Exercise 1.3.19 on pp. 32–33: There are a number of annoying errors here. The last line of p. 32 should be

$$\leq 2 \exp\left[1 - \frac{t\delta^2}{2} + \frac{t\delta^3}{3(1-\delta)}\right].$$

The most serious error is in the estimation of $E(t, \delta)$ starting on line 8 on p. 33. One should write $E(t, \delta)$ as

$$\int_0^{\delta} e^{-\frac{tz^2}{2}} \left(e^{tR(z)} + e^{tR(-z)} - 2 \right) dz.$$

One should then use a second order Taylor's expansion to write $e^{tR(z)} + e^{tR(-z)} - 2$ as t(R(z) + R(-z)) + F(t, z), where $|F(t, z)| = \frac{t^2}{2} (R(z)^2 + R(-z)^2) e^{t|R(z)|}$. Now observe that

$$|R(z) + R(-z)| = \sum_{m=2}^{\infty} \frac{z^{2m}}{m} \le \frac{|z|^4}{2(1-z^2)}.$$

Thus, for $\delta \leq \frac{1}{2}$, one can dominate $|E(t, \delta)|$ by a constant times the sum of

$$t \int_0^{\delta} |z|^4 e^{-\frac{tz^2}{2}} dz$$
 and $t^2 \int_0^{\delta} |z|^6 e^{-\frac{tz^2}{6}} dz$,

which shows that $|E(t,\delta)|$ is dominated by a constant times $t^{-\frac{3}{2}}$. Finally, take $\delta = \sqrt{3t^{-1}\log t}$ to arrive at

$$\left|\frac{\Gamma(t+1)}{t^{t+1}e^{-t}} - \sqrt{\frac{2\pi}{t}}\right| \le Ct^{-\frac{3}{2}}$$

for $t \ge 9$, and from this get (1.3.21).

- p. 43, line 7 up: $\sup_{n\geq 1} \mathbb{E}^{\mathbb{P}}[X_n^2] < \infty$
- **p. 45, line 6 down**: $2^{-\frac{1}{p}\vee 1} \mathbb{EP}[|X|^p]^{\frac{1}{p}}$
- p. 58, lines 1–10: Change \tilde{s} to \tilde{S}

p. 90, lines 10 and 4 up: $\leq \frac{\xi^2 \sigma_m^2}{2\Sigma_n^2}$ and $\leq \frac{R^4 r_n^2}{4}$

p. 91, line 5 down: $\leq 2\epsilon^{-2}$

p. 95, lines 9–8 up: The hint should read $(\Pi \boldsymbol{\xi})_{(2)} = C_{(22)}^{-1} C_{(21)} \boldsymbol{\xi}_{(1)}$ if $\boldsymbol{\xi}_{(2)} = \mathbf{0}_{(2)}$ and $4\Pi \boldsymbol{\xi} = \boldsymbol{\xi}$ if $\boldsymbol{\xi}_{(1)} = \mathbf{0}$.

p. 111, line 5 down: convergence in $L^2(\gamma_{0,1}^2; \mathbb{R})$

p. 111, line 6 down: Using the generating function in (2.4.5)

- **p. 113, line 12 up**: Replace $-\dot{q}(t)$ by $\dot{q}(t)$
- p. 114, line 6 up: Change 8.4.8 to 8.5.12

p. 122, line 2 down: Reduce to the case when μ is symmetric, $\mu(\{0\}) > 0$, and therefore

- **p. 138, line 2 down**: $\delta_{m_{\mu}} \star \pi_{M^r} ((-\infty, 0)) = 0$
- p. 138, line 8 down: $m^{\eta_0} \ge \int_R \eta_0(y) y M(dy)$
- p. 143, line 12 down: $\frac{\Gamma(1-\alpha)}{\alpha}$

p. 182, line 4 up: $\mathbb{E}^{\mathbb{P}}\left[\sup_{t\in[0,1]} \|X_{n+1}(t) - X_n(t)\|_B^p\right]^{\frac{1}{p}}$

p. 188, line 6 down:

$$\mathbb{P}\left(\sup_{t\in[0,T]} \left| \left(\mathbf{e}, \mathbf{B}(t)\right)_{\mathbb{R}^{N}} \right| \ge R \right) \le 2\mathbb{P}\left(\left| \left(\mathbf{e}, \mathbf{B}(T)\right)_{\mathbb{R}^{N}} \right| \ge R \right)$$

p. 192, line 7 up: $\sum_{n=m}^{\infty} L(2^{-n-1}) \leq CL(2^{-m-1})$ p. 192, line 4 up:

$$\mathbb{P}\big(\|B - B_n\|_{[0,1]} \ge RL(2^{-n-1})\big) \le \sum_{m=n}^{\infty} \mathbb{P}\big(M_{m+1} \ge C^{-1}RL(2^{-m-1})\big)$$

p. 192, line 2 up:

$$\mathbb{P}(M_n \ge RL(2^{-n})) \le 2^{n(1-2^{-1}R^2)+1}$$

p. 262, line 14 down:

$$\sup_{n\in\mathbb{Z}^+} \left\| \mathbb{E}^{\mathbb{P}} \left[\|X_n - X_{n-1}\|_E^{2p} \left| \mathcal{F}_{n-1} \right]^{\frac{1}{2p}} \right\|_{L^{2p}(\mu;\mathbb{R})} \right\|_{L^{2p}(\mu;\mathbb{R})}$$

p. 298, line 10 down:

$$-\mathbb{EP}\Big[\gamma_{\mathbf{0},(1-\zeta_{\mathbf{x}}^{G})\mathbf{I}}\big(\Gamma-\mathbf{x}-\boldsymbol{\psi}(\zeta_{\mathbf{x}}^{G}),\zeta_{\mathbf{x}}^{G}\leq t\Big].$$

p. 331, line 4–9 down:

Hint: Begin by showing that the inequality is trivial when either n = 1 or $||AA^{\top}||_{\text{op}} \geq 2$. To prove when $n \geq 2$ and $||AA^{\top}||_{\text{op}} \leq 2$, set $\Delta = \mathbf{I}_{\mathbb{R}^n} - AA^{\top}$, show that

$$|a_{\ell\ell}a_{n\ell}| \le |\Delta_{n\ell}| + (AA^{\top})_{nn}^{\frac{1}{2}} \left(\sum_{j=1}^{\ell-1} a_{jj}^2\right)^{\frac{1}{2}} \text{ for } \mathbf{1} \le \ell < n$$
$$|1 - a_{nn}| \le |1 - a_{nn}^2| \le \Delta_{nn} + \sum_{\ell=1}^{n-1} a_{n\ell}^2,$$

and proceed by induction on n.

- p. 332, line 6 up: $\sum_{m=1}^{\infty} \frac{X_m(\theta)^2 + (-1)^{m+1} \sqrt{8} X_0(\theta) X_m(\theta)}{m^2}$ p. 332, line 1 up: $\sinh z = z \prod_{m=1}^{\infty} \left(1 + \frac{z^2}{m^2 \pi^2}\right)$. p. 334, line 1 up: $\theta_T \upharpoonright [0,T] \in \Theta_T(\mathbb{R}^N)$.
- **p. 356, line 9 up**: Change $\langle \varphi \log \varphi \rangle_{\gamma_{0,1}}$ to

$$\left\langle \varphi \log \frac{\varphi}{\langle \varphi \rangle_{\gamma_{0,1}}} \right\rangle_{\gamma_{0,1}}$$

p. 382, line 11 down: change the statements of parts (ii) and (ii) of Exercise 9.1.17 as follows.

(ii) For $\ell \in \mathbb{Z}^+$, let π_{ℓ} be the natural projection map from **E** onto E_{ℓ} , and show that $\mathbf{K} \subset \mathbf{E}$ if

$$\mathbf{K} = \bigcap_{\ell \in \mathbb{Z}^+} \pi_{\ell}^{-1}(K_{\ell}), \quad \text{where} \quad K_{\ell} \subset \subset E_{\ell} \text{ for each } \ell \in \mathbb{Z}^+.$$

Conclude from this that $\mathbf{A} \subseteq \mathbf{M}_1(\mathbf{E})$ is tight if and only if $\{(\pi_\ell)_* \mu : \mu \in \mathbf{A}\} \subseteq \mathbf{M}_1(E_\ell)$ is tight for every $\ell \in \mathbb{Z}^+$.

Next, set $\mathbf{E}_{\ell} = \prod_{k=1}^{\ell} E_k$, and let π_{ℓ} denote the natural projection map from \mathbf{E} onto \mathbf{E}_{ℓ} . Show that for each $\varphi \in U_{\mathrm{b}}^{\mathbf{R}}(\mathbf{E}; \mathbb{R})$ and $\epsilon > 0$ there is an $\ell \ge 1$ such that $|\varphi(\mathbf{y}) - \varphi(\mathbf{x})| < \epsilon$ for all $\mathbf{x}, \mathbf{y} \in \mathbf{E}$ with $\pi_{\ell}(\mathbf{x}) = \pi_{\ell}(\mathbf{y})$. Use this to show that $\mu_n \Longrightarrow \mu$ in $\mathbf{M}_1(\mathbf{E})$ if and only if $\langle \varphi \circ \pi_{\ell}, \mu_n \rangle \longrightarrow \langle \varphi \circ \pi_{\ell}, \mu \rangle$ for every $\ell \ge 1$ and $\varphi \in C_{\mathrm{b}}(\mathbf{E}_{\ell}; \mathbb{R})$.

(iii) Let $\mu_{[1,\ell]}$ be an element of $\mathbf{M}_1(\mathbf{E}_\ell)$, and assume that the $\mu_{[1,\ell]}$'s are consistent in the sense that, for every $\ell \in \mathbb{Z}^+$,

$$\mu_{[1,\ell+1]}(\Gamma \times E_{\ell+1}) = \mu_{[1,\ell]}(\Gamma) \quad \text{for all } \Gamma \in \mathcal{B}_{\mathbf{E}_{\ell}}.$$

Show that there is a unique $\mu \in \mathbf{M}_1(\mathbf{E})$ such that $\mu_{[1,\ell]} = (\pi_\ell)_* \mu$ for every $\ell \in \mathbb{Z}^+$.

p. 415, line 10 down: $\frac{h(T, \mathbf{x}, \mathbf{y})}{g^{(N)}(T, \psi(T) - \mathbf{x})}$

p. 450, line 2 down & 14 up: Change $e^{\frac{\pi^2}{4}t}$ to $e^{\frac{\pi^2}{8}t}$ and (ii) to (iii)

p. 452, line 8 down: $\leq \frac{e^{-\frac{t\lambda_M}{2}}}{(\pi t)^{\frac{N}{2}}}$

p. 472, line 5 up: The assertion in Exercise 11.1.36 is false and so this exercise should be ignored.

- p. 472, lines 1 & 10 down: Change (ii) to (i) and (iii) to (ii).
- **p. 473, line 2 up**: $W_{\mathbf{y}}^{(N)}(\exists t \in [0,\infty) \ \psi(t) = \varphi(t))$
- p. 502, line 1 down: Theorem 11.4.6
- **p. 515, line 1 down**: Let G be a connected open subset