18.125 Homework 3

due Wed Feb 24 in class

1. (2 pts) Consider the map $\Phi : (0,1) \to \{1,2,\ldots,9\}$ from Problem 1 in the previous homework, and let λ be the Lebesgue measure on \mathbb{R} . Show that $\lambda(\Phi^{-1}(9)) = 1$, that is $\Phi = 9$ almost everywhere. Show that $\lambda(\Phi^{-1}(j))$ is uncountable for $j = 1,\ldots,8$, giving examples of uncountable sets of zero measure. (You may use the fact that the power set of \mathbb{N} is uncountable.)

2. (2.5 pts) Do Exercise 2.2.30.

3. (1 pt) Do Exercise 2.2.31. (For the latter part, only show that the existence of $\lambda_{\mathbb{R}^n}$ implies that \mathbb{R}^N is uncountable.)

4. (1 pt) Let (E, \mathcal{B}, μ) be a measure space and assume $\mu(E) < \infty$. We call $x \in E$ an *atom* of μ , if $\mu(\{x\}) > 0$. Show that the set of atoms of μ is at most countable.

- **5.** (1 pt) Do Exercise 2.2.33.
- **6.** (2.5 pts) Do Exercise 2.2.37.