2.2 \[\begin{pmatrix} 3 & 2 \\ 7 & 4 \end{pmatrix}^{-1} = \frac{1}{12-14} \begin{pmatrix} 4 & -2 \\ -7 & 3 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 7/2 & -3/2 \end{pmatrix} \]

8. Given: \(A \) is invertible, \(A D = I \)

Need to prove: \(D = A^{-1} \)

Since \(A \) is invertible, there exists \(A^{-1} \). Multiply both sides of \(AD = I \) to the left by \(A^{-1} \):

\(A^{-1}AD = A^{-1} \); but \(A^{-1}AD = (A^{-1}A)D = I \cdot D = D \).

10. a. False: \((AB)^{-1} = B^{-1}A^{-1} \)

 b. True, Theorem 6(a)

 c. True, Theorem 4

 d. True, Theorem 7

 e. False, see Theorem 7

17. \(AB = BC \), \(A, B, C \) square, there exists \(B^{-1} \).

Multiply by \(B^{-1} \) to the left:

\[ABB^{-1} = BC \cdot B^{-1} \]. But \(AB = BC \).

\(A = AI = A(BB)^{-1} \). So, \(A = BCB^{-1} \).

2.3 \(A \) is already in REF and has 4 pivot positions; therefore, it is invertible.

15. No, it cannot. If, for simplicity, \(A = [\vec{a}_1, \vec{a}_2, \vec{a}_3, \ldots, \vec{a}_n] \) with \(\vec{a}_1 = \vec{a}_2 \), then the vectors \(\vec{a}_1, \vec{a}_2, \vec{a}_3, \ldots, \vec{a}_n \) are linearly dependent.

with a linear dependence relation \(\vec{a}_1 - \vec{a}_2 = 0 \).

16. No, by IMT (h)

17. If \(A \) is invertible, then \(A^{-1} \) is invertible, so the columns of \(A \) are lin. ind. By IMT (e).

22. \(Hx = \vec{c} \) is inconsistent for some \(\vec{c} \) \(\Rightarrow \) by IMT (g), \(H \) is not invertible \(\Rightarrow \) by IMT (d), the \(\vec{c} \) is a nonexistent solution. \(\Rightarrow \) by IMT (e), \(A \) is invertible \(\Rightarrow \) \(A^2 = A \cdot A \) is invertible \(\Rightarrow \) by IMT (h), the columns of \(A \) span \(\mathbb{R}^n \).