1. (2 pts) Assume that \(M \subset \mathbb{R}^N \) is a hypersurface and \((\Psi, U)\) is a coordinate chart for \(M \). Assume also that \(U' \subset \mathbb{R}^{N-1} \) is an open set and \(\Phi : U' \to U \) is a diffeomorphism, and put \(\Psi' := \Psi \circ \Phi \); then \((\Psi', U')\) is another coordinate chart for \(M \). Without using the surface measure \(\lambda_M \), show that for each Borel measurable nonnegative \(f : M \to \mathbb{R} \),
\[
\int_U (f \circ \Psi) J_{\Psi} \, d\lambda_{\mathbb{R}^N-1} = \int_{U'} (f \circ \Psi') J_{\Psi'} \, d\lambda_{\mathbb{R}^N-1}
\]
where \(J_{\Psi}, J_{\Psi'} \) are defined by (5.2.12). (Hint: use Jacobi's formula and the fact that \(J_{\Psi}(y) = \sqrt{\det(d\Psi(y)^T d\Psi(y))} \).)

2. (2 pts) Do Exercise 6.1.6.

3. (2 pts) Do Exercise 6.1.7.

5. (1 pt) Let \((E, \mathcal{B}, \mu)\) be a measure space and \(f : E \to \mathbb{R} \) a measurable function. Show that for all \(p \in [1, \infty) \),
\[
\left(\|f\|_{L^p} \right)^p = \int_0^\infty p t^{p-1} \mu(\{x \in E : |f(x)| \geq t\}) \, dt.
\]

6. (1 pt) Assume that \((E, \mathcal{B}, \mu)\) is a finite measure space and \(f : E \to \mathbb{R} \) is a bounded measurable function. It is easy to see that \(f \in L^p(E, \mu) \) for all \(p \). Show that for any sequence \(p_j \in [1, \infty] \) converging to some \(p \in [1, \infty] \), we have \(\|f\|_{L^{p_j}} \to \|f\|_{L^p} \).