Def. A family of distributions \(u = u(h) \in D'(U) \),
\((U \subset \mathbb{R}^n \text{ open})\), is called \(h \)-tempered, if \(\forall X \in C_c^\infty (U) \)
\(\exists \ \ N, C : \|Xu\|_{H^{-N}} \leq C h^{-N} \) for all \(0 < h \leq 1 \).

Def. Let \(u(h) \in D'(U) \) be an \(h \)-tempered family.
We say that \((x_0, \xi_0) \in \Gamma^* U = \{(x, \xi) \in \Gamma^* \mathbb{R}^n : x \in U\} \)
does \(\not \in \) \(\operatorname{supp} \) \(\mathcal{W} F_h (u) \), if \(\exists \) a hnbhd \(V(x_0, \xi_0) \subset \Gamma^* U \)
such that \(\forall A \in \mathbb{R}^n \) compactly supported in \(U \), \(\mathcal{W} F_h (A) \cap CV \),
we have \(\| Au \|_{H^{-N}} \leq C h^{-N} \) \(\forall N \), i.e. \(Au = O(h^{-N})_{C^\infty} \).

This defines a closed set \(\mathcal{W} F_h (u) \subset \Gamma^* U \).

Remarks

1. Same as the Fourier transform definition we had before: see sect 7
2. This definition is inspired by the following definition of support
 \(\operatorname{supp} u \) for \(u \in D'(U) : x_0 \in \operatorname{supp} u \iff \exists \) hnbhd \(V(x_0) \)
s.t. \(\forall X \in C_c^\infty(U), \text{ supp } X \subset CV \), we have \(Xu = 0 \).
3. \(h \)-temperedness is useful because
 \(u \) \(h \)-tempered, \(A \in \mathbb{R}^n \) compactly supported in \(U \),
 \(\quad \Rightarrow A \in \mathcal{W} F_h (A) = 0 \Rightarrow \| Au \|_{H^{-N}} \leq C h^{-N} \) \(\forall N \);
 Indeed, \(A = O(h^{-N})_{C^\infty} \) \(\forall N \).
4. For \(u \in D'(U), B \in \mathbb{R}^k \) compactly supported in \(U \),
 we have \(\mathcal{W} F_h (A Bu) \subset \mathcal{W} F_h (B) \bigcap \mathcal{W} F_h (u) \).
 Indeed, \((x_0, \xi_0) \in \mathcal{W} F_h (u) \Rightarrow \exists V \text{ from Def above,} \)
 \(V \subset \Gamma^* U \) \(\forall A \in \mathbb{R}^n \), \(\mathcal{W} F_h (AB) \subset \mathcal{W} F_h (A), \) So,
 \(\mathcal{W} F_h (A) \subset CV \Rightarrow ABu = O(h^{-N})_{C^\infty} \).
\((x_0, \xi_0) \in WF_h(B) \Rightarrow \text{just false} \)

\[\forall \omega : T^* U \setminus WF_h(B) \nRightarrow \text{Ref.} \]

Then \(WF_h(A) \subset \subset WF_h(AB) = \emptyset \), so

\[WF_h(AB) \subset WF_h(A) \cap WF_h(B). \]

So, since \(u \) is h-tempered, get \(\| B\omega u \| = O(h^\omega \alpha) \).

4. Elliptic estimate gives the following:

if \(P \in \mathfrak{V}_h \) is differential, \(u \in D'(U) \) h-tempered, then \(WF_h(u) \subset WF_h(Pu) \cup (T^* U \setminus \mathfrak{V}_h(P)) \).

Indeed, put \(f := Pu \). Assume that

\((x_0, \xi_0) \in T^* U \) satisfies

\((x_0, \xi_0) \in WF_h(f), (x_0, \xi_0) \in \mathfrak{V}_h(P) \).

We need to show that \((x_0, \xi_0) \in WF_h(u) \).

Since \((x_0, \xi_0) \in WF_h(f)\), can choose \(V \subset T^* U \) a nbhd of \((x_0, \xi_0)\) such that \(\forall B \in \mathfrak{V}_h \subset \sup \), \(WF_h(B) \subset V \).

If \(f = O(h^\omega) \), fix \(B \) like that and \(Bf = O(h^\omega) \).

satisfying \((x_0, \xi_0) \in \mathfrak{V}_h(B)\) [by quantity: \(B = \mathcal{O}_h(b) \), \(\text{supp} \in C V \), \(\delta(x_0, \xi_0) = 1 \)]

Then \((x_0, \xi_0) \in \mathfrak{V}_h(BP)\), since \(\delta_h(BP) = \delta_h(B) \delta_h(P) \).

Apply the elliptic estimate to the operator \(BP \) - can still do it with same proof (note: \(BP \) compactly supp. inside \(U \)).

Set: \(\exists \xi \in C^\omega_c(U) \) s.t.

\[\exists \xi \in C^\omega_c(U) \text{ s.t.} \]

\[\| A \| H_n^h \leq \| \xi \| BP \| H_n^{N-k} + C h^N \| \xi \| H_n^{N-k} = O(h^\omega). \]

\(O(h^\omega) \) as \(Bf = O(h^\omega) \).
So we constructed \(WC \) \(\Omega \) a nbhd of \((x_0, \xi)\) s.t. \(\forall A \in \mathcal{U}_h (IR^n) \) comp. supp. in \(\Omega \), \(W_{h_0}(A)(\xi) \), we have \(Au = O(h^{\infty})_\alpha \). Thus \((x_0, \xi) \notin W_{h_0}(u)\) as needed. \(\Box \)

Recall: in Feb 28 lecture, we had the elliptic WF set statement which follows from (4):

\[
P u = 0, u \text{ h-tempered } \Rightarrow W_{h_0}(u) \subset \overline{T^*_\Omega \setminus \text{Ell}_h (\mathcal{P})}
\]

In the special case of \(P = -h^2 \partial_x^2 + V \) on \(IR \).

We finally get a proof of that one.

Let us introduce our last fundamental tool which will be used in the proof of propagation of singularities:

Sharp Garding Inequality: READ [2w, Thm 4.32 + Thm 9.11]

Assume \(\sigma_h (A) \geq 0 \). Then \(\forall u \in C^\infty (IR^n) \), we have

\[
\Re \langle Au, u \rangle \leq -\parallel u \parallel_{H^\infty_{h_0}}^2.
\]

"Proof" Will do the easy case when \(\Re \sigma_h (A) = 1b_0^2 \) for some \(b \in S_h^{1/2} \). See [2w] for the harder general case.

\[
\Re \langle Au, u \rangle = \frac{1}{2}(\langle Au, u \rangle + \langle A^*u, u \rangle) = \frac{1}{2} \langle (A+A^*)u, u \rangle.
\]

Replacing \(A \) with \(\frac{A+A^*}{2} \), may assume that \(A^* = A \) and \(\sigma_h (A) = 1b_0^2 \). Now, put \(B := Op_h (b) \). Then \(A = B^* B + h \eta_{h_0}^{k-1} \), i.e., \(A = B^* B + hR \), \(R \in \mathcal{U}_h^{k-1} \).
Proof. For simplicity assume $k=0$, $WF_h(A)\subset ell_h(B)$.

Reduce to the case $B=0$, $Re\sigma_h(A) \geq 0$ everywhere:

we can find a large constant $C_0>0$ such that $Re\sigma_h(A) + C_0 |\sigma_h(B)|^2 \geq 0$ everywhere.

So we may replace A with $\hat{A}:=A + C_0 B^*B$, so $Re\sigma_h(\hat{A}) \geq 0$ everywhere, $WF_h(\hat{A}) \subset ell_h(B_1)$, $\langle A u, u \rangle = \langle A u, u \rangle + C_0 \|B u\|_{L^2}$.
Now it remains to handle the case $B = 0$.

We have: $WF_h(A) \subset Cell_h(B_1)$. So there exists $X \in \Phi_h^0$, X comp. supp. U (since A is...)
and $WF_h(A) \cap WF_h(I - X) = \emptyset$.

Indeed, take $X = \Phi_h(\tilde{X})$ for some cutoff $X \in C^\infty_c(U)$
and \tilde{X} s.t. $\tilde{X} = 1$ near $WF_h(A)$, supp $\tilde{X} \subset Cell_h(B_2)$.

Now, write for some $X \in C^\infty_c(U)$

$$\text{Re} \langle Au, u \rangle = \text{Re} \langle A X u, X u \rangle + O(h^\infty) \| \mathbf{X} u \|_{H^1_h}^2$$

because $X^\ast A X - A = (X^\ast - I) A X + A (X - I)$

$$= O(h^\infty) \Psi_{-\infty} \text{ comp. supp.} \in U.$$

\[\text{Finally, by the original sharp Gårding inequality} \]

$$\text{Re} \langle A X u, X u \rangle \geq -C \| X u \|_{H^1_h} \| u \|_{H^{-1/2}_h}.$$

Here we applied it to $X^\ast A X$, $\text{Re} \tilde{\Phi} (X^\ast A X) = \tilde{\Phi} (A, \mathbf{1}) u^2$.

Now $WF_h(X) \subset Cell_h(B_1)$, so by the elliptic estimate

$$\| X u \|_{H^{-1/2}_h} \leq C \| b_1 u \|_{H^{-1/2}_h} + O(h^\infty) \| \mathbf{X} u \|_{H^1_h}^2 \quad \square$$
Hamiltonian Flow

Assume \(p \in S^k(T^*\mathbb{R}^n) \) and \(p \) is real valued.

Define the Hamiltonian vector field

\[H_p \text{ on } T^*\mathbb{R}^n \text{ by} \]

\[H_p = \sum_j (\partial \xi_j / \partial x_j \cdot \partial x_j - \partial \xi_j / \partial x_j \cdot \partial x_j) \cdot \partial \xi_j. \]

Note: for \(a \in C^\infty(T^*\mathbb{R}^n) \), \(H_p a = \langle H_p, a \rangle \).

Can consider the flow \(\exp(tH_p) : T^*\mathbb{R}^n \to T^*\mathbb{R}^n \)

(might not be defined for all \(t \) ...)

How to extend to \(\overline{T^*\mathbb{R}^n} \)? Want to get some homogeneous of degree 0, i.e. \(H_p \in \text{flow}^0 \) for all \(a \in C^\infty \).

Easy to compute: \(a \in \text{flow}^k \), \(b \in \text{flow}^l \), \(f(a, b) \in \text{flow}^{k+l-1} \).

So, \(p \in S^1 \Rightarrow \exp(tH_p) \) could just be extended as is.

In general: consider the vector field

\[\langle \xi \rangle^{1-k} H_p \text{ on } T^*\mathbb{R}^n. \text{ It extends to a smooth vector field on } \overline{T^*\mathbb{R}^n} \text{ which is tangent to the fiber infinity } \mathbb{E}T^*\mathbb{R}^n. \]

Note: all this works for more general manifolds, \(M \), with \(\{ f \} \) and \(H_p \) defined since \(T^*M \) has a natural symplectic form \(\omega = dx \wedge \xi \), \(dx \wedge \xi \) canonical 1-form.