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A Little Fourier Analysis

Given an ϕ ∈ L1(λRN ;C), define the Fourier transform ϕ̂ of ϕ by

ϕ̂(ξ) =

∫
ei(ξ,y)RN ϕ(y)λRN (dy) for ξ ∈ RN .

Clearly, ϕ̂ is continuous and ‖ϕ‖u ≤ ‖ϕ‖L2(λRN ;C). Next, use Fubini’s theorem

to see that if ψ is a second element of L1(λRN ;C), then

(1)

∫
ϕ(y)ψ̌(y)λRN (dy) =

∫
ϕ̂(ξ)ψ(ξ)λRN (dξ),

where ϕ̌(y) = ϕ̂(−y) for y ∈ RN .
Before carrying out the next step, I need to compute ĝ when g(y) =

(2π)−
N
2 e−

|y|2
2 . To this end, consider the analytic function

f(z) =

∫
ezye−

y2

2 λR(dy) for z ∈ C,

and use integration by parts to see that

f ′(z) =

∫
yezye−

y2

2 λR(dy) = −
∫
ezy

d

dy
e−

y2

2 λR(dy) = zf(z).

Hence, d
dz

(
f(z)e−

z2

2

)
= 0, and so f(z) = f(0)e

z2

2 = (2π)
1
2 e

z2

2 . Thus ĝ(ξ) =

e−
ξ2

2 when N = 1. Further, by Fubini’s theorem, for N ≥ 2,

ĝ(ξ) = (2π)−
N
2

N∏
j=!

∫
eiξjye−

y2

2 λR(dy) = e−
|ξ|2
2 .

Next, set gε(y) = ε−
N
2 g(ε−

1
2 y), and use a change of variables to see that

ĝε(ξ) = e−ε
|ξ|2
2 for ε > 0 and ξ ∈ RN .

In particular, if ψε = ĝε, then ψ̌ε = (2π)Ngε, and so, by (1),∫
ϕ(y)gε(y)λRN (dy) = (2π)−N

∫
ϕ̂(ξ)e−ε

|ξ|2
2 λRN (dξ).

Hence, if ϕ ∈ L1(λRN ;C) ∩ Cb(RN ;C) and ϕ̂ ∈ L1(λRN ;C), then

ϕ(0) = lim
ε↘0

∫
ϕ(y)gε(y)λRN (dy)

= lim
ε↘0

(2π)−N
∫
ϕ̂(ξ)e−ε

|ξ|2
2 λRN (dξ) = (2π)−N

∫
ϕ̂(ξ)λRN (dξ).
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More generally, if ϕ ∈ L1(λRN ;C) and ϕx(y) = ϕ(x + y), then ϕ̂x(ξ) =
e−i(ξ,x)RN ϕ̂(ξ), and so if ϕ ∈ L1(λRN ;C) ∩ Cb(RN ;C) and ϕ̂ ∈ L1(λRN ;C),
then

(2) ϕ(x) = (2π)−N
∫
e−i(ξ,x)RN ϕ̂(ξ) dξ = (2π)−N

(
ϕ̂
)∨

(x).

Now suppose that ϕ and ψ are both elements of L1(λRN ;C)∩Cb(RN ;C) for

which ϕ̂ and ψ̂ are in L1(λRN ;C). Then, by (1) and (2),∫
ϕ(y)ψ(y)λRN (dy) = (2π)−N

∫
ϕ(y)(ψ̂)∨(y)λRN (dy)

= (2π)−N
∫
ϕ̂(ξ)ψ̂(ξ)λRN (dξ),

and so we have proved the following version of what is called Parseval’s
identity

(3)

∫
ϕ(y)ψ(y)λRN (dy) = (2π)−N

∫
ϕ̂(ξ)ψ̂(ξ)λRN (dξ).

Given a Borel probability measure µ on RN , define its characteristic func-
tion µ̂ : RN −→ C by

µ̂(ξ) =

∫
ei(ξ,y)RN µ(dy).

Clearly µ̂ is a continuous function and ‖µ̂‖u ≤ 1. We will now use (3) to prove
that

(4)

∫
ϕdµ = (2π)−N lim

ε↘0

∫
e−ε

|ξ|2
2 ϕ̂(ξ)µ̂(ξ)λRN (dξ)

for ϕ ∈ L1(λRN ;C) ∩ Cb(RN ;C). To this end, define

ψε(x) =

∫
gε(x− y)µ(dy) and ϕε(x) =

∫
gε(x− y)ϕ(y)λRN (dy),

and use Fubini’s theorm to see that∫
ϕψε dλRN =

∫
ϕε dµ and ψ̂ε(ξ) = e−ε

|ξ|2
2 µ̂(ξ).

Hence, by (3), ∫
ϕε dµ = (2π)−N

∫
e−ε

|ξ|2
2 ϕ̂(ξ)µ̂(ξ)λRN (dξ),

and so (4) follows after one lets ε↘ 0.
An important consequence of (4) is that a Borel probability measure on

RN is determined by its characteristic function. That is, if µ and ν are such
measures, then

µ̂ = ν̂ =⇒ µ = ν.

In fact more is true.
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Theorem 5. Suppose that {µn : n ≥ 1} is a sequence of Borel probability
measures on RN and that µ is Borel probability measure on RN for which

lim
n→∞

µ̂n(ξ) = µ̂(ξ) for all ξ ∈ RN .

Then

lim
n→∞

∫
ϕdµn =

∫
ϕdµ for all ϕ ∈ Cb(RN ;C).

Proof: Let ϕ : RN −→ C be a bounded, uniformly continuous element of
L1(λRN ;C), and define ϕε as above. Then ‖ϕε − ϕ‖u −→ 0 as ε↘ 0, and so

lim
ε↘0

∣∣∣∣∫ ϕε dµ−
∫
ϕdµ

∣∣∣∣ ∨ sup
n≥1

∣∣∣∣∫ ϕε dµn −
∫
ϕdµn

∣∣∣∣ = 0.

Thus, by (4),

(2π)N lim
n→∞

∣∣∣∣∫ ϕdµn −
∫
ϕdµ

∣∣∣∣
= lim
ε↘0

lim
n→∞

∣∣∣∣∫ e−ε
|ξ|2
2 ϕ̂(ξ)

(
µ̂n(ξ)− µ̂(ξ)

)
λRN (dξ)

∣∣∣∣ = 0.

To remove the uniform continuity and integrability requirements, for k ∈
Z+, set

ηk(x) = 1 ∧
(
(1 + k − |x|) ∨ 0

)
.

Then, for every k ∈ Z+ and ϕ ∈ Cb(RN ;C), ηkϕ is a uniformly continuous,
[0, 1]-valued element of L1(λRN ;C). In addition, ηk ↗ 1 as k →∞, and so

lim
n→∞

∫
(1− ηk) dµn = 1−

∫
ηk dµ −→ 0

as k →∞. Hence, for any ε > 0, there is a kε such that

sup
n≥1

∫
(1− ηkε) dµn ∨

∫
(1− ηkε) dµ ≤ ε.

Finally, let ϕ ∈ Cb(RN ;C) be given. Since ηkεϕ is a uniformly continuous
element of L1(λRN ;C),

lim
n→∞

∣∣∣∣∫ ϕdµn −
∫
ϕdµ

∣∣∣∣ ≤ 2‖ϕ‖uε+ lim
n→∞

∣∣∣∣∫ ηkεϕdµn −
∫
ηkεϕdµ

∣∣∣∣ = 2‖ϕ‖uε.

�
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Exercise Set f(x) = 1
π(1+x2) for x ∈ R. The measure P with density f is

called the Cauchy distribution, and you are to compute its Fourier transform
P̂ .

(i) Observe that

f(x) =
1

π

∫ ∞
0

e−t(1+x
2) dt,

and use this to show that

f̂(ξ) =
√
π

∫ ∞
0

e−t−
ξ2

4t dt.

(ii) For a, b ∈ R \ 0, show that∫ ∞
0

e−
a2

2t −
b2

2t dt =

√
2π

|a|
e−|ab|.

To this end, assume that a, b > 0 and use the change of variables τ = at
1
2 −

bt−
1
2 .

(iii) Combine (i) and (ii) to arrive at P̂ (ξ) = e−|ξ|.

(iv) More generally, if Py(dx) = y
π(y2+x2) dx for y > 0, show that P̂y(ξ) =

e−y|ξ|.


