Homework #15

3.1.14:

(i) Clearly, if R > t,then X AR >t < X >tandso P(X AR >t) <
EF[Y, X AR >t]. If R <t, then {X A R >t} = (), and so both sides are 0. Now
suppose that the result is known when X is bounded. Then

EP[(X A R)]7 < —L_EFy]
=

for all R > 0, and so the result follows for general X after one lets R — oc.
(ii) Assume the X is bounded, define u(T") = EF[Y, T, and observe that

EF[Y, X >t] = u(X >t) = li\n%,u(X >s5) = pu(X >1t).
Thus, by Exercise 2.4.28,
(o) o0 p
EF[X?] = p/ tPIP(X > t)dt < p/ P (X > t)dt = — /Xp—l du
0 0 p—
= P pPixr-ly) < P _pPIxPl-sEP[YP)5.
p—1 p—1

If EP[XP] = 0, then there is nothing to do. If E¥[XP] > 0, then the result follows
when one divides both sides of the preceding by EF[X p]l_%.

3.1.17:

(i) First observe that if Y is {(}, Q}-measurable, then, for any y € R, {Y = y}
is either () or . Hence Y is consant and therefore is equal to E¥[Y]. Thus, since
Y = EF[X |{0,Q}] is {0, Q}-measurable and EF[Y] = EF[X], EF[X |{0,Q}] equal
EP[X] everywhere.

(ii) If X is independent of X,

E"[X, A] = EF[X]P(A) = EF[EF[X], A] for all 4 € %.
Hence, since EF[X] is constant and therefore ¥-measurable, it equals EF[X | ¥].

3.1.20:
(i) The only part that needs a comment is showing that EF[X | X] = EF[X | Sx].
To this end, let A € ¥. Then
EF[X, Al = EF[EF[X | ], 4] = E¥[E¥[X |Z]P(4|Zx))]
=EF[EF[X | 2x]P(A|Zx))] = EF[EF[X | Ex], 4],

and so, since EF[X | £x] is Y-measurable, the desired equality follows.
(ii) Just follow the outline.

3.1.21: Choose {P, : n > 1} as in Exercise 3.1.20 for X. Assuming that g is
bounded, we know that

P
Ef[go X |5 = lim > Elgo X, A,

n—oo demr P(A)

in P-measure. Moreover, by Theorem 2.4.15,
P P P
EY[X, A] € C and E[g o X, A] Sg(E X, A])

P(4) P(4) P(4)



2

for each A € P,,. Hence, since P(A) >0 and ), p» P(A) =1,

Now choose a subequence {P,,, : k > 1} so that

P

S wlA 5 EPgo X |3
P(A)

A€P),

and

P
> Wu — EP[X| Y]
AeP,

P-almost surely, and conclude that EF¥[X |¥] can be chosen to be C-valued and
Ef[go X | Y] < g(EF[X |X]) (as.,P).

(ii) As indicated, the argument is the same as the one used to prove Corollary
2.4.16 from Theorem 2.4.15.

4.1.4: The boundedness assumption on S should have been that there exists a
K < oo such that

sup |o(z)| < K(1 + 2?) for all x € R.

p€eS

Choose a i € C*°(R; [0, 1]) for which n =1 on [—1,1] and n = 0 off (—2,2), and

set nr(x) = n(R~'z) for R > 0 and z € R. Given ¢ € S, set pr(z) = nryp for
R > 0. Then {pr : ¢ € S} is equicontinuous and bounded, and so, by Theorem
4.1.3,

lim sup =0

n—oo pES

E* [(pR(gn) - /<PR dryo,1
for all R > 0. Next note that |¢(z) — pr(z)| < K(1—ng(z))(142?), and therefore

Z‘éE‘EP [0(5n)] — EF[pr(Sn)]| < KEP[(1 = nr(Sn)) (1 +15.1%)].

Because © ~» (1 — ng(z))(1 4+ z?) has bounded second and third order derivatives,
Theorem 4.1.1 says that

lim EF[(1 - UR(gn)) (1+ \§n|2)] = /(1 —nr(2))(1+ %) v0,1(dx),

n—oo

and so

lim sup‘EP [@(Sn)] —EF [@R(S'n)] ‘ <K (1+ 2%) dro,1 (d)
n—=0 pes |z|>R

for all R > 0. Similarly,

’/@d%,l —/WRd%J

Hence, since flw\>R(1 +22) dyo.1(dz) — 0 as R — oo, we have proved the result.

<K (1 + 2?) dyo 1(dx).
|2|>R




4.2.15:
(i) Because E¥[X )] = o2EF[Y*] = 607, where Y is a standard normal random
variable, EF[X2] < 6 M4,
(ii) Observe that, for any r > 0,
lim P(|X,| > 2r) <P(|X|>7)+ lim P(|X, - X| > R) =P(|X| > ).
n— o0 n—0o0

Now choose r so that P(|X| > r) < 1, and then choose m > 1 so that P(|X,| >

2r) <P(|X| > r) for n > m. Finally, choose R > 2r so that
1
P(|Xn\2R)§§for1§n§m,

and take o to be the one suggested. If o,, > 0. then
1

and so £ > «. Hence, for alln > 1, o, < £.
On @

(iii) By (i) combined with (ii), we know that E¥[|X,, — X|?] — 0 and therefore
that 02 — o2, where ¢ = /EF[X2]. At this point, the given outline makes it
clear how to complete the exercise.

4.2.16: Because the variance is the difference between the second moment of the
square of the first moment,

1 1
Z 2 Z 2 2
n=1 n=1
and from this it is clear that Vy = % (% Zg_l X2 - X%) and therfore that
N(o? +m?) 1 AN
+m
EP[Vy] = =2 - EP X,
[Vl N-1 N(N —1) ;

Since

N 2 N 2
e |(n) | = | (Senm) | vt e
n=1

n=1
1
EF[Vy] = ﬁ(NO’Z + Nm? — 0? — Nm?) = o°.
Finally, by the strong law,

N
1 _
N ZXZ — o +m?and Xy —m (as.,,P),
n=1
and therefore Vy — o2 (a.s.,P).

4.2.17: The first part is already covered in Exercise 3.2.12, and the second part is
covered by the hint.



