
Stirling’s Formula

The goal here is to derive a quantitative version (cf. (5) below) of Stirling’s formula
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.

The proof consists of two steps. The first step is to show that the limit

lim
n→∞

n!√
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exists, and the second step is to compute this limit.

Clearly log n! =
∑n
m=2 logm. Set f(x) = x log x − x for x > 0. Then f ′(x) = log x,

and so, by the mean value theorem, there a ξm ∈ (m− 1,m) and an ηm ∈ (m,m+ 1) such
that f(m) − f(m − 1) = log ξm ≤ logm and f(m + 1) − f(m) = log ηm ≥ logm. Thus
f(n) ≤ log n! ≤ f(n+ 1), and so it is reasonable to guess that
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(
(n+ 1) log(1 + 1

n )− 1
)
−→ 0, it makes

sense to look at

∆n ≡ log n!−
(
n+ 1

2

)
log n+ n.
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By Taylor’s theorem, log
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Hence, we now know that
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and therefore that
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Since 1
m2 ≤ 2
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, which means that
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By Cauchy’s criterion, it follows that {∆n : n ≥ 1} converges to some ∆ ∈ R and that

|∆−∆n| = lim`→∞ |∆` −∆n| ≤ 1
n . Because ∆n = log n!en
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, this is equivalent to
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To compute the number e∆ in (1), recall that on page 19 of the book it is shown that
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and observe that (2) implies
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and therefore that P
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−→ 0. Next, because the distribution of −W̆2n is the same

as that of W̆2n,
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and so, by (1.2.17),
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and using (2), (3), and the fact that P(W2n = 0) −→ 0, one sees that
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for all x > 0. Thus, after letting x→∞, we find that
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and so, by (4), e∆ =
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