
DIFFERENTIAL OPERATORS ON EUCLIDEAN SPACES

SEMYON DYATLOV

Abstract. These are notes for Lecture 2 of the Math 279 course ‘Semiclassical Anal-

ysis’ taught at UC Berkeley in Fall 2018. Caution: there are some small notational

differences with [Zw], in particular the latter uses Weyl quantization.

1. The nonsemiclassical case

1.1. Notation. We will work on Rn, denoting its elements by x = (x1, . . . , xn). We

use the following notation:

∂xj :=
∂

∂xj
, Dxj :=

1

i
∂xj .

The notation Dxj is different from many other PDE texts however it will be very useful

in our course.

For higher order derivatives we use multiindex notation. A multiindex has the form

α = (α1, . . . , αn), αj ∈ N0.

Its order is defined by

|α| := α1 + · · ·+ αn.

For a multiindex α, we define the corresponding operators

∂αx := ∂α1
x1
· · · ∂αn

xn , Dα
x := Dα1

x1
· · ·Dαn

xn

and the function

xα := xα1
1 · · ·xαn

n .

We also define

α! := α1! · · ·αn!.

For two multiindices α, β, we say

α ≤ β if αj ≤ βj for all j

in which case β − α is also a multiindex.
1
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1.2. Differential operators. Our differential operators will have coefficients in the

following space:

Definition 1.1. A function a ∈ C∞(Rn;C) is called nice if each derivative ∂αxa is

uniformly bounded in x:

sup
x∈Rn

|∂αxa(x)| <∞. (1.1)

We denote the space of all nice functions by S(Rn) and endow it with the countably

many seminorms (1.1).

Exercise 1. Show that S(Rn) is a Fréchet space: if we put

‖a‖k :=
∑
|α|=k

sup |∂αxa|

then the metric d(•, •) on S(Rn) defined by

d(a, b) :=
∑
k≥0

2−k
‖a− b‖k

1 + ‖a− b‖k

makes S(Rn) a complete metric space.

We can now define differential operators:

Definition 1.2. Let m ∈ N0. A differential operator of order m is an operator on

C∞(Rn) of the form

A =
∑
|α|≤m

aα(x)Dα
x (1.2)

for some functions aα(x) ∈ S(Rn). Denote by Diffm(Rn) the space of all differential

operators of order m.

Differential operators have the following properties:

Proposition 1.3. We have

(1) Diffm(Rn) ⊂ Diffm+1(Rn) for all m ≥ 0;

(2) the identity operator I lies in Diff0(Rn);

(3) if A ∈ Diffm(Rn) and B ∈ Diff`(Rn), then AB ∈ Diffm+`(Rn);

(4) if A ∈ Diffm(Rn) then there exists A∗ ∈ Diffm(Rn) which is the formal adjoint

of A, that is

〈Au, v〉L2(Rn) = 〈u,A∗v〉L2(Rn) for all u ∈ C∞(Rn), v ∈ C∞c (Rn).

Exercise 2. Use integration by parts to show that if A is given by (1.2) then

A∗ =
∑
|α|≤m

Dα
x aα(x),
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by which we mean

A∗u(x) =
∑
|α|≤m

Dα
x (aα(x)u(x)).

1.3. Full symbol of an operator. To a differential operator A ∈ Diffm(Rn) we

associate its full symbol which is a function a(x, ξ) ∈ C∞(R2n) defined as follows:

Definition 1.4. Let A ∈ Diffm(Rn) be given by (1.2). Define the full symbol of A

as the following polynomial in ξ ∈ Rn with coefficients in x ∈ Rn:

a(x, ξ) :=
∑
|α|≤m

aα(x)ξα, (x, ξ) ∈ R2n. (1.3)

Conversely if a(x, ξ) is given by (1.3) then define the quantization Op(a) ∈ Diffm(Rn)

of a by the formula (1.2).

Define the space

Polym(R2n) ⊂ C∞(R2n)

consisting of functions of the form (1.3) with each aα(x) lying in S(Rn). (It is a Fréchet

space similarly to Exercise 1, taking the S(Rn) seminorms of each coefficient aα.) Then

we have a linear isomorphism

Op : Polym(R2n)→ Diffm(Rn).

Here are a few examples of quantization of symbols:

• if a(x) is a function of x only, then Op(a) is the multiplication operator by a,

namely Op(a)u(x) = a(x)u(x);

• if a(x) = ξj, then Op(a) = Dxj ;

• if a(x) = |ξ|2 + V (x) where V ∈ S(Rn) is a potential, then Op(a) = −∆ + V is

a Schrödinger operator.

Remark 1.5. Formally we could write

Op(a) = a(x,Dx).

However, this notation can be misleading since the operators x and Dx do not commute.

The quantization Op that we use, given by

Op(a) =
∑
|α|≤m

aαD
α
x

is often called the standard or left quantization. There is also the right quantization

Op1(a) =
∑
|α|≤m

Dα
xaα
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and many intermediate choices such as the Weyl quantization Opw used in [Zw].

For instance, if n = 1 and a(x, ξ) = xξ (ignoring the fact that x 6∈ S(R)) then

Op(a) = xDx, Op1(a) = Dxx = xDx − i, Opw(a) = xDx − i
2
.

On manifolds the situation is even worse since there is no canonical quantization pro-

cedure. However, the multitude of existing quantizations does not cause a problem for

the theory because:

(1) every choice of quantization gives the same class of operators Diffm;

(2) and the notion of the principal symbol of an operator (see §1.4) is independent

of quantization.

Coming back to the standard quantization, one can recover the symbol from an oper-

ator by the following

Lemma 1.6 (Oscillatory testing). For each ξ ∈ Rn define the function

eξ ∈ C∞(Rn), eξ(x) = ei〈x,ξ〉.

Then for each a ∈ Polym(R2n) and ξ ∈ Rn we have

(Op(a)eξ)(x) = a(x, ξ)eξ(x). (1.4)

Proof. We have for each multiindex α

Dα
xeξ(x) = ξαeξ(x)

from which (1.4) follows immediately. This explains the use of Dx = 1
i
∂x in the

definition (1.2). �

The full symbol of an operator has several nice algebraic properties. The first one

is the following

Proposition 1.7 (Product Rule for the full symbol). Let a ∈ Polym(R2n), b ∈
Poly`(R2n). Then

Op(a) Op(b) = Op(a#b)

where a#b ∈ Polym+`(R2n) is defined by the following finite sum:

a#b(x, ξ) =
∑
α

(−i)|α|

α!
(∂αξ a(x, ξ))(∂αx b(x, ξ)). (1.5)

In particular

a#b = ab− i
n∑
j=1

(∂ξja)(∂xjb) + Polym+`−2(R2n). (1.6)
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Proof. First of all, we note that since a is a polynomial of order m in ξ, ∂αξ a is a

polynomial of order m− |α|. In particular, ∂αξ a = 0 when |α| ≥ m, thus the sum (1.5)

indeed has only finitely many nonzero terms. This also shows that (1.5) implies (1.6),

as each term in (1.5) lies in Polym+`−|α|(R2n).

To show (1.5), we first note that Proposition 1.3 implies that Op(a) Op(b) = Op(c)

for some c ∈ Polym+`(R2n). To show that c = a#b, without loss of generality we

assume that a(x, ξ) = aγ(x)ξγ for some multiindex γ, |γ| ≤ m. Using oscillatory

testing, Lemma 1.6, we have for each ξ ∈ Rn

Op(c)eξ = Op(a) Op(b)eξ = Op(a)(b(•, ξ)eξ) = aγ(x)Dγ
x(b(x, ξ)eξ(x)).

Using the product rule for derivatives we compute

Op(c)eξ =
∑
α≤γ

γ!

α!(γ − α)!
aγ(x)

(
Dα
x b(x, ξ)

)(
Dγ−α
x eξ(x)

)
=
∑
α≤γ

γ!

α!(γ − α)!
aγ(x)

(
Dα
x b(x, ξ)

)
ξγ−αeξ(x).

Applying Lemma 1.6 again, we see that (Op(c)eξ)(x) = c(x, ξ)eξ(x) and thus

c(x, ξ) =
∑
α≤γ

aγ(x)
γ!

α!(γ − α)!

(
Dα
x b(x, ξ)

)
ξγ−α. (1.7)

On the other hand, recalling that a(x, ξ) = aγ(x)ξγ, we have

∂αξ a(x, ξ) =

{
aγ(x) γ!

(γ−α)!
ξγ−α, α ≤ γ;

0, otherwise

therefore

a#b(x, ξ) =
∑
α≤γ

aγ(x)
γ!

α!(γ − α)!
ξγ−α

(
Dα
x b(x, ξ)

)
. (1.8)

Comparing (1.7) and (1.8) we see that c = a#b as needed. �

Example 1.8. We use the following example to illustrate Proposition 1.7:

a = |ξ|2 =
n∑
j=1

ξ2
j , Op(a) = −∆; b = b(x), Op(b) = b.

A direct computation shows that

Op(a) Op(b)u = −∆(bu) = −b(∆u)− 2〈∇b,∇u〉 − (∆b)u = Op(c)u

where

c(x, ξ) = −|ξ|2b(x)− 2i
n∑
j=1

ξj(∂xjb(x))−∆b(x). (1.9)
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We see from (1.5) that indeed c = a#b. Indeed, the first term on the right-hand side

of (1.9) comes from the case |α| = 0, the second term comes from the case |α| = 1,

and the third term comes from the case |α| = 2.

The other algebraic property is the following formula for the symbol of the formal

adjoint, introduced in Proposition 1.3.

Proposition 1.9 (Adjoint Rule for the full symbol). Let a ∈ Polym(R2n). Then

Op(a)∗ = Op(a∗)

where a∗ ∈ Polym(R2n) is defined by the following finite sum:

a∗(x, ξ) =
∑
α

(−i)|α|

α!
∂αx∂

α
ξ a(x, ξ). (1.10)

In particular

a∗ = ā+ Polym−1(R2n). (1.11)

Proof. As in Proposition 1.7 it suffices to consider the case when a(x, ξ) = aγ(x)ξγ.

From Exercise 2 we have

Op(a)∗ = Dγ
xaγ(x) = Op(ξγ) Op(aγ(x)).

Applying Proposition 1.7 we see that

Op(a)∗ = Op(b) where b(x, ξ) =
∑
α

(−i)|α|

α!
(∂αξ (ξγ))(∂αxaγ(x))

It is straightforward to verify that b = a∗ where a∗ is given by (1.10). �

1.4. The principal symbol. The Product Rule and Adjoint Rule for the full symbols

presented above are complicated, and the full symbol calculus would become even

more complicated if we replaced Rn with an arbitrary manifold. However, for many

purposes it is enough to know the leading order part of the symbol, for which the

algebra becomes much simpler. In this section we introduce this leading part, called

the principal symbol.

Define

HPolym(R2n) ⊂ Polym(R2n)

as the set of a(x, ξ) ∈ Polym(R2n) which are homogeneous polynomials of order m in ξ,

that is they have the form (1.3) with the sum over multiindices α such that |α| = m.

Then the principal symbol is given by
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Definition 1.10. Let A ∈ Diffm(Rn) and let a be its full symbol, so that A = Op(a).

Define the principal symbol σm(A) ∈ HPolym(R2n) as the order m part of a. That

is, if a is given by (1.3) then

σm(A)(x, ξ) =
∑
|α|=m

aα(x)ξα.

Note that we make m explicit in the notation σm, since for instance σ1(Dx1) = ξ1

but σ2(Dx1) = 0. However, most of the time the principal symbol is denoted by σ(A)

when it is clear what the natural value of the order m is.

It follows immediately from Definition 1.10 that the principal symbol has the fol-

lowing properties:

Proposition 1.11. Let m ∈ N0. Then:

(1) For A ∈ Diffm(Rn) we have σm(A) = 0 if and only if A ∈ Diffm−1(Rn) (with

the convention Diff−1(Rn) := {0}).

(2) The map σm : Diffm(Rn) → HPolym(R2n) is onto. In fact σm(Op(a)) = a for

every a ∈ HPolym(R2n).

A more abstract way to state Proposition 1.11 is that the following sequence is exact:

0 −−−→ Diffm−1(Rn)
ιm−−−→ Diffm(Rn)

σm−−−→ HPolym(R2n) −−−→ 0

where ιm denotes the inclusion operator.

From Propositions 1.7 and 1.9 we immediately deduce algebraic rules for principal

symbols:

Proposition 1.12 (Principal symbol calculus). Assume that A ∈ Diffm(Rn) and B ∈
Diff`(Rn). Then we have

(1) Product Rule: AB ∈ Diffm+`(Rn) and

σm+`(AB) = σm(A)σ`(B); (1.12)

(2) Commutator Rule: the commutator [A,B] := AB − BA lies in Diffm+`−1(Rn)

and

σm+`−1([A,B]) = −i{σm(A), σ`(B)} (1.13)

where {•, •} denotes the Poisson bracket:

{a, b} :=
n∑
j=1

(∂ξja)(∂xjb)− (∂xja)(∂ξjb);

(3) Adjoint Rule: A∗ ∈ Diffm(Rn) and

σm(A∗) = σm(A). (1.14)
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The Commutator Rule is new to us and it has profound consequences for the theory.

Note that the first part of this rule, namely [A,B] ∈ Diffm+`−1(Rn), actually follows

from the Product Rule (1.12) since σm+`([A,B]) = 0. The formula (1.13) is where the

relation with Hamiltonian dynamics comes in. Indeed, if a is real-valued then we have

{a, b} = Hab

where Ha =
∑n

j=1(∂ξja)∂xj − (∂xja)∂ξj is the Hamilton vector field of a. The flow of

this field,

etHa : R2n → R2n, t ∈ R,

is the one-parameter group defined by etHa(x0, ξ0) = (x(t), ξ(t)) where (x(t), ξ(t)) solves

the initial value problem for Hamilton’s equations

ẋj(t) = ∂ξja(x(t), ξ(t)), ξ̇j(t) = −∂xja(x(t), ξ(t)),

x(0) = x0, ξ(0) = ξ0.

Please see [Zw, §§2.1,2.2] and the beginning of [Zw, §2.4] for more on Hamilton vector

fields.

Exercise 3 (for students familiar with Riemannian geometry). Let g be a Riemannian

metric on Rn:

g =
n∑

j,`=1

gj`(x) dxjdx`.

For simplicity assume that g is the Euclidean metric for x outside a compact set. Let

∆g ∈ Diff2(Rn) be the Laplace–Beltrami operator induced by g.

(1) Show that σ2(−∆g) = p where

p(x, ξ) =
n∑

j,`=1

gj`(x)ξjξ`, (gj`(x)) = (gj`(x))−1.

(2) Show that the Hamiltonian flow etHp is related to the geodesic flow of g as

follows: if (x0, ξ0) ∈ R2n and

(x(t), ξ(t)) := etHp(x0, ξ0)

then x(t)t∈R is a geodesic on (Rn, g) and ξ(t) is related to the tangent vector

ẋ(t) as follows:

2ξj(t) =
n∑
`=1

gj`(x(t))ẋ`(t).
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2. The semiclassical case

2.1. Definition. We now consider the more general class of semiclassical differential

operators. These are operators of the form Oph(a), where the quantization procedure

Op is altered to put h next to each ∂xj :

if a(x, ξ) =
∑
|α|≤m

aα(x)ξα then Oph(a) :=
∑
|α|≤m

aα(x)(hDx)
α (2.1)

where Dx = 1
i
∂x as before and (hDx)

α := h|α|Dα
x . So for instance

Oph(|ξ|2 − 1) = −h2∆− 1.

The resulting operator Oph(a) is now a family of operators which depends on the

semiclassical parameter h > 0. We will often study the semiclassical limit h→ 0 but

one could also take a fixed value of h: say for h = 1 we have Oph = Op and we recover

the nonsemiclassical theory. We will always assume h ∈ (0, 1] (since the ‘large h’ limit

is irrelevant in this course). The functions we study will often oscillate at frequencies

∼ h−1 (see e.g. Lemma 2.2 and Exercise 4). For these functions hDx has the same

strength as the identity operator, so it is illegal to just put h := 0 in (2.1).

Even if we start with h-independent symbols a, algebraic operations lead to symbols

dependent on h. For instance (ignoring again that x /∈ S(R))

Oph(ξ) Oph(x) = (hDx)x = x(hDx)− ih = Oph(xξ − ih).

Thus we introduce h-dependent symbols:

Definition 2.1. We say a family of functions a(x;h) ∈ C∞x (Rn), depending on h ∈
(0, 1], lies in the class Sh(Rn), if for every multiindex α

sup
h∈(0,1]

sup
x∈Rn

|∂αxa(x;h)| <∞. (2.2)

For m ∈ N0 we define the class Polymh (R2n) consisting of all functions a(x, ξ;h) of the

form

a(x, ξ;h) =
∑
|α|≤m

aα(x;h)ξα

where each aα(x;h) lies in Sh(Rn).

Note that similarly to Exercise 1, Sh(Rn) is a Fréchet space with respect to the

seminorms (2.2), and similarly Polymh (R2n) is a Fréchet space. Note also that we do

not require any smoothness of a(x;h) with respect to h, only bounds which are uniform

in h.

Now define the class of semiclassical differential operators Diffmh (Rn) as follows:

Diffmh (Rn) := {Oph(a) | a ∈ Polymh (R2n)}.
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2.2. Full symbol calculus. We now give the semiclassical analogues of the algebraic

properties in §1.3. These are established in a very similar way to the nonsemiclassical

version so we omit the proofs. First of all, oscillatory testing is given by

Lemma 2.2. For each ξ ∈ Rn and h > 0 define the function

eξ,h ∈ C∞(Rn), eξ,h(x) = ei〈x,ξ〉/h.

Then for each a ∈ Polymh (R2n), ξ ∈ Rn, and h ∈ (0, 1] we have

(Oph(a)eξ,h)(x) = a(x, ξ;h)eξ,h(x).

Next, the algebraic properties are given by

Proposition 2.3 (Calculus for the full symbol). Let a ∈ Polymh (R2n), b ∈ Poly`h(R2n).

Then

Oph(a) Oph(b) = Oph(a#b), Oph(a)∗ = Oph(a
∗)

where a#b ∈ Polym+`
h (R2n), a∗ ∈ Polymh (R2n) are defined by the finite sums

a#b(x, ξ;h) =
∑
α

(−ih)|α|

α!
(∂αξ a(x, ξ;h))(∂αx b(x, ξ;h)), (2.3)

a∗(x, ξ;h) =
∑
α

(−ih)|α|

α!
∂αx∂

α
ξ a(x, ξ;h). (2.4)

Remark 2.4. The terms with |α| = k in (2.3) lie in hk Polym+`−k(R2n), that is each

next term gains a power of h as well as lowers the degree of the polynomial in ξ.

Similarly the terms with |α| = k in (2.4) lie in hk Polym−k(R2n).

2.3. Principal symbol calculus. We finally introduce the notion of semiclassical

principal symbol, generalizing the nonsemiclassical one defined in §1.4. By Remark 2.4,

each term in the expansions (2.3) and (2.4) improves both in powers of h and in the

degree of the polynomial. It thus makes sense to define the principal symbol as an

element in the quotient space
Polymh (R2n)

hPolym−1
h (R2n)

. (2.5)

More precisely, for A = Oph(a) ∈ Diffmh (Rn) we define the semiclassical principal

symbol σm,h(A) as the equivalence class [a] of a in (2.5). Similarly to §1.4 we have the

following

Proposition 2.5 (Semiclassical principal symbol calculus). Let m ∈ N0. Then:

(1) For A ∈ Diffmh (Rn) we have σm,h(A) = 0 if and only if A ∈ hDiffm−1
h (Rn).

(2) The map

σm : Diffmh (Rn)→ Polymh (R2n)

hPolym−1
h (R2n)

is onto. In fact, for each a ∈ Polymh (Rn) we have σm(Oph(a)) = [a].
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(3) Product Rule: if A ∈ Diffmh (Rn),B ∈ Diff`h(Rn) then AB ∈ Diffm+`
h (Rn) and

σm+`,h(AB) = σm,h(A)σ`,h(B). (2.6)

(4) Commutator Rule: if A ∈ Diffmh (Rn), B ∈ Diff`h(Rn) then [A,B] ∈ hDiffm+`−1
h (Rn)

and

σm+`−1,h(h
−1[A,B]) = −i{σm,h(A), σ`,h(B)}. (2.7)

(5) Adjoint Rule: if A ∈ Diffmh (Rn) then A∗ ∈ Diffmh (Rn) and

σm,h(A
∗) = σm,h(A). (2.8)

Remark 2.6. Note that for fixed h, the space (2.5) would turn into Polymh (R2n)/Polym−1
h (R2n)

which is canonically isomorphic to the space of homogeneous polynomials HPolymh (R2n)

used in the definition of the nonsemiclassical principal symbol in §1.4.

Remark 2.7. In practice we use the notation σh(A) when it is clear which value of m

is meant. Abusing the notation even more, if we know that A ∈ hk Diffmh (Rn) we

may write σh(A) := hkσm,h(h
−kA). Under this notation the Commutator Rule above

becomes

σh([A,B]) = −ih{σh(A), σh(B)}.

Remark 2.8. An equivalent way to write (2.6)–(2.8) is: for a ∈ Polymh (R2n) and

b ∈ Poly`h(R2n),

Oph(a) Oph(b) = Oph(ab) + hDiffm+`−1
h (Rn), (2.9)

[Oph(a),Oph(b)] = −ihOph({a, b}) + h2 Diffm+`−2
h (Rn), (2.10)

Oph(a)∗ = Oph(a) + hDiffm−1
h (Rn). (2.11)

Remark 2.9. In [Zw, Chapter 4] the principal symbol is defined modulo hSm (with

Sm denoting the space of symbols of order m) rather than modulo hSm−1, that is we

gain a power of h but no powers of ξ. This is related to the more general class of

symbols used in [Zw, §4.4.1] which do not gain powers of ξ when differentiated (unlike

polynomials which lose one power with each differentiation). The classes with hSm−1

remainder are introduced later in [Zw, §9.3.1] and are essential for defining calculus

on manifolds.

Example 2.10. For the Schrödinger operator

P = −h2∆ + V (x)

its semiclassical principal symbol is

σh(P ) = [p] where p(x, ξ) = |ξ|2 + V (x).

That is, semiclassically the potential has the same order of magnitude as the Laplacian.

This is different from the nonsemiclassical case, where σ(−∆ + V (x)) = |ξ|2, so the

potential is a perturbation.



12 SEMYON DYATLOV

Note that if we wanted to make −∆+V semiclassical by rescaling, we would arrive to

−h2∆ +h2V which has semiclassical principal symbol |ξ|2. Conversely if we wanted to

make −h2∆ +V nonsemiclassical we would arrive to −∆ +h−2V , that is the potential

V is multiplied by a large coupling constant.

Remark 2.11. If the principal symbol σh(P ) has a representative p which is h-independent

as in the above example, we often just write σh(P ) = p. This is the case in most ap-

plications. However, in general we might not have an h-independent representative:

examples are given by

P = −(h2 + h3)∆ ∈ Diff2
h(Rn); P = ei/h ∈ Diff0

h(Rn).

Note that in the first case we cannot write σh(P ) = [|ξ|2] since the full symbol is

(1 + h)|ξ|2 and h|ξ|2 /∈ hDiff1
h(Rn) (it only lies in hDiff2

h(Rn)).

The next exercise generalizes oscillatory testing, Lemma 2.2 (think of taking Φ(x) :=

〈x, ξ〉 for fixed ξ). It could be used to understand how the principal symbol changes

under diffeomorphisms and thus how to define the principal symbol invariantly on

manifolds (see §2.4 below).

Exercise 4. Take two functions

Φ ∈ C∞(Rn;R), b ∈ C∞c (Rn;C)

and consider

u(x;h) := eiΦ(x)/hb(x).

We often call Φ the phase of u and b its amplitude. Let a ∈ Polym(R2n) be h-

independent (for simplicity). Show that

Oph(a)u = eiΦ(x)/hc(x;h), c(x;h) =
m∑
k=0

hkck(x)

where ck ∈ C∞c (Rn;C) are h-independent and

c0(x) = a(x,∇Φ(x))b(x),

c1(x) = −i
n∑
j=1

(∂ξja(x,∇Φ(x)))∂xjb(x)− i

2

n∑
j,k=1

(∂2
ξjξk

a(x,∇Φ(x)))(∂2
xjxk

Φ(x))b(x).

Note that if Φ solves the eikonal equation a(x,∇Φ(x)) ≡ 0, then we have c0 ≡ 0.

The equation c1 ≡ 0, with b treated as the unknown function, is called the transport

equation. These two equations form the basis of the WKB method of obtaining

approximate solutions to the equation Oph(a)u = 0.

A symplectic geometric interpretation of Exercise 4 is given by
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Exercise 5. (for students familiar with symplectic geometry)

1. Under the assumptions of the previous exercise, show that

ΛΦ := {(x,∇Φ(x)) | x ∈ Rn}

is a Lagrangian submanifold of R2n, that is the symplectic form ω =
∑n

j=1 dξj ∧ dxj
vanishes when pulled back to ΛΦ.

2. Assume a is real-valued and c0 ≡ 0, that is a|ΛΦ
= 0. Show that the Hamilton

vector field Ha is tangent to ΛΦ. Next, show that c1 = 0 is equivalent (pointwise) to

(Ha + V )b̃ = 0 where

b̃ ∈ C∞(ΛΦ), b̃(x,∇Φ(x)) = b(x);

V ∈ C∞(ΛΦ;R), V (x,∇Φ(x)) =
1

2

n∑
j,k=1

(∂2
ξjξk

a(x,∇Φ(x)))(∂2
xjxk

Φ(x)).

2.4. Calculus on manifolds. We now very briefly discuss semiclassical pseudodiffer-

ential operators on manifolds. We consider the case of a compact manifold M . For

the noncompact case the theory is similar but the class Sh(M) cannot be invariantly

defined so one needs to make some other assumptions (or none) on the growth of sym-

bols as x → ∞. We do not give proofs here; the below results will follow from the

pseudodifferential calculus of [Zw, §14.2]. An interested reader can also try to prove

the results using Exercise 4.

The class of semiclassical differential operators Diffmh (M) is defined as operators

A : C∞(M)→ C∞(M) with two properties:

(1) A is local, that is supp(Au) ⊂ suppu for all u ∈ C∞(M);

(2) in any coordinate chart (and cutting off from the boundary of that chart) the

operator A corresponds to an element of Diffmh (Rn).

The principal symbol calculus, Proposition 2.5, still holds, with the following changes:

• The symbols are now functions on the cotangent bundle

T ∗M = {(x, ξ) | x ∈M, ξ ∈ T ∗xM}

which are polynomials of order m in ξ with coefficients whose derivatives

are bounded uniformly in x, h. We denote the space of such polynomials by

Polymh (T ∗M). Thus the principal symbol map acts

σm,h : Diffmh (M)→ Polymh (T ∗M)

hPolym−1
h (T ∗M)

.

• To see why the symbol should be a function on the cotangent bundle (and not,

say, tangent bundle), consider the following example:

A =
h

i
X ∈ Diff1

h(M) where X ∈ C∞(M ;TM) is a vector field.
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Then the principal symbol σh(A) is a linear function on the fibers of T ∗M :

σh(A)(x, ξ) = 〈ξ,X(x)〉, (x, ξ) ∈ T ∗M

where the pairing on the right-hand side makes sense since X(x) is a tangent

vector at x and ξ is a cotangent vector at x.

• There is still a quantization procedure Oph : Polymh (T ∗M) → Diffmh (M) (say,

defined using a finite covering by charts together with a partition of unity)

however there is no canonical choice of a quantization procedure. To see this,

consider the following quadratic symbol in Poly2
h(T

∗M):

a(x, ξ) = 〈ξ,X(x)〉〈ξ, Y (x)〉 where X, Y ∈ C∞(M ;TM).

We know that the corresponding operator Oph(a) has second order part−h2XY ,

but what about the lower order terms? In particular, both−h2XY and−h2Y X

are equally good candidates for Oph(a) but they differ by the commutator (Lie

bracket of vector fields) h2[X, Y ] ∈ hDiff1
h(M).

• The Poisson bracket {a, b} can be defined invariantly for a, b ∈ C∞(T ∗M).

This follows from the fact that T ∗M has a natural symplectic form, that is the

2-form
n∑
j=1

dξj ∧ dxj

does not depend on the choice of coordinates.

• To define the formal adjoint A∗ we need to fix an inner product on L2(M) which

amounts to fixing a smooth density (volume form) on M . A consequence of

the Adjoint Rule is that the choice of this density does not change the leading

part of A∗.
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