
Homework #3

2.2.5: Given ∅ 6= F ∈ F(Ω), let Gn be the set of y ∈ Γ for which there is an
x ∈ F such that ρ(x, y) < 1

n . Then Gn is open and F =
⋂∞
n=1Gn ∈ Gδ(Ω). Thus

F(Ω) ⊆ Gδ(Ω). Next let G ∈ G(Ω). Then G{ ∈ F(Ω), and so G{ ∈ Gδ(Ω). Since
Γ ∈ Gδ(Ω) ⇐⇒ Γ{ ∈ Fσ(Ω), it follows that G ∈ Fσ(Ω).

Let Σ be the set of Γ ∈ BE for which there exists an A ∈ Fσ(Ω) and a B ∈ Gδ(Ω)
such that A ⊆ Γ ⊆ B and µ(B \A) = 0. If G ∈ G(Ω), then, because G(Ω) ⊆ Fσ(Ω),
we can take A = G = B to see that G ∈ Σ. Thus G(Ω) ⊆ Σ. Next, because
complementation maps Gδ(Ω) onto Fσ(Ω), it is clear that Γ ∈ Σ =⇒ Γ{ ∈ Σ.
Further, given Γ =

⋃∞
n=1 Γn where {Γn : n ≥ 1} ⊆ Σ, for each n ≥ 1 choose

An ∈ Fσ(Ω) and Bn ∈ Gδ(Ω) so that An ⊆ Γn ⊆ Bn and µ(Bn \ An) = 0. If
A =

⋃∞
n=1An and B =

⋂∞
n=1Bn, then A ∈ Fσ(Ω), B ∈ Gδ(Ω), A ⊆ Γ ⊆ B, and

µ(B \A) ≤
∞∑
n=1

µ(Bn \An) = 0.

Since this means that Σ is a σ-algebra that contains G(Ω), we have now shown that
BE ⊆ Σ.

2.3.10: Because F is right-continuous, F ◦ f(u) ≥ u. If v < u, then

{x : F (x) ≥ u} ⊆ {x : F (x) ≥ v},

and therefore f(u) ≥ f(v). If vn ↗ u, set xn = f(vn). Then xn ≤ xn+1 ≤ f(u)
and F (xn) ≥ vn. Thus, if x = limn→∞ xn, then F (x) ≥ F (xn) ≥ vn for all n ≥ 1,
and so F (x) ≥ u. Since this means that f(u) ≤ x, it follows that x = f(u) and
therefore that f(vn) ↗ f(u). We already know that F ◦ f(u) ≥ u. Now suppose
that x ≡ f(u) ∈ R and that F is continuous at x. Choose {xn : n ≥ 1} ⊆ (−∞, x)
so that xn ↗ x. Then F (xn) < u for all n ≥ 1, and so F (x) = limn→∞ F (xn) ≤ u.

2.3.11: Since
(
x− 1

n , x]↘ {x},

µ({x}) = lim
n→∞

(
F (x)− F

(
x− 1

n

))
= F (x)− F (x−).

2.4.26: By definition, the equation holds when f = 1Γ for any Γ ∈ F2. Thus it
holds for all non-negative, F2-measurable simple functions, and therefore, by the
monotone convergence theorem, for all non-negative, F2 measureable functions.

2.4.27: Clearly ν(∅) = 0. In addtion, if {Γn : n ≥ 1} is a sequence of mutually
disjoint, F-measurable sets, and Γ =

⋃∞
n=1 Γn, and fn =

∑n
m=1 1Γm , then fn =∑n

m=1 1Γm ↗ 1Γ, and do, by the monotone convergence theorem,

∞∑
m=1

ν(Γm) = lim
n→∞

n∑
m=1

ν(Γm) = lim
n→∞

∫
fn dµ =

∫
1Γ dµ = µ(Γ).

2.4.28: By the fundamental theorem of calculus,

f ◦ ϕ(x) =

∫ ϕ(x)

0

f ′(t) dt,

1



2

and therefore∫
f ◦ ϕdµ =

∫
E

(∫ ϕ(x)

0

f ′(t) dt

)
µ(dx) =

∫∫
(t,x)∈(0,∞)×E

t<ϕ(x)

f ′(t) (λR × µ)(dt× dx)

=

∫
(0,∞)

f ′(t)

(∫
E

1(t,∞) ◦ ϕ(x)µ(dx)

)
=

∫
(0,∞)

f ′(t)µ(ϕ > t) dt.

2.4.33: Since ψn = 0 off of G and

ρ(x,G{)

1 + ρ(x,G{)
∈ (0, 1) for x ∈ G,

ψn ↗ 1G follows from the fact the t
1
n ↗ 1 for t ∈ (0, 1]. To check that ψn is

uniformly continuous, first observe that, for each α ∈ (0, 1], t ∈ [0,∞) 7−→ tα ∈
[0,∞) is uniformly continuous. To check this, note that tα is Lipschitz continous
on [1,∞) and that, by Hölder’s inequality with p = 2−α

2(1−α) ,

tα − sα = α

∫ t

s

uα−1 du ≤ α
(∫ t

s

u
α
2−1 du

) 2(1−α)
2−α

(t− s)
α

2−α

≤ Cα(t− s)
α

2−α for 0 ≤ s ≤ t ≤ 2.

Second, observe that t ∈ [0,∞) 7−→ t
1+t is Lipschitz continuous and that

|ρ(x,G{)− ρ(y,G{)| ≤ ϕ(x, y).

Hence, since the composition of uniformly continuous functions is again uniformly
continuous, ψn is uniformly continuous.

(i) Let H be the set of µ-integrable functions for which the desired property
holds, and observe that H is a vector space and that f ∈ H if there exists a
sequence {fn : n ≥ 1} ⊆ H such that

∫
|fn − f | dµ −→ 0. Thus, we will know

that every µ-integrable function is in H once we show that 1Γ ∈ H for every
Γ ∈ BE with µ(Γ) < ∞. To this end, Γ be such a set. Since µ(Γ \ Γ ∩ Gk) ↘ 0,∫
|1Γ − 1Γ∩Gk | dµ −→ 0. Hence, we need only check that Γ ∈ H when Γ ⊆ Gk

for some k ≥ 1. Given such a Γ, Exercise 2.2.5 guarantees that we can find a
non-increasing sequence {Bn : n ≥ 1} of open subsets of Gk such that Γ ⊆ Bn and∫
|1Bn−1Γ| dµ↘ 0. Hence, we will know that Γ ∈ H once we show that every open

G with µ(G) ∈ (0,∞) is in H. Given such a G, define {ψn : n ≥ 1} accordingly.
Then, by the monotone convergence theorem,

∫
|1G − ψn| dµ↘ 0.

(ii) First observe that µ(G) = ν(G) for all open G. If G ⊆ Gk and {ψn : n ≥ 1}
is chosen as in the initial part of this exercise, the µ and ν integrals of each ψn
are equal and converge to µ(G) and ν(G), respectively. For general G, note that
µ(G) = limk→∞ µ(G ∩ Gk) = limk→∞ ν(G ∩ Gk) = ν(G). Next suppose that
Γ ∈ Gδ(E). If Γ ⊆ Gk, then there is a sequence of open sets Bn ⊆ Gk such that
Bn ↘ Γ, so µ(Γ) = ν(Γ). Now suppose that Gk ⊇ Γ ∈ BE . Then, by Exercise
2.2.5, there is a Gk ⊇ B ∈ Gδ(E) and a Gk ⊇ B′ ∈ Gδ(E) such that Γ ⊆ B ∩ B′
and µ(B \ Γ) = 0 = ν(B′ \ Γ). Hence, Gk ⊇ B′′ ≡ B ∩ B′ ∈ Gδ(E), and so
µ(Γ) = µ(B′′) = ν(B′′) = ν(Γ). Finally, for any Γ ∈ BE ,

µ(Γ) = lim
k→∞

µ(Γ ∩Gk) = lim
k→∞

ν(Γ ∩Gk) = ν(Γ).


