Some trig identities for Math 1B

Sep 2, 2009

1. The fundamental identity:

\[\cos^2 \theta + \sin^2 \theta = 1 \] (1)

Dividing this identity by \(\cos^2 \theta \) or \(\sin^2 \theta \), we get

\[\cot^2 \theta + 1 = \csc^2 \theta, \quad 1 + \tan^2 \theta = \sec^2 \theta. \] (2)

2. Sums, differences, and products:

\[\cos(A + B) = \cos A \cos B - \sin A \sin B, \] (3)

\[\cos(A - B) = \cos A \cos B + \sin A \sin B, \] (4)

\[\sin(A + B) = \sin A \cos B + \cos A \sin B, \] (5)

\[\sin(A - B) = \sin A \cos B - \cos A \sin B. \] (6)

Note that (4) can be obtained from (3) and (6) can be obtained from (5) by substituting \(-B\) instead of \(B\) and using the identities

\[\cos(-x) = \cos x, \quad \sin(-x) = -\sin x. \] (7)

By adding (3) and (4), adding (5) and (6), and subtracting (3) from (4), we get

\[\cos A \cos B = (\cos(A + B) + \cos(A - B))/2, \] (8)

\[\sin A \cos B = (\sin(A + B) + \sin(A - B))/2, \] (9)

\[\sin A \sin B = (\cos(A - B) - \cos(A + B))/2. \] (10)

When \(A = B \), (3) and (5) become

\[\cos 2A = \cos^2 A - \sin^2 A, \] (11)

\[\sin 2A = 2 \sin A \cos A. \] (12)

Using (1), we then get

\[\cos 2A = 2 \cos^2 A - 1 = 1 - 2 \sin^2 A, \] (13)

\[\cos^2 A = \frac{1 + \cos 2A}{2}, \quad \sin^2 A = \frac{1 - \cos 2A}{2}. \] (14)
3. Differentiation:

\[d(\cos x) = -\sin x \, dx, \quad d(\sin x) = \cos x \, dx, \quad (15) \]

\[d(\tan x) = \sec^2 x \, dx, \quad d(\cot x) = -\csc^2 x \, dx, \quad (16) \]

\[\int \sec x \, dx = \ln |\sec x + \tan x| + C, \quad \int \csc x \, dx = \ln |\csc x - \cot x| + C. \quad (17) \]

4. Integrating trigonometric expressions:

- If our expression contains the factor \(\sin x \, dx \) and the remaining part is a function of \(\cos x, \sin^2 x, \tan^2 x, \) and \(\cot^2 x, \) then do the substitution \(u = \cos x \) and then use the identities (1)–(2) to express everything as a function of \(u \). Example:

\[
\int \ln(\cos x) \sin^3 x \, dx = \int \ln(\cos x) \sin^2 x (\sin x \, dx) \\
= \int (1 - \cos^2 x) \ln(\cos x) \, d(\cos x) = -\int (1 - u^2) \ln u \, du.
\]

Similarly, if our expression contains the factor \(\cos x \, dx \) and the remaining part is a function of \(\sin x, \cos^2 x, \tan^2 x, \) and \(\cot^2 x, \) then do the substitution \(u = \sin x \).

- If our expression contains only squares of trigonometric functions (\(\cos^2 x, \sin^2 x, \) etc.) and the product \(\cos x \sin x, \) then use the identities (14) and (12) to get an expression in terms of \(\cos 2x \) and \(\sin 2x \) and then do the substitution \(u = 2x \). Example:

\[
\int \frac{\cos^2 x}{1 + 2\sin x \cos x} \, dx = \frac{1}{2} \int \frac{1 + \cos 2x}{1 + \sin 2x} \, dx \\
= \frac{1}{4} \int \frac{1 + \cos u}{1 + \sin u} \, du.
\]

- If our expression contains the factor \(\sec^2 x \, dx \) and the remaining part is a function of \(\tan x, \cot x, \cos^2 x, \) and \(\sin^2 x, \) then do the substitution \(u = \tan x \) and use the identities (2) to express everything as a function of \(u \). Example:

\[
\int \sec^4 x \, dx = \int \sec^2 x (\sec^2 x \, dx) \\
= \int (1 + \tan^2 x) \, d(\tan x) = \int 1 + u^2 \, du.
\]

Similarly, one can use the substitution \(u = \cot x \) in case we have the factor \(\csc^2 x \, dx. \)