
SEMICLASSICAL LAGRANGIAN DISTRIBUTIONS

SEMYON DYATLOV

Abstract. These are (rather sloppy) notes for the talk given in UC Berkeley in
March 2012, attempting to explain the global theory of semiclassical Lagrangian
distributions and some of its applications.

1. Overview

In this expository note, we will sketch the construction of semiclassical Lagrangian

distributions, which are rapidly oscillating functions associated to Lagrangian subman-

ifolds.

Let us first recall several definitions from symplectic geometry. Let M be a smooth

manifold of dimension n, then the cotangent bundle T ∗M has a naturally ocurring

symplectic form, which we denote ω. In fact, we have

ω = dα,

where

α := ξ dx

is the canonical 1-form on T ∗M . Here x denotes some coordinates on M and ξ the

dual coordinates on the fibers of the cotangent bundle; the form α is independent of

the choice of coordinates, as one can think of αρ(v) for ρ ∈ T ∗M and v ∈ Tρ(T ∗M)

as pairing the cotangent vector ρ with the image of v under the differential of the

canonical projection map

π : T ∗M →M ;

the latter image is a tangent vector at π(ρ).

A Lagrangian submanifold is a submanifold Λ ⊂ T ∗M of dimension n that is

isotropic, namely the pullback of ω under the inclusion map Λ→ T ∗M is zero. In other

words, the tangent space of Λ at any point ρ is a Lagrangian subspace of the linear

symplectic space Tρ(T
∗M), in the sense that it has dimension n and the symplectic

form ω vanishes on this subspace. Note that n is the maximal possible dimension of a

Lagrangian subspace on which ω vanishes, because ω is nondegenerate.

If M1,M2 are manifolds of the same dimension, then a canonical transformation is

a symplectomorphism κ : T ∗M1 → T ∗M2; in other words, κ∗ω2 = ω1. If we consider
1
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the flipped graph

Γκ := {(x, ξ; y,−η) | κ(x, ξ) = (y, η)},

then Γκ is a Lagrangian submanifold of T ∗(M1 ×M2). The latter property makes it

possible to talk about canonical relations (defined as relations whose flipped graphs

are Lagrangian submanifolds), which can be considered also when M1 and M2 are not

necessarily of the same dimension.

The main goal of this note is to associate to each Lagrangian submanifold Λ ⊂ T ∗M

the space of Lagrangian distributions I(Λ). These are distributions (for a compact

Λ, they will actually be smooth functions) depending on the semiclassical parameter

h > 0, and we will be interested in their asymptotic as h → 0. In particular, dis-

tributions that are O(h∞) will be considered negligible (namely, our theory cannot

distinguish those from zero). The inverse of the semiclassical parameter corresponds

to the frequency at which our distributions oscillate.

The origin of semiclassical analysis (that is, microlocal analysis with the semiclassi-

cal parameter h) lies in semiclassical approximation in quantum mechanics, that asso-

ciates the behaviour of quantum objects (e.g. wave functions of quantum particles, or

eigenfunctions of quantum Hamiltonians) to their classical behavior (e.g. Newtonian

mechanics, or Hamiltonian flows of the classical Hamiltonians). However, semiclassi-

cal techniques have a wide range of uses in the theory linear and nonlinear differential

equations which go beyond the original applications to quantum mechanics.

Semiclassical analysis is an extension of microlocal analysis ; the latter studies the

structure of singularities of solutions to linear differential equations. The difference

between the two on the classical level is that in microlocal analysis, one studies the

growth of the symbols a(x, ξ) as |ξ| → ∞, while in semiclassical analysis, one studies

the decay in h of h-dependent symbols a(x, ξ;h). On the quantum (or PDE) level, mi-

crolocal analysis studies the singularities of functions (i.e., their failure to be smooth),

while semiclassical analysis is more interested in behavior of h-dependent functions as

h→ 0. Note though that in a full treatment of semiclassical analysis, the two aspects

are combined – one studies both decay as h→ 0 and asymptotic behavior as |ξ| → ∞;

therefore, microlocal analysis could be regarded a subset of semiclassical analysis.

Going back to Lagrangian distributions, we will define a geometrically invariant

symbol map

σ : I(Λ)→ C∞(Λ;M),

whereM is a certain line bundle that will be specified later. The kernel of σ is exactly

hI(Λ); that is, Lagrangian distributions that decay like h. Therefore, one can write

the exact sequence

0→ hI(Λ)→ I(Λ)
σ−→ C∞(Λ;M)→ 0.
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The presence of a geometrically invariant symbol map (and in particular the defini-

tion of the line bundle M) defines the boundary between local and global theory of

Lagrangian distributions. That is, both theories study the same space of Lagrangian

distributions, but while local theory is content with just verifying that something is

a Lagrangian distribution, the global theory demands to express it in a geometrically

invariant way up to O(h) errors. The local theory is enough for most applications in

analysis (and is used in roughly every second paper on semiclassical analysis). The

global theory is needed in much fewer cases, however it is indispensable in writing

quantization conditions for quantum integrable systems, an application which we will

look at in the present note.

One can similarly consider Fourier integral operators associated to some canonical

relation κ ⊂ T ∗M1 × T ∗M2. These are defined as follows: if M1,M2 are manifolds

of dimension n1 and n2, respectively, A(h) : C∞(M1) → C∞(M2) is an h-dependent

family of operators and KA(h) is its Schwartz kernel:

A(h)u(x) =

∫
KA(x, y;h)u(y) dy,

thenA is a Fourier integral operator associated to κ (we denoteA ∈ I(κ)) if h(n1+n2)/4KA

is a Lagrangian distribution associated to the flipped graph Γκ. (The renormalization

h(n1+n2)/4 occurs because we want the L2 norm of a Lagrangian distribution to be ∼ 1,

but the L2 → L2 operator norm of a Fourier integral operator to be ∼ 1.)

Let us now give several examples of Lagrangian distributions or Fourier integral

operators:

(1) Assume that we have an quantum integrable system, namely on a compact man-

ifold M of dimension n, we specify n semiclassical pseudodifferential operators

P1, . . . , Pn that commute: [Pj, Pk] = 0. Assume also that the principal sym-

bols p1, . . . , pn ∈ C∞(T ∗M) of these operators are real-valued. Define the map

p : T ∗M → Rn by p = (p1, . . . , pn) and assume that it has no critical points on

the set p−1(0). Then p is an integrable Hamiltonian system near p−1(0), and

the latter is a (or perhaps a union of finitely many) Lagrangian torus in T ∗M .

Then any L2 normalized joint eigenfunction u:

Pju = λju, λj = O(h),

is a Lagrangian distribution associated to p−1(0). What is also important is

that we will be able to approximate the joint spectrum near 0 by a certain

quantization condition; to write out the latter, one needs to know the global

theory of Lagrangian distributions.

(2) If M1,M2 are manifolds (not necessarily of the same dimension) and ϕ : M1 →
M2 is a smooth map, then the pullback ϕ∗ : C∞(M2) → C∞(M1) is (after

multiplying by a certain power of h) a Fourier integral operator associated to
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the following canonical relation:

κ := {(x, ξ; y, η) ∈ T ∗(M1 ×M2) | y = ϕ(x), ξ = (dϕ)∗x · η}.

Here (dϕ)∗x : T ∗ϕ(x)M2 → T ∗xM1 is the dual to the map (dϕ)x : TxM1 → Tϕ(x)M2.

This example in particular includes pullbacks by diffeomorphisms and restric-

tion to submanifolds.

(3) If P is a self-adjoint semiclassical pseudodifferential operator on M , then for

each fixed t, the semiclassical Schrödinger propagator

exp(itP/h) : L2(M)→ L2(M),

is a Fourier integral operator associated to the Hamiltonian flow exp(tHp). This

in particular includes the Schrödinger propagator eith∆ = eit(h
2∆)/h in the case

when M has a Riemannian metric, which is associated to the (rescaled) geodesic

flow on M . Same is true for the wave propagator eit
√

∆, which is associated to

a different rescaling of the geodesic flow.

Finally, we should remark that the present notes do not contain rigorous proofs

or explanations of most facts listed; the reader interested in the presented theory is

referred to several treatments of the subject, listed in the last section. We remark

however that the main tool is the following method of stationary phase: if M is a

manifold, Φ is a (real-valued in particular) Morse function on M with critical points

x1, x2, . . . , then there exist differential operators Ljk of order 2j on M at each critical

point xk such that for each a ∈ C∞0 (M) and each positive integer N ,∫
M

e
i
h

Φ(x)a(x) dx =
∑

0≤j<N

hn/2+j
∑
k

e
i
h

Φ(xk)(Ljka)(xk) +O(hn/2+N).

Moreover, the following formula for L0 will prove useful in explaining the structure of

the Maslov bundle M:

L0k = (2π)n/2| det(d2Φ(xk))|−1/2e
iπ
4

sgn(d2Φ(xk)),

where sgn(d2Φ(xk)) is the signature of the Hessian d2Φ(xk) (namely, the number of

positive eigenvalues minus the number of negative eigenvalues).

2. Local theory of Lagrangian distributions

We start by considering the function

u(x;h) := eiΦ(x)/hb(x). (2.1)

Here Φ(x) is a real-valued smooth function on M , called the phase function, and b(x)

is an h-independent smooth function (or more generally, a classical symbol in h in the

sense that b(x;h) is smooth up to h = 0), called the amplitude (or the symbol, though

we will reserve this term for geometrically invariant objects) of u.
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We would like to see where u(x;h) is microlocalized, e.g. where it is concentrated in

the phase space T ∗M . For this, let us quickly introduce semiclassical pseudodifferential

operators. If a(x, ξ) ∈ C∞0 (T ∗Rn) (or more generally, if it obeys certain growth con-

ditions as we approach infinity along the fibers of T ∗Rn), then we define the operator

Oph(a) : C∞(Rn)→ C∞(Rn) by

Oph(a)u(x) = (2πh)−n
∫

Rn
e
i
h

(x−y)·ξa
(x+ y

2
, ξ
)
f(y) dξdy. (2.2)

Defining Oph(a) on a manifold takes more care, however we are able to do this in-

variantly modulo O(h) errors (and, in case of Weyl quantization and half-densities,

modulo O(h2) errors – this will be needed later in the global theory).

A basic example of a semiclassical pseudodifferential operator is multiplication by a

function f ∈ C∞(M); the corresponding symbol is independent of ξ. Another example

is the operator (h/i)X, where X is any vector field; the symbol is a linear function on

the fibers of T ∗M , naturally induced by X. In general, any semiclassical differential

operator provides an example.

Here are several useful properties of semiclassical quantization:

Oph(a) Oph(b) = Oph(ab) +O(h),

Oph(a)∗ = Oph(ā) +O(h),

[Oph(a),Oph(b)] =
h

i
Oph({a, b}) +O(h2).

Here {a, b} is the Poisson bracket:

{a, b} := ∂ξa · ∂xb− ∂xa · ∂ξb = Hab,

where Ha is the Hamiltonian vector field:

Ha := ∂ξa · ∂x − ∂xa · ∂ξ.

The commutator identity for pseudodifferential operators motivates the following cri-

terion, known as Beals’s theorem [Zw, Theorem 8.3]: an operator A : L2(M)→ L2(M)

is given by Oph(a) for some symbol a, if and only if for any finite set of vector fields

X1, . . . , Xk, we have

adhX1 . . . adhXk A = O(hk)L2→L2 .

Here we denote adP A = [P,A].

Now, if v(x;h) is any family of smooth functions (which is h-tempered in the sense

that all its derivatives are polynomially bounded in h), then we say that a point (x, ξ)

does not lie in the wavefront set WFh(v), if there exists a neighborhood U(x, ξ) such

that for each symbol a supported inside of U , we have

Oph(a)v(x;h) = O(h∞).
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This statement provides a definition of the wavefront set WFh(v), which is a closed

subset of T ∗M .

Let us now take u defined by (2.1) and some symbol a, and calculate

Oph(a)u(x;h) = (2πh)−n
∫

Rn
e
i
h

((x−y)·ξ+ϕ(y))a
(x+ y

2
, ξ
)
b(y) dξdy.

By the method of stationary phase, we see that:

(1) If supp a does not intersect the Lagrangian

ΛΦ := {(x, ∂xΦ(x)) | x ∈M}

then Oph(a)u(x;h) = O(h∞). Therefore, the wavefront set of u(x;h) is con-

tained in ΛΦ.

(2) Oph(a)u(x;h) again has the form (2.1), for some amplitude which is a classical

symbol in h.

(3) We have

Oph(a)u(x;h) = e
i
h

Φ(x)a(x, ∂xΦ(x))b(x) +O(h).

Therefore, if we consider the amplitude b as a function on ΛΦ, multiplying by

a pseudodifferential operator Oph(a) amounts to multiplying the amplitude by

a|ΛΦ
, up to O(h) errors.

(4) If a|ΛΦ
= 0, then we can find

Oph(a)u(x;h) = e
i
h

Φ(x)hLa+O(h2),

where L is a first order differential operator given by the Hamiltonian vector

field Ha (lifting functions of x to functions on ΛΦ) plus a zero order term, which

we just denote by (. . . ).

We note that ΛΦ is always a Lagrangian distribution, as the canonical 1-form α, when

restricted to ΛΦ (which we parametrize by x), is equal to dΦ and thus ω = dα = 0

when restricted to ΛΦ.

As an example of an application of functions of the form (2.1), consider the one-

dimensional semiclassical Schrödinger operator

P (h) = h2D2
x + V (x)

Here Dx = ∂x/i and V is a smooth function such that V (−1) = V (1) = 0, V < 0 on

(−1, 1), V > 0 and goes to infinity at infinity outside of [−1, 1], and ∂xV (±1) 6= 0.

The symbol of P is given by

p(x, ξ) = ξ2 + V (x).

Consider a phase function Φ solving the following eikonal equation, say, on (−1/2, 1/2):

(∂xΦ)2 + V (x) = 0.
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There are two such functions, we choose for example the one with ∂xΦ > 0. Then

p|ΛΦ
= 0.

If u is given by (2.1), then we find

P (h)u = e
i
h

Φ(x)h(Hp + (. . . ))b+O(h2).

We can solve the transport equation Hp + (. . . )b = 0 locally and get a u such that

P (h)u = O(h2) in (−1/2, 1/2). One can repeat this process (by solving the transport

equation with a right-hand side) and get a function u such that P (h)u = O(h∞) in

(−1/2, 1/2).

However, we are not able to find a function Φ such that ΛΦ = {p = 0} near the

turning points ±1, the reason being that {p = 0} does not project nicely onto the x axis

at these points. Therefore, we need to consider more general oscillatory expressions,

which leads us to the main formula of the present note:

u(x;h) = h−m/2
∫

Rm
e
i
h

Φ(x,θ)b(x, θ;h) dθ. (2.3)

Here Φ(m, θ) is a real-valued function on M × Rm, which is a nondegenerate phase

function in the sense that on the critical set

CΦ := {(x, θ) | ∂θΦ(x, θ) = 0},

the differentials d(∂θ1Φ), . . . , d(∂θ2Φ) are linearly independent. The dimension m can

be anything; if m = 0 in particular, we get back (2.1). The normalization h−m/2 is

introduced to make ‖u‖L2 ∼ 1. As for b(x, θ), it is simply required to be a classical

symbol compactly supported inside M × Rm.

Using the method of stationary phase (actually, the method of nonstationary phase

even) as before, we can see that the wavefront set of u(x;h) is contained in the set

ΛΦ := {(x, ∂xΦ(x, θ)) | (x, θ) ∈ CΦ}.

This set is a (in principle, immersed, but we will ignore this issue here) Lagrangian

submanifold of T ∗M .

If Λ ⊂ T ∗M is a Lagrangian submanifold and Φ(x, θ) is a phase function on some

open subset of M , then we say that Φ generates Λ locally if ΛΦ ⊂ Λ. One then

calls an h-dependent family of functions v(x;h) a Lagrangian distribution associated

to Λ, if v can be written as a finite sum of expressions of the form (??), with various

phase functions locally parametrizing Λ. We denote v ∈ I(Λ). Similarly, an operator

A : C∞(M1) → C∞(M2) is called a Fourier integral operator associated to some

canonical relation κ ⊂ T ∗M1 × T ∗M2 (we write A ∈ I(κ)), if the Schwartz kernel of

h(n1+n2)/4A is a Lagrangian distribution associated to the flipped graph Γκ.
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If two phase functions Φ1 and Φ2 generate the same Lagrangian, then the formu-

las (2.3) for these two functions describe the same class of distributions: namely, for

each classical symbol b1, there exists a classical symbol b2 such that

h−m1

∫
Rm1

e
i
h

Φ1(x,θ1)b1(x, θ1) dθ1 = h−m2

∫
Rm2

e
i
h

Φ2(x,θ2)b2(x, θ2) dθ2 +O(h∞).

We will see a particular case of this fact in the next section, when we define the

principal symbol of a Lagrangian distribution.

If u ∈ I(Λ) and A = Oph(a) is a pseudodifferential operator, then Au again lies

in I(Λ). Moreover, if a|Λ = 0, then Au ∈ hI(Λ). A more precise formula is possible

(and essential for applications for spectral problems); to have it, one needs to define

invariantly the principal symbol of a Lagrangian distribution, which is the purpose of

the global theory, described in the next section. Some other properties of the local

theory are listed below:

(1) By (2.2), we see that a pseudodifferential operator is a Fourier integral operator

associated to the identity map on T ∗M .

(2) As mentioned in the introduction, the pullback map is a Fourier integral oper-

ator; we see this by writing by the Fourier inversion formula

ϕ∗u(x) = (2πh)−n
∫

Rn
e
i
h

(ϕ(x)−y)·ξu(y) dydξ.

(The integration here is understood in terms of oscillatory integrals, see for

example [GrSj, Chapter 1].)

(3) If u ∈ I(Λ) is a Lagrangian distribution and A ∈ I(κ) is a Fourier integral

operator, and a certain cleanness condition holds (it is always true if κ is a

canonical transformation, rather than just a relation), then Au ∈ I(κ(Λ)).

(4) If A ∈ I(κA), B ∈ I(κB) are two Fourier integral operators, and a certain

cleanness condition holds (always true if at least one of κA, κB is a canonical

transformation), then AB ∈ I(κA ◦ κB).

Finally, one can characterize Lagrangian distributions in the following invariant way:

u ∈ I(λ) if and only if for each finite set of pseudodifferential operators A1, . . . , Ak,

with Ak = Oph(ak), and such that aj|Λ = 0 for each j, we have

A1 . . . Aku = O(hk)L2 .

3. Global theory of Lagrangian distributions

In this section, we will explain how to define invariantly the principal symbol of a

Lagrangian distribution u ∈ I(Λ). The problem here is that there are many phase

functions locally parametrizing Λ, and the expressions (2.3) for the same distribution

u with different phase functions will have different amplitudes. One then needs to
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understand how the principal part of the amplitude changes when we switch to a

different phase function.

Rather than studying two arbitrary phase functions, we pass from an arbitrary

phase function to a specific coordinate-dependent phase function. One can (almost,

but the exceptions do not cause essential problems) write a Lagrangian Λ locally in

some appropriately chosen coordinate system x on M as

Λ = {(∂ξF (ξ), ξ) | ξ ∈ Rn}

Here (x, ξ) are the coordinates on T ∗M induced by x and F (ξ) is some smooth real-

valued function. Such parametrization is possible once Λ projects nicely onto the ξ

variables, as then we can write Λ = {(G(ξ), ξ)} for some function G : Rn → Rn;

since Λ is Lagrangian, the restriction G(ξ) dξ of the 1-form x dξ to Λ is closed (since

d(x dξ) = −ω), thus it is exact and we have G(ξ) = ∂ξF (ξ) for some function F .

The phase function

ΦF (x, ξ) := x · ξ − F (ξ)

parametrizes Λ locally. Note that F is uniquely determined up to a constant; this

freedom will cause phase shift to appear later.

Take some other phase function Φ(x, θ) parametrizing Λ locally, with θ ∈ Rm, and

some symbol bΦ(x, θ;h); we then want to find a symbol bF (ξ;h) such that

h−m/2
∫

Rm
e
i
h

Φ(x,θ)bΦ(x, θ;h) dθ = h−n/2
∫

Rn
e
i
h

(x·ξ−F (ξ))bF (ξ;h) dξ +O(h∞).

For this, we use the Fourier inversion formula, writing (henceforth we omit all factors

of 2π)

bF (ξ;h) := h−(m+n)/2

∫
Rm×Rn

e
i
h

(Φ(x,θ)−x·ξ+F (ξ))bΦ(x, θ;h) dθdx.

We now apply the method of stationary phase. The critical points (depending on ξ)

are given by

C̃ := {(x, θ, ξ) | ∂θΦ(x, θ) = 0, ∂xΦ(x, θ) = ξ}.
In other words, (x, θ) ∈ CΦ and the corresponding point on ΛΦ is (∂ξF (ξ), ξ). Note

that C̃ is also parametrized by ξ ∈ Rn, or by (x, ξ) ∈ Λ; the latter makes it possible

to identify C̃ with Λ.

The Hessian of the phase is just the Hessian ∂2Φ of Φ. The value

cΦ,F := Φ(x, θ)− x · ξ + F (ξ), (x, θ, ξ) ∈ C̃,

is locally constant (the reason being that Φ and ΦF parametrize the same Lagrangian).

We then write by the method of stationary phase,

bF (ξ;h) = e
i
h
cΦ,F | det ∂2Φ(x, θ)|−1/2e

iπ
4

sgn(∂2Φ(x,θ))bΦ(x, θ;h) +O(h), (x, θ, ξ) ∈ C̃.
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We see then that the function on Λ

σ0(x, ξ) := e
i
h
cΦ,F | det ∂2Φ(x, θ)|−1/2e

iπ
4

sgn(∂2Φ(x,θ))bΦ(x, θ;h), (x, θ, ξ) ∈ C̃,

is independent of the choice of the phase function Φ, but it depends on the choice of

local coordinates on M . On the other hand, the function bΦ(x, θ;h) does not depend

on the choice of local coordinates, but it does depend on the choice of the phase

function. We thus need to understand how the prefactors in the definition of σ0(x, ξ)

change when we pass to different coordinates, which we denote x̃, but keep the phase

function fixed; this change will be independent of the choice of Φ. Once we do this,

we can consider the principal symbol as an element of a certain line bundle; we will

not specify the line bundle explicity (except for the half density part), rather stating

how its transition functions change when multiplied along some curve.

We start with the e
i
h
cΦ,F term. Assumethat x̃ is a different set of local coordinates

and F̃ is the corresponding function parametrizing Λ in these coordinates (recall that it

is defined uniquely up to a constant). Assume that (x, ξ) and (x̃, ξ̃) are the coordinates

of the same point of Λ in the corresponding systems; then

e
i
h
c
Φ, eF = e

i
h
c
F, eF e ih cΦ,F ,

where

cF, eF := F̃ (ξ̃)− x̃ · ξ̃ − F (ξ) + x · ξ

is (locally) constant. Now, assume that γ : [0, 1] → Λ is a closed curve on Λ and we

consider some coordinate systems x(1), . . . , x(k) such that the domain of x(j) contains,

say, γ([j/k − 2/3, j/k + 2/3]). Choose also the corresponding functions F (1), . . . , F (k).

Put ρj = γ(j/k + 1/2) ∈ Λ and and denote by (x̂(j), ξ̂(j)) the coordinates of this

point in with respect to (x(j), ξ(j)) and by (x̌(j), ξ̌(j)) its coordinates with respect to

(x(j+1), ξ(j+1)). Then we see that

k∑
j=1

cF (j),F (j+1) =
k∑
j=1

F (j+1)(ξ̌(j))− x̌j · ξ̌j − F (j)(ξ̂j) + x̂j · ξ̂j

=
k∑
j=1

(F (j)(ξ̌(j−1))− F (j)(ξ̂j))− (x̌j−1 · ξ̌j−1 − x̂j · ξ̂j)

Each term in the sum on the right-hand side is taken in the coordinate system (x(j), ξ(j)),

with (x̌(j−1), ξ̌(j−1)) corresponding to ρj−1 and (x̂(j), ξ̂(j)) corresponding to ρj. We can

then write each term in the sum as an integral over γ[ρj−1, ρj] of the form (recalling

that we are on Λ and denoting (x, ξ) = (x(j), ξ(j)))

d(x · ξ − F (ξ)) = x dξ + ξ dx− ∂ξF (ξ) dξ = α,
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where α = ξ dx is the canonical 1-form. Therefore, we get

k∑
j=1

cF (j),F (j+1) =

∫
γ

α. (3.1)

We now go to the determinant term. Consider the map jΦ : CΦ → Λ defined by

jΦ(x, θ) = (x, ∂xΦ(x, θ)), (x, θ) ∈ CΦ.

Consider the following differential forms on M × Rm:

βθ := dθ1 ∧ · · · ∧ dθm,
βΦ := d(∂θ1Φ) ∧ · · · ∧ d(∂θmΦ);

note that they do not depend on the choice of the coordinate system. Consider next

the following differential forms on T ∗M :

βx := dx1 ∧ · · · ∧ dxn,
βξ := dξ1 ∧ · · · ∧ dξn;

these forms depend on the choice of the coordinate sytem. We then have

j∗Φβξ ∧ βΦ = det(∂2Φ)βx ∧ βθ. (3.2)

Define now the following volume form on Λ:

αΛ := αξ|Λ.

It depends on the choice of coordinates. We can now write for two different coordinate

systems x and x̃,
| det ∂2Φ|−1/2 · |αΛ|1/2

| det ∂̃2Φ|−1/2 · |α̃Λ|1/2
=
|dx|1/2

|dx̃|1/2
.

Here |αΛ|1/2 and |dx|1/2 are half-densities on Λ and M , respectively. We then consider

Lagrangian half-densities, rather than functions, on M . If x is some local coordinate

system on M and in this system, our Lagrangian half-density is given by u(x)|dx|1/2,

where u is a Lagrangian function of the form (2.3) for some phase function Φ, then we

define the principal symbol

σ(u(x)|dx|1/2)(x,ξ) := e
i
h
cΦ,F | det ∂2Φ(x, θ)|−1/2e

iπ
4

sgn(∂2Φ(x,θ))bΦ(x, θ;h)|αΛ|1/2,
(x, θ) ∈ CΦ, jΦ(x, θ) = (x, ξ).

Therefore σ(u(x)|dx|1/2) is a half-density on Λ.

It remains to handle the term e
iπ
4

sgn(∂2Φ(x,θ)). For that, define the Hörmander–

Kashiwara index of any three Lagrangian subspaces Λ1,Λ2,Λ3 of some finite-dimensional

vector space V with some symplectic form ω as follows: consider the quadratic form

S on Λ1 ⊕ Λ2 ⊕ Λ3 given by

Q(v1, v2, v3) = ω(v1, v2) + ω(v2, v3) + ω(v3, v1), vj ∈ Λj,
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and let

s(Λ1,Λ2,Λ3) = sgnQ

be the signature of this form. This index satisfies the following cocycle identity:

s(Λ2,Λ3,Λ4)− s(Λ1,Λ3,Λ4) = s(Λ3,Λ1,Λ2)− s(Λ4,Λ1,Λ2).

This immediately gives a definition of the index of a triple of Lagrangian submanifolds

of T ∗M intersecting at some point.

Now, we need to define the intersection number. Let γ : [a, b] → T ∗M be a path

in T ∗M and Λ1(t),Λ2(t) a family of Lagrangian subspaces of Tγ(t)(T
∗M). If Λ3(t) is

another Lagrangian transverse to both Λ1(t) and Λ2(t) at every point, we define the

intersection number

[Λ1(t) : Λ2(t)]γ := s(Λ1(a),Λ2(a),Λ3(a))− s(Λ1(b),Λ2(b),Λ3(b)).

One can show that this intersection number is independent of the choice of Λ3. If

no such Λ3 exists, we can break γ into smaller segments and define the intersection

number as the sum of the intersection numbers over different segments. This definition

does not depend on the choice of the segments, so it gives an invariant way of defining

[Λ1(t) : Λ2(t)]γ for any path γ. (See for instance [Dy, Proposition 9] for details.)

Moreover, if γ is a loop homotopic to some other loop γ′, and we have a homotopy of

the corresponding Lagrangian subspaces Λj(t) to Λ′j(t), then

[Λ1(t) : Λ2(t)]γ = [Λ′1(t) : Λ′2(t)]γ′ .

Returning to the signature term in the formula for the principal symbol, we can com-

pute that

sgn ∂̃2Φ− sgn ∂2Φ = s(Λ,Λx,ΛV )− s(Λ,Λx̃,ΛV ), (3.3)

where Λ is the original Lagrangian, Λx and Λx̃ are the horizontal Lagrangians {ξ =

const} and {ξ̃ = const}, respectively, for the coordinate systems x and x̃, and ΛV is

the fiber of T ∗M . The details of the computation are not trivial; they can be found

in the discussion preceding [HöIV, Theorem 25.1.9], which relies in turn on [HöIII,

Section 21.6].

We can then find that if we multiply the transition functions for e
iπ
4

sgn ∂2Φ over some

loop γ like we did for the e
i
h
cΦ,F terms above, we get

e
iπ
4

[Λ:ΛV ]γ .

We now describe how the principal symbol changes under multiplication by pseudo-

differential operators. Let A = Oph(a); if we require A to act on half-densities instead

of functions and use the Weyl quantization of (2.2), then the symbol a is defined (as

a function on T ∗M) invariantly modulo O(h2), not just O(h). Now, if u ∈ I(Λ), then

σ(Au) = a|Λσ(u) +O(h).
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If moreover a|Λ = O(h), then, letting Ha be the Hamiltonian flow of a and noting that

it is tangent to Λ, we get

σ(Au) =
h

i
LHaσ(u) + au+O(h2).

Here L is the Lie derivative, which is defined naturally on the half-density bundle.

We finally give an application to the joint spectrum of operators P1, . . . , Pn that form

a quantum completely integrable system (see above). We attempt to write an O(h2)

approximate solution (in fact, an iterative procedure yielding an O(h∞) approximate

solution is possible) to the equation

Pju = λju, λ1, . . . , λn = O(h).

Let Λ = p−1(λ1, . . . , λn) be a Liouville torus of the corresponding classical integrable

system; we try to find u ∈ I(Λ). We have Pju = O(h), as pj = O(h) on Λ; therefore,

it suffices to solve the transport equations

h

i
LHpj (σ(u)) = 0.

These are however ordinary differential equations on the torus, and we need a certain

periodicity condition to make them solvable. Given what we have gathered so far about

the principal symbol, this periodicity condition, also known as the Bohr–Sommerfeld

quantization condition, can be expressed as follows. Let α = ξ dx be the canonical

1-form on T ∗M . Let µ ∈ H1(Λ; Z) be the Maslov class, defined as follows: if γ is a

loop, then the pairing of µ and γ is the intersection index [Λ : ΛV ]γ. Then we need for

each loop γ that

exp

(
i

h

∫
γ

α +
iπ

4
µ(γ)

)
= 1,

or simply,

α +
π

4
hµ ∈ 2πhH1(Λ; Z).

This is a condition on λj, as the homology class of α on Λ depends on them.

4. A guide to bibliography

A general introduction to the field of semiclassical analysis is given in [Zw], though

it does not feature the global theory of Lagrangian distributions outlined here.

Lagrangian distributions and Fourier integral operators in the microlocal case (with-

out the semiclassical parameter h) are described [HöIV, Chapter 25]. In the semiclassi-

cal case, they can be found in [GuiSt] or the lecture notes [GuiSt2]. The author himself

studied the theory (in the microlocal case) using a much shorter [GrSj, Chapter 11].
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Global quantization conditions for quantum integrable systems, including quantum

monodromy, have been studied in [VũNg], which also serves as a great introduction to

this particular application of the global theory of Lagrangian distributions.

A complete treatment of the Maslov index can be found in [HöIII, Section 21.6].

Some details about the Hörmander–Kashiwara index and the intersection number can

also be found in the expository notes [Dy], though the connection to Fourier integral

operators is not explained there.
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