1. APPLICATIONS OF MARTINGALES
Througout, L = %Zf\;zl i j(2)0y,0,, where z € RY — a(z) e RN xRV is a
non-negative definite symmetric matrix valued function which admites a uniformly
Lipschitz continous square root. The map z € RY —— P, € M; (P(RN)) is the
one corresponding to L. In particular, for any function f € Cp*([0,00) x RY;R),
if
t
My(t.0) = £ 00) - [ (0. + L)f(r.0(r) dr.
0
then (My(t), B;,P;) is a martingale for each 2 € RY.

(1): Given an open G C RY, set (“(¢) = inf{t > 0 : () ¢ G denote. As-
suming that f € C*2([0,00) x RY;R) has the property that SUD (1) €[0,00) x G | (O +
L)f(t,y)| < oo, then (Mg (t A CY), By, Py) for each € RY. To check this, choose
a bump function € CZ(RY;[0,1]) such that n = 1 on G, replace f(t,y) by
n(y)f(t AT,y), and apply Doob’s stopping time theorem.

(2): Assume that ||a(x)||op < A for some A < oo and all z € RY. Given ¢ € RY,

set fe(y) = el&¥)eN | and observe that Lfe(y) < Al€|%. Using this together with (1),
one sees that

Al€)?
(eXP<(§’¢<t/\ CR))RN - ‘2| (tCR))thPO)
ia non-negative supermartingale where (z = ¢B©%) In particular, this combined

with Fatou’s lemma shows that
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Now set A = ﬁI, integrate both sides with respect to 7o 4, and conclude that
t)[? N
EFo [ <27,
o (202
(3): Continuing (2), show that, for each 7' > 0

o (427 .2

is a square integrable submartingale, and use Doob’s inequality, conclude that

112, 1
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Finally, using the translation invariance of the hypotheses, arrive at

EIP’O < 2%-&-2.

(1.1) EFe

exp (WMWOT])] <272 for all (T,z) € [0,00) x RN
4AT - ’ ’ '
(4): Let w € SV, and assume that (w,a(z)w)
r € RN,
For each s € R, define (s(v) = inf{t >0: (w,w(t))RN = 5}, then, for each
a,r, R >0,

(exp <a(w7¢(t A CT‘ A C—R))RN - W) aBtv]IDx)

gy = € for some € > 0 and all
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is a submartingale, and therefore

2EANCR A
EP- [exp (— ca’( C2 RAG )>} > exp (—a((w,z)gy +7))
Hence, after first letting ¢t and R tend to infinity and then letting o N\, 0, one sees
that P, (¢, < oco) = 1. In particular, this proves that, P,-almost surely, ¢(-) will
escape any affine half space of the form {(w7 Y)ry < r} and therefore any bounded
open set.

2. Homogeneous Chaos

Let W be Wiener measure on W(R) and {g; : j > 1} an orthonormal basis in
L%([0,00); R). Although it is not essential, it is convenient to assume that the g;’s
are continuously differentiable and the [;°(1+4 7)|g;(7)|dr < oo for all j € ZT.
For example, one can take g;(t) = ((2j)!ﬂ')_%H2jj(t)e_§, where {H,, : m > 0}
are the Hermite polynomials described below. The advantage of such a choice is
that I, = [~ 9;(7) dw(7) can be taken to be a well defined Riemann Stieltjes
1ntegral for all w € W( )

For m € N, set A, = {a € A: ||a|| = m}, and, for m, N € Z* set A,,(N) =
{ae A, : S(a)C{l,...,N}}. Also, for a # 0, set Iq., = I, (00).

Theorem 2.1. For each m € Zt, A, = {Ig, : o € A : |la|l; = m} is an
orothogonal basis in Z(™).

Proof. What we need to show is that, for each f € L?([0,4);R) and m € ZT,
It&,,(00) is in the L?(W; R)-closure L, of {I¢, : @ € A: |la|l; =m}. To thisend,
set fv = Som_1 (f.95)12((0,00):m)95- Then ff@m(oo)—jfggm(oo) =ml(;_fy)erom-1(0)
and therefore its L?(W;R)-norm is a multiple of || f — I |22 ([000);r) Thus, we need
only show that I ;em (00) € L.

For a € Ay, let Kq be the set of k € (ZT)™ such that card({{: k¢ = j}) =
for each j € S(a). Then

If%m(oo) = Z Z (H (f ko) L2 ((0,00); R)) Loy, @--®gx,, (c0)

Q€A (N)KEKs \£=1

Dzj I
= > | I 9B | o €Lme

acA,, (N) \jeS(a)
[l

Let H,, = eéaﬁe’é for m € N, and, for a € A, define Hy : RZ" 5 R so
that
1 if S(a) =0
Ho(x) = { (o)

[ies(a) Hi(zy) if S(a) # 0.

Then (Hgq, Hﬁ)LZ(’yzﬁ—.R) = aldq g. Now use & to denote the basis {g; : j > 1} and
0,15

set Is = (I, ..., Igy,-..). Then if Ho = Ho(Is), (HQ,Hg)LQ(W;R) = aldqg.

Theorem 2.2. For each a € A\ {0}, He = I,
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Proof. Given € € RY | set g¢ = Zj\;l £jg;. Then, just as in the proof of Lemma

3.5.2,
IqE (OO)—* Z I ®7n,
and, just as in the proof of Theorem 2.1,
L= Y el
Q€ Am(N)
where £* = [];c5(a) f;éj. Hence

(%) eloe ()= +Z > E —.

m=1a€cA,, (N

2
At the same time, because o= = => .0 EWL@,

(**) qg(oo \bﬂ\ . H 5] 9~ 22 o i 5&%
N al’

m=1 a€An (N)

Since the series in both () and (#x) converge in L?(W;R), for any £ € RY and
® € L2(W;R), we have that

- aE[jGa(I)] - aE[jGa(b]
DD D D DI DI St
m=1a€cA,,: S(a)C[0,N]} m=1 acA,,(N)

Furthermore, the series on both sides of this equation are absolutely convergent. In
fact,

[N
Nl=

il E(l,|? (3l
<> 0 X =4 >
m=1 \ a€A,,(N) {a€An (N)
< 8l w3 L
’ o vm!

and essentially the same computation proves the absolute convergence of the series
on the right hand side. Hence, Hqo = Ig,,, for all a € |J,o_; A (N). O

Let II,,, denote orthogonal projection onto Z(™) take D(L) be the set of ® €
L?(W;R) for which

Z m2Hqu)||%2(W;R) < 00,

m=1

and define £ to be the operator with domain D(L) given by

= — f: mll,,®.
m=0

Clearly, £ is a non-positive self-adjoint operator whose spectrum is {—m : m € N}
for which Z(™) is the eigenspace corresponding to the eigenvalue —m. That is,
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®c 7 — &c DL) and LE = —m®. For this reason, —L is called the
number operator.

It turns out that £ can be interpreted as the infinite dimensional Ornstein—
Uhlenbeck operator. To understand this interpretation, note that H/, (z)—xH'(z) =
—mH,,(z), and therefore that

oo

> (07 —2;0)) Ha(x) =~ Ha(x).

j=1
Now define D(L) to be the set of ¢ € LQ(V(%I;R) with the property that
(9, Ha)?

oo
L2(vE1R)

2 , m2 2 , D v/ A R
ol

m=1

acA,,

and define the operator L with domain D(L) by

Z Z L2(7 iR) .

m=1 oA,
When ¢ = f(z1,...,2y) for some f € C?(RY;R),
N
Lo(x) = Z(@f —x;05)f(x1,...,xN).
j=1

To transfer this operator to L2(W;R), for ® € L2(W;R) set

:Z(‘I’H )szv]R)H

|
(e}
acA

and observe that ¢ € D(L) if only if ® € D(L), in which case L& = Ly o I.
One can take advantage of this interpretation to derive a remarkable property
of the semi-group {P; : t > 0} of contraction operators given by

P,o =EV[® +Ze ML B

Namely, if, for (t,w) € (0,00) x W(R), P(t,w, -) is the distribution under W
of v € W(R) —s e tw + (1 — e~2t)2p € W(R), then (t,w) € (0,00) x W(R) —>
P(t,w, ) € My (W(R)) is a transition probabiltiy function and, for bounded By (g)-
measurable @,

(2.1) P (w) = / . O (v) P(t,w,dv) for W-a.e. w € W(R).

In particular, this means that if & > 0 (a.s.,WW), then P,® > 0 (a.s.,W).
To prove (2.1), introduce the transition probability function

P(t,x,dy) = (277(1 — e_zt)) H exp ( (2y(1—_e;€2)> dy,

and check that if f € C(R; ]R) is slowly increasing (i.e., has at most polynomial
growth) and us(t,x) = [; f(y)P(t, x,dy), then iy(t,z) = (9> — x0)uys(t, ) and
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up(t,-) — fast N\, 0. Now use this to see that ug, (t,z) = e ™ H,, and
therefore that

Ha(y) Hp(tvxjadyj) = ei”a”ltHa(X)‘
j=1

Rzt

Hence, if ® € L2 (W;R) is 0({I,, : 1 < j < N})-measurable and
. 2% ((I)7HQ)L2(W;]R)
f=E [@*Z Z THOH
m=1 046-/477»(1\7)

then f is an element of L?(y{;;R) and

> (f7H0¢) 2(yN R
Pd = Z e~m Z %’HQ

m=0 acAy, (N)

N
= | 1) [T Pt 15 dyy).

RN i

Next note that vazl P(t,x;, -) is the distribution under 7}, of y € RY — e~ 'x+
(1 — e 2)2y, and therefore

P(w) = [ 1) TLP(1, (). ) = /W(R) B(0) P(t, w, dv)

Jj=1

for W-a.e. w € W(R).

3. General Ito’s Formula

Referring to Theorem 4.3.1, let ua(-,w) be the Borel measure on [0,00) de-
termined by the non-decreasing function Trace(A(-,w), and observe that, for any
bounded, progressively measurable function 7, the function

(t,w) - / () pa (dr,w)

is again progressively measurable. Next, define j14 X [P to be the measure on Bjy ) X
F given by

pa x P(T) :/Q (/[0 )1F(T,w) uA(dT,w)> P(dw).

The goal here is to show that there exists a progresively measurable, sym-
metric non-negative definite matrix valued function (¢,w) ~» a(t,w) such that
Trace(a(t,w)) = 1 and

(3.1) Alt,w) = /0 a(t,w)dr for pa x P-a.e. (t,w).

In particular, if

(3-2) L(t,w)¢(x,y) = Trace(Viy @(w, y)a(t,w)),
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then

/0 Trace (Vé) o(V(r,w)M(1,w)), dA(r, w))

(3.3) for pa x P-a.e. (t,w).

= /0 L(t, OJ)L,O(V(T, w), M(r, o.)))/AA(dT, w)

To prove the existence of (t,w) ~» a(t,w), 1 < i,j < N, let p; ;(-,w) denote
the signed measure determined by A(-,w); ;. Clearly |p;;|(-,w) < pa(-,w) and
fii( - w)is > 0 for all (4, j). Take a(-,w); ; to be the Radon-Nikodym derivative of
i (-, w) with respect to p1a(-,w). Using Jessen’s Theorem (cf. Theorem 5.2.20 in
[20]) for constucting Radon-Nikodym derivatives, one sees (t,w) ~» a(-,w); ; can
be chosen to be progressively measurable.

Clearly a(-,w);; can be chosen so that |a(t,w);;| < 1 and a(t,w) > 0. In
addition, since pa(-,w) = Zf\fl i i( -, w), we may assume that Zf\fl a(t,w);; = 1.
Now let a(t,w) be the matrix whose (i, j)th entry is a(t,w); ;. Given &1 € RN2,

/0 (f,a(T, W)U)RNQMA(dﬂ W) = (€7A(tvw)77)RN2ﬂ

and so (f, al - ,w)n)RNz is the a Radon—Nikodym derivative with respect to pa(-,w)
for the measure determined by (§, A(- ,w)n)RN2. In particular, for pa xP-a.e. (t,w),
this means that (f, a(t,w)é)gn, > 0 for all € € RN and so we can take a(t,w) to
be non-negative definite.



