Math 1B quiz 6

Oct 7, 2009

Section 105

1. (5 pt) Does the series \(\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n^2 + 1} \) converge absolutely, converge conditionally, or diverge? If it converges, estimate the error \(|s - s_n| \), where \(s \) is the sum of the series and \(s_n \) is the sum of the first \(n \) terms.

2. (5 pt) Consider the series \(\sum_{n=1}^{\infty} \frac{(2n)!c^n}{(n!)^2} \), where \(c > 0 \) is a constant parameter. For which values of \(c \) does the Ratio Test guarantee convergence of the series? For which values does it imply divergence? For which \(c \) is the test inconclusive?

Section 106

1. (5 pt) Does the series \(\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 1} \) converge absolutely, converge conditionally, or diverge? If it converges, estimate the error \(|s - s_n| \), where \(s \) is the sum of the series and \(s_n \) is the sum of the first \(n \) terms.

2. (5 pt) Consider the series \(\sum_{n=1}^{\infty} \frac{(n!)^2 b^n}{(2n)!} \), where \(b > 0 \) is a constant parameter. For which values of \(b \) does the Ratio Test guarantee convergence of the series? For which values does it imply divergence? For which \(b \) is the test inconclusive?
Solutions for section 105

1. Put $a_n = (-1)^{n+1} \frac{n}{n^2 + 1}$. First, we study the series of absolute values $\sum_{n=1}^\infty |a_n| = \sum_{n=1}^\infty \frac{n}{n^2 + 1}$. We have

$$\lim_{n \to \infty} \frac{a_n}{1/n} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n^2}} = 1;$$

since the p-series $\sum_{n=1}^\infty \frac{1}{n^p}$ diverges, by the Limit Comparison Test the series $\sum_{n=1}^\infty |a_n|$ diverges. Therefore, the series $\sum_{n=1}^\infty a_n$ is not absolutely convergent.

Now, we study the convergence of the series $\sum_{n=1}^\infty a_n$ itself. We have $a_n = (-1)^{n+1} b_n$, where $b_n = \frac{n}{n^2 + 1}$ is positive; we may apply the Alternating Series Test to conclude that $\sum_{n=1}^\infty a_n$ converges. Indeed,

$$\lim_{n \to \infty} \frac{n}{n^2 + 1} = \lim_{n \to \infty} \frac{1}{n + \frac{1}{n}} = 0.$$

It remains to verify that the sequence b_n is decreasing. For that, it is enough to prove that the function $f(x) = \frac{x}{x^2 + 1}$ is decreasing for $x \geq 1$. This in turn follows from the inequality

$$f'(x) = \frac{1 - x^2}{(x^2 + 1)^2} \leq 0 \text{ for } x \geq 1.$$

Since the series $\sum_{n=1}^\infty a_n$ converges, but the series $\sum_{n=1}^\infty |a_n|$ diverges, the series $\sum_{n=1}^\infty a_n$ is conditionally convergent.

Finally, the we use the error estimate for alternating series to get

$$|s - s_n| \leq b_{n+1} = \frac{n+1}{(n+1)^2 + 1}.$$

2. We put $a_n = \frac{(2n)!c^n}{n!n^2}$ and compute

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(2n+2)(2n+1)c}{(n+1)^2} = \lim_{n \to \infty} \frac{(2 + \frac{2}{n})(2 + \frac{1}{n})c}{(1 + \frac{1}{n})^2} = 4c.$$

Therefore, the series is convergent for $0 < c < \frac{1}{4}$, divergent for $c > \frac{1}{4}$; the test is inconclusive for $c = \frac{1}{4}$.

Solutions for section 106

1. See the solution for problem 1 in section 105.
2. We put \(a_n = \frac{(n!)^2 b^n}{2^n n!} \) and compute

\[
\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)^2 b}{(2n+2)(2n+1)} = \lim_{n \to \infty} \frac{(1 + \frac{1}{n})^2 b}{(2 + \frac{2}{n})(2 + \frac{1}{n})} = \frac{b}{4}.
\]

Therefore, the series is convergent for \(0 < b < 4 \), divergent for \(b > 4 \); the test is inconclusive for \(b = 4 \).