Math 1B worksheet

Oct 21, 2009

1–4. Find the Taylor series for the following functions centered at the given point \(a \). (Assume that \(f \) has a power series expansion.) Do not use the formulas on page 743 for problems 1–3. For problem 4, use the binomial series.

\[
\begin{align*}
\text{(1)} & \quad f(x) = (x+1)^2, \quad a = 1, \\
\text{(2)} & \quad f(x) = \sin(\pi x), \quad a = 0, \\
\text{(3)} & \quad f(x) = \frac{1}{x}, \quad a = 3, \\
\text{(4)} & \quad f(x) = x\sqrt{1+x^2}, \quad a = 0.
\end{align*}
\]

5–6. Calculate the following limits using power series. What does this imply for absolute convergence of the series \(\sum_{n=1}^{\infty} f(\frac{1}{n}) \)?

\[
\begin{align*}
\text{(5)} & \quad f(x) = e^x - 1 - \sin x, \quad \lim_{x \to 0} \frac{f(x)}{x^2}, \\
\text{(6)} & \quad f(x) = \ln(1+2x), \quad \lim_{x \to 0} \frac{f(x)}{x}.
\end{align*}
\]

7–9. Use formulas on page 743 and/or multiplication/division of power series to find the first three nonzero terms in the Maclaurin series for the function:

\[
\begin{align*}
\text{(7)} & \quad f(x) = \cos^2 x, \\
\text{(8)} & \quad f(x) = e^{x^2} \arctan x, \\
\text{(9)} & \quad f(x) = \frac{e^x}{1-x}.
\end{align*}
\]

10–11. Approximate the following functions near \(x = 0 \) by their Taylor polynomials (with the given number of terms). Estimate the error (depending on \(x \)) using Taylor's inequality or alternating series remainder estimate. Find how small \(x \) has to be so that the error is less than 0.01:

\[
\begin{align*}
\text{(10)} & \quad f(x) = \cos x, \quad T_2, \\
\text{(11)} & \quad f(x) = e^x, \quad T_3.
\end{align*}
\]
Hints and answers

1. \(f(x) = 4 + 4(x - 1) + (x - 1)^2. \)
2. \(f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n n^{2n+1} x^{2n+3}}{(2n+1)!}. \)
3. \(f(x) = \sum_{n=0}^{\infty} (-1)^n 3^{-n-1} x^n. \)
4. \(f(x) = \sum_{n=0}^{\infty} \frac{(1/2)^n} n x^{2n+1}. \)
5. We find \(f(x) = x^2 + x^3 + \cdots. \)
 Answer: \(1/2; \) converges absolutely.
6. We find \(f(x) = 2x - 2x^2 + \cdots. \)
 Answer: 2; does not converge absolutely.
7. \(f(x) = 1 - x^2 + \frac{1}{3} x^4 + \cdots. \)
8. \(f(x) = x + \frac{2}{3} x^3 + \frac{11}{30} x^5 + \cdots. \)
9. \(f(x) = 1 + 2x + \frac{5}{2} x^2 + \cdots. \)
10. \(T_2(x) = 1 - \frac{1}{2} x^2 = T_0(x); \) \(|f(x) - T_2(x)| \leq \frac{x^4}{24}. \)
11. \(T_3(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}; \) \(|f(x) - T_3(x)| \leq \max(1, e^x) \frac{x^5}{24}. \)