
Math 54, midterm 2

Instructor: Semyon Dyatlov

July 30, 2010

Name: SID:

Problem 1: / 10

Problem 2: / 10

Problem 3: / 10

Problem 4: / 10

Problem 5: / 10

Total: / 50

• Write your solutions in the space provided. Do not use your own paper. I can give
you extra paper if needed. Indicate clearly where your answer is.

• Explain your solutions as clearly as possible. This will help me find what you did
right and what you did wrong, and award partial credit if possible.

• Justify all your steps. (Problem 4(a) is exempt from this rule.) A correct answer with
no justification will be given 0 points. Pictures without explanations are not counted
as justification. You may cite a theorem from the book by stating what it says.

• No calculators or notes are allowed on the exam, except for a single two-sided 5”×9”
sheet of hand-written notes. Cheating will result in academic and/or disciplinary
action. Please turn off cellphones and other electronic devices.



1. Consider the linear transformation T : P2 → R3 given by the formula

T (f) =

f(−1)
f ′(0)
f(1)

 , f ∈ P2.

(a) Find the matrix A of the transformation T relative to the basis B = {1, t, t2} of P2 and
the standard basis C = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of R3.

(b) Find the rank of the matrix A from part (a) and the dimensions of the kernel of T and
the range of T .



2. (a) Diagonalize the matrix

A =

[
1 2
0 3

]
and find a formula for Ak, where k is a nonnegative integer. Your final answer should
be written as a single matrix (4 numbers between the square brackets) with the entries
depending only on k.



(b) Is the following matrix diagonalizable? Explain. (Do not diagonalize.)2 0 3
0 0 0
5 0 4

 .



3. (a) Express the subspace

W = {(a− b+ c, b, a+ b+ c) | a, b, c ∈ R}

of R3 as either ColA or NulA for some matrix A. Find a basis for W and a basis for W⊥.



(b) Consider the vectors

~u1 =

1
0
1

 , ~u2 =

 1
2
−1

 , ~v =

1
2
3


in R3. Prove that {~u1, ~u2} is an orthogonal system and find the orthogonal projection of ~v
onto Span{~u1, ~u2}.



4. (a) Circle the correct answer for each of the following true/false questions. No
justification is required. For each question, you get 1 point if you answer it correctly, 0
points if you choose not to answer, and −1 point if you answer it incorrectly. (If your total
score for this part of the problem is negative, it will be changed to zero.)

(1) If the matrix A is invertible, then 0 is not an eigenvalue of A.

True False

(2) The product of two orthogonal matrices of the same size is an orthogonal matrix.

True False

(3) If a matrix A has characteristic polynomial −λ3 − λ, then it is diagonalizable.

True False

(4) If A is row equivalent to B, then the eigenvalues of A and B are the same.

True False

(5) If A is row equivalent to B, then NulA = NulB.

True False

(b) Let A be a square matrix such that A3 = A5. What are the possible eigenvalues of A?
Explain.



5. Solve one of the following two problems. Mark which one you want graded.
(a) Assume that A is a 2 × 2 orthogonal matrix and detA = −1. Prove that A2 = I.

Your proof has to be purely algebraic, starting with the definition of an orthogonal matrix
and not appealing directly to the geometric properties of orthogonality that we studied in
class.

(b) Assume that U, V,W are vector spaces and T : V → W , S : U → V are linear
transformations such that T ◦ S = 0. (In other words, T (S(~u)) = ~0 for each ~u ∈ U .) Prove
that the kernel of T contains the range of S.


