Resonances for open quantum maps

Semyon Dyatlov (MIT/Clay Mathematics Institute)
joint work with Long Jin (Purdue University)

September 12, 2016
We study open quantum maps with underlying chaotic dynamics

- Much studied issue: existence of spectral gap (do waves decay exponentially?)
- Known under dynamical “pressure condition” \(P(\frac{1}{2}) < 0 \), but is the gap there when it is violated?
- The only known cases with gap and \(P(\frac{1}{2}) > 0 \):
 - D–Zahl ’16 hyperbolic surfaces “near” the critical pressure value
 - D–Jin [this talk] gap for open quantum maps, all values of \(P(\frac{1}{2}) \)
- We study **open quantum maps** with underlying **chaotic** dynamics

- Much studied issue: existence of **spectral gap**
 (do waves decay exponentially?)

- Known under dynamical “pressure condition” $P(\frac{1}{2}) < 0$, but is the gap there when it is violated?

- The only known cases with gap and $P(\frac{1}{2}) > 0$:
 - D–Zahl ’16 hyperbolic surfaces “near” the critical pressure value
 - D–Jin [this talk] gap for open quantum maps, all values of $P(\frac{1}{2})$
We study open quantum maps with underlying chaotic dynamics.

Much studied issue: existence of spectral gap (do waves decay exponentially?)

Known under dynamical “pressure condition” $P(\frac{1}{2}) < 0$, but is the gap there when it is violated?

The only known cases with gap and $P(\frac{1}{2}) > 0$:

- D–Zahl ’16 hyperbolic surfaces “near” the critical pressure value
- D–Jin [this talk] gap for open quantum maps, all values of $P(\frac{1}{2})$
We study **open quantum maps** with underlying **chaotic** dynamics.

Much studied issue: existence of **spectral gap**

(do waves decay exponentially?)

Known under dynamical “pressure condition” $P(\frac{1}{2}) < 0$,

but is the gap there when it is violated?

The only known cases with gap and $P(\frac{1}{2}) > 0$:

- D–Zahl ’16 hyperbolic surfaces “near” the critical pressure value
- D–Jin [this talk] gap for open quantum maps, all values of $P(\frac{1}{2})$
• We study open quantum maps with underlying chaotic dynamics

• Much studied issue: existence of spectral gap
 (do waves decay exponentially?)

• Known under dynamical “pressure condition” \(P(\frac{1}{2}) < 0 \),
 but is the gap there when it is violated?

• The only known cases with gap and \(P(\frac{1}{2}) > 0 \):
 D–Zahl ’16 hyperbolic surfaces “near” the critical pressure value

D–Jin [this talk] gap for open quantum maps, all values of \(P(\frac{1}{2}) \)
We study open quantum maps with underlying chaotic dynamics.

Much studied issue: existence of spectral gap (do waves decay exponentially?)

Known under dynamical “pressure condition” $P(\frac{1}{2}) < 0$, but is the gap there when it is violated?

The only known cases with gap and $P(\frac{1}{2}) > 0$:
- D–Zahl ’16 hyperbolic surfaces “near” the critical pressure value
- D–Jin [this talk] gap for open quantum maps, all values of $P(\frac{1}{2})$
Overview of open quantum maps

- Resonances: complex characteristic frequencies of decaying waves in systems where energy is allowed to escape (e.g. obstacle scattering)
- **Open quantum chaos** studies the distribution of resonances, e.g. spectral gaps and fractal Weyl laws, with applications going as far as computer networks: Ermann–Frahm–Shepelyansky Rev.Mod.Phys.'15:

![Graphical representation](image_url)

Eigenvalues for the Google Matrix of the Linux kernel and Weyl asymptotics
Overview of open quantum maps

- **Resonances**: complex characteristic frequencies of decaying waves in systems where energy is allowed to escape (e.g. obstacle scattering)
- **Open quantum chaos** studies the distribution of resonances, e.g. spectral gaps and fractal Weyl laws, with applications going as far as computer networks: Ermann–Frahm–Shepelyansky Rev.Mod.Phys.’15
- **Open quantum maps**: popular models in open quantum chaos
 See reviews by Nonnenmacher ’11 (math), Novaes ’13 (physics)
- Proposed experiments: Hannay–Keating–Ozorio de Almeida ’94, Brun–Schack ’99
Open baker’s maps

Open baker’s maps $\kappa = \kappa_{M,A}$ are determined by

- an integer $M \geq 3$, the base
- a set $A \subset \{0, \ldots, M - 1\}$, the alphabet
- we always assume $1 < |A| < M$

κ is a canonical relation on $(0, 1)_x \times (0, 1)_\xi$:

$$\kappa : (x, \xi) \mapsto \left(Mx - a, \frac{\xi + a}{M} \right)$$

if $x \in \left(\frac{a}{M}, \frac{a + 1}{M} \right), \quad a \in A$

Basic model for a hyperbolic transformation with ‘holes’ through which one can escape
Cantor sets

For $k \in \mathbb{N}$, the domain and range of κ^k are

$$
\Gamma_k^- := \text{Domain}(\kappa^k) = \{(x, \xi) : \lfloor M^k \cdot x \rfloor \in C_k\}
$$

$$
\Gamma_k^+ := \text{Range}(\kappa^k) = \{(x, \xi) : \lfloor M^k \cdot \xi \rfloor \in C_k\}
$$

where $C_k \subset \{0, \ldots, M^k - 1\}$ is a discrete Cantor set:

$$
C_k = C_k(M, \mathcal{A}) = \left\{ \sum_{r=0}^{k-1} a_r M^r : a_0, \ldots, a_{k-1} \in \mathcal{A} \right\}
$$
Cantor sets

For $k \in \mathbb{N}$, the domain and range of κ^k are

$$
\Gamma_k^- := \text{Domain}(\kappa^k) = \{(x, \xi) : \lfloor M^k \cdot x \rfloor \in C_k\}
$$

$$
\Gamma_k^+ := \text{Range}(\kappa^k) = \{(x, \xi) : \lfloor M^k \cdot \xi \rfloor \in C_k\}
$$

where $C_k \subset \{0, \ldots, M^k - 1\}$ is a discrete Cantor set:

$$
C_k = C_k(M, A) = \left\{ \sum_{r=0}^{k-1} a_r M^r : a_0, \ldots, a_{k-1} \in A \right\}
$$

The limiting Cantor set

$$
C_\infty := \bigcap_k \bigcup_{c \in C_k} \left[\frac{c}{M^k}, \frac{c+1}{M^k} \right] \subset [0, 1]
$$

has Hausdorff dimension

$$
\delta := \frac{\log |A|}{\log M} \in (0, 1)
$$

Topological pressure: $P(s) = \delta - s$, $s \in \mathbb{R}$
Discrete microlocal analysis

Let $\ell^2_N := \ell^2(\mathbb{Z}_N)$, $\mathbb{Z}_N = \{0, \ldots, N-1\}$, $N \gg 1$. Fourier transform:

$$\mathcal{F}_N : \ell^2_N \to \ell^2_N, \quad \mathcal{F}_N u(j) = \frac{1}{\sqrt{N}} \sum_{\ell} e^{-2\pi i j \ell/N} u(\ell)$$

Quantization of observables on the torus $\mathbb{T}^2 = \mathbb{S}_x^1 \times \mathbb{S}_\xi^1$, $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$:

$$a \in C^\infty(\mathbb{T}^2) \implies \text{Op}_N(a) : \ell^2_N \to \ell^2_N$$

$\text{Op}_N(a)$ can localize in both position x and frequency ξ

Properties

- $a = a(x) \implies \text{Op}_N(a) = a_N$, $a_N(j) = a(j/N)$
- $a = a(\xi) \implies \text{Op}_N(a) = \mathcal{F}_N^* a_N \mathcal{F}_N$
- $[\text{Op}_N(a), \text{Op}_N(b)] = \frac{i}{2\pi N} \text{Op}_N(\{a, b\}) + O(N^{-2})_{\ell^2_N \to \ell^2_N}$
Discrete microlocal analysis

Let $\ell^2_N := \ell^2(\mathbb{Z}_N)$, $\mathbb{Z}_N = \{0, \ldots, N - 1\}$, $N \gg 1$. Fourier transform:

$$\mathcal{F}_N : \ell^2_N \to \ell^2_N, \quad \mathcal{F}_N u(j) = \frac{1}{\sqrt{N}} \sum_\ell e^{-2\pi ij\ell/N} u(\ell)$$

Quantization of observables on the torus $\mathbb{T}^2 = S^1_x \times S^1_\xi$, $S^1 = \mathbb{R}/\mathbb{Z}$:

$$a \in C^\infty(\mathbb{T}^2) \mapsto \text{Op}_N(a) : \ell^2_N \to \ell^2_N$$

$\text{Op}_N(a)$ can localize in both position x and frequency ξ

Properties

- $a = a(x) \iff \text{Op}_N(a) = a_N, \quad a_N(j) = a(j/N)$
- $a = a(\xi) \iff \text{Op}_N(a) = \mathcal{F}_N^* a_N \mathcal{F}_N$
- $[\text{Op}_N(a), \text{Op}_N(b)] = -\frac{i}{2\pi N} \text{Op}_N(\{a, b\}) + \mathcal{O}(N^{-2})_{\ell^2_N \to \ell^2_N}$
Open quantum baker’s maps

Example: $M = 3$, $A = \{0, 2\}$. We put $N := M^k$ and

$$B_N = \mathcal{F}_N^* \begin{pmatrix} \chi_{N/3} \mathcal{F}_{N/3} \chi_{N/3} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \chi_{N/3} \mathcal{F}_{N/3} \chi_{N/3} \end{pmatrix} : \ell^2_N \to \ell^2_N$$

where we fix $\chi \in C^\infty_0((0, 1); [0, 1])$, $\chi_N(j) = \chi(j/N)$

Why is B_N a quantization of $\kappa_{M,A}$? It satisfies Egorov’s theorem:

$$B_N \text{Op}_N(a) = \text{Op}_N(b)B_N + O(N^{-1})_{\ell^2_N \to \ell^2_N}$$

if $a(x, \xi) = b(y, \eta)$ when $\kappa_{M,A}(x, \xi) = (y, \eta)$, $\xi, y \in \text{supp} \chi$
Open quantum baker’s maps

Example: $M = 3$, $A = \{0, 2\}$. We put $N := M^k$ and

$$B_N = \mathcal{F}_N^* \left(\begin{array}{ccc} \chi_{N/3} & \mathcal{F}_{N/3} & \chi_{N/3} \\ 0 & 0 & 0 \\ 0 & 0 & \chi_{N/3} \mathcal{F}_{N/3} \chi_{N/3} \end{array} \right) : \ell_2^N \rightarrow \ell_2^N$$

where we fix $\chi \in C_0^\infty((0, 1); [0, 1])$, $\chi_N(j) = \chi(j/N)$

• Why is B_N a quantization of $\kappa_{M,A}$? It satisfies Egorov’s theorem:

$$B_N \text{Op}_N(a) = \text{Op}_N(b)B_N + O(N^{-1})_{\ell_2^N \rightarrow \ell_2^N}$$

if $a(x, \xi) = b(y, \eta)$ when $\kappa_{M,A}(x, \xi) = (y, \eta)$, $\xi, y \in \text{supp } \chi$
Setup

Open quantum baker’s maps

Example: $M = 3$, $A = \{0, 2\}$. We put $N := M^k$ and

$$B_N = \mathcal{F}_N^* \begin{pmatrix} \chi_{N/3} \mathcal{F}_{N/3} \chi_{N/3} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \chi_{N/3} \mathcal{F}_{N/3} \chi_{N/3} \end{pmatrix} : \ell^2_N \to \ell^2_N$$

where we fix $\chi \in C_0^\infty((0, 1); [0, 1])$, $\chi_N(j) = \chi(j/N)$

- Why is B_N a quantization of $\kappa_{M,A}$? It satisfies Egorov’s theorem:

$$B_N \operatorname{Op}_N(a) = \operatorname{Op}_N(b)B_N + \mathcal{O}(N^{-1})_{\ell^2_N \to \ell^2_N}$$

if $a(x, \xi) = b(y, \eta)$ when $\kappa_{M,A}(x, \xi) = (y, \eta)$, $\xi, y \in \operatorname{supp} \chi$

- Resonances = eigenvalues of B_N

$\operatorname{Spec}(B_N) \subset D(0, 1)$

- Similar procedure works for any M, A
Numerical example: $M = 5$, $A = \{1, 3\}$
Numerical example: $M = 5$, $\mathcal{A} = \{1, 3\}$

$\text{Spec}(B_N)$ for $k = 3$, $N = M^k$
Numerical example: $M = 5, \mathcal{A} = \{1, 3\}$
Numerical example: $M = 5$, $A = \{1, 3\}$

$\text{Spec}(B_N)$ for $k = 5$, $N = M^k$
Results: spectral gaps

Define the spectral radius of B_N:

\[R_N := \max \{ |\lambda| : \lambda \in \text{Spec}(B_N) \}, \quad N := M^k \]

Theorem 1 [D–Jin ’16]

There exists (explicitly computable!)

\[\beta = \beta(M, A) > \max \left(0, \frac{1}{2} - \delta \right) \]

such that B_N has an asymptotic spectral gap of size β:

\[
\limsup_{N \to \infty} R_N \leq M^{-\beta} < 1
\]

(1)

The convention $M^{-\beta} = e^{-\beta \log M}$ is due to κ having expansion rate M

The bound (1) with $\beta = -P(1/2) = \frac{1}{2} - \delta$ is the pressure gap, valid under the pressure condition $\delta < \frac{1}{2}$
Results: spectral gaps

Define the spectral radius of B_N:

$$R_N := \max \{ |\lambda| : \lambda \in \text{Spec}(B_N) \}, \quad N := M^k$$

Theorem 1 [D–Jin ’16]

There exists (explicitly computable!)

$$\beta = \beta(M, A) > \max \left(0, \frac{1}{2} - \delta \right)$$

such that B_N has an asymptotic spectral gap of size β:

$$\limsup_{N \to \infty} R_N \leq M^{-\beta} < 1 \quad (1)$$

The convention $M^{-\beta} = e^{-\beta \log M}$ is due to κ having expansion rate M

The bound (1) with $\beta = -P(1/2) = \frac{1}{2} - \delta$ is the pressure gap, valid under the pressure condition $\delta < \frac{1}{2}$.
Numerical example: $M = 5$, $A = \{1, 3\}$, $N = M^5$

For some cases the gap of Theorem 1 approximates the spectral radius well
Numerical example: $M = 5$, $\mathcal{A} = \{1, 2\}$, $N = M^5$

...and for some cases, this upper bound is far from sharp
Previous work

Nonnenmacher–Zworski ’07, Walsh quantization of open quantum baker’s maps which uses the Fourier transform on $\otimes^k \mathbb{Z}_M$ instead of \mathbb{Z}_N:
gap for $M = 3, \mathcal{A} = \{0, 2\}$, but no gap for $M = 4, \mathcal{A} = \{0, 2\}$

General hyperbolic systems:

- Patterson ’76, Sullivan ’79, Ikawa ’88, Gaspard–Rice ’89, Nonnenmacher–Zworski ’09: pressure gap $\beta = -P(\frac{1}{2})$ for $P(\frac{1}{2}) < 0$
- Naud ’05, Petkov–Stoyanov ’10, Stoyanov ’11, ’12, Bourgain–Gamburd–Sarnak ’11, Oh–Winter ’16: improved gap $\beta = -P(\frac{1}{2}) + \varepsilon$ for some systems with $P(\frac{1}{2}) \leq 0$, where $\varepsilon > 0$ depends on the system in an unspecified way. Build on Dolgopyat ’98
- D–Zahl ’16: improved gap $\beta > 0$ for hyperbolic surfaces with $P(\frac{1}{2}) = 0$ and nearby surfaces, some with $P(\frac{1}{2}) > 0$.
 Bounds on β in terms of constants in Ahlfors–David regularity of the limit set. Uses fractal uncertainty principle and additive combinatorics
Spectral gaps

Previous work

Nonnenmacher–Zworski ’07, Walsh quantization of open quantum baker’s maps which uses the Fourier transform on $\bigotimes^k \mathbb{Z}_M$ instead of \mathbb{Z}_N: gap for $M = 3$, $A = \{0, 2\}$, but no gap for $M = 4$, $A = \{0, 2\}$

General hyperbolic systems:

- **Patterson ’76, Sullivan ’79, Ikawa ’88, Gaspard–Rice ’89, Nonnenmacher–Zworski ’09**: pressure gap $\beta = -P(\frac{1}{2})$ for $P(\frac{1}{2}) < 0$

- **Naud ’05, Petkov–Stoyanov ’10, Stoyanov ’11, ’12, Bourgain–Gamburd–Sarnak ’11, Oh–Winter ’16**: improved gap $\beta = -P(\frac{1}{2}) + \varepsilon$ for some systems with $P(\frac{1}{2}) \leq 0$, where $\varepsilon > 0$ depends on the system in an unspecified way. Build on Dolgopyat ’98

- **D–Zahl ’16**: improved gap $\beta > 0$ for hyperbolic surfaces with $P(\frac{1}{2}) = 0$ and nearby surfaces, some with $P(\frac{1}{2}) > 0$. Bounds on β in terms of constants in Ahlfors–David regularity of the limit set. Uses fractal uncertainty principle and additive combinatorics
Previous work

Nonnenmacher–Zworski ’07, Walsh quantization of open quantum baker’s maps which uses the Fourier transform on $\otimes^k \mathbb{Z}_M$ instead of \mathbb{Z}_N: gap for $M = 3$, $A = \{0, 2\}$, but no gap for $M = 4$, $A = \{0, 2\}$

General hyperbolic systems:

- Patterson ’76, Sullivan ’79, Ikawa ’88, Gaspard–Rice ’89, Nonnenmacher–Zworski ’09: pressure gap $\beta = -P(\frac{1}{2})$ for $P(\frac{1}{2}) < 0$
- Naud ’05, Petkov–Stoyanov ’10, Stoyanov ’11, ’12, Bourgain–Gamburd–Sarnak ’11, Oh–Winter ’16: improved gap $\beta = -P(\frac{1}{2}) + \epsilon$ for some systems with $P(\frac{1}{2}) \leq 0$, where $\epsilon > 0$ depends on the system in an unspecified way. Build on Dolgopyat ’98
- D–Zahl ’16: improved gap $\beta > 0$ for hyperbolic surfaces with $P(\frac{1}{2}) = 0$ and nearby surfaces, some with $P(\frac{1}{2}) > 0$. Bounds on β in terms of constants in Ahlfors–David regularity of the limit set. Uses fractal uncertainty principle and additive combinatorics
Previous work

Nonnenmacher–Zworski ’07, Walsh quantization of open quantum baker’s maps which uses the Fourier transform on $\otimes^k \mathbb{Z}_M$ instead of \mathbb{Z}_N: gap for $M = 3, \mathcal{A} = \{0, 2\}$, but no gap for $M = 4, \mathcal{A} = \{0, 2\}$

General hyperbolic systems:

- Patterson ’76, Sullivan ’79, Ikawa ’88, Gaspard–Rice ’89, Nonnenmacher–Zworski ’09: pressure gap $\beta = -P(\frac{1}{2})$ for $P(\frac{1}{2}) < 0$
- Naud ’05, Petkov–Stoyanov ’10, Stoyanov ’11, ’12, Bourgain–Gamburd–Sarnak ’11, Oh–Winter ’16: improved gap $\beta = -P(\frac{1}{2}) + \varepsilon$ for some systems with $P(\frac{1}{2}) \leq 0$, where $\varepsilon > 0$ depends on the system in an unspecified way. Build on Dolgopyat ’98
- D–Zahl ’16: improved gap $\beta > 0$ for hyperbolic surfaces with $P(\frac{1}{2}) = 0$ and nearby surfaces, some with $P(\frac{1}{2}) > 0$. Bounds on β in terms of constants in Ahlfors–David regularity of the limit set. Uses fractal uncertainty principle and additive combinatorics
Reduction to fractal uncertainty principle

Let \((B_N - \lambda)u = 0, \|u\|_{\ell^2_N} = 1, |\lambda| \geq c > 0\)

Iterate Egorov’s theorem \(\rho k\) times, where \(N = M^k\), \(0 < 1 - \rho \ll 1\)

\[
B_N^k \text{Op}_N(a)u = \text{Op}_N(b)B_N^k u + O(N^{-\infty})
\]

if \(a(x, \xi) = b(y, \eta) + \text{L.O.T.}\) when \(\kappa^k(x, \xi) = (y, \eta)\)

This is still possible since the resulting symbols vary on the scale \(N^{-1}\)

Recall \(\Gamma_k^- = \text{Domain}(\kappa^k), \Gamma_k^+ = \text{Range}(\kappa^k)\)
Reduction to fractal uncertainty principle

Let \((B_N - \lambda)u = 0, \|u\|_{\ell^2_N} = 1, |\lambda| \geq c > 0\)

Iterate Egorov’s theorem \(\rho k\) times, where \(N = M^k, 0 < 1 - \rho \ll 1\)

\[
B^k_N \text{Op}_N(a)u = \text{Op}_N(b)\lambda^k u + \mathcal{O}(N^{-\infty})
\]

if \(a(x, \xi) = b(y, \eta) + \text{L.O.T.}\) when \(\kappa^k(x, \xi) = (y, \eta)\)

This is still possible since the resulting symbols vary on the scale \(N^{-1}\)

Recall \(\Gamma^-_k = \text{Domain}(\kappa^k), \Gamma^+_k = \text{Range}(\kappa^k)\)
Reduction to fractal uncertainty principle

Let \((B_N - \lambda)u = 0, \; \|u\|_{\ell^2_N} = 1, \; |\lambda| \geq c > 0\)

Iterate Egorov’s theorem \(\rho k\) times, where \(N = M^k\), \(0 < 1 - \rho \ll 1\)

\[B_N^k \text{Op}_N(a)u = \text{Op}_N(b)\lambda^k u + O(N^{-\infty})\]

if \(a(x, \xi) = b(y, \eta) + \text{L.O.T.}\) when \(\varphi^k(x, \xi) = (y, \eta)\)

This is still possible since the resulting symbols vary on the scale \(N^{-1}\)

Recall \(\Gamma_k^- = \text{Domain}(\varphi^k), \Gamma_k^+ = \text{Range}(\varphi^k)\)

- \(a \equiv 1, \; b \equiv 1_{\Gamma_k^+} \implies u = \text{Op}_N(1_{\Gamma_k^+})u + O(N^{-\infty})\)
- \(b \equiv 1, \; a \equiv 1_{\Gamma_k^-} \implies \|\text{Op}_N(1_{\Gamma_k^-})u\| \geq |\lambda|^k\)
- Contradiction if \(|\lambda| \geq M^{-\beta + \varepsilon}\) and the fractal uncertainty principle holds with exponent \(\beta\):

\[\|\text{Op}_N(1_{\Gamma_k^-})\text{Op}_N(1_{\Gamma_k^+})\|_{\ell^2_N \to \ell^2_N} \leq CN^{-\beta}\]
Reduction to fractal uncertainty principle

Let \((B_N - \lambda)u = 0, \|u\|_{\ell^2_N} = 1, |\lambda| \geq c > 0\)

Iterate Egorov’s theorem \(\rho k\) times, where \(N = M^k\), \(0 < 1 - \rho \ll 1\)

\[
B^k_N \, \text{Op}_N(a)u = \text{Op}_N(b) \lambda^k u + O(N^{-\infty})
\]

if \(a(x, \xi) = b(y, \eta) + \text{L.O.T.}\) when \(\varphi^k(x, \xi) = (y, \eta)\)

This is still possible since the resulting symbols vary on the scale \(N^{-1}\)

Recall \(\Gamma_k^- = \text{Domain}(\varphi^k), \Gamma_k^+ = \text{Range}(\varphi^k)\)

- \(a \equiv 1, b = 1_{\Gamma_k^+} \implies u = \text{Op}_N(1_{\Gamma_k^+})u + O(N^{-\infty})\)
- \(b \equiv 1, a = 1_{\Gamma_k^-} \implies \| \text{Op}_N(1_{\Gamma_k^-})u \| \geq |\lambda|^k\)

Contradiction if \(|\lambda| \geq M^{-\beta} + \varepsilon\) and the fractal uncertainty principle holds with exponent \(\beta\):

\[
\| \text{Op}_N(1_{\Gamma_k^-}) \text{Op}_N(1_{\Gamma_k^+}) \|_{\ell^2_N \to \ell^2_N} \leq CN^{-\beta}
\]
Reduction to fractal uncertainty principle

Let \((B_N - \lambda)u = 0, \|u\|_{\ell_2^N} = 1, \ |\lambda| \geq c > 0\)

Iterate Egorov’s theorem \(\rho k\) times, where \(N = M^k, 0 < 1 - \rho \ll 1\)

\[B_N^k \text{Op}_N(a)u = \text{Op}_N(b)\lambda^k u + O(N^{-\infty})\]

if \(a(x, \xi) = b(y, \eta) + \text{L.O.T.}\) when \(\varphi^k(x, \xi) = (y, \eta)\)

This is still possible since the resulting symbols vary on the scale \(N^{-1}\)

Recall \(\Gamma^-_k = \text{Domain}(\varphi^k), \Gamma^+_k = \text{Range}(\varphi^k)\)

- \(a \equiv 1, b = 1_{\Gamma^+_k}\) \(\implies\) \(u = \text{Op}_N(1_{\Gamma^+_k})u + O(N^{-\infty})\)
- \(b \equiv 1, a = 1_{\Gamma^-_k}\) \(\implies\) \(\|\text{Op}_N(1_{\Gamma^-_k})u\| \geq |\lambda|^k\)
- Contradiction if \(|\lambda| \geq M^{-\beta + \epsilon}\) and the fractal uncertainty principle holds with exponent \(\beta\):

\[\|\text{Op}_N(1_{\Gamma^-_k})\text{Op}_N(1_{\Gamma^+_k})\|_{\ell_2^N \to \ell_2^N} \leq CN^{-\beta}\]
Want to prove the fractal uncertainty principle

\[\| \text{Op}_N (1_{\Gamma^-_k}) \text{Op}_N (1_{\Gamma^+_k}) \|_{\ell^2_N \to \ell^2_N} \leq C N^{-\beta} \]

Using the relation of Γ^\pm_k with the Cantor set $C_k \subset \mathbb{Z}_N$, rewrite this as

\[\| 1_{C_k} \mathcal{F}_N 1_{C_k} \|_{\ell^2_N \to \ell^2_N} \leq C N^{-\beta} \] (2)

(2) \Rightarrow no function can be localized on C_k in both position and frequency

Volume bound: $N = M^k$, $|C_k| = |A|^k = N^\delta$, $\| \mathcal{F}_N \|_{\ell^1_N \to \ell^\infty_N} \leq N^{-1/2}$

\Rightarrow (2) with $\beta = \frac{1}{2} - \delta$, recovering the pressure gap

To prove Theorem 1, we need to improve over $\beta = 0$ and the volume bound
Want to prove the fractal uncertainty principle

$$\|\operatorname{Op}_N(1_{\Gamma_k^+}) \operatorname{Op}_N(1_{\Gamma_k^+})\|_{\ell^2_N \to \ell^2_N} \leq CN^{-\beta}$$

Using the relation of Γ_k^\pm with the Cantor set $C_k \subset \mathbb{Z}_N$, rewrite this as

$$\|1_{C_k} \mathcal{F}_N 1_{C_k}\|_{\ell^2_N \to \ell^2_N} \leq CN^{-\beta} \quad (2)$$

$(2) \Rightarrow$ no function can be localized on C_k in both position and frequency

Volume bound: $N = M^k$, $|C_k| = |\mathcal{A}|^k = N^{\delta}$, $\|\mathcal{F}_N\|_{\ell^1_N \to \ell^\infty_N} \leq N^{-1/2}$

\Rightarrow (2) with $\beta = \frac{1}{2} - \delta$, recovering the pressure gap

To prove Theorem 1, we need to improve over $\beta = 0$ and the volume bound.
Want to prove the fractal uncertainty principle

\[\| \text{Op}_N(1_{\Gamma^-})\text{Op}_N(1_{\Gamma^+}) \|_{\ell^2_N \to \ell^2_N} \leq C N^{-\beta} \]

Using the relation of \(\Gamma^\pm_k \) with the Cantor set \(C_k \subset \mathbb{Z}_N \), rewrite this as

\[\| 1_{C_k} \mathcal{F}_N 1_{C_k} \|_{\ell^2_N \to \ell^2_N} \leq C N^{-\beta} \quad (2) \]

(2) \(\implies \) no function can be localized on \(C_k \) in both position and frequency

Volume bound: \(N = M^k, \ |C_k| = |A|^k = N^\delta, \ \| \mathcal{F}_N \|_{\ell^1_N \to \ell^\infty_N} \leq N^{-1/2} \)

\(\implies \) (2) with \(\beta = \frac{1}{2} - \delta \), recovering the pressure gap

To prove Theorem 1, we need to improve over \(\beta = 0 \) and the volume bound
Proof of fractal uncertainty principle

Theorem 2 [D–Jin ’16]

We have $\|1_{C_k} F_N 1_{C_k}\|_{\ell^2_N \to \ell^2_N} \leq N^{-\beta}$ for some

$$\beta = \beta(M, \mathcal{A}) > \max \left(0, \frac{1}{2} - \delta \right)$$

- **Submultiplicativity:** if $r_k := \|1_{C_k} F_N 1_{C_k}\|_{\ell^2_N \to \ell^2_N}$ then $r_k + \ell \leq r_k \cdot r_\ell$
- Thus enough to show that $r_k < \min(1, N^{\delta-1/2})$ for some k
Proof of fractal uncertainty principle

Theorem 2 [D–Jin '16]

We have \(\|1_{C_k} \mathcal{F}_N 1_{C_k} \|_{\ell_N^2 \to \ell_N^2} \leq N^{-\beta} \) for some

\[
\beta = \beta(M, A) > \max \left(0, \frac{1}{2} - \delta \right)
\]

- **Submultiplicativity**: if \(r_k := \|1_{C_k} \mathcal{F}_N 1_{C_k} \|_{\ell_N^2 \to \ell_N^2} \) then \(r_{k+\ell} \leq r_k \cdot r_\ell \)
- Thus enough to show that \(r_k < \min(1, N^{\delta-1/2}) \) for some \(k \)
Proof of fractal uncertainty principle

Theorem 2 [D–Jin ’16]

We have $\|1_{C_k}F_N1_{C_k}\|_{\ell^2_N \to \ell^2_N} \leq N^{-\beta}$ for some

$$\beta = \beta(M, A) > \max\left(0, \frac{1}{2} - \delta\right)$$

- **Submultiplicativity:** if $r_k := \|1_{C_k}F_N1_{C_k}\|_{\ell^2_N \to \ell^2_N}$ then $r_{k+\ell} \leq r_k \cdot r_{\ell}$
- Thus enough to show that $r_k < \min(1, N^{\delta-1/2})$ for some k
- $r_k < 1$: if not, then find nonzero $u = 1_{C_k}u$, $F_Nu = 0$ on $\mathbb{Z}_N \setminus C_k$

 By cyclic shift, may assume that $M - 1 \notin A$. The polynomial

$$p(z) = \sum_j u(j)z^j$$

has degree at most $\max C_k \leq (M - 1)M^{k-1}$ and at least $|\mathbb{Z}_N \setminus C_k| \geq M^k - (M - 1)^k$ roots. Contradiction for large k
Proof of fractal uncertainty principle

Theorem 2 [D–Jin ’16]

We have \(\|1_{C_k} \mathcal{F}_N 1_{C_k}\|_{\ell^2_N \rightarrow \ell^2_N} \leq N^{-\beta} \) for some

\[
\beta = \beta(M, \mathcal{A}) > \max\left(0, \frac{1}{2} - \delta\right)
\]

- **Submultiplicativity:** if \(r_k := \|1_{C_k} \mathcal{F}_N 1_{C_k}\|_{\ell^2_N \rightarrow \ell^2_N} \) then \(r_k + \ell \leq r_k \cdot r_\ell \)
- Thus enough to show that \(r_k < \min(1, N^{\delta-1/2}) \) for some \(k \)
- \(r_k < N^{\delta-1/2} = \frac{|C_k|}{\sqrt{N}} \): if not, then

\[
\|1_{C_k} \mathcal{F}_N 1_{C_k}\|_{\ell^2_N \rightarrow \ell^2_N} = \frac{|C_k|}{\sqrt{N}} = \|1_{C_k} \mathcal{F}_N 1_{C_k}\|_{\text{HS}}
\]

Then \(1_{C_k} \mathcal{F}_N 1_{C_k} \) has rank 1, so all \(2 \times 2 \) minors are zero.

Contradiction when \(|\mathcal{A}| > 1, k = 2 \)
More on fractal uncertainty exponents

X axis: δ; Y axis: FUP exponent β (numerics); all alphabets with $M \leq 10$

Solid line: $\beta = \max(0, \frac{1}{2} - \delta)$, dashed line: $\beta = -\frac{P(1)}{2} = \frac{1 - \delta}{2}$
More on fractal uncertainty exponents

Bounds on β as $M \to \infty$:

- $\delta \leq 1/2$:
 $$\beta - \left(\frac{1}{2} - \delta\right) \gtrsim \frac{1}{M^8 \log M}$$

- $\delta \approx 1/2$: using additive energy,
 $$\beta \gtrsim \frac{1}{\log M}$$

- $\delta \geq 1/2$:
 $$\beta \gtrsim \exp\left(- M^{1-\delta} + o(1) \right)$$

Examples of alphabets (arithmetic progressions) with $\delta \leq 1/2$ and
 $$\beta - \left(\frac{1}{2} - \delta\right) \lesssim \frac{M^{2\delta - 1}}{\log M}$$

Examples of special alphabets with $\beta = \frac{1-\delta}{2}$
More on fractal uncertainty exponents

Bounds on β as $M \to \infty$:

$\delta \leq 1/2$:

$$\beta - \left(\frac{1}{2} - \delta \right) \gtrsim \frac{1}{M^8 \log M}$$

$\delta \approx 1/2$: using additive energy,

$$\beta \gtrsim \frac{1}{\log M}$$

$\delta \geq 1/2$:

$$\beta \gtrsim \exp \left(- M^{\frac{\delta}{1-\delta} + o(1)} \right)$$

- Examples of alphabets (arithmetic progressions) with $\delta \leq 1/2$ and
 $$\beta - \left(\frac{1}{2} - \delta \right) \lesssim \frac{M^{2\delta - 1}}{\log M}$$

- Examples of special alphabets with $\beta = \frac{1-\delta}{2}$
Special alphabets with $\beta = \frac{1-\delta}{2}$

We call \mathcal{A} a **special alphabet**, if

$$\text{for all } j, \ell \in \mathcal{A}, j \neq \ell, \text{ we have } \mathcal{F}_M(1_{\mathcal{A}})(j - \ell) = 0$$

(3)

Such \mathcal{A} have $\beta = \frac{1-\delta}{2} = -\frac{P(1)}{2}$, which is the largest possible value of β and all nonzero singular values of $1_{C^k} \mathcal{F}_{N}1_{C^k}$ are equal to $N^{-\beta}$.
Spectral gaps

Special alphabets with $\beta = \frac{1-\delta}{2}$

We call \mathcal{A} a **special alphabet**, if

$$
\text{for all } j, \ell \in \mathcal{A}, j \neq \ell, \text{ we have } \mathcal{F}_M(1_{\mathcal{A}})(j - \ell) = 0
$$

(3)

Such \mathcal{A} have $\beta = \frac{1-\delta}{2} = -\frac{P(1)}{2}$, which is the largest possible value of β and all nonzero singular values of $1_C^k \mathcal{F}_N 1_C^k$ are equal to $N^{-\beta}$

Example: $M = 6, \mathcal{A} = \{1, 4\}, N = M^5$
Special alphabets with $\beta = \frac{1-\delta}{2}$

We call \mathcal{A} a special alphabet, if

$$\text{for all } j, \ell \in \mathcal{A}, \ j \neq \ell, \ \text{we have } \mathcal{F}_M(1_{\mathcal{A}})(j - \ell) = 0$$

(3)

Such \mathcal{A} have $\beta = \frac{1-\delta}{2} = -\frac{P(1)}{2}$, which is the largest possible value of β and all nonzero singular values of $1_{\mathcal{C}^k} \mathcal{F}_N 1_{\mathcal{C}^k}$ are equal to $N^{-\beta}$

Example: $M = 8$, $\mathcal{A} = \{2, 4\}$, $N = M^4$
Special alphabets with $\beta = \frac{1-\delta}{2}$

We call \mathcal{A} a special alphabet, if

$$\text{for all } j, \ell \in \mathcal{A}, j \neq \ell, \text{ we have } \mathcal{F}_M(1_\mathcal{A})(j - \ell) = 0$$

(3)

Such \mathcal{A} have $\beta = \frac{1-\delta}{2} = -\frac{P(1)}{2}$, which is the largest possible value of β and all nonzero singular values of $1_{C^k} \mathcal{F}_N 1_{C^k}$ are equal to $N^{-\beta}$

Example: $M = 8$, $\mathcal{A} = \{1, 2, 5, 6\}$, $N = M^4$
Special alphabets with $\beta = \frac{1-\delta}{2}$

We call \mathcal{A} a special alphabet, if

$$\text{for all } j, \ell \in \mathcal{A}, j \neq \ell, \text{ we have } \mathcal{F}_M(\mathbf{1}_\mathcal{A})(j - \ell) = 0 \quad (3)$$

Such \mathcal{A} have $\beta = \frac{1-\delta}{2} = -\frac{P(1)}{2}$, which is the largest possible value of β and all nonzero singular values of $\mathbf{1}_{C^k} \mathcal{F}_N \mathbf{1}_{C^k}$ are equal to $N^{-\beta}$

Conjecture 1 (band structure)

Assume (M, \mathcal{A}) satisfies (3). Then there exists $\mu > \frac{1-\delta}{2}$ such that:

- For any $\varepsilon > 0$ and N large, there is a second gap
 $$\text{Spec}(B_N) \cap \{ M^{-\mu} \leq |\lambda| \leq M^{-\frac{1-\delta}{2}} - \varepsilon \} = \emptyset$$

- Eigenvalues in the first band satisfy exact fractal Weyl law:
 $$| \text{Spec}(B_N) \cap \{|\lambda| \geq M^{-\mu} \}| = |\mathcal{A}|^k = N^\delta$$

Conjecture 1 is confirmed by numerics
Results: resonance counting

We count eigenvalues of B_N in annuli:

$$
\#(N, \nu) = | \text{Spec}(B_N) \cap \{|\lambda| \geq M^{-\nu}\} |
$$

Theorem 3 [D–Jin ’16]

For each $\varepsilon > 0$ and $\nu > 0$ we have the fractal Weyl upper bound

$$
\#(N, \nu) \leq C_{\nu, \varepsilon} N^{m(\delta, \nu)+\varepsilon}, \quad m(\delta, \nu) = \min(\delta, 2\nu + 2\delta - 1)
$$

Note: $m = \delta$ for $\nu \geq \frac{1-\delta}{2} = -\frac{P(1)}{2}$, $m < 0$ for $\nu < \frac{1}{2} - \delta = -P\left(\frac{1}{2}\right)$
Results: resonance counting

We count eigenvalues of B_N in annuli:

$$\#(N, \nu) = \left| \text{Spec}(B_N) \cap \{ |\lambda| \geq M^{-\nu} \} \right|$$

Theorem 3 [D–Jin ’16]

For each $\varepsilon > 0$ and $\nu > 0$ we have the fractal Weyl upper bound

$$\#(N, \nu) \leq C_{\nu, \varepsilon} N^{m(\delta, \nu) + \varepsilon}, \quad m(\delta, \nu) = \min(\delta, 2\nu + 2\delta - 1)$$

- Sjöstrand ’90, Guillopé–Lin–Zworski ’04, Sjöstrand–Zworski ’07, Nonnenmacher–Sjöstrand–Zworski ’11, ’14, Datchev–D ’13: $\#(N, \nu) \leq C_{\nu} N^{\delta}$ for more general hyperbolic situations
- Lu–Sridhar–Zworski ’03: concentration of decay rates near $\nu = -P(1)/2$. Jakobson–Naud ’12 conjectured gap of this size
- Naud ’14, Jakobson–Naud ’14: $\#(N, \nu) \leq C_{\nu} N^{m(\nu)}, \ m(\nu) < \delta$ for $\nu < 1/2 - \delta$ for convex co-compact hyperbolic surfaces
- D ’15: Theorem 3 for convex co-compact hyperbolic manifolds
Results: resonance counting

We count eigenvalues of B_N in annuli:

$$
\#(N, \nu) = | \text{Spec}(B_N) \cap \{ |\lambda| \geq M^{-\nu} \} |
$$

Theorem 3 [D–Jin '16]

For each $\varepsilon > 0$ and $\nu > 0$ we have the fractal Weyl upper bound

$$
\#(N, \nu) \leq C_{\nu, \varepsilon} N^{m(\delta, \nu) + \varepsilon}, \quad m(\delta, \nu) = \min(\delta, 2\nu + 2\delta - 1)
$$

- Sjöstrand '90, Guillopé–Lin–Zworski '04, Sjöstrand–Zworski '07, Nonnenmacher–Sjöstrand–Zworski '11, '14, Datchev–D '13: $\#(N, \nu) \leq C_{\nu} N^\delta$ for more general hyperbolic situations
- Lu–Sridhar–Zworski '03: concentration of decay rates near $\nu = -P(1)/2$. Jakobson–Naud '12 conjectured gap of this size
- Naud '14, Jakobson–Naud '14: $\#(N, \nu) \leq C_{\nu} N^{m(\nu)}, m(\nu) < \delta$ for $\nu < \frac{1}{2} - \delta$ for convex co-compact hyperbolic surfaces
- D '15: Theorem 3 for convex co-compact hyperbolic manifolds
Results: resonance counting

We count eigenvalues of B_N in annuli:

$$\#(N, \nu) = \left| \text{Spec}(B_N) \cap \{ |\lambda| \geq M^{-\nu} \} \right|$$

Theorem 3 [D–Jin ’16]

For each $\varepsilon > 0$ and $\nu > 0$ we have the fractal Weyl upper bound

$$\#(N, \nu) \leq C_{\nu, \varepsilon} N^{m(\delta, \nu)+\varepsilon}, \quad m(\delta, \nu) = \min(\delta, 2\nu + 2\delta - 1)$$

No matching lower bounds are known, except

Nonnenmacher–Zworski ’07: Exact fractal Weyl law for Walsh quantization

Conjecture 2 (fractal Weyl law)

For each $\nu > \frac{1-\delta}{2}$, we have $\#(N, \nu) \geq c_{\nu} N^{\delta} > 0$

Conjecture 2 is also supported by numerics
Results: resonance counting

We count eigenvalues of B_N in annuli:

$$\#(N, \nu) = |\text{Spec}(B_N) \cap \{ |\lambda| \geq M^{-\nu} \}|$$

Theorem 3 [D–Jin ’16]

For each $\varepsilon > 0$ and $\nu > 0$ we have the fractal Weyl upper bound

$$\#(N, \nu) \leq C_{\nu, \varepsilon} N^{m(\delta, \nu) + \varepsilon}, \quad m(\delta, \nu) = \min(\delta, 2\nu + 2\delta - 1)$$

Ideas of the proof

- Recall that for $(B_N - \lambda)u = 0$, $\|u\| = 1$, $|\lambda| \geq M^{-\nu}$,

 $$u = \text{Op}_N(1_{\Gamma_+^k})u + O(N^{-\infty}), \quad \|\text{Op}_N(1_{\Gamma_-^k})u\| \geq N^{-\nu}$$

- The first statement $\Rightarrow \#(N, \nu) \lesssim \text{Rank}(\text{Op}_N(1_{\Gamma_+^k})) = N^\delta$

- Both statements together $\Rightarrow \#(N, \nu) \lesssim N^{2\nu + 2\delta - 1}$
Results: resonance counting

We count eigenvalues of B_N in annuli:

$$\#(N, \nu) = \left| \text{Spec}(B_N) \cap \{ |\lambda| \geq M^{-\nu} \} \right|$$

Theorem 3 [D–Jin ’16]

For each $\varepsilon > 0$ and $\nu > 0$ we have the fractal Weyl upper bound

$$\#(N, \nu) \leq C_{\nu, \varepsilon} N^{m(\delta, \nu) + \varepsilon}, \quad m(\delta, \nu) = \min(\delta, 2\nu + 2\delta - 1)$$

Ideas of the proof

- Recall that for $(B_N - \lambda)u = 0$, $\|u\| = 1$, $|\lambda| \geq M^{-\nu}$,

 $$u = \text{Op}_N(1_{\Gamma_k^+})u + O(N^{-\infty}), \quad \|\text{Op}_N(1_{\Gamma_k^-})u\| \geq N^{-\nu}$$

- The first statement $\implies \#(N, \nu) \lesssim \text{Rank}(\text{Op}_N(1_{\Gamma_k^+})) = N^\delta$

- Both statements together $\implies \#(N, \nu) \lesssim N^{2\nu + 2\delta - 1}$
Results: resonance counting

We count eigenvalues of B_N in annuli:

$$
\#(N, \nu) = |\text{Spec}(B_N) \cap \{|\lambda| \geq M^{-\nu}\}|
$$

Theorem 3 [D–Jin '16]

For each $\varepsilon > 0$ and $\nu > 0$ we have the fractal Weyl upper bound

$$
\#(N, \nu) \leq C_{\nu, \varepsilon} N^{m(\delta, \nu) + \varepsilon}, \quad m(\delta, \nu) = \min(\delta, 2\nu + 2\delta - 1)
$$

Ideas of the proof

- Recall that for $(B_N - \lambda)u = 0$, $\|u\| = 1$, $|\lambda| \geq M^{-\nu}$,

 $$
u = \text{Op}_N(1_{\Gamma^+})u + O(N^{-\infty}), \quad \|\text{Op}_N(1_{\Gamma^+})u\| \geq N^{-\nu}
$$

- The first statement $\Rightarrow \#(N, \nu) \lesssim \text{Rank}(\text{Op}_N(1_{\Gamma^+})) = N^\delta$

- Both statements together $\Rightarrow \#(N, \nu) \lesssim N^{2\nu + 2\delta - 1}$
Numerical example: $M = 6, \mathcal{A} = \{1, 2, 3, 4\}$
Numerical example: $M = 6$, $A = \{1, 2, 3, 4\}$
Numerical example: $M = 6$, $A = \{1, 2, 3, 4\}$
Numerical example: $M = 6$, $A = \{1, 2, 3, 4\}$

Plot of $\log \#(M^k, \nu)/\log M$ as a function of k
Numerical example: $M = 6$, $\mathcal{A} = \{1, 2, 3, 4\}$

Linear fits for the growth exponent of $\#(N, \nu)$ and the bound of Theorem 3
Summary

- We obtain results on spectral gap which lie well beyond what is known for more general systems.

- We use fractal uncertainty principle, the fine structure of the associated Cantor sets, and simple tools from harmonic analysis, algebra, combinatorics, and number theory.

- We also show a fractal Weyl upper bound.

- We discover that the studied systems form a rich class with a variety of different types of behavior.
Thank you for your attention!
Results: dependence on cutoff

Recall that the definition of $B_N = B_{N, \chi}$ involved a cutoff function

$$\chi \in C_0^\infty((0, 1); [0, 1])$$

e.g. for $M = 3$, $A = \{0, 2\}$

$$B_N = \mathcal{F}_N^* \begin{pmatrix} \chi_{N/3} \mathcal{F}_{N/3} \chi_{N/3} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \chi_{N/3} \mathcal{F}_{N/3} \chi_{N/3} \end{pmatrix}$$

Theorem 4 [D–Jin ’16]

Assume that $\chi_1, \chi_2 \in C_0^\infty((0, 1); [0, 1])$ and $\chi_1 = \chi_2$ near the Cantor set $C_\infty \subset [0, 1]$. Then for each ν, eigenvalues of B_{N, χ_1} in $\{|\lambda| \geq M^{-\nu}\}$ are $O(N^{-\infty})$ quasimodes of B_{N, χ_2}.
If $0, M - 1 \notin \mathcal{A}$ it is natural to take $\chi = 1$ near C_∞. However we cannot take $\chi \equiv 1$:

$$M = 5, \mathcal{A} = \{1, 3\}, N = M^5, \chi_1 = \chi_2 = 1 \text{ near } C_\infty$$