
Homework #2

1.3.19: Clearly,

P(X+Y = z) =
∑

x∈Image(X)

P(X = x &Y = z−x) =
∑

x∈Image(X)

P(X = x)P(Y = z−x),

and similarly when the roles of X and Y are reversed. To do the second part,

observe that P(X = m) = e−α α
m

m! and P(Y = n) = e−β β
n

n! for m, n ≥ 0. Thus, by
the preceding

P (X+Y = n) = e−α−β
n∑

m=0

αmβn−m

α!β!
=
e−α−β

n!

n∑
m=0

(
n

m

)
αmβn−m =

e−(α+β)(α+ β)n

n!
.

1.3.21: There is an error in the statment of this problem. In both parts, 1−
√
1−4pqx
2q

should be replaced by
1−
√

1−4pqx2

2qx . Once this is replacement is made, one sees from

(1.3.10) that
∞∑
n=0

Pnx
n =

∞∑
r=1

1

2r − 1

(
2r − 1

r

)
prqr−1x2r−1,

where Pn = limN→∞ P(ζ(1)} = n). Because
(
2r−1
r

)
= 1

2

(
2r
r

)
, one can apply the first

part of Exercise 1.3.20 to get the first equation in this exercise. The derivation of
the second equation follows from the first equation and Exercise 1.3.18 in the same
way as the final equation in Exercise 1.3.20 was proved.

1.4.17:
∞∑
n=0

P(X > n) =

∞∑
n=0

∞∑
m=n+1

P(X = m)

=

∞∑
m=1

P(X = m)

(
m−1∑
n=0

1

)
=

∞∑
m=1

mP(X = m) = EP[X]

and

∞∑
n=0

(2n+ 1)P(X > n) =

∞∑
n=0

(2n+ 1)

( ∞∑
m=n+1

P(X = m)

)

=

∞∑
m=1

P(X = m)

(
m−1∑
n=0

(2n+ 1)

)
=

∞∑
m=1

(
2
m(m− 1)

2
+m

)

=

∞∑
m=1

m2P(X = m) = EP[X2].

1.4.18:

gX(λ) = e−α
∞∑
n=0

enλ
αn

n!
= e−α

∞∑
n=0

(αeλ)n

n!
= eα(e

λ−1).

Thus

EP[X] = g′X(0) = α and EP[X2] = g′′X(0) = α2 + α,

which means that Var(X) = α.
1



2

1.4.20: Because

Λ′X =
g′X
gX

and Λ′′X =
g′′X
gX
−
(
g′X
gX

)2

,

these results come down to EP[X] = g′X(0), EP [X2] = g′′X(0), and Var(X) =
EP[X2]− EP[X]2.

1.4.21: If x ≤ γ ≤ X, then X − x ≥ γ − x ≥ 0, and so

EP[(X − x)2
]
≥ (γ − x)2P(X ≥ γ) ≥ (γ − x)2

2
.

If X ≤ γ ≤ x, then x−X ≥ x− γ ≥ 0, and so

EP[(X − x)2
]
≥ (γ − x)2P(X ≤ γ) ≥ (γ − x)2

2
.

1.4.22:
(i) If α is a median and m < α ≤ m+ 1, then

P(X ≤ m) = P(X ≤ α) ≥ 1

2
, P(X ≥ m+ 1) = P(X ≥ α) ≥ 1

2
,

P(X ≤ m) = 1− P(X ≥ m+ 1) ≤ 1

2
, P(X ≥ m+ 1) = 1− P(X(X ≤ m) ≤ 1

2
,

and therefore P(X ≤ m) = 1
2 = P(X ≥ m+ 1). Hence,

P(X ≥ m) ≥ P(X ≥ m+ 1) =
1

2

and P(X ≤ m+1) ≥ P(X ≤ m) = 1
2 , and so m and m+1 are medians. In addition,

if m < β < m + 1, then P(X ≤ β) = P(X ≤ m) = 1
2 and P(X ≥ β) = P(X ≥

m + 1) = 1
2 . Thus, every element of [m,m + 1] is a median. Since this means

that the set of medians is an interval I that is the union of intervals of the form
[m,m + 1], the smallest median is an integer m1, the largest median is an integer
m2, and I = [m1,m2].

(ii) If m ≤ α ≤ m+ 1, then

EP[|X − α|]− EP[|X −m|] = (m− α)P(X ≥ m+ 1) + (α−m)P(X ≤ m)

= (α−m)
(
P(X ≤ m)− P(X ≥ m+ 1)

)
= (α−m)

(
1− 2P(X ≥ m+ 1)

)
.

If m− 1 ≤ α ≤ m, then

EP[|X − α|]− EP[|X −m|] = (m− α)P(X ≥ m) + (α−m)P(X ≤ m− 1)

= (α−m)
(
P(X ≤ m− 1)− P(X ≥ m)

)
= (α−m)

(
1− 2P(X ≥ m)

)
.

(iii) Suppose that m2 ≤ m < β ≤ m+ 1. Then

EP[|X − β|]− EP[|X −m|] = (β −m)
(
1− 2P(X ≥ m+ 1)

)
> 0

since m+1 isn’t a median and therefore, because P(X < m+1) ≥ P(X ≤ m2) ≥ 1
2 ,

P(X ≥ m+ 1) < 1
2 . Thus EP[|X − β|] > EP[|X −m2|] for all β > m2. Similarly, if

m− 1 ≤ β < m ≤ m1, then

EP[|X − β|]− EP[|X −m|] = (β −m)
(
2P(X ≤ m− 1)− 1

)
> 0
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since m−1 isn’t a median and therefore, because P(X > m−1) ≥ P(X ≥ m1) ≥ 1
2 ,

P(X ≤ m− 1) < 1
2 . Thus, we now know that

EP[|X − β|] > {EP[|X −m2|
]

if β > m2

EP[|X −m1|
]

if β < m1,

and this completes the proof when m1 = m2. When m1 < m2 and m1 ≤ m <
m+ 1 ≤ m2, we know from (i) that P(X ≥ m+ 1) = 1

2 , and so

EP[|X − β|]− EP[|X −m|] = (β −m)
(
1− 2P(X ≥ m+ 1)

)
= 0

for all β ∈ [m,m+ 1]. Hence EP[|X − β|] = EP [|X −m1|] for all β ∈ [m1,m2].

2.1.12: Set

C =
{

(−∞, x1]× · · · × (−∞, xN ] : (x1, . . . , xN ) ∈ RN
}
.

Then C is a Π-system, and so, by Lemma 2.1.10, µ1 = µ2 on Σ ≡ σ(C). Thus,
it suffices to show that G ∈ Σ for all open G 6= ∅. To this end, choose a dense
sequence {ak : k ≥ 1} in G, and, for each k ≥ 1, choose rk > 0 so that

Rk ≡ (ak1 − rk, ak1 + rk]× · · · (akN − rr, akN + rk] ⊆ G.
Then G =

⋃∞
k=1Rk and

Rk = (−∞, ak1 + rk]× · · · (−∞, akN + rk] \ (−∞, ak1 − rk]× · · · (−∞, akN − rk] ∈ Σ.

Hence, G ∈ Σ.

2.1.13: Let Σ be the intersection of all the monotone classes that contain A. Then
Σ is the smallest monotone class containing A, and so Σ ⊆ σ(A), and we will know
that equality holds once we show that Σ is a σ-algebra. Clearly E ∈ Σ. Now let
Σ1 be the set of A ∈ Σ such that A{ ∈ Σ and, for all B ∈ A, A ∪ B ∈ Σ and
A ∩ B ∈ Σ. Then, since Σ1 ⊇ A and Σ1 is a monotone class, Σ ⊆ Σ1. Next, let
Σ2 be the set of A ∈ Σ such that A{ ∈ Σ and, for all B ∈ Σ, A ∪ B ∈ Σ and
A ∩ B ∈ Σ. Then Σ2 is a monotone class, and therefore, since Σ ⊆ Σ1, Σ2 ⊇ A,
which means that Σ ⊆ Σ2. Hence Σ is closed under complementation and finite
unions and intersections. Finally, if {An : n ≥ 1} ⊆ Σ, then

⋃n
m=1Am ∈ Σ for all

n ≥ 1, and so, since
⋃n
m=1Am ↗

⋃∞
m=1Am,

⋃∞
m=1Am ∈ Σ.

2.1.14: Since F−1∅ = ∅, F∗µ(∅) = µ(∅) = 0. Moreover, if {An : n ≥ 1} is a
sequence of mutually disjoint elements of F2, then {F−1An : n ≥ 1} is a sequence
of mutually disjoint elements of F1, and therefore

F∗µ

( ∞⋃
n=1

An

)
= µ

( ∞⋃
n=1

F−1An

)
=

∞∑
n=1

µ
(
F−1An

)
=

∞∑
n=1

F∗µ(An).


