18.125 Homework 8

due Wed Apr 6 in class

1. (1 pt) Define the Borel measure μ on \mathbb{R}^2 by $\mu(A) = \lambda_{\mathbb{R}^2}(A \cap B_1)$ where B_1 denotes the unit ball. Let $\Phi : \mathbb{R}^2 \to \mathbb{R}$ be defined by $\Phi(x, y) = x$. Compute the measure $\Phi_*\mu$.

2. (2 pt) Using Tonnelli's Theorem, show that for a measurable nonnegative function f on a σ -finite measure space (E, \mathcal{B}, μ) ,

$$\int_E f \, d\mu = \int_0^\infty \mu \left(\{ x \in E \mid f(x) \ge t \} \right) dt.$$

Use this to determine for which $s \in \mathbb{R}$ the following integrals are finite:

$$\int_{B_1} |x|^s \, dx, \quad \int_{\mathbb{R}^N \setminus B_1} |x|^s \, dx$$

where B_1 is the unit ball in \mathbb{R}^N .

- **3.** (2 pts) Do Exercise 5.1.13 (i)–(iii).
- 4. (3 pts) Do Exercise 5.2.20.
- **5.** (2 pts) Do Exercise 5.2.25.