ERRATA

This is perpetually growing list of errata, many of which were found by Robert Koirala.
p. 3, line 3up: Change $B\left(\mathbf{0}, 2^{-m+1}\right)$ to $\overline{B\left(\mathbf{0}, 2^{-m+1}\right)}$
p. 7, line 3up: Replace $\lambda_{t}(d \mathbf{y})$ by λ_{t}
p. 10, line 12 up : Insert "in" after "rays"
p. 11, line 2dn: Replace μ_{t} by λ_{t}
p. 11, line $12 d n$: Change $C_{\mathrm{b}}\left(\mathbb{R}^{N} ; \mathbb{C}\right)$ to $C_{\mathrm{b}}^{2}\left(\mathbb{R}^{N} ; \mathbb{C}\right)$
p. 15, line $7 \mathbf{u p}:$ Replace $(1+\| \mathbf{x} \mid)^{\Lambda t}$ by $(1+|\mathbf{x}|) e^{t 6 L}$
p. 19, line 8dn: Delete $\int[t]$ from this line
p. 22, line 10up: Replace δ_{x} by $\delta_{\mathbf{x}}$
p. 28, line 7up: Replace $|\mathbf{y}-\mathbf{x}| \leq$ by $|\mathbf{y}-\mathbf{x}|^{2} \leq$
p. 31, line 10 dn : Replace $e^{-\frac{\xi^{2}}{2} \mathbb{E}^{\mathbb{P}}\left[X_{n}\right]^{2}}$ by $e^{-\frac{\xi^{2}}{2} \mathbb{E}^{\mathbb{P}}\left[X_{n}^{2}\right]}$
p. 33, line 12up: Replace $2^{\frac{n}{2}-1}$ by $2^{-\frac{n}{2}-1}$
p. 34, line 3up: Change $R^{\frac{n}{p}+r-\alpha}$ to $R^{\frac{N}{p}+r-\alpha}$
p. 35, footnote: Replace $\|\mathbf{x}\|_{\infty}=\max _{1 \leq j \leq N}\left|x_{j}\right|$ by $\|\mathbf{x}\|_{1}=\sum_{j=1}^{N}\left|x_{j}\right|$
p. 35, lines $2,5, \& 3 d n$ and 7 up: Replace $\|_{\infty}=1$ by $\|_{1}=1$
p. 35, lines 3up and 1up: Replace $\left(2^{N+1} N\right)^{\frac{1}{p}}$ by $4^{\frac{N}{p}}$
p. 36, lines 5 dn and $\mathbf{6}$, \& 3up: Replace $\left(2^{N+1} N\right)^{\frac{1}{p}}$ by $4^{\frac{N}{p}}$
p. 37, line 3dn: Change $\sup _{\mathbf{x} \in\left[2^{n-1}, 2^{n}\right]}$ to $\sup _{2^{n-1} \leq|\mathbf{x}| \leq 2^{n}}$
p. 43, line 2dn: Replace $\mathbb{E}^{\mathbb{P}}$ by $\mathbb{E}^{\mathcal{W}}$
p. 43, line 7 dn : Change $\|_{u H . S \text {. }}$ to $\|_{\mathrm{HS}}$
p. 45 , line 9 dn : Change \mathbb{E}^{W} to $\mathbb{E}^{\mathcal{W}}$ and replace $2^{\frac{n}{2}}$ by $2^{-\frac{n}{2}}$
p. 46, line 10up: Change $\int_{0}^{t}\langle\varphi, P(\tau, \mathbf{x})\rangle d \tau$ to $\int_{0}^{t}\langle L \varphi, P(\tau, \mathbf{x})\rangle d \tau$
pp. 50-51 Lemma 2.2.2: Change Lemma 2.2 .2 and its proof to:
Lemma 2.2.2. Assume that $a \geq \epsilon \mathbf{I}$. If a is continuously differentiable in a neighborhood of \mathbf{x}, then so is $a^{\frac{1}{2}}$ and

$$
\max _{1 \leq i \leq n}\left\|\partial_{x_{i}} a^{\frac{1}{2}}(\mathbf{x})\right\|_{\mathrm{op}} \leq \frac{\left\|\partial_{x_{i}} a(\mathbf{x})\right\|_{\mathrm{op}}}{2 \epsilon^{\frac{1}{2}}}
$$

Moreover, for each $n \geq 2$, there is a $C_{n}<\infty$ such that

$$
\max _{\|\boldsymbol{\alpha}\|=n}\left\|\partial_{\mathbf{x}}^{\boldsymbol{\alpha}} a^{\frac{1}{2}}(\mathbf{x})\right\|_{\mathrm{op}} \leq C_{n} \frac{\max _{\|\alpha\| \leq n}\left\|\partial^{\alpha} a(\mathbf{x})\right\|_{\mathrm{op}}^{n}}{\epsilon^{n-\frac{1}{2}}}
$$

when a is n-times continuously differentiable in a neighborhood of \mathbf{x}. Hence, if $a \in C_{\mathrm{b}}^{n}\left(\mathbb{R}^{N} ; \operatorname{Hom}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right)\right)$, then so is $a^{\frac{1}{2}}$.
Proof. Without loss in generality, assume that $\mathbf{x}=\mathbf{0}$ and that there is a $\Lambda<\infty$ such that $a \leq \Lambda \mathbf{I}$ on \mathbb{R}^{N}.

In order to express $a^{\frac{1}{2}}$ in an analytically tractable way in terms of a, we will use the power series expansion

$$
(1-t)^{\frac{1}{2}}=\sum_{m=0}^{\infty}(-1)^{m}\binom{\frac{1}{2}}{m} t^{m} \text { where }\binom{\frac{1}{2}}{m}=\frac{\prod_{\ell=0}^{m-1}\left(\frac{1}{2}-\ell\right)}{m!} .
$$

We will make use of the fact that $(-1)^{m}\binom{\frac{1}{2}}{m} \leq 0$ for $m \geq 1$.
Set $d=\mathbf{I}-\frac{a}{\Lambda}$. Obviously d is symmetric, $0 \mathbf{I} \leq d \leq\left(1-\frac{\epsilon}{\Lambda}\right) \mathbf{I}$, and $a=\Lambda(\mathbf{I}-d)$. Thus, if $\binom{\frac{1}{2}}{0}=1$ and

$$
\binom{\frac{1}{2}}{m}=\frac{\prod_{\ell=0}^{m-1}\left(\frac{1}{2}-\ell\right)}{m!} \quad \text { for } m \geq 1
$$

are the coefficients in the Taylor expansion of $x \rightsquigarrow(1+x)^{\frac{1}{2}}$ around 0 , then

$$
\sum_{m=0}^{\infty}(-1)^{m}\binom{\frac{1}{2}}{m} d^{m}
$$

converges in the operator norm uniformly on \mathbb{R}^{N}. In addition, if λ is an eigenvalue of $a(\mathbf{y})$ and $\boldsymbol{\xi}$ is an associated eigenvector, then $d(\mathbf{y}) \boldsymbol{\xi}=\left(1-\frac{\lambda}{\Lambda}\right) \boldsymbol{\xi}$, and so

$$
\left(\Lambda^{\frac{1}{2}} \sum_{m=0}^{\infty}(-1)^{m}\binom{\frac{1}{2}}{m} d^{m}(\mathbf{y})\right) \boldsymbol{\xi}=\lambda^{\frac{1}{2}} \boldsymbol{\xi}
$$

Hence,

$$
\begin{equation*}
a^{\frac{1}{2}}=\Lambda^{\frac{1}{2}} \sum_{m=0}^{\infty}(-1)^{m}\binom{\frac{1}{2}}{m} d^{m} \tag{2.2.7}
\end{equation*}
$$

Now assume that a is continuously differentiable. Because $\partial_{x_{i}} d^{m}=\sum_{j=1}^{m} d^{j-1}\left(\partial_{x_{i}} d\right) d^{m-j}$ and therefore $\left\|\partial_{x_{i}} d^{m}\right\|_{\mathrm{op}} \leq m\|d\|_{\mathrm{op}}^{m-1}\left\|\partial_{x_{i}} d\right\|_{\mathrm{op}}$,

$$
\begin{aligned}
\Lambda^{-\frac{1}{2}}\left\|\partial_{x_{i}} a^{\frac{1}{2}}\right\| & \leq \sum_{m=1}^{\infty}(-1)^{m-1}\binom{\frac{1}{2}}{m}\left\|\partial_{x_{i}} d^{m}\right\|_{\mathrm{op}} \\
& \leq\left|\sum_{m=1}^{\infty} m(-1)^{m}\binom{\frac{1}{2}}{m}\|d\|_{\mathrm{op}}^{m-1}\right|\left\|\partial_{x_{i}} d\right\|_{\mathrm{op}} \\
& =\frac{\left\|\partial_{x_{i}} d\right\|_{\mathrm{op}}}{2\left(1-\|d\|_{\mathrm{op}}\right)^{\frac{1}{2}}} \leq \Lambda^{-\frac{1}{2}} \frac{\left\|\partial_{x_{i}} a\right\|_{\mathrm{op}}}{2 \epsilon^{\frac{1}{2}}}
\end{aligned}
$$

where the final inequality follows from $d \leq\left(1-\frac{\epsilon}{\Lambda}\right) \mathbf{I}$. Hence, starting from (2.2.7), one sees that $a^{\frac{1}{2}}$ is continuously differeniable in a neighborhood of $\mathbf{0}$ and that the asserted estimate for $\left\|\partial_{x_{i}} a^{\frac{1}{2}}(\mathbf{x})\right\|_{\text {op }}$ holds.

Next, assume that a is n-times differentiable for some $n \geq 2$, let $\|\alpha\|=n$, and, for $m \geq 1$, define

$$
B_{\alpha}(m)=\left\{\left(\beta^{1}, \ldots, \beta^{m}\right) \in\left(N^{N}\right)^{m}: \sum_{\ell=1}^{m} \beta^{\ell}=\alpha\right\}
$$

Then

$$
\partial^{\alpha} d^{m}=\sum_{\left(\beta^{1}, \ldots, \beta^{m}\right) \in B_{\alpha}(m)}\left(\partial^{\beta^{1}} d\right) \cdots\left(\partial^{\beta^{m}} d\right) .
$$

If $1 \leq m<n$, then

$$
\left\|\partial^{\alpha} d\right\|_{\mathrm{op}} \leq \operatorname{card}\left(B_{\alpha}(m)\right) \Lambda^{-m} \max _{\beta:\|\beta\| \leq n}\left\|\partial^{\beta} a\right\|^{m}
$$

If $m \geq n$ and $\left(\beta^{1}, \ldots, \beta^{m}\right) \in B_{\alpha}(m)$, then the number of $1 \leq \ell \leq m$ for which $\beta^{\ell} \neq \mathbf{0}$ is at most n, and so

$$
\left\|\partial^{\alpha} d^{m}\right\|_{\mathrm{op}} \leq \operatorname{card}\left(B_{\alpha}(m)\right) d^{m-n} \Lambda^{-m} \max _{\beta:\|\beta\| \leq n}\left\|\partial^{\beta} a\right\|^{n}
$$

and

$$
\operatorname{card}\left(B_{\alpha}(m)\right)=\operatorname{card}\left(B_{\alpha}(n)\right) \prod_{\ell=0}^{n-1}(m-\ell)
$$

Hence, since

$$
\left|\sum_{m \geq n}(-1)^{m}\binom{\frac{1}{2}}{m} \prod_{\ell=0}^{n-1}(m-\ell)\|d\|_{\mathrm{op}}^{m-n}\right|=\frac{1}{2} \prod_{\ell=1}^{n-1}\left(\ell-\frac{1}{2}\right)\left(1-\|d\|_{\mathrm{op}}\right)^{\frac{1}{2}-n}
$$

it is clear that asserted estimate for $n \geq 2$ holds.
p. 51, line 3up: Change \sqrt{K} to $\sqrt{2 K}$.
p. 52, lines 11dn $6 \& 5$ up: Change K to $2 K$ in the expressions there.
p. 53, line 14 dn : Replace $\int_{\mathbb{R}^{N}}$ by \int_{Γ}
p. 59, line 13up: Change $e^{-\frac{y^{2}}{2}}$ to $e^{-\frac{y^{2}}{2 t}}$
p. 65, lines $8 \mathrm{dn}-17 \mathrm{dn}$: Change to such that

$$
\begin{gathered}
\mathfrak{H}:=\{(t, \mathbf{y}): t \in[0, s] \text { and }|\mathbf{y}-p(t)|<2 r\} \subseteq \mathfrak{G} \\
{[s-r, s] \times \overline{B(\mathbf{x}, 2 r)} \subseteq \mathfrak{G},|p(t)-\mathbf{x}|<r \text { for } t \in[s-r, s], \text { and } u(t, \mathbf{y}) \geq u(0, \mathbf{0})+\delta \text { for }} \\
(t, \mathbf{y}) \in[s-r, s] \times \overline{B(\mathbf{x}, 2 r)} . \text { Next, set } \\
\zeta^{\mathfrak{H}}(w)=\inf \{t \geq 0:(t, w(t)) \notin \mathfrak{H}\} \text { and } \zeta(w)=\inf \{t \geq s-r: w(t) \in \overline{B(\mathbf{x}, 2 r)}\}
\end{gathered}
$$

and observe that $\|w-p\|_{[0, s]}<r \Longrightarrow \zeta(w)<\zeta^{\mathfrak{H}}(w)$. Hence, since

$$
\begin{aligned}
u(0, \mathbf{0}) & =\mathbb{E}^{\mathcal{W}}\left[u\left(\zeta \wedge \zeta^{\mathfrak{H}}, w\left(\zeta \wedge \zeta^{\mathfrak{H}}\right)\right)\right] \geq u(0, \mathbf{0}) \mathcal{W}\left(\zeta^{\mathfrak{H}} \leq \zeta\right)+(u(0, \mathbf{0})+\delta) \mathcal{W}\left(\zeta<\zeta^{\mathfrak{H}}\right) \\
& =u(0, \mathbf{0})+\delta \mathcal{W}\left(\zeta<\zeta^{\mathfrak{H}}\right)
\end{aligned}
$$

and $\mathcal{W}\left(\zeta<\zeta^{\mathfrak{H}}\right) \geq \mathcal{W}\left(\|w-p\|_{[0, s]}<r\right)>0$, we would have the contradiction that $u(0, \mathbf{0})>u(0, \mathbf{0})$.
p. 68, line 1up: Insert "to" after "respect"
p. 70, 1up: Change $I_{\eta_{3}}$ to $I_{\eta_{2}}$
p. 75, line 7 dn : Change $\varphi\left(I_{\sigma}(\tau)\right)$ to $\varphi\left(V(\tau), I_{\sigma}(\tau)\right)$
p. 76, lines 7up \& 4up; p. 77, 1dn: Change I_{σ} to $I_{\sigma_{n}}$
p. 77, lines 10dn \& 11dn: Change $m<2^{n}$ to $m<2^{n} t$
p. 79, line 6up: Change to:

$$
\mathbb{E}^{\mathbb{P}}\left[\left\|I_{\sigma}(\cdot)\right\|_{0, t \wedge \zeta_{R}}^{p}\right]^{\frac{1}{p}} \leq \frac{p}{\sqrt{2(p-1)}} \mathbb{E}^{\mathbb{P}}\left[A(t)^{\frac{p}{2}}\right]^{\frac{1}{p}}
$$

p. 79, line 3up: Change to epresion for K_{p} to $K_{p}=\left(\frac{p}{\sqrt{2(p-1)}}\right)^{\frac{p}{2}} \leq(2 p)^{\frac{p}{2}}$
p. 80, line 7 dn : Change "a is" to "is a"
p. 80, line 13up: Change μ_{t} to $\mu(t, \cdot)$
p. 80, line 11 up: Change $1_{[a, t]}$ to $\mathbf{1}_{[p(a), p(t)]}$
p. 87 , line 9 up: Change $2^{\frac{n}{2}}$ to $2^{-\frac{n}{2}}$
pp. 89-91: Change $2^{\frac{n}{2}}$ to $2^{-\frac{n}{2}}$ in line $2 \& 12 \mathrm{dn}$ on p. 89 , 7 up on p. 90 , and 8 dn on p. 91
p. 96: Delete this page.
p. 97: Delete lines 1 through 13, replace equation (3.5.4) by $Z^{(m)}$ is the closure in $L^{2}(\mathcal{W} ; \mathbb{R})$ of span of $\left\{I_{f \otimes m}^{(m)}(\infty): f \in L^{2}\left([0, \infty) ; \mathbb{R}^{M}\right)\right\}$ and replace line 14 by "Finally, $Z^{(m)} \perp Z^{\left(m^{\prime}\right)}$ when"
p. 97, line 9-8up: Change this line to
$\begin{aligned} \int_{0<\tau_{m^{\prime}-m}<\cdots<\tau_{m^{\prime}}} \mathbb{E}[& \left.I_{f_{1}^{\prime} \otimes f_{m^{\prime}-m}^{\prime}}\left(\tau_{m^{\prime}-m}\right)\right] \\ & \times \prod_{\ell=1}^{m}\left(f_{\ell}\left(\tau_{m^{\prime}-m+\ell}\right), f_{m^{\prime}-m+\ell}^{\prime}\left(\tau_{m^{\prime}-m+\ell}\right)_{\mathbb{R}^{M}} d \tau_{m^{\prime}-m} \cdots d \tau_{m^{\prime}}=0 .\right.\end{aligned}$
pp. 97-98: Relace lines 3 up on p. 97 through 1dn on p. 98 by:
When $m \geq 1$, to understand why $I_{f^{\otimes m}}^{m}(\infty)$ is said to be of m th order chaos, it is helpful to write $d w(\tau)$ as $\dot{w}(\tau) d \tau$ write $I_{f \otimes m}^{(m)}(\infty)$ as

$$
\int_{\tau_{1}<\cdots \tau_{m}}\left(f\left(\tau_{1}\right), \dot{w}\left(\tau_{1}\right)\right)_{\mathbb{R}^{M}} \cdots\left(f\left(\tau_{m}\right), \dot{w}\left(\tau_{m}\right)\right)_{\mathbb{R}^{M}} d \tau_{1} \ldots d \tau_{m}
$$

In the world of engenineerting and physics,
p. 99, lines $11 \& 7$-6up: Replace these line by

$$
w \rightsquigarrow F\left(\left(\xi_{1}, w\left(t_{1}\right)\right)_{\mathbb{R}^{M}}, \ldots,\left(\xi_{L}, w\left(t_{L}\right)\right)_{\mathbb{R}^{M}}\right)
$$

where $L \geq 1,0<t_{1}<\cdots<t_{L}$, and $\left\{\xi_{1}, \ldots, \xi_{L}\right\} \subset \mathbb{R}^{M}$.
p. 111, line 13up: Change $M\left(\zeta_{m, n}\right) \mid \geq 2^{-n}$ to $M\left(\zeta_{m, n+1}\right) \mid \geq 2^{-n-1}$
p. 112, line 8dn: Change $2^{1-2 n}$ to 4^{1-n}
p. 117, line 10up: Change ${ }_{n}(\cdot)-I_{m}(\cdot)$ to $I_{n}(t)-I_{m}(t)$
p. 120, line 3dn: Change $F(a)-F(b)$ to $F(b)-F(a)$
p. 121, line 1 dn : Replace $-I_{\xi}^{M}(t)$ to $-I_{\xi}^{M}\left(t \wedge \zeta_{1}\right)$
p. 122, line 2dn: Change $\sigma(\tau)^{\top} d A(\tau) \sigma(\tau)$ to $\sigma(\tau) d A(\tau) \sigma(\tau)^{\top}$
p. 122, line 1up: Insert after $n \geq 0: \zeta_{m, 0}=m$
p. 123, lines 5dn \& 5up: Change $)_{\mathbb{R}^{N_{2}}}$ to $)_{\mathbb{R}^{N_{1}}}$ in 5 dn and $\left(\nabla_{(2)} \varphi\left(\mathbf{V}(\tau), d \mathbf{M}(\tau)_{\mathbb{R}^{N_{2}}}\right.\right.$ to $\left(\nabla_{(2)} \varphi(\mathbf{V}(\tau), \mathbf{M}(\tau)), d \mathbf{M}(\tau)\right)_{\mathbb{R}^{N_{2}}}$ in 5up
p. 124, lines $1 \& 6 \mathrm{dn}$: Change $\zeta_{m 1}$ to ζ_{m+1} in line 1 dn and $\nabla_{(2)} \varphi$ to $\nabla_{(2)}^{2} \varphi$ in 6 dn
p. 128 , lines $12 \& 15 \mathrm{dn}$: Change $\Pi(t)$ to $\Pi(t)^{\perp}$ in line 12 dn and $\sigma^{-1} \boldsymbol{\xi}$ to $\sigma^{-1}(\tau) \boldsymbol{\xi}$ in 15 dn
p. 129, 3up: Change $-x_{1} x_{3}$ to $-x_{1} x_{2}$ in second line of matrix
p. 133, line 4dn: Change $d(x(\tau)$ to $d X(\tau)$
p. 133, line 1up: After "derivatives," insert "assume that the first derivatives of $\sum_{k=1}^{M} \mathcal{L}_{V_{k}} V_{k}$ are bounded,"
p. 134, line 4dn: Change $=\varphi(\mathbf{x})$ to $-\varphi(\mathbf{x})$
p. 155, line 9up: Change $\lfloor\tau\rfloor$ to $\lfloor\tau\rfloor_{n}$
p. 163 , line 5 dn : Change E_{β} to \tilde{E}_{β}
p. 165, line 9dn: Replace $\sqrt{g^{\Phi} \circ \Phi^{-1}}$ by $\sqrt{\operatorname{det} g^{\Phi} \circ \Phi^{-1}}$
p. 166, line 7 dn : Insert "equation" after "stochastic integral" at the end of this line
p. 166, line 3up: Change $\left(x_{1}^{\mathfrak{e}}, \ldots, x_{m}^{\mathfrak{e}}\right)$ to $\left(x_{1}^{\mathfrak{e}}, \ldots, x_{N}^{\mathfrak{e}}\right)$
p. 167, line 3up: Change $\sum_{j=m+1}^{M}$ to $\sum_{j=m+1}^{N}$
p. 168, line 6up: Change $L=\sum_{j=1}^{N}$ to $L=\frac{1}{2} \sum_{j=1}^{N}$
pp. $168 \& 169$, lines 4 up \& 6dn: Change $=\Delta_{M}$ to $=\frac{1}{2} \Delta_{M}$
p.178, line 2dn: Change Riccardi equation to Riccati equation
p. 180, line 7 dn : Change $\left(f_{\delta}+\epsilon\right)^{\frac{1}{p-1}}$ for $\left(f_{\delta}+\epsilon\right)^{\frac{1}{p}-1}$
p. 181, line 2up: Change $\left\|D_{h} \Phi\right\|_{L^{r}(\mathcal{W} ; \mathbb{R})}$ to $\left\|D_{h} \Phi\right\|_{L^{p}(\mathcal{W} ; \mathbb{R})}$
p. 184, lines $5 \& \mathbf{9 d n}$: Change $[0, \infty) \times \mathbb{R}^{N}$ to $[0, \infty) \times \mathbb{R}$ in line 5 dn and $D_{h}(\tau, x)$ to $D_{h} X(\tau, x)$ in line 9 dn
p. 188, line $4 d \mathrm{~d}$: Insert $d t$ before \geq
p. 190, lines $3 \& 4 \mathrm{dn}$: Change the right hand side of the equation to

$$
\mathcal{A}\left(x_{1}\right)^{-1}\binom{\left(D\left(\varphi \circ X(1, x), D X_{1}(1, x)\right)_{H^{1}(\mathbb{R})}\right.}{\left(D\left(\varphi \circ X(1, x), D X_{2}(1, x)\right)_{H^{1}(\mathbb{R})}\right.}
$$

p. 191, line 1up: Change $e^{\epsilon_{m}\left(\alpha k^{2-2 m}\right)^{\frac{1}{5}}}$ to $e^{\epsilon_{m}\left(\alpha k^{-2 m}\right)^{\frac{1}{5}}}$
p. 192, line 2dn: Change to

$$
\sum_{k=1}^{\infty} e^{-\epsilon_{m}\left(\alpha k^{-2 m}\right)^{\frac{1}{5}}} \leq e^{-\epsilon_{m} \alpha^{\frac{1}{m+5}}} \sum_{k \leq \alpha^{\frac{1}{2 m+5}}} e^{-\epsilon_{m} k^{2}}+\sum_{k>\alpha^{\frac{1}{2 m+5}}} e^{-\epsilon_{m} k^{2}}
$$

p. 192, lines $4 \& 5$ dn: Change $\frac{1}{m+4}$ to $\frac{1}{m+5}$
p. 193, line 7up: Change \int_{s}^{1} to \int_{s}^{1}
p. 194, lines $1 \& 2$ dn: Change $\sum_{k=1}^{n}$ to $\sum_{k=1}^{\infty}$
p. 200, line 4up: Change $\left(D \Phi_{1}, D \Psi_{2}\right)_{L^{2}\left(\mathcal{W} ; H^{1}\left(\mathbb{R}^{N}\right)\right)}^{2}$ to $\left(D \Phi_{1}, D \Psi_{2}\right)_{L^{2}\left(\mathcal{W} ; H^{1}\left(\mathbb{R}^{N}\right)\right)}$

