Stirling’s Formula

The goal here is to derive a quantitative version (cf. (5) below) of Stirling’s formula
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The proof consists of two steps. The first step is to show that the limit
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exists, and the second step is to compute this limit.

Clearly logn! = > _,logm. Set f(z) = zlogz — x for > 0. Then f'(z) = logz,
and so, by the mean value theorem, there a &, € (m —1,m) and an 7n,, € (m, m+ 1) such
that f(m) — f(m — 1) = log&,, < logm and f(m + 1) — f(m) = logn,, > logm. Thus
f(n) <logn! < f(n+ 1), and so it is reasonable to guess that

= (n+%)logn—n—l—%((n—kl)log(l—k%)—l)

fln+1)+ f(n)
2

is a good approximation of logn!. Further, since ((n + 1) log(1 + %) — 1) — 0, it makes
sense to look at
A, =logn! — (n—l— %) logn + n.

Clearly, A,,+1 — A, equals
log(n+1)— (n+32)log(n+1)+ (n+3)logn+1=1— (n+ 3)log(1+1).
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By Taylor’s theorem, log(l + 5) = 5~z T 3areTe for some 6,, € (0, ﬁ), and therefore
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Hence, we now know that
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and therefore that
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Since -L; < 2 = 2(i -1 ), Zn2_1 A< 2(L — i) < 2 which means that
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A, — Ay, | < p for 1 < n; < no.
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By Cauchy’s criterion, it follows that {A,, : n > 1} converges to some A € R and that

A — Ayl =1limy o0 [Ar — Ayl < % Because A,, = log %, this is equivalent to
n 2

nle™

3=
3=

< <e for all n > 1.
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To compute the number e in (1), recall that on page 19 of the book it is shown that
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and observe that (2) implies
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and therefore that P(Wgn = 0) — 0. Next, because the distribution of —Wgn is the same
as that of Wgn,
2P(0 < Way, < ) = P(|Way| < ) — P(Wa, =0),

and so, by (1.2.17),
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By writing /5P(Wa, = 0) as
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and using (2), (3), and the fact that P(Ws,, = 0) — 0, one sees that
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for all x > 0. Thus, after letting x — oo, we find that
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Finally, by (1),
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and so, by (4), e® = /27. In other words, we now know that
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