Homework #3

2.2.5: Given $\emptyset \neq F \in \mathfrak{F}(\Omega)$, let G_n be the set of $y \in \Gamma$ for which there is an $x \in F$ such that $\rho(x, y) < \frac{1}{n}$. Then G_n is open and $F = \bigcap_{n=1}^{\infty} G_n \in \mathfrak{G}_{\delta}(\Omega)$. Thus $\mathfrak{F}(\Omega) \subseteq \mathfrak{G}_{\delta}(\Omega)$. Next let $G \in \mathfrak{G}(\Omega)$. Then $G\mathfrak{C} \in \mathfrak{F}(\Omega)$, and so $G\mathfrak{C} \in \mathfrak{G}_{\delta}(\Omega)$. Since $\Gamma \in \mathfrak{G}_{\delta}(\Omega) \iff \Gamma\mathfrak{C} \in \mathfrak{F}_{\sigma}(\Omega)$, it follows that $G \in \mathfrak{F}_{\sigma}(\Omega)$.

Let Σ be the set of $\Gamma \in \mathcal{B}_E$ for which there exists an $A \in \mathfrak{F}_{\sigma}(\Omega)$ and a $B \in \mathfrak{G}_{\delta}(\Omega)$ such that $A \subseteq \Gamma \subseteq B$ and $\mu(B \setminus A) = 0$. If $G \in \mathfrak{G}(\Omega)$, then, because $\mathfrak{G}(\Omega) \subseteq \mathfrak{F}_{\sigma}(\Omega)$, we can take A = G = B to see that $G \in \Sigma$. Thus $\mathfrak{G}(\Omega) \subseteq \Sigma$. Next, because complementation maps $\mathfrak{G}_{\delta}(\Omega)$ onto $\mathfrak{F}_{\sigma}(\Omega)$, it is clear that $\Gamma \in \Sigma \implies \Gamma \mathfrak{C} \in \Sigma$. Further, given $\Gamma = \bigcup_{n=1}^{\infty} \Gamma_n$ where $\{\Gamma_n : n \ge 1\} \subseteq \Sigma$, for each $n \ge 1$ choose $A_n \in \mathfrak{F}_{\sigma}(\Omega)$ and $B_n \in \mathfrak{G}_{\delta}(\Omega)$ so that $A_n \subseteq \Gamma_n \subseteq B_n$ and $\mu(B_n \setminus A_n) = 0$. If $A = \bigcup_{n=1}^{\infty} A_n$ and $B = \bigcap_{n=1}^{\infty} B_n$, then $A \in \mathfrak{F}_{\sigma}(\Omega)$, $B \in \mathfrak{G}_{\delta}(\Omega)$, $A \subseteq \Gamma \subseteq B$, and

$$\mu(B \setminus A) \le \sum_{n=1}^{\infty} \mu(B_n \setminus A_n) = 0.$$

Since this means that Σ is a σ -algebra that contains $\mathfrak{G}(\Omega)$, we have now shown that $\mathcal{B}_E \subseteq \Sigma$.

2.3.10: Because F is right-continuous, $F \circ f(u) \ge u$. If v < u, then

$$\{x: F(x) \ge u\} \subseteq \{x: F(x) \ge v\},\$$

and therefore $f(u) \ge f(v)$. If $v_n \nearrow u$, set $x_n = f(v_n)$. Then $x_n \le x_{n+1} \le f(u)$ and $F(x_n) \ge v_n$. Thus, if $x = \lim_{n \to \infty} x_n$, then $F(x) \ge F(x_n) \ge v_n$ for all $n \ge 1$, and so $F(x) \ge u$. Since this means that $f(u) \le x$, it follows that x = f(u) and therefore that $f(v_n) \nearrow f(u)$. We already know that $F \circ f(u) \ge u$. Now suppose that $x \equiv f(u) \in \mathbb{R}$ and that F is continuous at x. Choose $\{x_n : n \ge 1\} \subseteq (-\infty, x)$ so that $x_n \nearrow x$. Then $F(x_n) < u$ for all $n \ge 1$, and so $F(x) = \lim_{n \to \infty} F(x_n) \le u$.

2.3.11: Since $(x - \frac{1}{n}, x] \searrow \{x\},$

$$\mu(\{x\}) = \lim_{n \to \infty} \left(F(x) - F\left(x - \frac{1}{n}\right) \right) = F(x) - F(x - 1).$$

2.4.26: By definition, the equation holds when $f = \mathbf{1}_{\Gamma}$ for any $\Gamma \in \mathcal{F}_2$. Thus it holds for all non-negative, \mathcal{F}_2 -measurable simple functions, and therefore, by the monotone convergence theorem, for all non-negative, \mathcal{F}_2 measureable functions.

2.4.27: Clearly $\nu(\emptyset) = 0$. In addition, if { $\Gamma_n : n \ge 1$ } is a sequence of mutually disjoint, \mathcal{F} -measurable sets, and $\Gamma = \bigcup_{n=1}^{\infty} \Gamma_n$, and $f_n = \sum_{m=1}^{n} \mathbf{1}_{\Gamma_m}$, then $f_n = \sum_{m=1}^{n} \mathbf{1}_{\Gamma_m} \nearrow \mathbf{1}_{\Gamma}$, and do, by the monotone convergence theorem,

$$\sum_{m=1}^{\infty} \nu(\Gamma_m) = \lim_{n \to \infty} \sum_{m=1}^{n} \nu(\Gamma_m) = \lim_{n \to \infty} \int f_n \, d\mu = \int \mathbf{1}_{\Gamma} \, d\mu = \mu(\Gamma).$$

2.4.28: By the fundamental theorem of calculus,

$$f \circ \varphi(x) = \int_{0}^{\varphi(x)} f'(t) \, dt,$$

and therefore

$$\int f \circ \varphi \, d\mu = \int_E \left(\int_0^{\varphi(x)} f'(t) \, dt \right) \mu(dx) = \iint_{\substack{(t,x) \in (0,\infty) \times E \\ t < \varphi(x)}} f'(t) \, (\lambda_{\mathbb{R}} \times \mu)(dt \times dx)$$
$$= \int_{(0,\infty)} f'(t) \left(\int_E \mathbf{1}_{(t,\infty)} \circ \varphi(x) \, \mu(dx) \right) = \int_{(0,\infty)} f'(t) \mu(\varphi > t) \, dt.$$

2.4.33: Since $\psi_n = 0$ off of G and

$$\frac{\rho(x, G\mathbf{\hat{L}})}{1 + \rho(x, G\mathbf{\hat{L}})} \in (0, 1) \text{ for } x \in G,$$

 $\psi_n \nearrow \mathbf{1}_G$ follows from the fact the $t^{\frac{1}{n}} \nearrow 1$ for $t \in (0,1]$. To check that ψ_n is uniformly continuous, first observe that, for each $\alpha \in (0,1]$, $t \in [0,\infty) \longmapsto t^{\alpha} \in [0,\infty)$ is uniformly continuous. To check this, note that t^{α} is Lipschitz continuous on $[1,\infty)$ and that, by Hölder's inequality with $p = \frac{2-\alpha}{2(1-\alpha)}$,

$$t^{\alpha} - s^{\alpha} = \alpha \int_{s}^{t} u^{\alpha - 1} du \leq \alpha \left(\int_{s}^{t} u^{\frac{\alpha}{2} - 1} du \right)^{\frac{2(1 - \alpha)}{2 - \alpha}} (t - s)^{\frac{\alpha}{2 - \alpha}}$$
$$\leq C_{\alpha} (t - s)^{\frac{\alpha}{2 - \alpha}} \text{ for } 0 \leq s \leq t \leq 2.$$

Second, observe that $t \in [0, \infty) \longrightarrow \frac{t}{1+t}$ is Lipschitz continuous and that

$$|\rho(x, G\mathbf{C}) - \rho(y, G\mathbf{C})| \le \varphi(x, y).$$

Hence, since the composition of uniformly continuous functions is again uniformly continuous, ψ_n is uniformly continuous.

(i) Let \mathcal{H} be the set of μ -integrable functions for which the desired property holds, and observe that \mathcal{H} is a vector space and that $f \in \mathcal{H}$ if there exists a sequence $\{f_n : n \geq 1\} \subseteq \mathcal{H}$ such that $\int |f_n - f| d\mu \longrightarrow 0$. Thus, we will know that every μ -integrable function is in \mathcal{H} once we show that $\mathbf{1}_{\Gamma} \in \mathcal{H}$ for every $\Gamma \in \mathcal{B}_E$ with $\mu(\Gamma) < \infty$. To this end, Γ be such a set. Since $\mu(\Gamma \setminus \Gamma \cap G_k) \searrow 0$, $\int |\mathbf{1}_{\Gamma} - \mathbf{1}_{\Gamma \cap G_k}| d\mu \longrightarrow 0$. Hence, we need only check that $\Gamma \in \mathcal{H}$ when $\Gamma \subseteq G_k$ for some $k \geq 1$. Given such a Γ , Exercise 2.2.5 guarantees that we can find a non-increasing sequence $\{B_n : n \geq 1\}$ of open subsets of G_k such that $\Gamma \subseteq B_n$ and $\int |\mathbf{1}_{B_n} - \mathbf{1}_{\Gamma}| d\mu \searrow 0$. Hence, we will know that $\Gamma \in \mathcal{H}$ once we show that every open G with $\mu(G) \in (0, \infty)$ is in \mathcal{H} . Given such a G, define $\{\psi_n : n \geq 1\}$ accordingly. Then, by the monotone convergence theorem, $\int |\mathbf{1}_G - \psi_n| d\mu \searrow 0$.

(ii) First observe that $\mu(G) = \nu(G)$ for all open G. If $G \subseteq G_k$ and $\{\psi_n : n \ge 1\}$ is chosen as in the initial part of this exercise, the μ and ν integrals of each ψ_n are equal and converge to $\mu(G)$ and $\nu(G)$, respectively. For general G, note that $\mu(G) = \lim_{k\to\infty} \mu(G \cap G_k) = \lim_{k\to\infty} \nu(G \cap G_k) = \nu(G)$. Next suppose that $\Gamma \in \mathfrak{G}_{\delta}(E)$. If $\Gamma \subseteq G_k$, then there is a sequence of open sets $B_n \subseteq G_k$ such that $B_n \searrow \Gamma$, so $\mu(\Gamma) = \nu(\Gamma)$. Now suppose that $G_k \supseteq \Gamma \in \mathcal{B}_E$. Then, by Exercise 2.2.5, there is a $G_k \supseteq B \in \mathfrak{G}_{\delta}(E)$ and a $G_k \supseteq B' \in \mathfrak{G}_{\delta}(E)$ such that $\Gamma \subseteq B \cap B'$ and $\mu(B \setminus \Gamma) = 0 = \nu(B' \setminus \Gamma)$. Hence, $G_k \supseteq B'' \equiv B \cap B' \in \mathfrak{G}_{\delta}(E)$, and so $\mu(\Gamma) = \mu(B'') = \nu(\Gamma)$. Finally, for any $\Gamma \in \mathcal{B}_E$,

$$\mu(\Gamma) = \lim_{k \to \infty} \mu(\Gamma \cap G_k) = \lim_{k \to \infty} \nu(\Gamma \cap G_k) = \nu(\Gamma).$$