. Then

lim
s→0
Fs(A; t) =

{
0, t < 〈A〉,
1, t > 〈A〉.

(6)

The relation of this theorem with the explanation in the introduction is specified
below.

2.2. The proof of the theorem consists of four steps. Most of the argument applies to
any manifold; the fact that M is negatively curved is only used in one place.

For brevity, henceforth we denote a point (x, ω) ∈ S∗M by the letter z.

Lemma 2.1. There exists a sequence of probability measures µk(dz) on S∗M such that

lim
k→∞

[
(Âuk, uk)−

∫
S∗M

A(z)µk(dz)

]
= 0 (7)

uniformly for A(z) in any bounded set B ⊂ C∞(S∗M).

Proof. To prove this, consider the expression (Âuk, uk) for a fixed k. It is linear in
A(z), so we may regard it as the value at A(z) of some generalized function Uk(z):

(Âuk, uk) = 〈Uk(z), A(z)〉 (8)

(here 〈•, •〉 denote the inner product on S∗M rather than on M). In fact for each
finite k the function Uk(z) will be smooth but this is not important for us.

Let A(z) be a real-valued function. Then by the G̊arding inequality [4]

Re(Âuk, uk) ≥ inf
z
A(z)‖uk‖20 − C‖uk‖2− 1

2
,

| Im(Âuk, uk)| ≤ C‖uk‖2− 1
2
.

(9)

Moreover by construction

(Îuk, uk) = 1



STATISTICAL PROPERTIES OF EIGENFUNCTIONS 5

(where Î is the identity operator with symbol I(z) ≡ 1). The constant C is bounded
when A(z) ∈ B. Therefore

Re〈Uk(z), A(z)〉 ≥ inf
z
A(z)− cλ−1k ,

| Im〈Uk(z), A(z)〉| ≤ cλ−1k ,

〈Uk(z), 1〉 = 1.

(10)

If not for the term Cλ−1k on the right-hand sides then these would imply that Uk(z) is
a probability measure.

However, for large k the offending term becomes small and we may turn the gener-
alized function Uk(z) into a measure µk(dz), slightly changing its value on functions
A(z) ∈ B. �

2.3. It is not difficult to understand the meaning of the measure µk(dz). Consider
a solution to the wave equation of the form uk(x)eiλkt where λk is very large. Then
µk(dz) = µk(dx∧dω) is (up to a factor) the energy flux through the volume element dx
on M inside the solid angle dω. This interpretation lets us understand an important
property of the measure µk(dz): its invariance under the geodesic flow.

The geodesic flow is a one-parameter group Gt of transformations of the manifold
S∗M which preserve the volume dz. If z = (x, ω) ∈ S∗M then Gt(z) is constructed as
follows: take the geodesic of length t through the point x ∈M in the direction dual to
ω ∈ S∗xM . If x′ is its endpoint and ω′ ∈ S∗x′M is the unit cotangent vector dual to the
unit tangent vector to the geodesic at the point x′, then we put z′ = (x′, ω′) = Gt(z).

Lemma 2.2. Let B be a bounded set in C∞(S∗M), T > 0, and ε > 0. Then there
exists k0 such that for all k > k0, A(z) ∈ B, |t| < T∣∣∣∣ ∫ A(G−1t (z))µk(dz)−

∫
A(z)µk(dz)

∣∣∣∣ ≤ ε. (11)

It is known that every ‘high frequency’ solution u(x, t) to the wave equation the
energy is propagated along geodesics with unit speed. If u(x, t) = uk(x)eiλkt then the
energy flux is moreover stationary.

Therefore the measure µk(dz) is invariant under the geodesic flow with the same
precision with which we can define the energy flux (i.e. the more precise the higher
the frequency λk). Of course this argument does not replace a rigorous proof.

2.4. The following lemma shows that the measures µk(dz) are ‘Lebesgue on average’.

Lemma 2.3. Let B be a bounded set in C∞(S∗M). Then

lim
s→0

∑
k

Pk(s)

∫
S∗M

A(z)µk(dz) = 〈A〉
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uniformly in A ∈ B.

Proof. The proof uses a typical idea from spectral theory. LetG(x, x′, s) be the solution
to the problem {

∂
∂s
G(x, x′, s) = ∆x′G(x, x′, s)

G(x, x′, s)|s=0 = δ(x− x′);
(12)

G(x, x′, s) =
∑
k

uk(x)uk(x
′)e−λ

2
ks. (13)

It follows that ∑
k

Ps(k)

∫
S∗M

A(z)µk(dz) ∼
∑
k

Ps(k)(Âuk, uk)

∼ 1

V (M)
(2πs)

n
2

∫
M

Âx′G(x, x′, s)|x=x′ dx. (s→ 0)

(14)

As s → 0 the function G(x, x′, s) behaves as follows: for x′ 6= x it is exponentially
small, while for x′ close to x we have G(x, x′, s) ∼ (2πs)−n/2e−|x

′−x|2/(2s).

This function has a sharp peak at x′ = x when s = 0. Thus we may asymptotically
compute the result of applying to it the pseudodifferential operator Â. We obtain

Âx′G(x, x′, s)|x′=x ∼ (2πs)−
n
2

1

Ωn

∫
S∗M

A(x, ω) dx. (s→ 0) (15)

From here∑
k

Pk(s)

∫
S∗M

A(z)µk(dz) ∼ 1

V (M)Ωn

∫
M

dx

∫
S∗xM

A(x, ω) dω = 〈A〉 (16)

as needed. �

2.5. We now have everything needed for the proof of the theorem. More precisely:

(a) The manifold S∗M and the smooth flow Gt on it which preserves the Lebesgue
measure dz;

(b) The sequence of measures µk(dz) which are ‘almost invariant’ underGt (Lemma 2.2)
and ‘Lebesgue on average’ (Lemma 2.3).

We will prove that for each function A(z) ∈ C and each ε > 0 there exists a density
one subsequence {kj} such that∣∣∣∣ ∫

S∗M

A(z)µkj(dz)− 〈A〉
∣∣∣∣ < ε. (17)

This obviously implies the theorem.

For simplicity we assume that the measures µk are exactly invariant under Gt.
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Proof of the theorem. By Birkhoff’s Theorem there exists a full measure setM on S∗M
such that for each z ∈M there exists limT→∞

∫ T
0
A(Gt(z)) dt – the time average of the

function A(z) which is a measurable function of z. Since the manifold M is negatively
curved, the flow Gt is ergodic (this is the only place where we use that the curvature
is negative).

Therefore, the time average is equal to 〈A〉 almost everywhere on M.

Consider the set

M1(τ, ε) =

{
z :

∣∣∣∣ 1

T

∫ T

0

A(Gt(z)) dt− 〈A〉
∣∣∣∣ < ε ∀T ≥ τ

}
.

It is easy to see that ∀ε > 0 ∀δ > 0 ∃τ > 0

mes(S∗M \M1(τ, ε)) < δ

where mes denotes Lebesgue measure.

The flow Gt is smooth. Thus there exists an open neighborhood M̃ of the setM1(τ, ε)

with smooth boundary and such that

∀z ∈ M̃

∣∣∣∣1τ
∫ τ

0

A(Gt(z)) dt− 〈A〉
∣∣∣∣ < 2ε.

Let χ(z) be the characteristic function of M̃.

At this point it is appropriate to use the language of probability. Each sequence
{αk} can be treated as a random variable with respect to the measure Ps(k); then∑

k Ps(k)αk = Ms(α) will be its expected value.

As proved before the measures µk are ‘Lebesgue on average’. In particular this
means that

lim
s→0

Ms

(∫
S∗M

(1− χ(z))µk(dz)

)
< δ

so that for sufficiently small s

Ms

(∫
S∗M

(1− χ(z))µk(dz)

)
< δ.

The random value in parentheses is nonnegative. Thus by the Chebyshev inequality

Ps

{
k :

∫
S∗M

(1− χ(z))µk(dz) <
√
δ

}
> 1−

√
δ. (18)
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Assume that the measure µk satisfies the condition
∫
S∗M

(1−χ(z))µk(dz) <
√
δ. Then∣∣∣∣ ∫ A(z)µk(dz)− 〈A〉

∣∣∣∣ =

∣∣∣∣ ∫ (1− χ(z))A(z)µk(dz)−
∫

(1− χ(z))〈A〉µk(dz)

+

∫
χ(z)A(z)µk(dz)−

∫
χ(z)〈A〉µk(dz)

∣∣∣∣
≤
√
δ
(

max |A(z)|+ 〈A〉
)

+

∫
χ(z)µk(dz) ·

∣∣∣∣1τ
∫ τ

0

A(Gt(z)) dt− 〈A〉
∣∣∣∣

≤ 2
√
δmax |A(z)|+ 2ε.

We have thus shown that ∀ε > 0 ∀δ > 0 ∃s0 > 0 ∀s < s0

Ps

{
k :

∣∣∣∣ ∫ A(z)µk(dz)− 〈A〉
∣∣∣∣ < ε

}
> 1− δ.

Therefore lims→0 Ps{. . . } = 1. The theorem is proved. �
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