1. Applications of Martingales

Througout, $L=\frac{1}{2} \sum_{i, j=1}^{N} a_{i, j}(x) \partial_{x_{i}} \partial_{x_{j}}$ where $x \in \mathbb{R}^{N} \longmapsto a(x) \in \mathbb{R}^{N} \times \mathbb{R}^{N}$ is a non-negative definite symmetric matrix valued function which admites a uniformly Lipschitz continous square root. The map $x \in \mathbb{R}^{N} \longmapsto \mathbb{P}_{x} \in \mathbf{M}_{1}\left(\mathcal{P}\left(\mathbb{R}^{N}\right)\right)$ is the one corresponding to L. In particular, for any function $f \in C_{\mathrm{b}}^{1,2}\left([0, \infty) \times \mathbb{R}^{N} ; \mathbb{R}\right)$, if

$$
M_{f}(t, \psi) \equiv f(t, \psi(t))-\int_{0}^{t}\left(\partial_{\tau}+L\right) f(\tau, \psi(\tau)) d \tau
$$

then $\left(M_{f}(t), \mathcal{B}_{t}, \mathbb{P}_{x}\right)$ is a martingale for each $x \in \mathbb{R}^{N}$.
(1): Given an open $G \subset \mathbb{R}^{N}$, set $\zeta^{G}(\psi)=\inf \{t \geq 0: \psi(t) \notin G$ denote. Assuming that $f \in C^{1,2}\left([0, \infty) \times \mathbb{R}^{N} ; \mathbb{R}\right)$ has the property that $\sup _{(t, y) \in[0, \infty) \times G} \mid\left(\partial_{t}+\right.$ $L) f(t, y) \mid<\infty$, then $\left(M_{f}\left(t \wedge \zeta^{G}\right), \mathcal{B}_{t}, \mathbb{P}_{x}\right)$ for each $x \in \mathbb{R}^{N}$. To check this, choose a bump function $\eta \in C_{\mathrm{b}}^{2}\left(\mathbb{R}^{N} ;[0,1]\right)$ such that $\eta=1$ on G, replace $f(t, y)$ by $\eta(y) f(t \wedge T, y)$, and apply Doob's stopping time theorem.
(2): Assume that $\|a(x)\|_{\text {op }} \leq \Lambda$ for some $\Lambda<\infty$ and all $x \in \mathbb{R}^{N}$. Given $\xi \in \mathbb{R}^{N}$, set $f_{\xi}(y)=e^{(\xi, y)_{\mathbb{R}^{N}}}$, and observe that $L f_{\xi}(y) \leq \Lambda|\xi|^{2}$. Using this together with (1), one sees that

$$
\left(\exp \left(\left(\xi, \psi\left(t \wedge \zeta_{R}\right)\right)_{\mathbb{R}^{N}}-\frac{\Lambda|\xi|^{2}}{2}\left(t \zeta_{R}\right)\right), \mathcal{B}_{t}, \mathbb{P}_{0}\right)
$$

ia non-negative supermartingale where $\zeta_{R}=\zeta^{B(0, R)}$. In particular, this combined with Fatou's lemma shows that

$$
\mathbb{E}^{\mathbb{P}_{0}}\left[e^{(\xi, \psi(t))_{\mathbb{R}^{N}}}\right] \leq e^{\frac{\Lambda|\xi|^{2} t}{2}}
$$

Now set $A=\frac{1}{\Lambda t} \mathbf{I}$, integrate both sides with respect to $\gamma_{0, A}$, and conclude that

$$
\mathbb{E}^{\mathbb{P}_{0}}\left[\exp \left(\frac{|\psi(t)|^{2}}{4 \Lambda t}\right)\right] \leq 2^{\frac{N}{2}}
$$

(3): Continuing (2), show that, for each $T>0$

$$
\left(\exp \left(\frac{|\psi(t \wedge T)|^{2}}{8 \Lambda T}\right), \mathcal{B}_{t}, \mathbb{P}_{0}\right)
$$

is a square integrable submartingale, and use Doob's inequality, conclude that

$$
\mathbb{E}^{\mathbb{P}_{0}}\left[\exp \left(\frac{\|\psi\|_{[0, T]}^{2}}{4 \Lambda T}\right)\right] \leq 2^{\frac{N}{2}+2} .
$$

Finally, using the translation invariance of the hypotheses, arrive at

$$
\begin{equation*}
\mathbb{E}^{\mathbb{P}_{x}}\left[\exp \left(\frac{\|\psi-x\|_{[0, T]}^{2}}{4 \Lambda T}\right)\right] \leq 2^{\frac{N}{2}+2} \text { for all }(T, x) \in[0, \infty) \times \mathbb{R}^{N} \tag{1.1}
\end{equation*}
$$

(4): Let $\omega \in \mathbb{S}^{N-1}$, and assume that $(\omega, a(x) \omega)_{\mathbb{R}^{N}} \geq \epsilon$ for some $\epsilon>0$ and all $x \in \mathbb{R}^{N}$.

For each $s \in \mathbb{R}$, define $\zeta_{s}(\psi)=\inf \left\{t \geq 0:(\omega, \psi(t))_{\mathbb{R}^{N}}=s\right\}$, then, for each $\alpha, r, R>0$,

$$
\left(\exp \left(\alpha\left(\omega, \psi\left(t \wedge \zeta_{r} \wedge \zeta_{-R}\right)\right)_{\mathbb{R}^{N}}-\frac{\epsilon \alpha^{2} t \wedge \zeta_{r} \wedge \zeta_{-R}}{2}\right), \mathcal{B}_{t}, \mathbb{P}_{x}\right)
$$

is a submartingale, and therefore

$$
\mathbb{E}^{\mathbb{P}_{x}}\left[\exp \left(-\frac{\epsilon \alpha^{2}\left(t \wedge \zeta_{-R} \wedge \zeta_{r}\right)}{2}\right)\right] \geq \exp \left(-\alpha\left((\omega, x)_{\mathbb{R}^{N}}+r\right)\right)
$$

Hence, after first letting t and R tend to infinity and then letting $\alpha \searrow 0$, one sees that $\mathbb{P}_{x}\left(\zeta_{r}<\infty\right)=1$. In particular, this proves that, \mathbb{P}_{x}-almost surely, $\psi(\cdot)$ will escape any affine half space of the form $\left\{(\omega, y)_{\mathbb{R}^{N}}<r\right\}$ and therefore any bounded open set.

2. Homogeneous Chaos

Let \mathcal{W} be Wiener measure on $\mathbb{W}(\mathbb{R})$ and $\left\{g_{j}: j \geq 1\right\}$ an orthonormal basis in $L^{2}([0, \infty) ; \mathbb{R})$. Although it is not essential, it is convenient to assume that the g_{j} 's are continuously differentiable and the $\int_{0}^{\infty}(1+\tau)\left|\dot{g}_{j}(\tau)\right| d \tau<\infty$ for all $j \in \mathbb{Z}^{+}$. For example, one can take $g_{j}(t)=((2 j)!\pi)^{-\frac{1}{2}} H_{2 j} j(t) e^{-\frac{t^{2}}{2}}$, where $\left\{H_{m}: m \geq 0\right\}$ are the Hermite polynomials described below. The advantage of such a choice is that $I_{g_{j}}(w)=\int_{0}^{\infty} g_{j}(\tau) d w(\tau)$ can be taken to be a well defined Riemann Stieltjes integral for all $w \in \mathcal{W}(\mathbb{R})$

For $m \in \mathbb{N}$, set $\mathcal{A}_{m}=\{\boldsymbol{\alpha} \in \mathcal{A}:\|\boldsymbol{\alpha}\|=m\}$, and, for $m, N \in \mathbb{Z}^{+}$set $\mathcal{A}_{m}(N)=$ $\left\{\boldsymbol{\alpha} \in \mathcal{A}_{m}: S(\boldsymbol{\alpha}) \subseteq\{1, \ldots, N\}\right\}$. Also, for $\boldsymbol{\alpha} \neq \mathbf{0}$, set $\tilde{I}_{G_{\boldsymbol{\alpha}}}=\tilde{I}_{G_{\boldsymbol{\alpha}}}(\infty)$.

Theorem 2.1. For each $m \in \mathbb{Z}^{+}, \mathcal{A}_{m}=\left\{\tilde{I}_{G_{\boldsymbol{\alpha}}}: \boldsymbol{\alpha} \in \mathcal{A}:\|\boldsymbol{\alpha}\|_{1}=m\right\}$ is an orothogonal basis in $Z^{(m)}$.

Proof. What we need to show is that, for each $f \in L^{2}([0, i) ; \mathbb{R})$ and $m \in \mathbb{Z}^{+}$, $\tilde{I}_{f \otimes_{m}}(\infty)$ is in the $L^{2}(\mathcal{W} ; \mathbb{R})$-closure L_{m} of $\left\{\tilde{I}_{G_{\boldsymbol{\alpha}}}: \boldsymbol{\alpha} \in \mathcal{A}:\|\boldsymbol{\alpha}\|_{1}=m\right\}$. To this end, set $f_{N}=\sum_{n=1}^{N}\left(f, g_{j}\right)_{L^{2}([0, \infty) ; \mathbb{R})} g_{j}$. Then $\tilde{I}_{f \otimes m}(\infty)-\tilde{I}_{f_{N}^{\otimes m}}(\infty)=m \tilde{I}_{\left(f-f_{N}\right) \otimes f^{\otimes(m-1)}}(\infty)$ and therefore its $L^{2}(\mathcal{W} ; \mathbb{R})$-norm is a multiple of $\left\|f-f_{N}\right\|_{L^{2}([0 \infty) ; \mathbb{R})}$ Thus, we need only show that $\tilde{I}_{f_{N}^{\otimes m}}(\infty) \in L_{m}$.

For $\boldsymbol{\alpha} \in \mathcal{A}_{m}$, let $\mathcal{K}_{\boldsymbol{\alpha}}$ be the set of $\mathbf{k} \in\left(\mathbb{Z}^{+}\right)^{m}$ such that $\operatorname{card}\left(\left\{\ell: k_{\ell}=j\right\}\right)=\alpha_{j}$ for each $j \in S(\boldsymbol{\alpha})$. Then

$$
\begin{aligned}
& I_{f_{N}^{\otimes m}}(\infty)=\sum_{\boldsymbol{\alpha} \in \mathcal{A}_{m}(N)} \sum_{\mathbf{k} \in \mathcal{K}_{\boldsymbol{\alpha}}}\left(\prod_{\ell=1}^{m}\left(f, g_{k_{\ell}}\right)_{L^{2}([0, \infty) ; \mathbb{R})}\right) I_{g_{k_{1}} \otimes \cdots \otimes g_{k_{m}}}(\infty) \\
& =\sum_{\boldsymbol{\alpha} \in \mathcal{A}_{m}(N)}\left(\prod_{j \in S(\alpha)}\left(f, g_{j}\right)_{L^{2}([0, \infty) ; \mathbb{R})}^{\alpha_{j}}\right) \frac{\tilde{I}_{G_{\boldsymbol{\alpha}}}}{\boldsymbol{\alpha}!} \in L_{m} .
\end{aligned}
$$

Let $H_{m}=e^{\frac{x^{2}}{2}} \partial_{x}^{m} e^{-\frac{x^{2}}{2}}$ for $m \in \mathbb{N}$, and, for $\boldsymbol{\alpha} \in \mathcal{A}$, define $H_{\boldsymbol{\alpha}}: \mathbb{R}^{\mathbb{Z}^{+}} \longrightarrow \mathbb{R}$ so that

$$
H_{\boldsymbol{\alpha}}(\mathbf{x})= \begin{cases}1 & \text { if } S(\boldsymbol{\alpha})=\emptyset \\ \prod_{j \in S(\boldsymbol{\alpha})} H_{j}\left(x_{j}\right) & \text { if } S(\boldsymbol{\alpha}) \neq \emptyset\end{cases}
$$

Then $\left(H_{\boldsymbol{\alpha}}, H_{\boldsymbol{\beta}}\right)_{L^{2}\left(\gamma_{0,1}^{Z+} ; \mathbb{R}\right)}=\boldsymbol{\alpha}!\delta_{\boldsymbol{\alpha}, \boldsymbol{\beta}}$. Now use \mathfrak{G} to denote the basis $\left\{g_{j}: j \geq 1\right\}$ and set $\mathbf{I}_{\mathfrak{G}}=\left(I_{g_{1}}, \ldots, I_{g_{N}}, \ldots\right)$. Then if $\mathcal{H}_{\boldsymbol{\alpha}}=H_{\boldsymbol{\alpha}}\left(\mathbf{I}_{\mathfrak{G}}\right),\left(\mathcal{H}_{\boldsymbol{\alpha}}, \mathcal{H}_{\boldsymbol{\beta}}\right)_{L^{2}(\mathcal{W} ; \mathbb{R})}=\boldsymbol{\alpha}!\delta_{\boldsymbol{\alpha}, \boldsymbol{\beta}}$.

Theorem 2.2. For each $\boldsymbol{\alpha} \in \mathcal{A} \backslash\{0\}, \mathcal{H}_{\boldsymbol{\alpha}}=\tilde{I}_{G_{\boldsymbol{\alpha}}}$.

Proof. Given $\boldsymbol{\xi} \in \mathbb{R}^{N}$, set $g_{\boldsymbol{\xi}}=\sum_{j=1}^{N} \xi_{j} g_{j}$. Then, just as in the proof of Lemma 3.5.2,

$$
e^{I_{g_{\xi}}(\infty)-\frac{|\xi|^{2}}{2}}=1+\sum_{m=1}^{\infty} I_{g_{\xi}^{\otimes m}},
$$

and, just as in the proof of Theorem 2.1,

$$
I_{g_{\xi}^{\otimes m}}=\sum_{\alpha \in \mathcal{A}_{m}(N)} \xi^{\alpha} \frac{\tilde{I}_{G_{\boldsymbol{\alpha}}}}{\alpha!}
$$

where $\boldsymbol{\xi}^{\alpha}=\prod_{j \in S(\boldsymbol{\alpha})} \xi_{j}^{\alpha_{j}}$. Hence

$$
\begin{equation*}
e^{I_{g_{\xi}}(\infty)-\frac{|b x i|^{2}}{2}}=1+\sum_{m=1}^{\infty} \sum_{\boldsymbol{\alpha} \in \mathcal{A}_{m}(N)} \xi^{\alpha} \frac{\tilde{I}_{G_{\boldsymbol{\alpha}}}}{\alpha!} \tag{*}
\end{equation*}
$$

At the same time, because $e^{\xi x-\frac{\xi^{2}}{2}}=\sum_{m=0}^{\infty} \xi^{m} \frac{H_{m}(x)}{m!}$,

$$
\begin{equation*}
e^{I_{g_{\boldsymbol{\xi}}}(\infty)-\frac{|b x i|^{2}}{2}}=\prod_{j=1}^{N} e^{\xi_{j} I_{g_{j}}-\frac{\xi_{j}^{2}}{2}}=1+\sum_{m=1}^{\infty} \sum_{\boldsymbol{\alpha} \in \mathcal{A}_{m}(N)} \boldsymbol{\xi}^{\alpha} \frac{\mathcal{H}_{\boldsymbol{\alpha}}}{\boldsymbol{\alpha}!} . \tag{**}
\end{equation*}
$$

Since the series in both $(*)$ and $(* *)$ converge in $L^{2}(\mathcal{W} ; \mathbb{R})$, for any $\boldsymbol{\xi} \in \mathbb{R}^{N}$ and $\Phi \in L^{2}(\mathcal{W} ; \mathbb{R})$, we have that

$$
\sum_{m=1}^{\infty} \sum_{\left.\boldsymbol{\alpha} \in \mathcal{A}_{m}: S(\boldsymbol{\alpha}) \subseteq[0, N]\right\}} \xi^{\boldsymbol{\alpha}} \frac{\mathbb{E}\left[\tilde{I}_{G_{\boldsymbol{\alpha}}} \Phi\right]}{\boldsymbol{\alpha}!}=\sum_{m=1}^{\infty} \sum_{\boldsymbol{\alpha} \in \mathcal{A}_{m}(N)} \xi^{\boldsymbol{\alpha}} \frac{\mathbb{E}\left[\tilde{I}_{G_{\boldsymbol{\alpha}}} \Phi\right]}{\boldsymbol{\alpha}!}
$$

Furthermore, the series on both sides of this equation are absolutely convergent. In fact,

$$
\begin{aligned}
& \sum_{m=1}^{\infty} \sum_{\boldsymbol{\alpha} \in \mathcal{A}_{m}(N)}\left|\xi^{\boldsymbol{\alpha}} \frac{\mathbb{E}\left[\tilde{I}_{G_{\boldsymbol{\alpha}}} \Phi\right]}{\boldsymbol{\alpha}!}\right| \\
& \leq \sum_{m=1}^{\infty}\left(\sum_{\boldsymbol{\alpha} \in \mathcal{A}_{m}(N)} \frac{\mathbb{E}\left[\tilde{I}_{G_{\boldsymbol{\alpha}}}\right]^{2}}{\boldsymbol{\alpha}!}\right)^{\frac{1}{2}}\left(\sum_{\left\{\boldsymbol{\alpha} \in \mathcal{A}_{m}(N)\right.} \frac{\left|\boldsymbol{\xi}^{\boldsymbol{\alpha}}\right|^{2}}{\boldsymbol{\alpha}!}\right)^{\frac{1}{2}} \\
& \leq\|\Phi\|_{L^{2}(\mathcal{W} ; \mathbb{R})} \sum_{m=1}^{\infty} \frac{|\boldsymbol{\xi}|^{m}}{\sqrt{m!}}
\end{aligned}
$$

and essentially the same computation proves the absolute convergence of the series on the right hand side. Hence, $\mathcal{H}_{\boldsymbol{\alpha}}=\tilde{I}_{G_{\boldsymbol{\alpha}}}$, for all $\boldsymbol{\alpha} \in \bigcup_{m=1}^{\infty} \mathcal{A}_{m}(N)$.

Let Π_{m} denote orthogonal projection onto $Z^{(m)}$, take $D(\mathcal{L})$ be the set of $\Phi \in$ $L^{2}(\mathcal{W} ; \mathbb{R})$ for which

$$
\sum_{m=1}^{\infty} m^{2}\left\|\Pi_{m} \Phi\right\|_{L^{2}(\mathcal{W} ; \mathbb{R})}^{2}<\infty
$$

and define \mathcal{L} to be the operator with domain $D(\mathcal{L})$ given by

$$
\mathcal{L} \Phi=-\sum_{m=0}^{\infty} m \Pi_{m} \Phi
$$

Clearly, \mathcal{L} is a non-positive self-adjoint operator whose spectrum is $\{-m: m \in \mathbb{N}\}$ for which $Z^{(m)}$ is the eigenspace corresponding to the eigenvalue $-m$. That is,
$\Phi \in Z^{(m)} \Longleftrightarrow \Phi \in D(\mathcal{L})$ and $\mathcal{L} \Phi=-m \Phi$. For this reason, $-\mathcal{L}$ is called the number operator.

It turns out that \mathcal{L} can be interpreted as the infinite dimensional OrnsteinUhlenbeck operator. To understand this interpretation, note that $H_{m}^{\prime \prime}(x)-x H^{\prime}(x)=$ $-m H_{m}(x)$, and therefore that

$$
\sum_{j=1}^{\infty}\left(\partial_{j}^{2}-x_{j} \partial_{j}\right) H_{\boldsymbol{\alpha}}(\mathbf{x})=-\|\boldsymbol{\alpha}\|_{1} H_{\boldsymbol{\alpha}}(\mathbf{x})
$$

Now define $D(L)$ to be the set of $\varphi \in L^{2}\left(\gamma_{0,1}^{\mathbb{Z}^{+}} ; \mathbb{R}\right)$ with the property that

$$
\sum_{m=1}^{\infty} m^{2} \sum_{\boldsymbol{\alpha} \in \mathcal{A}_{m}} \frac{\left(\varphi, H_{\boldsymbol{\alpha}}\right)_{L^{2}\left(\gamma_{0,1}^{\mathbb{Z}} ; \mathbb{R}\right)}^{2}}{\boldsymbol{\alpha}!}<\infty
$$

and define the operator L with domain $D(L)$ by

$$
L \varphi=-\sum_{m=1}^{\infty} m \sum_{\boldsymbol{\alpha} \in \mathcal{A}_{m}} \frac{\left(\varphi, H_{\boldsymbol{\alpha}}\right)_{L^{2}\left(\gamma_{0,1}^{Z,+} ; \mathbb{R}\right)}}{\boldsymbol{\alpha}!} H_{\boldsymbol{\alpha}}
$$

When $\varphi=f\left(x_{1}, \ldots, x_{N}\right)$ for some $f \in C^{2}\left(\mathbb{R}^{N} ; \mathbb{R}\right)$,

$$
L \varphi(\mathbf{x})=\sum_{j=1}^{N}\left(\partial_{j}^{2}-x_{j} \partial_{j}\right) f\left(x_{1}, \ldots, x_{N}\right)
$$

To transfer this operator to $L^{2}(\mathcal{W} ; \mathbb{R})$, for $\Phi \in L^{2}(\mathcal{W} ; \mathbb{R})$ set

$$
\varphi=\sum_{\boldsymbol{\alpha} \in \mathcal{A}} \frac{\left(\Phi, \mathcal{H}_{\boldsymbol{\alpha}}\right)_{L^{2}(\mathcal{W} ; \mathbb{R})}}{\alpha!} H_{\boldsymbol{\alpha}}
$$

and observe that $\varphi \in D(L)$ if only if $\Phi \in D(\mathcal{L})$, in which case $\mathcal{L} \Phi=L \varphi \circ I_{\mathfrak{G}}$.
One can take advantage of this interpretation to derive a remarkable property of the semi-group $\left\{\mathcal{P}_{t}: t \geq 0\right\}$ of contraction operators given by

$$
\mathcal{P}_{t} \Phi=\mathbb{E}^{\mathcal{W}}[\Phi]+\sum_{m=1}^{\infty} e^{-m t} \Pi_{m} \Phi
$$

Namely, if, for $(t, w) \in(0, \infty) \times W(\mathbb{R}), \mathcal{P}(t, w, \cdot)$ is the distribution under \mathcal{W} of $v \in W(\mathbb{R}) \longmapsto e^{-t} w+\left(1-e^{-2 t}\right)^{\frac{1}{2}} v \in W(\mathbb{R})$, then $(t, w) \in(0, \infty) \times \mathcal{W}(\mathbb{R}) \longmapsto$ $\mathcal{P}(t, w, \cdot) \in M_{1}(W(\mathbb{R}))$ is a transition probabiltiy function and, for bounded $\mathcal{B}_{W(\mathbb{R})^{-}}$ measurable Φ,

$$
\begin{equation*}
\mathcal{P}_{t} \Phi(w)=\int_{W(\mathbb{R})} \Phi(v) \mathcal{P}(t, w, d v) \text { for } \mathcal{W} \text {-a.e. } w \in W(\mathbb{R}) \tag{2.1}
\end{equation*}
$$

In particular, this means that if $\Phi \geq 0$ (a.s., \mathcal{W}), then $\mathcal{P}_{t} \Phi \geq 0$ (a.s., \mathcal{W}).
To prove (2.1), introduce the transition probability function

$$
P(t, x, d y)=\left(2 \pi\left(1-e^{-2 t}\right)\right)^{-\frac{1}{2}} \exp \left(-\frac{\left(y-e^{-t} x\right)^{2}}{2\left(1-e^{-2 t}\right)}\right) d y
$$

and check that if $f \in C(\mathbb{R} ; \mathbb{R})$ is slowly increasing (i.e., has at most polynomial growth) and $u_{f}(t, x)=\int_{\mathbb{R}} f(y) P(t, x, d y)$, then $\dot{u}_{f}(t, x)=\left(\partial^{2}-x \partial\right) u_{f}(t, x)$ and
$u_{f}(t, \cdot) \longrightarrow f$ as $t \searrow 0$. Now use this to see that $u_{H_{m}}(t, x)=e^{-m t} H_{m}$ and therefore that

$$
\int_{\mathbb{R}^{Z+}} H_{\boldsymbol{\alpha}}(\mathbf{y}) \prod_{j=1}^{\infty} P\left(t, x_{j}, d y_{j}\right)=e^{-\|\boldsymbol{\alpha}\|_{1} t} H_{\boldsymbol{\alpha}}(\mathbf{x})
$$

Hence, if $\Phi \in L^{2}(\mathcal{W} ; \mathbb{R})$ is $\sigma\left(\left\{I_{g_{j}}: 1 \leq j \leq N\right\}\right)$-measurable and

$$
f=\mathbb{E}^{\mathcal{W}}[\Phi]+\sum_{m=1} \sum_{\boldsymbol{\alpha} \in \mathcal{A}_{m}(N)} \frac{\left(\Phi, \mathcal{H}_{\boldsymbol{\alpha}}\right)_{L^{2}(\mathcal{W} ; \mathbb{R})}^{\alpha!} H_{\boldsymbol{\alpha}}, ., ~}{\text {, }}
$$

then f is an element of $L^{2}\left(\gamma_{0,1}^{N} ; \mathbb{R}\right)$ and

$$
\begin{aligned}
\mathcal{P}_{t} \Phi & =\sum_{m=0}^{\infty} e^{-m t} \sum_{\alpha \in \mathcal{A}_{m}(N)} \frac{\left(f, H_{\alpha}\right)_{L^{2}\left(\gamma_{0, i}^{N} ; \mathbb{R}\right)}^{\alpha!}}{\boldsymbol{\alpha}} \mathcal{H}_{\boldsymbol{\alpha}} \\
& =\int_{\mathbb{R}^{N}} f(\mathbf{y}) \prod_{j=1}^{N} P\left(t, I_{g_{j}}, d y_{j}\right) .
\end{aligned}
$$

Next note that $\prod_{j=1}^{N} P\left(t, x_{j}, \cdot\right)$ is the distribution under $\gamma_{0,1}^{N}$ of $\mathbf{y} \in \mathbb{R}^{N} \longmapsto e^{-t} \mathbf{x}+$ $\left(1-e^{-2 t}\right)^{\frac{1}{2}} \mathbf{y}$, and therefore

$$
\mathcal{P}_{t} \Phi(w)=\int_{\mathbb{R}^{N}} f(\mathbf{y}) \prod_{j=1}^{N} P\left(t, I_{g_{j}}(w), d y_{j}\right)=\int_{W(\mathbb{R})} \Phi(v) \mathcal{P}(t, w, d v)
$$

for \mathcal{W}-a.e. $w \in W(\mathbb{R})$.

3. General Itô's Formula

Referring to Theorem 4.3.1, let $\mu_{A}(\cdot, \omega)$ be the Borel measure on $[0, \infty)$ determined by the non-decreasing function $\operatorname{Trace}(\mathrm{A}(\cdot, \omega)$, and observe that, for any bounded, progressively measurable function η, the function

$$
(t, \omega) \rightsquigarrow \int_{0}^{t} \eta(\tau, \omega) \mu_{A}(d \tau, \omega)
$$

is again progressively measurable. Next, define $\mu_{A} \times \mathbb{P}$ to be the measure on $\mathcal{B}_{[0, \infty)} \times$ \mathcal{F} given by

$$
\mu_{A} \times \mathbb{P}(\Gamma)=\int_{\Omega}\left(\int_{[0, \infty)} \mathbf{1}_{\Gamma}(\tau, \omega) \mu_{A}(d \tau, \omega)\right) \mathbb{P}(d \omega)
$$

The goal here is to show that there exists a progresively measurable, symmetric non-negative definite matrix valued function $(t, \omega) \rightsquigarrow a(t, \omega)$ such that $\operatorname{Trace}(\mathrm{a}(\mathrm{t}, \omega))=1$ and

$$
\begin{equation*}
A(t, \omega)=\int_{0}^{t} a(\tau, \omega) d \tau \text { for } \mu_{A} \times \mathbb{P} \text {-a.e. }(t, \omega) . \tag{3.1}
\end{equation*}
$$

In particular, if

$$
\begin{equation*}
L(t, \omega) \varphi(x, y)=\operatorname{Trace}\left(\nabla_{(2)}^{2} \varphi(x, y) a(t, \omega)\right) \tag{3.2}
\end{equation*}
$$

then

$$
\begin{align*}
& \int_{0}^{t} \operatorname{Trace}\left(\nabla_{(2)}^{2} \varphi(\mathbf{V}(\tau, \omega) \mathbf{M}(\tau, \omega)), d A(\tau, \omega)\right) \\
& \quad=\int_{0}^{t} L(t, \omega) \varphi(\mathbf{V}(\tau, \omega), \mathbf{M}(\tau, \omega)) \mu_{A}(d \tau, \omega) \tag{3.3}
\end{align*}
$$

To prove the existence of $(t, \omega) \rightsquigarrow a(t, \omega), 1 \leq i, j \leq N_{2}$, let $\mu_{i, j}(\cdot, \omega)$ denote the signed measure determined by $A(\cdot, \omega)_{i, j}$. Clearly $\left|\mu_{i, j}\right|(\cdot, \omega) \leq \mu_{A}(\cdot, \omega)$ and $\mu_{i, i}(\cdot, \omega)_{i, i} \geq 0$ for all (i, j). Take $a(\cdot, \omega)_{i, j}$ to be the Radon-Nikodym derivative of $\mu_{i, j}(\cdot, \omega)$ with respect to $\mu_{A}(\cdot, \omega)$. Using Jessen's Theorem (cf. Theorem 5.2.20 in [20]) for constucting Radon-Nikodym derivatives, one sees $(t, \omega) \rightsquigarrow a(\cdot, \omega)_{i, j}$ can be chosen to be progressively measurable.

Clearly $a(\cdot, \omega)_{i, j}$ can be chosen so that $\left|a(t, \omega)_{i, j}\right| \leq 1$ and $a(t, \omega) \geq 0$. In addition, since $\mu_{A}(\cdot, \omega)=\sum_{i=1}^{N_{2}} \mu_{i, i}(\cdot, \omega)$, we may assume that $\sum_{i=1}^{N_{2}} a(t, \omega)_{i, i}=1$. Now let $a(t, \omega)$ be the matrix whose (i, j) th entry is $a(t, \omega)_{i, j}$. Given $\xi, \eta \in \mathbb{R}^{N_{2}}$,

$$
\int_{0}^{t}(\xi, a(\tau, \omega) \eta)_{\mathbb{R}^{N_{2}}} \mu_{A}(d \tau, \omega)=(\xi, A(t, \omega) \eta)_{\mathbb{R}^{N_{2}}}
$$

and so $(\xi, a(\cdot, \omega) \eta)_{\mathbb{R}^{N_{2}}}$ is the a Radon-Nikodym derivative with respect to $\mu_{A}(\cdot, \omega)$ for the measure determined by $(\xi, A(\cdot, \omega) \eta)_{\mathbb{R}^{N_{2}}}$. In particular, for $\mu_{A} \times \mathbb{P}$-a.e. (t, ω), this means that $(\xi, a(t, \omega) \xi)_{\mathbb{R}^{N_{2}}} \geq 0$ for all $\xi \in \mathbb{R}^{N_{2}}$, and so we can take $a(t, \omega)$ to be non-negative definite.

