
Chapter VIII
Gaussian Measures on a Banach Space

As I said at the end of § 4.3.2, the distribution of Brownian motion is called
Wiener measure because Wiener was the first to construct it. Wiener’s own
thinking about his measure had little or nothing in common with the Lévy–
Khinchine program. Instead, he looked upon his measure as a Gaussian measure
on an infinite dimensional space, and most of what he did with his measure is
best understood from that perspective. Thus, in this chapter, we will look at
Wiener measure from a strictly Gaussian point of view. More generally, we
will be dealing here with measures on a real Banach space E which are centered
Gaussian in the sense that, for each x∗ in the dual space E∗, x ∈ E 7−→ 〈x, x∗〉 ∈
R is a centered Gaussian random variable. Not surprisingly, such a measure will
be said to be a centered Gaussian measure on E .

Although the ideas which I will use are implicit in Wiener’s work, it was I.
Segal and his school, especially L. Gross,∗ who gave them the form presented
here.

§ 8.1 The Classical Wiener Space

In order to motivate what follows, it is helpful to first understand Wiener mea-
sure from the point of view which I will be adopting here.

§ 8.1.1. Classical Wiener Measure. Up until now I have been rather casual
about the space from which Brownian paths come. Namely, because Brownian
paths are continuous, I have thought of their distribution as being a probability
on the space C(RN ) = C

(
[0,∞);RN

)
. In general, there is no harm done by choos-

ing C(RN ) as the sample space for Brownian paths. However, for my purposes
here, I need our sample spaces to be separable Banach spaces, and, although it
is a complete, separable metric space, C(RN ) is not a Banach space. With this
in mind, define Θ(RN ) to be the space of continuous paths θ : [0,∞) −→ RN
with the properties that θ(0) = 0 and limt→∞ t−1|θ(t)| = 0.

∗ See I.E. Segal’s “Distributions in Hilbert space and canonical systems of operators,” T.A.M.S.
88 (1958) and L. Gross’s “Abstract Wiener spaces,” Proc. 5th Berkeley Symp. on Prob. &

Stat., 2 (1965). A good exposition of this topic can be found in H.-H. Kuo’s Gaussian Measures
in Banach Spaces, publ. by Springer–Verlag Math. Lec. Notes., no. 463.
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Lemma 8.1.1. The map

ψ ∈ C(RN ) 7−→ ‖ψ‖Θ(RN ) ≡ sup
t≥0

|ψ(t)|
1 + t

∈ [0,∞]

is lower semicontinuous, and the pair
(
Θ(RN ), ‖ · ‖Θ(RN )

)
is a separable Banach

space which is continuously embedded as a Borel measurable subset of C(RN ). In
particular, BΘ(RN ) coincides with BC(RN )[Θ(RN )] =

{
A∩Θ(RN ) : A ∈ BC(RN )

}
.

Moreover, the dual space Θ(RN )
∗

of Θ(RN ) can be identified with the space
of RN -valued, Borel measures λ on [0,∞) with the properties that λ({0}) = 0
and†

‖λ‖Θ(RN )∗ ≡
∫

[0,∞)

(1 + t) |λ|(dt) <∞,

when the duality relation is given by

〈θ,λ〉 =

∫
[0,∞)

θ(t) · λ(dt).

Finally, if (B(t),Ft,P) is an RN -valued Brownian motion, then B ∈ Θ(RN )
P-almost surely and

E
[
‖B‖2Θ(RN )

]
≤ 32N.

Proof: It is obvious that the inclusion map taking Θ(RN ) into C(RN ) is con-
tinuous. To see that ‖ · ‖Θ(RN ) is lower semicontinuous on C(RN ) and that

Θ(RN ) ∈ BC(RN ), note that, for any s ∈ [0,∞) and R ∈ (0,∞),

A(s,R) ≡
{
ψ ∈ C(RN ) :

∣∣ψ(t)
∣∣ ≤ R(1 + t) for t ≥ s

}
is closed in C(RN ). Hence, since ‖ψ‖Θ(RN ) ≤ R ⇐⇒ ψ ∈ A(0, R), ‖ · ‖Θ(RN ) is

lower semicontinuous. In addition, since {ψ ∈ C(RN ) : ψ(0) = 0} is also closed,

Θ(RN ) =

∞⋂
n=1

∞⋃
m=1

{
ψ ∈ A

(
m, 1

n

)
: ψ(0) = 0

}
∈ BC(RN ).

In order to analyze the space
(
Θ(RN ), ‖ · ‖Θ(RN )

)
, define

F : Θ(RN ) −→ C0

(
R;RN

)
≡
{
ψ ∈ C

(
R;RN

)
: lim
|s|→∞

|ψ(s)| = 0

}
by [

F (θ)
]
(s) =

θ (es)

1 + es
, s ∈ R.

† I use |λ| to denote the variation measure determined by λ.
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As is well-known, C0

(
R;RN

)
with the uniform norm is a separable Banach space;

and it is obvious that F is an isometry from Θ(RN ) onto C0

(
R;RN

)
. Moreover,

by the Riesz Representation Theorem for C0

(
R;RN

)
, one knows that the dual

of C0

(
R;RN

)
is isometric to the space of totally finite, RN -valued measures

on
(
R;BR

)
with the norm given by total variation. Hence, the identification

of Θ(RN )
∗

reduces to the obvious interpretation of the adjoint map F ∗ as a
mapping from totally finite RN -valued measures onto the space of RN -valued
measures which do not charge 0 and whose variation measure integrate (1 + t).

Because of the Strong Law in part (ii) of Exercise 4.3.11, it is clear that almost
every Brownian path is in Θ(RN ). In addition, by the Brownian scaling property
and Doob’s Inequality (cf. Theorem 7.1.9),

E
[
‖B‖2Θ(RN )

]
≤
∞∑
n=0

4−n+1E
[

sup
0≤t≤2n

|B(t)|2
]

=

∞∑
n=0

2−n+2E
[

sup
0≤t≤1

|B(t)|2
]
≤ 32E

[
|B(1)|2

]
= 32N. �

In view of Lemma 8.1.1, we now know that the distribution of RN -valued
Brownian motion induces a Borel measure W(N) on the separable Banach space
Θ(RN ), and throughout this chapter I will refer to this measure as the classical
Wiener measure.

My next goal is to characterize, in terms of Θ(RN ), exactly which measure
on Θ(RN ) Wiener’s is, and for this purpose I will use that following simple fact
about Borel probability measures on a separable Banach space.

Lemma 8.1.2. Let E with norm ‖ · ‖E be a separable, real Banach space, and
use

(x, x∗) ∈ E × E∗ 7−→ 〈x, x∗〉 ∈ R

to denote the duality relation between E and its dual space E∗. Then the Borel
field BE coincides with the σ-algebra generated by the maps x ∈ E 7−→ 〈x, x∗〉
as x∗ runs over E∗. In particular, if, for µ ∈ M1(E), one defines its Fourier
transform µ̂ : E∗ −→ C by

µ̂(x∗) =

∫
E

exp
[√
−1 〈x, x∗〉

]
µ(dx), x∗ ∈ E∗,

then µ̂ is a continuous function of weak* convergence on Θ∗, and µ̂ uniquely
determines µ in the sense that if ν is a second element of M1(Θ) and µ̂ = ν̂ then
µ = ν.

Proof: Since it is clear that each of the maps x ∈ E 7−→ 〈x, x∗〉 ∈ R is
continuous and therefore BE-measurable, the first assertion will follow as soon
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as we show that the norm x ‖x‖E can be expressed as a measurable function of
these maps. But, because E is separable, we know (cf. Exercise 5.1.19) that the

closed unit ball BE∗(0, 1) in E∗ is separable with respect to the weak* topology

and therefore that we can find a sequence {x∗n :, n ≥ 1} ⊆ BE∗(0, 1) so that

‖x‖Θ = sup
n∈Z+

〈x, x∗n〉, x ∈ E.

Turning to the properties of µ̂, note that its continuity with respect to weak*
convergence is an immediate consequence of Lebesgue’s Dominated Convergence
Theorem. Furthermore, in view of the preceding, we will know that µ̂ completely
determines µ as soon as we show that, for each n ∈ Z+ and X∗ =

(
x∗1, . . . , x

∗
n

)
∈(

E∗
)n
, µ̂ determines the marginal distribution µX∗ ∈M1(RN ) of

x ∈ E 7−→
(
〈x, x∗1〉, . . . , 〈x, x∗n〉

)
∈ Rn

under µ. But this is clear (cf. Lemma 2.3.3), since

µ̂X∗(ξ) = µ̂

(
n∑

m=1

ξmx
∗
m

)
for ξ = (ξ1, . . . , ξn) ∈ Rn. �

I will now compute the Fourier transform of W (N). To this end, first recall
that, for an RN -valued Brownian motion, {

(
ξ,B(t)

)
RN : t ≥ 0 and ξ ∈ RN

}
spans a Gaussian family G(B) in L2(P;R). Hence, span

({(
ξ,θ(t)

)
: t ≥

0 and ξ ∈ RN
})

is a Gaussian family in L2(W (N);R). From this, combined
with an easy limit argument using Riemann sum approximations, one sees that,
for any λ ∈ Θ(RN )

∗
, θ  〈θ,λ〉 is a centered Gaussian random variable under

W (N). Furthermore, because, for 0 ≤ s ≤ t,

EW
(N)[(

ξ,θ(s)
)
RN
(
η,θ(t)

)
RN
]

= EW
(N)[(

ξ,θ(s)
)
RN
(
η,θ(s)

)
RN
]

= s
(
ξ,η

)
RN ,

we can apply Fubini’s Theorem to see that

EW
(N)[
〈θ,λ〉2

]
=

∫∫
[0,∞)2

s ∧ tλ(ds) · λ(dt).

Therefore, we now know that W (N) is characterized by its Fourier transform

(8.1.3) Ŵ (N)(λ) = exp

−1

2

∫∫
[0,∞)2

s ∧ tλ(ds) · λ(dt)

 , λ ∈ Θ(RN )
∗
.

Equivalently, we have shown that W (N) is the centered Gaussian measure on
Θ(RN ) with the property that, for each λ ∈ Θ(RN )

∗
, θ  〈θ,λ〉 is a centered

Gaussian random variable with variance equal to
∫∫

[0,∞)2

s ∧ tλ(ds) · λ(dt).
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§ 8.1.2. The Classical Cameron–Martin Space. From the Gaussian stand-
point, it is extremely unfortunate that the natural home for Wiener measure is
a Banach space rather than a Hilbert space. Indeed, in finite dimensions, ev-
ery centered, Gaussian measure with non-degenerate covariance can be thought
as the canonical, or standard, Gaussian measure on a Hilbert space. Namely, if
γ0,C is the Gaussian measure on RN with mean 0 and non-degenerate covariance
C, consider RN as a Hilbert space H with inner product (g,h)H = (g,Ch)RN ,
and take λH to be the natural Lebesgue measure there: the one which assigns
measure 1 to a unit cube in H or, equivalently, the one obtained by pushing the
usual Lebesgue measure λRN forward under the linear transformation C

1
2 . Then

we can write

γ0,C(dh) =
1

(2π)
N
2

e−
‖h‖2

H
2 λH(dh)

and

γ̂0,C(h) = e−
‖h‖2

H
2 .

As was already pointed out in Exercise 3.1.11, in infinite dimensions there is
no precise analog of the preceding canonical respresentation (cf. Exercise 8.1.7
for further corroboration of this point). Nonetheless, a good deal of insight can
be gained by seeing how close one can come. In order to guess on which Hilbert
space it is that W (N) would like to live, I will give R. Feynman’s highly ques-
tionable but remarkably powerful way of thinking about such matters. Namely,
given n ∈ Z+, 0 = t0 < t1 < · · · < tn, and a set A ∈

(
BRN

)n
, we know that

W (N) assigns
{
θ :

(
θ(t1), . . . ,θ(tn)

)
∈ A

}
probability

1

Z(t1, . . . , tn)

∫
A

exp

[
−

n∑
m=1

|ym − ym−1|2

tm − tm−1

]
dy1 · · · dyn

where y0 ≡ 0 and Z(t1, . . . , tn) =
∏n
m=1

(
2π(tm − tm1

)
)N

2 . Now rename the

variable ym as “θ(tm),” and rewrite the preceding as Z(t1, . . . , tn)−1 times∫
A

exp

− n∑
m=1

tm − tm−1

2

(∣∣θ(tm)− θ(tm−1)
∣∣

tm − tm−1

)2
 dθ(t1) · · · dθ(tn).

Obviously, nothing very significant has happened yet since nothing very excit-
ing has been done yet. However, if we now close our eyes, suspend our disbelief,
and pass to the limit as n tends to infinity and the tk’s become dense, we arrive
at the Feynman’s representation∗ of Wiener’s measure:

(8.1.4) W (N)
(
dθ) =

1

Z
exp

[
−1

2

∫
[0,∞)

∣∣θ̇(t)
∣∣2 dt] dθ,

∗ In truth, Feynman himself never dabbled in considerations so mundane as the ones which

follow. He was interested in the Schödinger equation, and so he had a factor
√
−1 multiplying

the exponent.
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where θ̇ denotes the velocity (i.e., derivative) of θ. Of course, when we reopen
our eyes and take a look at (8.1.4), we see that it is riddled with flaws. Not even
one of the ingredients on the right-hand side (8.1.4) makes sense! In the first
place, the constant Z must be 0 (or maybe∞). Secondly, since the image of the
“measure dθ” under

θ ∈ Θ(RN ) 7−→
(
θ(t1) . . . ,θ(tn)

)
∈
(
RN
)n

is Lebesgue measure for every n ∈ Z+ and 0 < t1 · · · < tn, “dθ” must be
the nonexistent translation invariant measure on the infinite dimensional space
Θ(RN ). Finally, the integral in the exponent only makes sense if θ is differen-
tiable in some sense, but almost no Brownian path is. Nonetheless, ridiculous
as it is, (8.1.4) is exactly the expression at which one would arrive if one were to
make a sufficiently näıve interpretation of the notion that Wiener measure is the
standard Gauss measure on the Hilbert space H(RN ) consisting of absolutely
continuous h : [0,∞) −→ RN with h(0) = 0 and

‖h‖H1(RN ) = ‖ḣ‖L2([0,∞);RN ) <∞.

Of course, the preceding discussion is entirely heuristic. However, now we
know that H1(RN ) is the Hilbert space at which to look, it is easy to provide
a mathematically rigorous statement of the connection between Θ(RN ), W (N),
and H1(RN ). To this end, observe that H(RN ) is continuously embedded in

Θ(RN ) as a dense subspace. Indeed, if h ∈ H1(RN ), then |h(t)| ≤ t 1
2 ‖h‖H1(RN ),

and so not only is h ∈ Θ(RN ) but also ‖h‖Θ(RN ) ≤ 1
2‖h‖H1(RN ). In addition,

since C∞c
(
(0,∞);RN

)
is already dense in Θ(RN ), the density of H1(RN ) in

Θ(RN ) is clear. Knowing this, abstract reasoning (cf. Lemma 8.2.3) guarantees

that Θ(RN )
∗

can be identified as a subspace of H1(RN ). That is, for each λ ∈
Θ(RN )

∗
, there is a hλ ∈ H1(RN ) with the property that

(
h,hλ

)
H1(RN )

= 〈h,λ〉
for all h ∈ H1(RN ), and in the present setting it is a easy to give a concrete

representation of hλ. In fact, if λ ∈ Θ(RN )
∗
, then, for any h ∈ H1(RN ),

〈h,λ〉 =

∫
(0,∞)

h(t) · λ(dt) =

∫
(0,∞)

(∫
(0,t)

ḣ(τ) dτ

)
· λ(dt)

=

∫
(0,∞)

ḣ(τ) · λ
(
(τ,∞)

)
dτ =

(
h,hλ

)
H1(RN )

,

where

hλ(t) =

∫
(0,t]

λ
(
(τ,∞)

)
dτ.
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Moreover,

‖hλ‖2H1(RN ) =

∫
(0,∞)

∣∣λ((τ,∞)
)
|2 dτ =

∫
(0,∞)

 ∫∫
(τ,∞)2

λ(ds) · λ(dt)

 dτ

=

∫∫
(0,∞)2

s ∧ tλ(ds) · λ(dt).

Hence, by (8.1.3),

(8.1.5) Ŵ (N)(λ) = exp

(
−
‖hλ‖2H(RN )

2

)
, λ ∈ Θ(RN )

∗
.

Although (8.1.5) is far less intuitively appealing than (8.1.4), it provides a
mathematically rigorous way in which to think ofW (N) as the standard Gaussian
measure on H1(RN ). Furthermore, there is a is another way to understand why
one should accept (8.1.5) as evidence for this way of thinking about W (N).

Indeed, given λ ∈ Θ(RN )
∗
, write

〈θ,λ〉 = lim
T→∞

∫
[0,T ]

θ(t) · λ(dt) = − lim
T→∞

∫ T

0

θ(t) · dλ
(
(t,∞)

)
,

where the integral in the last expression is taken in the sense of Riemann-Stieljes.
Next, apply the integration by part formula∗ to conclude that t λ

(
(t,∞)

)
is

Riemann–Stieljes integrable with respect to t θ(t) and that

−
∫ T

0

θ(t) · dλ
(
(t,∞)

)
= −θ(T ) · λ

(
(T,∞)

)
+

∫ T

0

λ
(
(t,∞)

)
· dθ(t).

Hence, since

lim
T→∞

|θ(T )||λ|(T,∞) ≤ lim
T→∞

|θ(T )|
1 + T

∫
(0,∞)

(1 + t) |λ|(dt) = 0,

(8.1.6) 〈θ,λ〉 = lim
T→∞

∫ T

0

ḣλ(t) · dθ(t),

where again the integral is in the sense of Riemann–Stieljes. Thus, if one some-
what casually writes dθ(t) = θ̇(t) dt, one can believe that 〈θ,λ〉 provides a rea-
sonable interpretation of

(
θ,hλ

)
H(RN )

for all θ ∈ Θ(RN ), not just those which

are in H1(RN ).
Because R. Cameron and T. Martin were the first mathematicians to system-

atically exploit the consequences of this line of reasoning, I will call H1(RN ) the
Cameron–Martin space for classical Wiener measure.

∗ See, for example, Theorem 1.2.7 in my A Concise Introduction to the Theory of Integration
published by Birkhäuser (3rd edition, 1999).
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Exercises for §8.1

Exercise 8.1.7. Let H be a separable Hilbert space, and, for each n ∈ Z+ and
subset {g1, . . . , gn} ⊆ H, letA(g1, . . . , gn) denote the σ-algebra over H generated
by the mapping

h ∈ H 7−→
(
(h, g1)H , . . . , (h, gn)H

)
∈ Rn,

and check that

A =
⋃{
A(g1, . . . , gn) : n ∈ Z+ and g1, . . . , gn ∈ H

}
is an algebra which generates BH . Show that there always exists a finitely
additive WH on A which is uniquely determined by the properties that it is
σ-additive on A(g1, . . . , gn) for every n ∈ Z+ and {g1, . . . , gn} ⊆ H and that∫

H

exp
[√
−1 (h, g)H

]
WH(dh) = exp

[
−‖g‖

2
H

2

]
, g ∈ H.

On the other hand, as we already know, this finitely additive measure admits a
countably additive extension to BH if and only if H is finite dimensional.

§8.2 A Structure Theorem for Gaussian Measures

Say that a centered Gaussian measure W on a separable Banach space E is
non-degenerate if EW

[
〈x, x∗〉2

]
> 0 unless x∗ = 0. In this section I will show

that any non-degenerate, centered Gaussian measure W on a separable Banach
space E shares the same basic structure as W (N) has on Θ(RN ). In particular,
I will show that there is always a Hilbert space H ⊆ E for which W is the
standard Gauss measure in the same sense as W (N) was shown in § 8.1.2 to be
the standard Gauss measure for H1(RN ).

§8.2.1. Fernique’s Theorem. In order to carry out my program, I need a
basic integrability result about Banach space valued, Gaussian random variables.
The one which I will use is due to X. Fernique, and his is arguably the most
singularly beautiful result in the theory of Gaussian measures on a Banach space.

Theorem 8.2.1 (Fernique’s Theorem). Let E be a real, separable Banach
space, and suppose that X is an E-valued random variable which a centered and
Gaussian in the sense that, for each x∗ ∈ E∗, 〈X,x∗〉 is a centered, R-valued
Gaussian random variable. If R = inf{r : P(‖X‖E ≤ e) ≥ 3

4 )}, then

(8.2.2) E
[
e
‖X‖2

E
18R2

]
≤ K ≡ e 1

2 +

∞∑
n=0

(e
3

)2n

.

(See Corollary 8.4.3 below for a sharpened statement.)
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Proof: After enlarging the sample space if necessary, I may and will assume
that there is an independent, E-valued random variable X ′ with the same dis-
tribution as X. Set Y = 2−

1
2 (X + X ′) and Y ′ = 2−

1
2 (X −X ′). Then the pair

(Y, Y ′) has the same distribution as the pair (X,X ′). Indeed, this comes down
to showing that the R2-valued random variable

(
〈Y, x∗〉, 〈Y ′, x∗〉

)
has the same

distribution as
(
〈X,x∗〉, 〈X ′, x∗〉

)
, and that is an elementary application of the

additivity property of independent Gaussians.
Turning to the main assertion, let 0 < s ≤ t be given, and use the preceding

to justify

P
(
‖X‖E ≤ s

)
P
(
‖X‖E ≥ t

)
= P

(
‖X‖E ≤ s & ‖X ′‖E ≥ t

)
= P

(
‖X −X ′‖E ≤ 2

1
2 s & ‖X +X ′‖E ≥ 2

1
2 t
)

≤ P
(∣∣‖X‖E − ‖X ′‖E∣∣ ≤ 2

1
2 s & ‖X‖E + ‖X ′‖E ≥ 2

1
2 t
)

≤ P
(
‖X‖E ∧ ‖X ′‖E ≥ 2−

1
2 (t− s)

)
= P

(
‖X‖E ≥ 2−

1
2 (t− s)

)2
.

Now suppose that P
(
‖X‖ ≤ R

)
≥ 3

4 , and define {tn : n ≥ 0} by t0 = R and

tn = R+ 2
1
2 tn−1 for n ≥ 1. Then

P
(
‖X‖E ≤ R

)
P
(
‖X‖E ≥ tn

)
≤ P

(
‖X‖E ≥ tn−1

)2
and therefore

P
(
‖X‖E ≥ tn

)
P
(
‖X‖E ≤ R

) ≤ (P
(
‖X‖E ≥ tn−1

)
P
(
‖X‖E ≤ R

) )2

for n ≥ 1. Working by induction, one gets from this that

P
(
‖X‖E ≥ tn

)
P
(
‖X‖E ≤ R

) ≤ (P
(
‖X‖E ≥ R

)
P
(
‖X‖E ≤ R

))2n

and therefore, since tn = R 2
n+1

2 −1

2
1
2−1

≤ 32
n+1

2 R, that P
(
‖X‖E ≥ 32

n+1
2 R

)
≤ 3−2n .

Hence,

EP
[
e
‖X‖2

E
18R2

]
≤ e 1

2P
(
‖X‖E ≤ 3R

)
+

∞∑
n=0

e2nP
(
32

n
2 R ≤ ‖X‖E ≤ 32

n+1
2 R

)
≤ e 1

2 +

∞∑
n=0

(e
3

)2n

= K. �

§8.2.2. The Basic Structure Theorem. I will now abstract the relationship,
proved in § 8.1.2, between Θ(RN ), H1(RN ), and W (N), and for this purpose I
will need the following simple lemma.
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Lemma 8.2.3. Let E be a separable, real Banach space, and suppose that H ⊆
E is a real Hilbert space which is continuously embedded as a dense subspace of
E.

(i) For each x∗ ∈ E∗ there is a unique hx∗ ∈ H with the property that(
h, hx∗

)
H

= 〈h, x∗〉 for all h ∈ H, and the map x∗ ∈ E∗ 7−→ hx∗ ∈ H is
linear, continuous, one-to-one, onto a dense subspace of H.

(ii) If x ∈ E, then x ∈ H if and only if there is a K < ∞ such that |〈x, x∗〉| ≤
K‖hx∗‖H for all x∗ ∈ E∗. Moreover, for each h ∈ H, ‖h‖H = sup{〈h, x∗〉 : x∗ ∈
E∗ & ‖x∗‖E∗ ≤ 1}.
(iii) If L∗ is a subspace of E∗, then there exists a sequence {x∗n : n ≥ 0} ⊆ L∗

such that {hxn : n ≥ 0} is an orthonormal basis for H. Moreover, if x ∈ E, then
x ∈ H if and only if

∑∞
n=0〈x, x∗n〉2 <∞, and

(
h, h′

)
H

=

∞∑
n=0

〈h, x∗n〉〈h′, x∗n〉 for all h, h′ ∈ H.

Proof: Because H is continuous embedded in E, there exists a C < ∞ such
that ‖h‖E ≤ C‖h‖H . Thus, if x∗ ∈ E∗ and f(h) = 〈h, x∗〉, then f is linear and
|f(h)| ≤ ‖h‖E‖x∗‖E∗ ≤ C‖x∗‖E∗‖h‖H , and so, by the Riesz Representation
Theorem for Hilbert spaces, there exists a unique hx∗ ∈ H such that f(h) =(
h, hx∗

)
H

. In fact, ‖hx∗‖H ≤ C‖x∗‖E∗ , and uniqueness can be used to check
that x∗  hx∗ is linear. To see that x∗  hx∗ is one-to-one, it suffices to show
that x∗ = 0 if hx∗ = 0. But if hx∗ = 0, then 〈h, x∗〉 = 0, for all h ∈ H, and
therefore, because H is dense in E, x∗ = 0. Because I will use it below, I will
prove slightly more than the density of just {hx∗ : x∗ ∈ E∗} in H. Namely, for
any weak* dense subset S∗ of E∗, {hx∗ : x∗ ∈ S∗} is dense in H. Indeed, if this
were not the case, then there would exist an h ∈ H \ {0} with the property that
〈h, x∗〉 =

(
h, hx∗

)
H

= 0 for all x∗ ∈ S. But, since S∗ is weak* dense in E∗, this

would lead to the contradiction that h = 0. Thus, (i) is now proved.
Obviously, if h ∈ H, then |〈h, x∗〉| = |(h, hx∗)H | ≤ ‖hx∗‖H‖h‖H for x∗ ∈ E∗.

Conversely, if x ∈ E and |〈x, x∗〉| ≤ K‖hx∗‖H for some K <∞ and all x∗ ∈ E∗,
set f(hx∗) = 〈x, x∗〉 for x∗ ∈ E∗. Then, because x∗  hx∗ is one-to-one, f
is a well-defined, linear functional on {hx∗ : x∗ ∈ E∗}. Moreover, |f(x∗)| ≤
K‖hx∗‖H , and therefore, since {hx∗ : x∗ ∈ E∗} is dense, f admits a unique
extension as a continuous, linear functional on H. Hence, by Riesz’s theorem,
there is an h ∈ H such that

〈x, x∗〉 = f(hx∗) =
(
h, hx∗

)
H

= 〈h, x∗〉, x∗ ∈ E∗,

which means that x = h ∈ H. In addition, if h ∈ H, then ‖h‖H = sup{〈h, x∗〉 :
‖hx∗‖H} follows from the density of {hx∗ : x∗ ∈ E∗}, and this completes the
proof of (ii).
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Turning to (iii), remember that, by Exercise 5.1.19, the weak* topology on E∗

is second countable. Hence, the weak* topology on L∗ is also second countable
and therefore separable. Thus, we can find a sequence in L∗ which is weak*
dense in E∗, and then, proceeding as in the hint given for that exercise, extract
a subsequence of linearly independent elements whose span S∗ is weak* dense
in E∗. Starting with this subsequence, apply the Grahm–Schmidt orthogonal-
ization procedure to produce a sequence {x∗n : n ≥ 0} whose span is S∗ and
for which {hx∗n : n ≥ 0} is orthonormal in H. Moreover, because the span of
{hx∗n : n ≥ 0} equals {hx∗ : x∗ ∈ S∗}, which, by what we proved earlier, is
dense in H, {hx∗n : n ≥ 0} is an orthonormal basis in H. Knowing this, it is
immediate that

(
h, h′

)
H

=

∞∑
n=0

(
h, hxn

)
H

(
h′, hxn

)
H

=

∞∑
n=0

〈h, x∗n〉〈h′, x∗n〉.

In particular, ‖h‖2H =
∑∞
n=0〈h, x∗n〉2. Finally, if x ∈ E and

∑∞
n=0〈x, x∗n〉2 <∞,

set g =
∑
m=0〈x, x∗n〉hx∗n . Then g ∈ H and 〈x − g, x∗〉 = 0 for all x∗ ∈ S∗.

Hence, since S∗ is weak* dense in E∗, x = g ∈ H. �

Given a separable real Hilbert space H, a separable real Banach space E, and
a W ∈ M1(E), I will say that the triple (H,E,W) is an abstract Wiener
space if H is continuously embedded as a dense subspace of E andW ∈M1(E)
has Fourier transform

(8.2.4) Ŵ(x∗) = e−
‖hx∗‖

2
H

2 for all x∗ ∈ E∗.

The terminology is justified by the fact, demonstrated at the end of § 8.1.2,
that

(
H1(RN ),Θ(RN ),W (N)

)
is an abstract Wiener space. The concept of an

abstract Wiener space was introduced by Gross, although his description was
somewhat different from the one just given (cf. Theorem 8.3.9) for a reconcilation
of mine with his definition.)

Theorem 8.2.5. Suppose that E is a separable, real Banach space and that
W ∈ M1(E) is a centered Gaussian measure which is non-degenerate. Then
there exists a unique Hilbert space H such that (H,E,W) is an abstract Wiener
space.

Proof: By Fernique’s Theorem, we know that C ≡
√

EW
[
‖x‖2E

]
<∞.

To understand the proof of existence, it is best to start with the proof of
uniqueness. Thus, suppose that H is a Hilbert space for which (E,H,W) is an
abstract Wiener space. Then, for all x∗, y∗ ∈ E∗, 〈hx∗ , y∗〉 = (hx∗ , hy∗)H =
〈hy∗ , x∗〉. In addition,

〈hx∗ , x∗〉 = ‖hx∗‖2H =

∫
〈x, x∗〉2W(dx),
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and so, by the symmetry just established,

(*) 〈hx∗ , y∗〉 = ‖hx∗‖2H =

∫
〈x, x∗〉〈x, y∗〉W(dx),

for all x∗, y∗ ∈ E∗. Next observe that

(**)

∫ ∥∥〈x, x∗〉x∥∥
E
W(dx) ≤ C‖hx∗‖H ,

and therefore that the integral
∫
x〈x, x∗〉W(dx) is a well defined element of E.

Moreover, by (*)

〈hx∗ , y∗〉 =

〈∫
x〈x, x∗〉W(dx)

〉
for all y∗ ∈ E∗,

and so

(***) hx∗ =

∫
x〈x, x∗〉W(dx).

Finally, given h ∈ H, choose {x∗n : n ≥ 1} ⊆ E∗ so that hx∗n −→ h in H. Then

lim
m→∞

sup
n>m

∥∥〈 · , x∗n〉 − 〈 · , x∗m〉∥∥L2(W;R)
= lim
m→∞

sup
n>m
‖hx∗nhx∗m‖H = 0,

and so, if Ψ denotes the closure of {〈 · , x∗〉 : x∗ ∈ E∗} in L2(W;R) and F :
Ψ −→ E is given by

F (ψ) =

∫
xψ(x)W(dx), ψ ∈ Ψ,

then h = F (ψ). Conversely, if ψ ∈ Ψ and {x∗n : n ≥ 1} is chosen so that
〈 · , x∗n〉 −→ ψ in L2(W;R), then {hx∗n : n ≥ 1} converges in H to some h ∈ H
and it converges in E to F (ψ). Hence, F (ψ) = h ∈ H. In other words, H =
F (Ψ).

The proof of existence is now a matter of checking that if Ψ and F are defined
as above and if H = F (Ψ) with ‖F (ψ)‖H = ‖ψ‖L2(W;R), then (H,E,W) is an
abstract Wiener space. To this end,

〈F (ψ), x∗〉 =

∫
〈x, x∗〉ψ(x)W(dx) =

(
F (ψ), hx∗

)
H
,

and therefore both (*) and (***) hold for this choice of H. Further, given (*), it
is clear that ‖hx∗‖2H is the variance of 〈 · , x∗〉 and therefore that (8.2.4) holds.
At the same time, just as in the derivation of (**), ‖F (ψ)‖E ≤ C‖ψ‖L2(W;R) =
C‖F (ψ)‖H , and so H is continuously embedded inside E. Finally, by the Hahn–
Banach Theorem, to show that H is dense in E it suffices to check the only
x∗ ∈ E∗ such that 〈F (ψ), x∗〉 = 0 for all ψ ∈ Ψ is x∗ = 0. But when ψ = 〈 · , x∗〉,
〈F (ψ), x∗〉 =

∫
〈x, x∗〉2W (dx), and therefore, because W is non-degenate, such

an x∗ would have to be 0. �

§8.2.3. The Cameron–Marin Space. Given a centered, non-degenerate
Gaussian measure W on E, the Hilbert space H for which (H,E,W) is an ab-
stract Wiener space is called its Cameron–Martin space. Here are a couple
of important properties of the Cameron–Martin subspace.
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Theorem 8.2.6. If (H,E,W) is an abstract Wiener space, then the map
x∗ ∈ E∗ 7−→ hx∗ ∈ H is continuous from the weak* topology on E∗ into the
strong topology on H. In particular, for each R > 0, {hx∗ : x∗ ∈ BE∗(0, R)}
is a compact subset of H, BH(0, R) is a compact subset of E, and so H ∈ BE .
Moreover, when E is infinite dimensional W(H) = 0. Finally, there is a unique
linear, isometric map I : H −→ L2(W;R) such that I(hx∗) = 〈 · , x∗〉 for all
x∗ ∈ E∗, and {I(h) : h ∈ H} is a Gaussian family in L2(W;R).

Proof: To prove the intitial assertion, remember that x∗  Ŵ(x∗) is contin-
uous with respect to the weak* topology. Hence, if x∗k −→ x∗ in the weak*
topology, then

exp

(
−
‖hx∗

k
− hx∗‖2H
2

)
= Ŵ(x∗k − x∗) −→ 1,

and so hx∗
k
−→ hx∗ in H.

Given the first assertion, the compactness of {hx∗ : x∗ ∈ BE∗(0, R)} in H

follows from the compactness (cf. Exercise 5.1.19) of BE∗(0, R) in the weak*

topology. To see that BH(0, R) is compact in E, again apply Exercise 5.1.19 to

check that BH(0, R) is compact in the weak topology on H. Therefore, all that
we have to show is that the embedding map h ∈ H 7−→ h ∈ E is continuous
from the weak topology on H into the strong topology on E. Thus, suppose
that hk −→ h weakly in H. Because

{
hx∗ : x∗ ∈ BE∗(0, 1)

}
is compact in H,

for each ε > 0 there exist an n ∈ Z+ and {x∗1, . . . , x∗n} ⊆ BE∗(0, 1) such that

{hx∗ : x∗ ∈ BE∗(0, 1)} ⊆
n⋃
1

BH(hx∗m , ε).

Now choose ` so that max1≤m≤n |〈hk − h, x∗m〉| < ε for all k ≥ `. Then, for any

x∗ ∈ BE∗(0, 1) and all k ≥ `,

|〈hk − h, x∗〉| ≤ ε+ min
1≤m≤n

∣∣(hk − h, hx∗ − hx∗m)H ∣∣ ≤ ε+ 2ε sup
k≥1
‖hk‖H .

Since, by the uniform boundedness principle, supk≥1 ‖hk‖H < ∞, this proves

that ‖hk − h‖E = sup{〈hk − h, x∗〉 : x∗ ∈ BE∗(0, 1)} −→ 0 as k →∞.

Because H =
⋃∞

1 BH(0, n) and BH(0, n) is a compact subset of E for each
n ∈ Z+, it is clear that H ∈ BE . To see that W(H) = 0 when E is infinite
dimensional, choose {x∗n : n ≥ 0} as in the final part of Lemma 8.2.3, and
set Xn(x) = 〈x, x∗n〉. Then the Xn’s are an infinite sequence of independent,
centered, Gaussians with mean value 1, and so,

∑∞
n=0X

2
n =∞W-almost surely.

Hence, by Lemma 8.2.3, W-almost no x is in H.
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Turning to the map I, define I(hx∗) = 〈 · , x∗〉. Then, for each x∗, I(hx∗)
a centered Gaussian with variance ‖hx∗‖2H , and so I is a linear isometry from
{hx∗ : x∗ ∈ E∗} into L2(W;R). Hence, since {hx∗ : x∗ ∈ E∗} is dense in H, I
admits a unique extension as a linear isometry from H into L2(W;R). Moreover,
as the L2(W;R)-limit of centered Gaussians, I(h) is a centered Gaussian for each
h ∈ H. �

The map I in Theorem 8.2.6 was introduced for the classical Wiener space by
Paley and Wiener, and so I will call it the Payley–Wiener map. To appreciate
its importance here, recall the suggestion in § 8.1.2 that θ  〈θ,λ〉 be thought
of as an extention of h  

(
h,hλ

)
H1(RN )

to Θ(RN ), and, in the same sense,

think of x  〈x, x∗〉 as an extention of the inner product h  
(
h, hx∗

)
H

to E.

When one adopts this point of view, then x  [I(h)](x) can be interpreted as
an extension of ( · , h)H to E, this time not just for h ∈ {hx∗ : x∗ ∈ E∗} but
for any h ∈ H. Of course, when E is infinite dimensional, one has to be careful
when using this interpretation, since for general h ∈ H, I(h) is defined only up
to a W-null set. Nonetheless, by adopting it, one gets further evidence for the
idea that W wants to be the standard Gauss measure on H. Namely, because

(8.2.7) EW
[
e
√
−1 I(h)

]
= e−

‖h‖2
H

2 , h ∈ H,

if W lived on H, then it would certainly be the standard Gauss measure there.
Perhaps the most important application of the Paley–Wiener map is the fol-

lowing theorem about the behavior of Gaussian measures under translation.
That is, if y ∈ E and τy : E −→ E is given by τy(x) = x+ y, we will be looking
at the measure (τy)∗W and its relationship toW. Using the reasoning suggested
above, the result is easy to guess. Namely, ifW really lived on H and were given
by a Feynman-type representation

W(dh) =
1

Z
e−
‖h‖2

H
2 λH(dh),

then (τg)∗W should have the Feynman representation

1

Z
e−
‖h−g‖2

H
2 λH(dh),

which could be re-written as[
(τg)∗W

]
(dh) = exp

[(
h, g
)
H
− 1

2‖g‖
2
H

]
W(dh).

Hence, if we assume that I(g) gives us the correct interpretation of ( · , g)H , we
are led to guess that, at least for g ∈ H,

(8.2.8)
[
(τg)∗W(dx)

]
(dh) = Rg(x)W (dx) where Rg = exp

[
I(g)− 1

2‖g‖
2
H

]
.

That (8.2.8) is correct was proved for the classical Wiener space by Cameron
and Martin, and for this reason it is called the Cameron–Martin formula. In
fact, one has the following result, the second half of which is due to Segal.
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Theorem 8.2.9. If (H,E,W) is an abstract Wiener space, then, for each
g ∈ H, (τg)∗W �W and the Rg in (8.2.8) is the corresponding Radon–Nikodym
derivative. Conversely, if (τy)∗W is not singular to W, then y ∈ H.

Proof: Let g ∈ H, and set µ = (τg)∗W. Then

(*) µ̂(x∗) = EW
[
e
√
−1〈x+g,x∗〉] = exp

[√
−1〈g, x∗〉 − 1

2‖hx∗‖
2
H

]
.

Now define ν by the right hand side of (8.2.8). Clearly ν ∈ M1(E). Thus, we
will have proved the first part once we show that ν̂ is given by the right hand
side of (*). To this end, observe that, for any h1, h2 ∈ H,

EW
[
eξ1I(h1)+ξ2I(h2)

]
= exp

[
ξ2
1

2
‖h1‖2H + ξ1ξ2

(
h1, h2

)
H

+
ξ2
2

2
‖h2‖2H

]
for all ξ1, ξ2 ∈ C. Indeed, this is obvious when ξ1 and ξ2 are pure imaginary,
and, since both sides are entire functions of (ξ1, ξ2) ∈ C2, it follows in general
by analytic continuation. In particular, by taking h1 = g, ξ1 = 1, h2 = hx∗ , and
ξ2 =

√
−1, it is easy to check that the right hand side of (*) is equal to ν̂(x∗).

To prove the second assertion, begin by recalling from Lemma 8.2.3 that if
y ∈ E, then y ∈ H if and only if there is a K < ∞ with the property that
|〈y, x∗〉| ≤ K for all x∗ ∈ E∗ with ‖hx∗‖H = 1. Now suppose that (τx∗)∗W 6⊥
W, and let R be the Radon–Nikodym derivative of its absolutely continuous
part. Given x∗ ∈ E∗ with ‖hx∗‖H = 1, let Fx∗ be the σ-algebra generated by
x  〈x, x∗〉, and check that (τy)∗W � Fx∗ � W � Fx∗ with Radon–Nikodym
derivative

Y (x) = exp

(
〈y, x∗〉〈x, x∗〉 − 〈y, x

∗〉2

2

)
.

Hence,

Y ≥ EW
[
R
∣∣Fx∗] ≥ EW

[
R

1
2

∣∣Fx∗]2,
and so (cf. Exercise 8.2.14)

exp

(
−〈y, x

∗〉2

8

)
= EW

[
Y

1
2

]
≥ α ≡ EW

[
R

1
2

]
∈ (0, 1].

Since this means that 〈y, x∗〉2 ≤ 8 log 1
α , the proof is complete. �

Exercises for § 8.2

Exercise 8.2.10. Let C ∈ RN ⊗ RN be a positive definite, symmetric matrix,
take E = RN is the standard Euclidean metric, and H = RN with the Hilbert
inner product (x,y)H = (x,C−1y)RN . Show that

(
H,E, γ0,C

)
is an abstract

Wiener space.
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Exercise 8.2.11. Referring to the setting in Lemma 8.2.3, show that there is a

sequence {‖ · ‖(n)
E : n ≥ 0} of norms on E each of which is commensurate with

‖ · ‖E (i.e., C−1
n ‖ · ‖ ≤ ‖ · ‖

(N)
E ≤ Cn‖ · ‖ for some Cn ∈ [1,∞)) such that, for

each R > 0,

BH(0, R) = {x ∈ E : ‖x‖(n)
E ≤ R for all n ≥ 0}.

Hint: Choose {x∗m : m ≥ 0} ⊆ E∗ so that {hx∗m : m ≥ 0} is an orthonormal

basis for H, define Pn : E −→ H by Pnx =
∑n
m=0〈x, x∗m〉hx∗m , and

‖x‖(n)
E =

√
‖Pnx‖2H + ‖x− Pnx‖2E .

Exercise 8.2.12. Referring to the setting in Fernique’s Theorem, observe that
all powers of ‖X‖E are integrable, and set σ2 = E

[
‖X‖2E

]
. Show that

E
[
e
‖X‖2

E
72σ2

]
≤ K.

In particular, for any n ≥ 1, conclude that

E
[
‖X‖2nE

]
≤ (72)nn!Kσ2n,

which is remarkably close to the equality which holds when E = R.

Exercise 8.2.13. Given λ ∈ Θ(RN )∗, I pointed out at the end of § 8.1.2 that the
Paley–Wiener integral [I(hλ)](θ) can be interpreted as the Riemann–Stieltjes
integral of λ

(
(s,∞)

)
with respect to θ(s). In this exercise, I will use this obser-

vation as the starting point for what is called stochastic integration.

(i) Given λ ∈ Θ(RN )∗ and t > 0, set λt(dτ) = 1[0,t)(τ)λ(dτ) + δtλ
(
[t,∞)

)
, and

show that for all θ ∈ Θ(RN )

〈θ,λt〉 =

∫ t

0

λ
(
(τ,∞)

)
· dθ(τ),

where the integral on the right is taken in the sense of Riemann–Stieltjes. In
particular, conclude that t 〈θ,λt〉 is continuous for each θ.

(ii) Given f ∈ C1
c

(
[0,∞);RN

)
, set λf (dτ) = −ḟ(τ) dτ , and show that

〈θ,λtf 〉 =

∫ t

0

f(τ) · dθ(τ),

where again the integral on the right is Riemann–Stieltjes. Use this to see that
the process {∫ t

0

f(τ) · dθ(τ) : t ≥ 0

}
has the same distribution under W (N) as

(*)

{
B

(∫ t

0

|f(τ)|2 dτ
)

: t ≥ 0

}
,

where {B(t) : t ≥ 0} is an R-valued Brownian motion.



304 VIII Gaussian Measures on a Banach Space

(iii) Given f ∈ L2
loc

(
[0,∞);RN

)
and t > 0, set htf (τ) =

∫ t∧τ
0

f(s) ds. Show that

the W (N)-distribution of the process
{
I(htf ) : t ≥ 0

}
is the same as that the

process in (*). In particular, conclude (cf. part (ii) of Exercise 4.3.16) that there
is a continuous modification of the process {I(htf ) : t ≥ 0}. For reasons made
clear in (ii), such a continuous modification is denoted by{∫ t

0

f(τ) · dθ(τ) : t ≥ 0

}
.

Of course, unless f has bounded variation, the integrals in the preceding are
no longer interpretable as Riemann-Stieltjes integrals. In fact, they not even
defined θ by θ but only as a stochastic process. For this reason, they are called
stochastic integrals.

Exercise 8.2.14. Define Rg as in (8.2.8), and show that

EW
[
Rpg
] 1
p = exp

[
(p− 1)‖g‖2H

2

]
for all p ∈ (0,∞).

Exercise 8.2.15. Here is another way to think about Segal’s half of Theorem
8.2.9. Using Lemma 8.2.3, choose {x∗n : n ≥ 0} ⊆ E∗ so that {hx∗n : n ≥ 0} is

an orthonormal basis for H. Next, define F : E −→ RN so that F (x)n = 〈x, x∗n〉
for each n ∈ N, and show that F∗W = γN0,1 and (F ◦ τy)∗W =

∏∞
0 γan,1, where

an = 〈y, x∗n〉. Conclude from this that (τy)∗W ⊥W if γN0,1 ⊥
∏∞

0 γan,1. Finally,

use this together with Exercise 5.2.34 to see that (τy)∗W ⊥ W if
∑∞

0 a2
m =∞,

which, by Lemma 8.2.3, will be the case if y /∈ H.

§ 8.3 From Hilbert to Abstract Wiener Space

Up to this point I have been assuming that we already have at hand a non-
degenerate, centered Gaussian measure W on a Banach space E, and, on the
basis of this assumption, we produced the associated Cameron–Martin space H.
In this section, I will show how one can go in the opposite direction. That is,
I will start with a separable, real Hilbert space H and show how to go about
finding a separable, real Banach space E for which there exists a W ∈ M1(E)
such that (H,E,W) is an abstract Wiener space. Although I will not adopt his
approach, the idea of carrying out such a program is Gross’s.
Warning: From now on, unless the contrary is explicitly stated, I will be as-
suming that the spaces with which I am dealing are all infinite dimensional,
separable, and real.

§ 8.3.1. An Isomorphism Theorem. Because, at an abstract level, all infinite
dimensional, separable Hilbert spaces are the same, one should expect that, in a
related sense, the set of all abstract Wiener spaces for which one Hilbert space
is the Cameron–Martin space is the same as the same as the set of all abstract
Wiener spaces for which any other Hilbert space is the Cameron–Martin space.
The following simple result verifies this conjecture.
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Theorem 8.3.1. Let H and H ′ be a pair of Hilbert spaces, and suppose that
F is a linear isometry from H onto H ′. Further, suppose that (H,E,W) is an
abstract Wiener space. Then there exists a Banach space E′ ⊇ H ′ and a linear
isometry F̃ from E onto E′ such that F̃ � H = F and

(
H ′, E′, F̃∗W

)
is an

abstract Wiener space.

Proof: Define ‖h′‖E′ = ‖F−1h′‖E for h′ ∈ H ′, and let E′ be the Banach space
obtained by completing H ′ with respect to ‖ · ‖E′ . Trivially, H ′ is continuously

embedded in E′ as a dense subspace, and F admits a unique extension F̃ as an
isometry from E onto E′. Moreover, if (x′)∗ ∈ (E′)∗ and F̃> is the adjoint map
from (E′)∗ onto E∗, then(

h′, h′(x′)∗
)
H′

= 〈h′, (x′)∗〉 = 〈F−1h′, F̃>(x′)∗〉

=
(
F−1h′, hF̃>(x′)∗

)
H

=
(
h′, FhF̃>(x′)∗

)
H′
,

and so h′(x′)∗ = FhF̃>(x′)∗ . Hence,

EF̃∗W
[
e
√
−1 〈x′,(x′)∗〉

]
= EW

[
e
√
−1 〈F̃ x,(x′)∗〉

]
= EW

[
e
√
−1 〈x,F̃>(x′)∗〉

]
= e−

1
2‖hF̃>(x′)∗‖

2
H = e

− 1
2‖F

−1h′
(x′)∗‖

2
H = e

− 1
2‖h
′
(x′)∗‖

2
H′ ,

which completes the proof that
(
H ′, E′, F̃∗W

)
is an abstract Wiener space. �

Theorem 8.3.1 says that there is a one-to-one correspondence between the ab-
stract Wiener spaces associated with one Hilbert space and the abstract Wiener
spaces associated with any other. In particular, it allows us to prove the theorem
of Gross which states that every Hilbert space is the Cameron–Martin space for
some abstract Wiener space.

Corollary 8.3.2. Given a separable, real Hilbert space H, there exists a
separable Banach space E and aW ∈M1(E) such that (H,E,W) is an abstract
Wiener space.

Proof: Let F : H1(R) −→ H be an isometric isomorphism, and use Theorem
8.3.1 to construct a separable Banach space E and an isometric, isomorphism
F̃ : Θ(R) −→ E so that (H,E,W) is an abstract Wiener space when W =

F̃∗W(1). �

It is important to recognize that although a non-degenerate, centered Gaussian
measure on a Banach space E determines a unique Cameron–Martin space H,
a given H will be the Cameron–Martin space for an uncountable number of
abstract Wiener spaces. For example, in the classical case when H = H1(RN ),
we could have replaced Θ(RN ) by a subspace which reflected the fact that almost
every Brownian path is locally Hölder continuous of any order less than a half.
We see a definitive, general formulation of this point in Corollary 8.3.10 below.
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§ 8.3.2. Wiener Series. The proof which I gave of Corollary 8.3.2 is too non-
constructive to reveal much about the relationship between H and the abstract
Wiener spaces for which it is the Cameron–Martin space. Thus, in this sub-
section I will develop another, entirely different, way of constructing abstract
Wiener spaces for a Hilbert space.

The approach here has its origins in one of Wiener’s own constructions of
Brownian motion and is based on the following line of reasoning. Given H,
choose an orthonormal basis {hn : n ≥ 0}. If there were a standard Gauss
measure W on H, then the random variables {Xn : n ≥ 0} given by Xn(h) =(
h, hn

)
H

would be independent, standard normal R-valued random variables,

and, for each h ∈ H,
∑∞

0 Xn(h)hn would converge in H to h. Even though
W cannot live on H, this line of reasoning suggests that a way to construct an
abstract Wiener space is to start with a sequence {Xn : n ≥ 0} of R-valued,
independent standard normal random variables on some probability space, find
a Banach space E in which

∑∞
0 Xnhn converges with probability 1, and take

W on E to the distribution of this series.
To convince oneself that this line of reasoning has a chance of leading some-

where, one should observe that Lévy’s construction corresponds to a particu-
lar choice of the orthonormal basis {hm : m ≥ 0}.∗ To see this, determine

{ḣk,n : (k, n) ∈ N2} by

ḣk,0 = 1[k,k+1) and ḣk,n = 2
n−1

2


1 on

[
k21−n, (2k + 1)2−n

)
−1 on

[
(2k + 1)2−n, (k + 1)21−n)

0 elsewhere

for n ≥ 1. Clearly, the ḣk,n’s are orthonormal in L2
(
[0,∞);R

)
. In addition, for

each n ∈ N, the span of {ḣk,n : k ∈ N} equals that of {1[k2−n,(k+1)2−n) : k ∈ N}.
Perhaps the easiest way to check this is to do so by dimension counting. That
is, for a given (`, n) ∈ N2, note that

{ḣ`,0} ∪ {ḣk,m : `2m−1 ≤ k < (`+ 1)2m−1 and 1 ≤ m ≤ n}

has the same number of elements as {1[k2−n,(k+1)2−n) : `2n ≤ k < (` + 1)2n}
and that the first is contained in the span of the second. As a consequence, we
know that {ḣk,n : (k, n) ∈ N2} is an orthonormal basis in L2

(
[0,∞);R

)
, and so,

if hk,n(t) =
∫ t

0
ḣk,n(τ) dτ and (e1, . . . , eN ) is an orthonormal basis in RN , then{

hk,n,i ≡ hk,nei : (k, n, i) ∈ N2 × {1, . . . , N}
}

∗ The observation that Lévy’s construction (cf. § 4.3.2) can be interpreted in terms of Wiener
series is due to Z. Ciesielski. To be more precise, initially Ciesielski himself was thinking

entirely in terms of orthogonal series and did not realize that he was giving a re-interpretation
of Lévy’s construction. Only later did the connection become clear.
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is an orthonormal basis, known as the Haar basis, in H1(RN ). Finally, if{
Xk,n,i : (k, n, i) ∈ N2×{1, . . . , N}

}
is a family of independent, N(0, 1)-random

variables and Xk,n =
∑N
i=1Xk,n,iei, then

n∑
m=0

∞∑
k=0

N∑
i=1

Xk,m,ihk,m,i(t) =

n∑
m=0

∞∑
k=0

hk,m(t)Xk,m

is precisely the polygonalization which I denoted by Bn(t) in Lévy’s construction
(cf. § 4.3.2).

The construction by Wiener, alluded to above, was essentially the same, only
he chose a different basis for H1(RN ). Wiener took ḣk,0(t) = 1[k,k+1)(t) for

k ∈ N and ḣk,n(t) = 2
1
2 1[k,k+1)(t) cos

(
πn(t − k)

)
for (k, n) ∈ N × Z+, which

means that he was looking at the series

∞∑
k=0

(t− k)1[k,k+1)(t)Xk,0 +
∑

(k,n)∈N×Z+

1[k,k+1)(t)
2

1
2 sin

(
πn(t− k)

)
πn

Xk,n,

where again {Xk,n : (k, n) ∈ N2} is a family of independent, RN -valued, N(0, I)-
random variables. The reason why Lévy’s choice is easier to handle than Wiener’s
is that, in Lévy’s case, for each n ∈ Z+ and t ∈ [0,∞), hk,n(t) 6= 0 for precisely
one k ∈ N. Wiener’s choice has no such property.

With these preliminaries, the following theorem should come as no surprise.

Theorem 8.3.3. Let H be an infinite dimensional, separable, real Hilbert
space and E a Banach space into which H is continuously embedded as a dense
subspace. If for some orthonormal basis {hm : m ≥ 0} in H the series

(8.3.4)

∞∑
m=0

ξmhm converges in E

for γN0,1-almost every ξ = (ξ0, . . . , ξm, . . . ) ∈ RN

and if S : RN −→ E is given by

S(ξ) =

{ ∑∞
m=0 ξmhm when the series converges in E

0 otherwise,

then
(
H,E,W

)
with W = S∗γ

N
0,1 is an abstract Wiener space. Conversely, if

(H,E,W) is an abstract Wiener space and {hm : m ≥ 0} is an orthogonal
sequence in H such that, for each m ∈ N, either hm = 0 or ‖hm‖H = 1, then

(8.3.5) EW
[

sup
n≥0

∥∥∥∥∥
n∑

m=0

I(hm)hm

∥∥∥∥∥
p

E

]
<∞ for all p ∈ [1,∞),
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and, for W-almost every x ∈ E,
∑∞
m=0[I(hm)](x)hm converges in E to the

W-conditional expectation value of x given σ
(
{I(hm) : m ≥ 0}

)
. Moreover,

∞∑
m=0

[I(hm)](x)hm is W-independent of x−
∞∑
m=0

[I(hm)](x)hm.

Finally, if {hm : m ≥ 0} is an orthonormal basis in H, then, forW-almost every
x ∈ E,

∑∞
m=0[I(hm)](x)hm converges in E to x, and the convergence is also in

Lp(W;E) for every p ∈ [1,∞).

Proof: First assume that (8.3.4) holds for some orthonormal basis, and set
Sn(ξ) =

∑n
m=0 ξmhm and W = S∗γ

N
0,1. Then, because Sn(ξ) −→ S(ξ) in E for

γN0,1-almost every ξ ∈ RN,

Ŵ(x∗) = lim
n→∞

Eγ
N
0,1

[
e
√
−1〈Sn,λ〉

]
= lim
n→∞

n∏
m=0

e−
1
2 (hx∗ ,hm)2

H = e−
1
2‖hx∗‖

2
H ,

which proves that (H,E,W) is an abstract Wiener space.
Next suppose that (H,E,W) is an abstract Wiener space and that {hm :

m ≥ 0} is an orthogonal sequence with ‖hm‖H ∈ {0, 1} for each m ≥ 0. By
Theorem 8.2.1, x ∈ Lp(W;E) for every p ∈ [1,∞). Next, for each n ∈ N, set
Fn = σ

(
{I(hm) : 0 ≤ m ≤ n}

)
. Clearly, Fn ⊆ Fn+1 and F ≡

∨∞
n=0 Fn is the

σ-algebra generated by {I(hm) : m ≥ 0}. Moreover, if Sn =
∑n
m=0 I(hm)hm,

then, since {I(hm) : m ≥ 0} is a Gaussian family and 〈x − Sn(x), x∗〉 is per-
pendicular in L2(W;R) to I(hm) for all x∗ ∈ E∗ and 0 ≤ m ≤ n, x − Sn(x) is
W-independent of Fn, . Thus Sn = EW [x | Fn], and so, by Theorem 6.1.12, we
know both that (8.3.5) holds and that Sn −→ EW [x | F ] W-almost surely. In
addition, the W-independence of Sn(x) from x − Sn(x) implies that the limit
quantities possess the same independence property.

In order to complete the proof at this point, all that I have to do is show that
x = EW [x | F ] W-almost surely when {hm : m ≥ 0} is an orthonormal basis.

Equivalently, I must check that BE is contained in the W-completion FW of F .
To this end, note that for each h ∈ H, because

∑n
m=0(h, hm)Hhm converges in

H to h,

n∑
m=0

(
h, hm

)
H
I(hm) = I

(
n∑

m=0

(
h, hm

)
H
hm

)
−→ I(h) in L2(W;R).

Hence, I(h) is FW -measurable for every h ∈ H. In particular, this means that

x 〈x, x∗〉 is FW -measurable for every x∗ ∈ E∗, and so, since BE is generated

by {〈 · , x∗〉 : x∗ ∈ E∗}, BE ⊆ F
W

. �
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It is important to acknowledge that the preceding theorem does not give an-
other proof of Wiener’s theorem that Brownian motion exists. Instead, it simply
says that, knowing it exists, there are lots of ways in which to construct it. See
Exercise 8.3.20 for a more satisfactory proof of the same conclusion in the clas-
sical case, one that does not require the a priori existence of W (N).

The following result shows that, in some sense, a non-degenerate, centered,
Gaussian measure W on a Banach space does not fit on a smaller space.

Corollary 8.3.6. If W is a non-degenerate, centered Gaussian measure on
a separable Banach space E, then E is the support of W in the sense that W
assigns positive probability to every, non-empty open subset of E.

Proof: Let H be the Cameron–Martin space for W. Since H is dense in E, it
suffices to show that W

(
BE(g, r)

)
> 0 for every g ∈ H and r > 0. Moreover,

since, by the Cameron–Martin formula (8.2.8) (cf. Exercise 8.2.14)

W
(
BE(0, r)

)
= (τ−g)∗W

(
BE(g, r)

)
= EW

[
R−g, BE(g, r)

]
≤ e

‖g‖2
H

2

√
W
(
BE(g, r)

)
,

I need only show that W
(
BE(0, r)

)
> 0 for all r > 0. To this end, choose an

orthonormal basis {hm : m ≥ 0} in H, and set Sn =
∑n
m=0 I(hm)hm. Then, by

Theorem 8.3.3, x Sn(x) is W-independent of x x−Sn(x) and Sn(x) −→ x
in E for W-almost every x ∈ E. Hence, W

(
{‖x− Sn(x)‖E < r

2}
)
≥ 1

2 for some
n ∈ N, and therefore

W
(
BE(0, r)

)
≥ 1

2W
(
‖Sn‖E < r

2

)
.

But ‖Sn‖2E ≤ C‖Sn‖2H =
∑n
m=0 I(hm)2 for some C <∞, and so

W
(
‖Sn‖E < r

2

)
≥ γn+1

0,1

(
BRn+1

(
0, r

2C

))
> 0

for any r > 0. �

§ 8.3.3. Orthogonal Projections. Associated with any closed, linear sub-
space L of a Hilbert space H, there is a an orthogonal projection map ΛL :
H −→ L determined by the property that, for each h ∈ H, h−ΠLh ⊥ L. Equiv-
alently, ΠLh is the element of L which is closest to h. In this subsection I will
show that if (H,E,W) is an abstract Wiener space and L is a finite dimensional
subspace of H, then ΠL admits a W-almost surely unique extension PL to E.
In addition, I will show that PLx −→ x in L2(W;E) as L↗ H.

Lemma 8.3.7. Let (H,E,W) be an abstract Wiener space and {hm : m ≥
0} an orthonormal basis in H. Then, for each h ∈ H,

∑∞
m=0(h, hm)HI(hm)

converges to I(h) W-almost surely and in Lp(W;R) for every p ∈ [1,∞).
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Proof: Define the σ-algebras Fn and F as in the proof of Theorem 8.3.3. Then,
by the same argument as I used there, one can identify

∑n
m=0(h, hm)HI(hm) as

EW [I(h) | Fn]. Thus, since FW ⊇ BE , the required convergence statement is an
immediate consequence of Corollary 5.2.4. �

Theorem 8.3.8. Let (H,E,W) be an abstract Wiener space. For each
finite dimensional subspace L of H there is a W-almost surely unique map
PL : E −→ H such that, for every h ∈ H and W-almost every x ∈ E,(
h, PLx

)
H

= I(ΠLh)(x), where ΠL denotes orthogonal projection from H onto

L. In fact, if {g1, . . . , gdim(L)} is an orthonormal basis for L, then PLx =∑dim(L)
1 [I(gi)](x)gi, and so PLx ∈ L for W-almost every x ∈ E. In partic-

ular, the distribution of x ∈ E 7−→ PLx ∈ L under W is the same as that

of (ξ1, . . . , ξdim(L)) ∈ Rdim(L) 7−→
∑dim(L)

1 ξigi ∈ L under γ
dim(L)
0,1 . Finally,

x PLx is W-independent of x x− PLx.

Proof: It suffices to note that

I(ΠLh) = I

(∑̀
k=1

(h, gk)Hgk

)
=
∑̀
k=1

(h, gk)HI(gk) =

(∑̀
k=1

I(gk)gk, h

)
H

for all h ∈ H �

We now have the preparations needed to prove a result which shows that my
definition of abstract Wiener space is the same as Gross’s. Specifically, Gross’s
own definition was based on the property proved in the following.

Theorem 8.3.9. Let (H,E,W) be an abstract Wiener space, {hn : n ≥ 0}
an orthonormal basis for H, and set Ln = span

(
{h0, . . . , hn}

)
. Then, for all

ε > 0 there exists an n ∈ N such that EW
[
‖PLx‖2E

]
≤ ε2 whenever L is a finite

dimensional subspace which is perpendicular to Ln.

Proof: Without loss in generality, I will assume that ‖ · ‖E ≤ ‖ · ‖H .
Arguing by contradiction, I will show that if the asserted property does not

hold then there would exist an orthonormal basis {fn : n ≥ 0} for H such
that

∑∞
0 I(fn)fn fails to converge in L2(W;E). Thus, suppose that there ex-

ists an ε > 0 such that for all n ∈ N there exists a finite dimensional L ⊥ Ln
with EW

[
‖PLx‖2E

]
≥ ε2. Under this assumption, define {nm : m ≥ 0} ⊆ N,

{`m : m ≥ 0} ⊆ N, and
{
{f0, . . . , fnm} : m ≥ 0

}
⊆ H inductively by

the following prescription. First, take n0 = 0 and f0 = h0. Next, knowing
nm and {f0, . . . , fnm}, choose a finite dimensional subspace L ⊥ Lnm so that
EW
[
‖PLx‖2E

]
≥ ε2, set `m = dim(L), and let {gm,1, . . . , gm,`m} be an orthonor-

mal basis for L. For any δ > 0 there exists an n ≥ nm + `m such that

`m∑
i,j=1

∣∣(ΠLngm,i,ΠLngm,j
)
− δi,j

∣∣ ≤ δ.
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In particular (cf. Exercise 8.3.16), if δ ∈ (0, 1), then the elements of {ΠLngm,i :
1 ≤ i ≤ `m} are linearly independent and the orthonormal set {g̃m,i : 1 ≤ i ≤
`m} obtained from them via the Gram–Schmidt orthogonalization procedure
satisfies

`m∑
i=1

‖g̃m,i − gm,i‖H ≤ K`m

`m∑
i,j=1

∣∣(ΠLngm,i,ΠLngm,j
)
− δi,j

∣∣
for some Km <∞ which depends only on `m. Moreover, and because L ⊥ Lnm ,
g̃m,i ⊥ Lnm for all 1 ≤ i ≤ `m. Hence, we can find an nm+1 ≥ nm + `m so that
span

(
{hn : nm < n ≤ nm+1}

)
admits an orthonormal basis {fnm+1, . . . , fnm+1}

with the property that
∑`m

1 ‖gm,i − fnm+i‖H ≤ ε
4 .

Clearly {fn : n ≥ 0} is an orthonormal basis for H. On the other hand,

EW
∥∥∥∥∥

nm+`m∑
n=nm+1

I(fn)fn

∥∥∥∥∥
2

E

 1
2

≥ ε− EW
∥∥∥∥∥

`m∑
1

(
I(gm,i)gm,i − I(fnm+i)fnm+i

)∥∥∥∥∥
2

E

 1
2

≥ ε−
`m∑
1

EW
[∥∥I(gm,i)gm,i − I(fnm+i)fnm+i

∥∥2

H

] 1
2 ,

and so, since EW
[∥∥I(gi,m)gm,i − I(fnm+i)fnm+i

∥∥2

H

] 1
2 is dominated by

EW
[∥∥(I(gm,i)− I(fnm+i)

)
gm,i

∥∥2

H

] 1
2 + EW

[
I(fnm+i)

2
] 1

2 ‖gm,i − fnm+i‖H
≤ 2‖gm,i − fnm+i‖H ,

we have that

EW
∥∥∥∥∥

nm+`m∑
nm+1

I(fn)fn

∥∥∥∥∥
2

E

 1
2

≥ ε

2
for all m ≥ 0,

and this means that
∑∞

0 I(fn)fn cannot be converging in L2(W;E). �

Besides showing that my definition of an abstract Wiener space is the same
as Gross’s, Theorem 8.3.9 allows us to prove a very convincing statement, again
due to Gross, of just how non-unique is the Banach space for which a given
Hilbert space is the Cameron–Martin space.

Corollary 8.3.10. If (H,E,W) is an abstract Wiener space, then there
exists a separable Banach space E0 which is continuously embedded in E as a
measurable subset and has the properties that W(E0) = 1, bounded subsets of
E0 are relatively compact in E, and (H,E0,W � E0

)
is again an abstract Wiener

space.



312 VIII Gaussian Measures on a Banach Space

Proof: Again I will assume that ‖ · ‖E ≤ ‖ · ‖H .
Choose {x∗n : n ≥ 0} ⊆ E∗ so that {hn : n ≥ 0} is an orthonormal basis

in H when hn = hx∗n , and set Ln = span
(
{h0, . . . , hn}

)
. Next, using Theo-

rem 8.3.9, choose an increasing sequence {nm : m ≥ 0} so that n0 = 0 and

EW
[
‖PLx‖2E

] 1
2 ≤ 2−m for m ≥ 1 and finite dimensional L ⊥ Lnm , and define

Q` for ` ≥ 0 on E into H so that

Q0x = 〈x, x∗0〉h0 and Q`x =

n∑̀
n=n`−1+1

〈x, x∗n〉hn when ` ≥ 1.

Finally, set Sm = PLnm =
∑m
`=0Q`, and define E0 to be the set of x ∈ E such

that

‖x‖E0
≡ ‖Q0x‖E +

∞∑
`=1

`2
∥∥Q`x‖E <∞ and ‖Smx− x‖E −→ 0.

To show that ‖ · ‖E0 is a norm on E0 and that E0 with norm ‖ · ‖E0 is a
Banach space, first note that if x ∈ E0 then

‖x‖E = lim
m→∞

‖Smx‖E ≤ ‖Q0x‖E + lim
m→∞

m∑
`=1

‖Q`x‖E ≤ ‖x‖E0 ,

and therefore ‖ · ‖E0
is certainly a norm on E0. Next, suppose that the sequence

{xk : k ≥ 1} ⊆ E0 is a Cauchy sequence with respect to ‖ · ‖E0
. By the

preceding, we know that {xk : k ≥ 1} is also Cauchy convergent with respect to
‖ · ‖E , and so there exists an x ∈ E such that xk −→ x in E. We need to show
that x ∈ E0 and that ‖xk−x‖E0

−→ 0. Because {xk : k ≥ 1} is bounded in E0,
it is clear that ‖x‖E0

<∞. In addition, for any m ≥ 0 and k ≥ 1,

‖x− Smx‖E = lim
`→∞

‖x` − Smx`‖E ≤ lim
`→∞

‖x` − Smx`‖E0

= lim
`→∞

∑
n>m

n2‖Qnx`‖E ≤
∑
n>m

n2‖Qnxk‖+ sup
`>k
‖x` − xk‖E0

.

Thus, by choosing k for a given ε > 0 so that sup`>k ‖x` − xk‖E0
< ε, we

conclude that limm→∞ ‖x − Smx‖E < ε and therefore that Smx −→ x in E.
Hence, x ∈ E0. Finally, to see that xk −→ x in E0, simply note that

‖x− xk‖E0 = ‖Q0(x− xk)‖E +

∞∑
m=1

m2‖Qm(x− xk)‖E

≤ lim
`→∞

(
‖Q0(x` − xk)‖E +

∞∑
m=1

m2‖Qm(x` − xk)‖E

)
≤ sup

`>k
‖x` − xk‖E0
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which tends to 0 as k →∞.

To show that bounded subsets of E0 are relatively compact in E, it suffices
to show that if {x` : ` ≥ 1} ⊆ BE0

(0, R), then there is an x ∈ E to which a
subsequence converges in E. For this purpose, observe that, for each m ≥ 0,
there is a subsequence {x`k : k ≥ 1} along which Smx`k converges in Lnm .
Hence, by a diagonalization argument, {x`k : k ≥ 1} can be chosen so that
{Smx`k : k ≥ 1} converges in Lnm for all m ≥ 0. Since, for 1 ≤ j < k,

‖x`k − x`j‖E ≤ ‖Smx`k − Smx`j‖E +
∑
n>m

‖Qn(x`k − x`j )‖E

≤ ‖Smx`k − Smx`j‖E + 2R
∑
n>m

1

n2
,

it follows that {x`k : k ≥ 1} is Cauchy convergent in E and therefore that it
converges in E.

I must still show that E0 ∈ BE and that (H,E0,W0) is an abstract Wiener
space when W0 = W � E0. To see the first of these, observe that x ∈ E 7−→
‖x‖E0

∈ [0,∞] is lower semi-continuous and that {x : ‖Smx−x‖E −→ 0} ∈ BE .
In addition, because, by Theorem 8.3.3, ‖Smx− x‖E −→ 0 for W-almost every
x ∈ E, we will know that W(E0) = 1 once I show that W

(
‖x‖E0 < ∞

)
= 1,

which follows immediately from

EW
[
‖x‖E0

]
= EW

[
‖Q0x‖E

]
+

∞∑
1

m2EW
[
‖Qmx‖E

]
≤ EW

[
‖Q0x‖E

]
+

∞∑
1

m2EW
[
‖Qmx‖2E

] 1
2 <∞.

The next step is to check that H is continuously embedded in E0. Certainly
h ∈ H =⇒ ‖Smh − h‖E ≤ ‖Smh − h‖H −→ 0. Next suppose that h ∈
H \ {0} and that h ⊥ Lnm , and let L be the line spanned by h. Then PLx =
‖h‖−2

H [I(h)](x)h, and so, because L ⊥ Lnm ,

1

2m
≥ EW

[
I(h)2

] 1
2
‖h‖E
‖h‖2H

=
‖h‖E
‖h‖H

.

Hence, we now know that h ⊥ Lnm =⇒ ‖h‖E ≤ 2−m‖h‖H . In particular,
‖Qm+1h‖E ≤ 2−m‖Qm+1h‖H ≤ 2−m‖h‖H for all m ≥ 0 and h ∈ H, and so

‖h‖E0
= ‖Q0h‖E +

∞∑
m=1

m2‖Qmh‖E ≤

(
1 + 2

∞∑
m=1

m2

2m

)
‖h‖H = 25‖h‖H .
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To complete the proof, I must show that H is dense in E0 and that, for each

y∗ ∈ E∗0 , Ŵ0(y∗) = e−
1
2‖hy∗‖

2
H , where W0 =W � E0 and hy∗ ∈ H is determined

by
(
h, hy∗

)
H

= 〈h, y∗〉 for h ∈ H. Both these facts rely on the observation that

‖x− Smx‖E0
=
∑
n>m

n2‖Qnx‖E −→ 0 for all x ∈ E0.

Knowing this, the density of H in E0 is obvious. Finally, if y∗ ∈ E∗0 , then, by
the preceding and Lemma 8.3.7,

〈x, y∗〉 = lim
m→∞

〈Smx, y∗〉 = lim
m→∞

nm∑
n=0

〈x, x∗n〉〈hn, y∗〉

= lim
m→∞

nm∑
n=0

(
hy∗ , hn

)
H

[
I(hn)

]
(x) =

[
I(hy∗)

]
(x)

for W0-almost every x ∈ E0. Hence 〈 · , y∗〉 under W0 is a centered Gaussian
with variance ‖hy∗‖2H . �

§ 8.3.4. Pinned Brownian Motion. Theorem 8.3.8 has a particularly inter-
esting application to the classical abstract Wiener space

(
H1(RN ),Θ(RN ),W(N)

)
.

Namely, suppose that 0 = t0 < t1 < · · · < tn, and let L be the span of{
htme : 1 ≤ m ≤ n and e ∈ SN−1

}
, where ht(τ) ≡ t ∧ τ . In this case,

PLθ =

n∑
m=1

htm − htm−1

tm − tm−1

(
θ(tm)− θ(tm−1)

)
,

and so

(8.3.11)

θ(t1,...,tn)(t) ≡ [θ − PLθ](t)

=

{
θ(t)− θ(tm−1)− t−tm−1

tm−tm−1

(
θ(tm)− θ(tm−1)

)
if t ∈ [tm−1, tm]

θ(t)− θ(tn) if t ∈ [tn,∞).

Thus, if (θ, ~y) ∈ Θ(RN )× (RN )n 7−→ θ(t1,...,tn),~y ∈ Θ(RN ) is given by

θ(t1,...,tn),~y = θ(t1,...,tn) +

n∑
m=1

htm − htm−1

tm − tm−1
(ym − ym−1)

where ~y = (y1, . . . ,yn) and y0 ≡ 0, then, for any Borel measurable F : Θ(RN )×
(RN )n −→ [0,∞),

(8.3.12)

∫
Θ(RN )

F
(
θ,
(
θ(t1), . . . ,θ(tn)

))
W (N)(dθ)

=

∫
(RN )n

( ∫
Θ(RN )

F
(
θ(t1,...,tn),~y, ~y

)
W (N)(dθ)

)
γ0,C(t1,...,tn)(d~y),
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where C(t1, . . . , tn)(m,i),(m′i′) = tm∧ tm′δi,i′ for 1 ≤ m,m′ ≤ n and 1 ≤ i, i′ ≤ N
is the covariance of θ  (θ(t1), . . . ,θ(tn)) under W (N). Equivalently, if

θ̌(t1,...,tn),~y = θ(t1,...,tn) +

n∑
m=1

htm − htm−1

tm − tm−1
ym,

then

(8.3.13)

∫
Θ(RN )

F
(
θ,
(
θ(t1)− θ(t0), . . . ,θ(tn)− θ(tn−1)

))
W (N)(dθ)

=

∫
(RN )n

( ∫
Θ(RN )

F
(
θ̌(t1,...,tn),~y, ~y

)
W (N)(dθ)

)
γ0,D(t1,...,tn)(d~y),

where D(t1, . . . , tn)(m,i),(m′,i′) = (tm − tm−1)δm,m′δi,i′ for 1 ≤ m,m′ ≤ n and

1 ≤ i, i′ ≤ N is the covariance matrix for
(
θ(t1) − θ(t0), . . . ,θ(tn) − θ(tn−1)

)
under W (N).

There are several comments which should be made about these conclusions. In
the first place, it is clear from (8.3.11) that t θ(t1,...,tn)(t) returns to the origin
at each of the times {tm : 1 ≤ m ≤ n}. In addition, the excursions θ(t1,...,tn) �
[tm−1, tm], 1 ≤ m ≤ n, are independent of each other and of θ(t1,...,tn) � [tn,∞).

Secondly, if W(N)
(t1,...,tn),~y denotes the W (N)-distribution of θ  θ(t1,...,tn),~y, then

(8.3.12) says that

θ  W(N)
(t1,...,tn),(θ(t1),...,θ(tn))

is a regular conditional probability distribution (cf. § 9.2) of W (N) given the σ-
algebra generated by {θ(t1), . . . ,θ(tn)}. Expressed in more colloquial terms, the
process

{
θ(t1,...,tn),~y(t) : t ≥ 0

}
is Brownian motion pinned to the points

{ym : 1 ≤ m ≤ n} at times {tm : 1 ≤ m ≤ n}.
§ 8.3.5. Orthogonal Invariance. Consider the standard Gauss distribution
γ0,I on RN . Obviously, γ0,I is rotation invariant. That is, if O is an orthog-
onal transformation on RN , then γ0,I is invariant under the transformation
TO : RN −→ RN given by TOx = Ox. On the other hand, none of these
transformations can be ergodic, since any radial function on RN is invariant
under TO for every O.

Now think about the analogous situation when RN is replaced by an infinite
dimensional Hilbert space H and (H,E,W) is an associated abstract Wiener
space. As I am about to show, W still enjoys rotation invariance with respect
to orthogonal transformations on H. On the other hand, because ‖x‖H = ∞
for W-almost every x ∈ E, there are no non-trivial radial functions now, a
fact which leaves open the possibility that some orthogonal transformation of
H give rise to ergodic transformations for W. The purpose of this subsection is
to investigate these matters, and I begin with the following formulation of the
rotation invariance of W.
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Theorem 8.3.14. Let (H,E,W) be an abstract Wiener space and O an or-
thogonal transformation on H. Then there is W-almost surely unique, Borel
measurable map TO : E −→ E such that I(h) ◦ TO = I(O>h) W-almost surely
for each h ∈ H. Moreover, W = (TO)∗W.

Proof: To prove uniqueness, note that if T and T ′ both satisfy the defining
property for TO, then, for each x∗ ∈ E∗,

〈Tx, x∗〉 = I(hx∗)(Tx) = I(O>hx∗) = I(hx∗)(T
′x) = 〈T ′x, x∗〉

for W-almost every x ∈ E. Hence, since E∗ is separable in the weak* topology,
Tx = T ′x for W-almost every x ∈ E.

To prove existence, choose an orthonormal basis {hm : m ≥ 0} for H, and let
C be the set of x ∈ E for which both

∑∞
m=0[I(hm)](x)hm and

∑∞
m=0[I(hm)](x)Ohm

converge in E. By Theorem 8.3.3, we know that W(C) = 1 and that

x TOx ≡
{ ∑∞

m=0[I(hm)](x)Ohm if x ∈ C
0 if x /∈ C

has distributionW. Hence, all that remains is to check that I(h)◦TO = I(O>h)
W-almost surely for each h ∈ H. To this end, let x∗ ∈ E∗, and observe that

[I(hx∗)](TOx) = 〈TOx, x∗〉 =

∞∑
m=0

(
hx∗ ,Ohm

)
H

[I(hm)](x)

=

∞∑
m=0

(
O>hx∗ , hm

)
H

[I(hm)](x)

for W-almost every x ∈ E. Thus, since, by Lemma 8.3.7, the last of these
series convergences W-almost surely to I(O>hx∗), we have that I(hx∗) ◦ TO =
I(O>hx∗) W-almost surely. To handle general h ∈ H, simply note that both
h ∈ H 7−→ I(h) ◦ TO ∈ L2(W;R) and h ∈ H 7−→ I(O>h) ∈ L2(W;R) are
isometric, and remember that {hx∗ : x∗ ∈ E∗} is dense in H. �

I next want to discuss the possibility of TO being ergodic for some orthog-
onal transformations O. First notice that TO cannot be ergodic if O has a
non-trivial, finite dimensional invariant subspace L, since if {h1, . . . , hn} were
an orthonormal basis for L, then

∑n
m=1 I(hm)2 would be a non-constant, TO-

invariant function. Thus, the only candidates for ergodicity are O’s which have
no non-trivial, finite dimensional, invariant subspaces. In a more general and
highly adstract context, I. Segal∗ showed that the existence of a non-trivial, fi-
nite dimensional subspace for O is the only obstruction to TO being ergodic.
Here I will show less.

∗ See I.E. Segal’s “Ergodic subsgroups of the orthogonal group on a real Hibert Space,” Annals
of Math., vol. 66 # 2, 1957. For a treatment in the setting here, see my article ?
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Theorem 8.3.15. Let (H,E,W) be an abstract Wiener space. If O is an
orthogonal transformation on H with the property that, for every g, h ∈ H,
limn→∞

(
Ong, h

)
H

= 0, then TO is ergodic.

Proof: What I have to show is that any TO-invariant element Φ ∈ L2(W;R)
is W-almost surely constant, and for this purpose it suffices to check that

(*) lim
n→∞

∣∣EW[(Φ ◦ TnO)Φ
]∣∣ = 0

for all Φ ∈ L2(W;R) with mean value 0. In fact, if {hm : m ≥ 1} is an
orthonormal basis for H, then it suffices to check (*) when

Φ(x) = F
(
[I(h1)](x), . . . , [I(hN )](x)

)
for some N ∈ Z+ and bounded, Borel measurable F : RN −→ R. The reason
why it is sufficient to check it for such Φ’s is that, because TO is W-measure
preserving, the set of Φ’s for which (*) holds is closed in L2(W;R). Hence, if
we start with any Φ ∈ L2(W;R) with mean value 0, we can first approximate it
in L2(W;R) by bounded functions with mean value 0 and then condition these
bounded approximates with respect to σ

(
{I(h1), . . . , I(hN )}

)
to give them the

required form.
Now suppose that Φ = F

(
I(h1), . . . , I(hN )

)
for some N and bounded, mea-

surable F . Then

EW
[
Φ ◦ TnOΦ

]
=

∫∫
RN×RN

F (ξ)F (η) γ0,Cn(dξ × dη),

where

Cn =

(
I Bn

B>n I

)
with Bn =

(((
hk,Onh`

)
H

))
1≤k,`≤N

and the block structure corresponds to RN × RN . Finally, by our hypothesis
about O, we can find a subsequence {nm : m ≥ 0} such that limm→∞Bnm = 0,
from which it is clear that γ0,Cnm tends to γ0,I × γ0,I in variation and therefore

lim
m→∞

EW
[
(Φ ◦ TnmO )Φ

]
= EW [Φ]2 = 0. �

Perhaps the best tests for whether an orthogonal transformation satisfies the
hypothesis in Theorem 8.3.15 come from spectral theory. To be more precise, if
Hc and Oc are the space and operator obtained by complexifying H and O, the
Spectral Theorem for normal operators allows one to write

Oc =

∫ 2π

0

e
√
−1α dEα,
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where {Eα : α ∈ [0, 2π)} is a resolution of the identity in Hc by orthogonal
projection operators. The spectrum of Oc is said to be absolutely continuous
if, for each h ∈ Hc, the non-decreasing function α  

(
Eαh, h

)
Hc

is absolutely

continuous, which, by polarization, means that α  
(
Eαh, h

′)
Hc

is absolutely

continuous for all h, h′ ∈ Hc. The reason for introducing this concept here is
that, by combining the Riemann-Lebesgue Lemma with Theorem 8.3.15, one can
prove that TO is ergodic if the spectrum of Oc is absolutely continuous.∗ Indeed,
given h, h′ ∈ H, let f be the Radon–Nikodym derivative of α  

(
Eαh, h

′)
Hc

,

and apply the Riemann–Lebesgue Lemma to see that

(
Onh, h′

)
H

=

∫ 2π

0

e
√
−1nαf(α) dα −→ 0 as n→∞.

See Exercises 8.3.23, 8.3.24, and 8.5.15 below for a more concrete examples.

Exercises for § 8.3

Exercise 8.3.16. The purpose of this exercise is to provide the linear algebraic
facts which I used in the proof of Theorem 8.3.9. Namely, I want to show that if
a set {h1, . . . , hn} ⊆ H is approximately orthonormal, then the vectors hi differ
by very little from their Gram–Schmidt orthognalizaion.

(i) Suppose that A =
((
aij
))

1≤i,j≤n ∈ Rn⊗Rn is a lower triangular matrix whose

diagonal entries are non-negative. Show that there is a Cn <∞, depending only
on n, such that ‖IRn −A‖op ≤ Cn‖IRn −AA>‖op.

Hint: Show that it suffices to treat the case when AA> ≤ 2IRn , and set ∆ =
IRn − AA>. Assuming that AA> ≤ 2IRn , work by induction on n, at each step
using the lower triangularity of A to see that

|a` `an `| ≤ |∆n `|+ (AA>)
1
2
nn

∑̀
j=1

a2
` j

 1
2

if 1 ≤ ` < n

∣∣1− a2
nn

∣∣ ≤ |∆nn|+
n−1∑
`=1

a2
n `.

(ii) Let {h1, . . . , hn} ⊆ H, set B =
((

(hi, hj)H
))

1≤i,j≤n, and assume that ‖IRn−
B‖op < 1. Show that the hi’s are linearly independent.

(iii) Continuing part (ii), let {f1, . . . , fn} be the orthonormal set obtained from
the hi’s by the Gram–Schmidt orthogonalization procedure, and let A be matrix
whose (i, j)th entry is (hi, fj)H . Show that A is lower triangular and that its
diagonal entries are non-negative. In addition, show that AA> = B.

∗ This conclusion highlights the poverty of the result here in comparison to Segal’s result,
which says that TO is ergodic as soon as the spectrum of Oc is continuous.
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(iv) By combining (i) and (iii), show that there is a Kn < ∞, depending only
on n, such that

n∑
i=1

‖hi − fi‖H ≤ Kn

n∑
i,j=1

∣∣δi,j − (hi, hj)H
∣∣.

Hint: Note that hi =
∑n
j=1 aijfj and therefore that

‖hi − fi‖2H =

n∑
j=1

(
IRn −A

)2
ij
≤ n‖IRn −A‖2op.

Exercise 8.3.17. Given a Hilbert space H, the problem of determining for
which Banach spaces H arises as the Cameron–Martin space is an extremely
delicate one. For example, one might hope that H will be the Cameron–Martin
space for E if H is dense in E and its closed unit ball BH(0, 1) is compact in E.
However, this is not the case. For example, take H = `2(N;R) and let E be the

completion of H with respect to ‖ξ‖E ≡
√∑∞

n=0
ξ2
n

n+1 . Show that BH(0, 1) is

compact as a subset of E but that there is no W ∈M1(E) for which (H,E,W)
is an abstract Wiener space.

Hint: The first part is an easy application of the standard diagonalization ar-

gument combined with the obvious fact that
∑
n≥m

ξ2
n

n+1 ≤
1

m+1‖ξ‖`2(N;R). To
prove the second part, note that in order for W to exist it would be necessary

for
∑∞
n=0

ξ2
n

n+1 to be γN0,1-almost surely convergent.

Exercise 8.3.18. Let N = 1. Using Theorem 8.3.3, take Wiener’s choice of or-
thonormal basis and check that there are independent, standard normal random
variables {Xm : m ≥ 1} under W(1), such that, for W(1)-almost almost every θ,

θ(t) = tX0(θ) + 2
1
2

∞∑
m=1

Xm(θ)
sin(πmt)

mπ
, t ∈ [0, 1],

where the convergence is uniform. From this, show that, W(1)-almost surely,∫ 1

0

θ(t)2 dt =
X0(θ)2

3
+

1

π2

∞∑
m=1

Xm(θ)2 +
√

8X0(θ)Xm(θ)

m2
,

where the convergence of the series is absolute. Using the preceding, conclude
that, for any α ∈ (0,∞),

EW
(1)

[
−α

∫ 1

0

θ(t)2 dt

]
=

[ ∞∏
m=1

(
1 +

2α

m2π2

)]− 1
2
[

1 + 4α

∞∑
m=1

1

m2π2 + 2α

]− 1
2

.
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Finally, recall Euler’s product formula

sinh z =

∞∏
m=1

(
1 +

z2

m2π2

)
, z ∈ C,

and arrive first at

EW
(1)

[
exp

(
−α

∫ 1

0

θ(t)2 dt

)]
=
[
cosh

√
2α
]− 1

2

and then, after an application of Brownian rescaling, at

EW
(1)

[
exp

(
−α

∫ T

0

θ(t)2 dt

)]
=
[
cosh

√
2αT

]− 1
2 .

This is a famous calculation which can be made using many different methods.
We will return to it in § 10.1.3. See, in addition, Exercise 8.4.6.

Hint: Use Euler’s product formula to see that

d

dt
log

sinh t

t
= 2t

∞∑
n=1

1

n2π2 + t2
for t ∈ R.

Exercise 8.3.19. Related to the preceding exercise, but easier, is finding the
Laplace transform of the variance

VT (θ) ≡ 1

T

∫ T

0

θ(t)2 dt−

(
1

T

∫ T

0

θ(t) dt

)2

of a Brownian path over the interval [0, T ]. To do this calculation, first use
Brownian scaling to show that

EW
(1)[

e−αVT
]

= EW
(1)[

e−αTV1
]
.

Next, use elementary Fourier series to show that (cf. part (iii) of Exercise 8.2.13)

V1(θ) = 2

∞∑
k=1

(∫ 1

0

θ(t) cos(kπt) dt

)2

=

∞∑
k=1

(∫ 1

0
fk(t) dθ(t)

)2

k2π2
,

where fk(t) = 2
1
2 sin(kπt) for k ≥ 1. Since the fk’s are orthonormal as elements

of L2
(
[0,∞);R

)
, this leads to

EW
(1)[

e−αV1
]

=

∞∏
k=1

(
1 +

2α

k2π2

)− 1
2

.

Now apply Euler’s formula to arrive at

EW
[
e−αVT

]
=

√ √
2αT

sinh(
√

2αT )
.

Finally, using Wiener’s choice of basis, show that θ  V1(θ) has the same dis-

tribution as θ  
∫ 1

0

(
θ(t) − tθ(1)

)2
dt under W(1), a fact for which I have no

conceptual explanation.
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Exercise 8.3.20. The purpose of this exercise is to show that, without know-
ing ahead of time that W (N) lives on Θ(RN ), for the Hilbert space H1(RN ) one
can give a proof that any Wiener series converges γN0,1-almost surely in Θ(RN ).

Thus, let {hm : m ≥ 0} be an orthonormal basis in H(RN ) and, for n ∈ N and
ω = (ω0, . . . , ωm, . . . ) ∈ RN, set Sn(t,ω) =

∑n
m=0 ωmhm(t). The goal is to show

that {Sn( · ,ω) : n ≥ 0} converges in Θ(RN ) for γN0,1-almost every ω ∈ RN.

(i) For ξ ∈ RN , set ht,ξ(τ) = t∧τξ, check that
(
ξ,Sn(t)

)
RN =

(
ht,ξ,Sn(t)

)
H1(RN )

,

and apply Theorem 1.4.2 to show that limn→∞
(
ξ,Sn(t)

)
RN exists both γN0,1-

almost surely and in L2(γN0,1;R) for each (t, ξ) ∈ [0,∞) × RN . Conclude from

this that, for each t ∈ [0,∞), limn→∞ Sn(t) exists both γN0,1-almost surely and

in L2(γN0,1;RN ).

(ii) On the basis of part (i), show that we will be done once we know that,
for γN0,1-almost every x ∈ RN , {Sn( · ,x) : n ≥ 0} is equicontinuous on finite

intervals and that supn≥0 t
−1|Sn(t,x)| −→ 0 as t → ∞. Show that both these

will follow from the existence of a C <∞ such that

(*) Eγ
N
0,1

[
sup

0≤s<t≤T
sup
n≥0

∣∣Sn(t)− Sn(s)
∣∣

(t− s) 1
8

]
≤ CT 3

8 for all T ∈ (0,∞).

(iii) As an application of Theorem 4.3.2, show that (*) will follow once one
checks that

Eγ
N
0,1

[
sup
n≥0
|Sn(t)− Sn(s)|4

]
≤ B(t− s)2, 0 ≤ s < t,

for some B <∞. Next, apply (6.1.14) to see that

Eγ
N
0,1

[
sup
n≥0
|Sn(t)− Sn(s)|4

]
≤
(

4

3

)4

sup
n≥0

Eγ
N
0,1
[
|Sn(t)− Sn(s)|4

]
.

In addition, because Sn(t)− Sn(s) is a centered Gaussian, argue that

Eγ
N
0,1
[
|Sn(t)− Sn(s)|4

]
≤ 3Eγ

N
0,1
[
|Sn(t)− Sn(s)|2

]2
.

Finally, repeat the sort of reasoning used in (i) to check that

Eγ
N
0,1
[
|Sn(t)− Sn(s)|2

]
≤ N(t− s) for 0 ≤ s < t.

Exercise 8.3.21. In this exercise we discuss some properties of pinned Brow-
nian motion. Given T > 0, set θT (t) = θ(t) − t∧T

T θ(T ). As I pointed out at

the end of § 8.3.2, the W (N)-distribution of θT is that of a Brownian motion
conditioned to be back at 0 at time T . Next take ΘT (RN ) to be the space of

continuous paths θ : [0, T ] −→ RN satisfying θ(0) = 0 = θ(T ), and let W(N)
T

denote the W (N)-distribution of θ ∈ Θ(RN ) 7−→ θT ∈ ΘT (RN ).
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(i) Show that the W (N)-distribution of {θT (t) : t ≥ 0} is the same as that of

{T 1
2 θ1(T−1t) : t ≥ 0}.

(ii) Set H1
T (RN ) = {h � [0, T ] : h ∈ H1(RN ) & h(T ) = 0}, and define

‖h‖H1
T

(RN ) = ‖ḣ‖L2([0,T ];RN ). Show that the triple
(
H1
T (RN ),ΘT (RN ),W(N)

T

)
is an abstract Wiener space. In addition, show that W(N)

T is invariant under
time reversal. That is, {θ(t) : t ∈ [0, T ]} and {θ(T − t) : t ∈ [0, T ]} have the

same distribution under W(N)
T .

Hint: Begin by identifying ΘT (RN )∗ as the space of finite, RN -valued Borel
measures λ on [0, T ] such that λ({0}) = 0 = λ({T}).

Exercise 8.3.22. Say that D ⊆ E∗ is determining if x = y whenever 〈x, x∗〉 =
〈y, x∗〉 for all x∗ ∈ D. Next, referring to Theorem 8.3.14, suppose that O is an
orthogonal transformation on H and that F : E 7−→ E has the properties that
F � H = O and that x 〈F (x), x∗〉 is continuous for all x∗’s from a determining
set D. Show that TOx = F (x) for W-almost every x ∈ E.

Exercise 8.3.23. Consider
(
H1(RN ),Θ(RN ),W (N)

)
, the classical Wiener

space. Given α ∈ (0,∞), define Oα : H1(RN ) −→ H(RN ) by [Oαh](t) =

α−
1
2 h(αt), show that Oα is an orthogonal transformation, and apply Exer-

cise 8.3.22 to see that TOα is the Brownian scaling map Sα given by Sαθ(t) =

α−
1
2 θ(αt) discussed in part (iii) of Exercise 4.3.10. The main goal of this exercise

is to apply Theorem 8.3.15 to show that TOα is ergodic for every α ∈ (0,∞)\{1}.

(i) Given an orthogonal transformationO on H1(RN ), show that
(
Onh,h′

)
H1(RN )

tends to 0 for all h, h′ ∈ H1(RN ) if limn→∞
(
Onh,h′

)
H1(RN )

= 0 for all h, h′ ∈
H(RN ) with ḣ, ḣ′ ∈ C∞c

(
(0,∞);RN

)
.

(ii) Complete the program by showing that
(
Onαh,h′

)
H1(RN )

tends to 0 for all

α ∈ (0,∞) \ {1} and h, h′ ∈ H1(RN ) with ḣ, ḣ′ ∈ C∞c
(
(0,∞);RN

)
.

(iii) There is another way to think about the operator Oα. Namely, define

U : H(RN ) −→ L2(R;RN ) by Uh(x) = e
x
2 ḣ(ex), and show that U is an isometry

from H1(RN ) onto L2(R;RN ). Further, show that U ◦Oα = τlogα ◦U , where τα :
L2(R;RN ) −→ L2(R;RN ) is the translation map ταf(x) = f(x + α). Conclude
from this that

(
Onαh,h′

)
H1(RN )

= (2π)−1

∫
R
e−
√
−1nξ logα

(
Ûh(ξ), Ûh′

)
CN dξ,

and use this, together with the Riemann–Lebesgue Lemma, to give a second
proof that if α 6= 1 then

(
Onαh,h′

)
H1(RN )

tends to 0 as n→∞.
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(iv) As a consequence of the above and Theorem 6.2.8, show that for each
α ∈ (0,∞) \ {1}, q ∈ [1,∞), and F ∈ Lq(W (N);C),

lim
n→∞

1

n

n−1∑
m=0

F
(
Sαnθ

)
= EW

(N)

[F ]W (N)-almost surely and in Lq(W (N);C).

Next, replace Theorem 6.2.8 by Theorem 6.2.13 to show that

lim
t→∞

1

log t

∫ t

1

τ−1F
(
Sτθ

)
dτ = EW

(N)

[F ]

W (N)-almost surely and in Lq(W (N);C). In particular, use this to show that,
for n ∈ N,

lim
t→∞

1

log t

∫ t

1

τ−
n
2−1θ(τ)n dτ =

{ ∏n
2
m=1(2m− 1) if n is even

0 if n is odd.

Exercise 8.3.24. Here is a second reasonably explicit example to which The-
orem 8.3.15 applies. Again consider the classical case when H = H1(RN ), and
assume that N ∈ Z+ is even. Choose a skew-symmetric A ∈ Hom(RN ;RN )
whose kernel is {0}. That is, A> = −A and Ax = 0 =⇒ x = 0.

(i) Define OA on H1(RN ) by

OAh(t) =

∫ t

0

eτAḣ(τ) dτ,

and show that OA is an orthogonal transformation which satisfies the hypotheses
in Theorem 8.3.15.

Hint: Using elementary spectral theory, show that there exist non-zero, real
numbers α1, . . . , αN

2
and an orthonormal basis (e1, . . . , eN ) in RN such that

Ae2m−1 = αme2m and Ae2m = −αme2m−1 for 1 ≤ m ≤ N
2 . Thus, if Lm is the

space spanned by e2m−1 and e2m, then Lm is invariant under A and the action
of eτA on Lm in terms of this basis is given by(

cos(αmτ) − sin(αmτ)
sin(αmτ) cos(αmτ)

)
.

Finally, observe that OnA = OnA, and apply the Riemann–Lebesgue Lemma.

(ii) With the help of Exercise 8.3.22, show that

TOAθ(t) =

∫ t

0

eτA dθ(τ),

where the integral is taken in the sense of Riemann-Stieltjes.



324 VIII Gaussian Measures on a Banach Space

§ 8.4 A Large Deviations Result and Strassen’s Theorem

In this section I will prove the analog of Corollary 1.3.13 for non-degenerate,
centered Gaussian measures on a Banach space. Once we have that result, I will
apply it to prove Strassen’s Theorem, which is the law of the iterated logarithm
for such measures.

§ 8.4.1. Large Deviations for Abstract Wiener Space. The goal of this
subsection is to derive the following result.

Thoerem 8.4.1. Let (H,E,W) be an abstract Wiener space, and, for ε > 0,

denote by Wε the W-distribution of x ε
1
2x. Then, for each Γ ∈ BE ,

(8.4.2)

− inf
h∈Γ◦

‖h‖2H
2
≤ lim
ε↘0

ε logWε(Γ)

≤ lim
ε↘0

ε logWε(Γ) ≤ − inf
h∈Γ

‖h‖2H
2

.

The original version of Theorem 8.4.1 was proved by M. Schilder for the classi-
cal Wiener measure using a method which does not extend easily to the general
case. The statement which I have given is due to Donsker and S.R.S. Varadhan,
and my proof derives from an approach (which very much resembles the argu-
ment’s given in § 1.3 to prove Cramér’s Theorem) was introduced introduced
into this context by Varadhan.

The lower bound is an easy application of the Cameron–Martin formula. In-
deed, all that we have to do is show that if h ∈ H and r > 0, then

(*) lim
ε↘0

ε logWε

(
BE(h, r)

)
≥ −‖h‖

2
H

2
.

To this end, note that, for any x∗ ∈ E∗ and δ > 0,

Wε

(
BE(hx∗ , δ)

)
=W

(
BE(ε−

1
2hx∗ , ε

− 1
2 δ)
)

= EW
[
e−ε

− 1
2 〈x,x∗〉− 1

2ε‖hx∗‖
2
H , BE(0, ε−

1
2 δ)
]

≥ e−δε
−1‖x∗‖E∗− 1

2ε‖hx∗‖
2
HW

(
BE(0, ε−

1
2 δ)
)
,

which means that

BE(hx∗ , δ) ⊆ BE(h, r) =⇒ lim
ε↘0

ε logWε

(
BE(hx∗ , r)

)
≥ −δ‖x∗‖E∗ −

‖hx∗‖2H
2

,

and therefore, after letting δ ↘ 0 and remembering that {hx∗ : x ∈ E∗} is dense
in H, that (*) holds.
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The proof of the upper bound in (8.4.2) is a little more involved. The first step
is to show that it suffices to treat the case when Γ is relatively compact. To this
end, refer to Corollary 8.3.10, and set CR equal to the closure in E of BE0

(0, R).

By Fernique’s Theorem applied to W on E0, we know that EW
[
eα‖x‖

2
E0

]
≤ K <

∞ for some α > 0. Hence

Wε

(
E \ CR

)
=W

(
E \ C

ε−
1
2R

)
≤ Ke−αR

2

ε ,

and so, for any Γ ∈ BE and R > 0,

Wε

(
Γ
)
≤ 2Wε(Γ ∩ CR) ∨

(
Ke−α

R2

ε

)
.

Thus, if we can prove the upper bound for relatively compact Γ’s, then, because
Γ ∩ CR is relatively compact, we will know that, for all R > 0,

lim
ε↘0

ε logWε(Γ) ≤ −
[(

inf
h∈Γ

‖h‖2H
2

)
∧
(
αR2

)]
,

from which the general result is immediate.
To prove the upper bound when Γ is relatively compact, I will show that, for

any y ∈ E,

(**) lim
r↘0

lim
ε↘0

ε logWε

(
BE(y, r)

)
≤

{
−‖y‖

2
H

2 if y ∈ H
−∞ if y /∈ H.

To see that (**) is enough, assume that it is true and let Γ ∈ BE\{∅} be relatively
compact. Given β ∈ (0, 1), for each y ∈ Γ choose r(y) > 0 and ε(y) > 0 so that

Wε

(
BE(y, r(y))

)
≤

{
e−

(1−β)
2ε ‖y‖

2
H if y ∈ H

e−
1
βε if y /∈ H

for all 0 < ε ≤ ε(y). Because Γ is relatively compact, we can find N ∈ Z+ and

{y1, . . . , yN} ⊆ Γ such that Γ ⊆
⋃N

1 BE(yn, rn), where rn = r(yn). Then, for
sufficiently small ε > 0,

Wε(Γ) ≤ N exp

(
−
[(

1− β
2ε

inf
h∈Γ
‖h‖2H

)
∧ 1

εβ

])
,

and so

lim
ε↘0

ε logWε(Γ) ≤ −
[(

1− β
2

inf
h∈Γ
‖h‖2H

)
∧ 1

β

]
.

Now let β ↘ 0.



326 VIII Gaussian Measures on a Banach Space

Finally, to prove (**), observe that

Wε

(
BE(y, r)

)
=W

(
BE( y√

ε
, r√

ε
)
)

= EW
[
e−ε

− 1
2 〈x,x∗〉eε

− 1
2 〈x,x∗〉, BE( y√

ε
, r√

ε
)
]

≤ e−ε
−1(〈y,x∗〉−r‖x∗‖E∗ )EW

[
eε
− 1

2 〈x,x∗〉] = e−ε
−1
(
〈y,x∗〉−

‖hx∗‖
2
H

2 −r‖x∗‖E∗
)
,

for all x∗ ∈ E. Hence,

lim
r↘0

lim
ε↘0

ε logWε

(
BE(y, r)

)
≤ − sup

x∗∈E∗

(
〈y, x∗〉 − 1

2‖hx∗‖
2
H

)
.

Finally, note that the preceding supremum is the same as half the supremum

of 〈y, x∗〉 over x∗ with ‖hx∗‖H = 1, which, by Lemma 8.2.3, is equal to
‖y‖2H

2 if
y ∈ H and to ∞ if y /∈ H.

An interesting corollary of Theorem 8.4.1 is the following sharpening, due to
Donsker and Varadhan, of Fernique’s Theorem.

Corollary 8.4.3. LetW be a non-degenerate, centered, Gaussian measure on
the separable Banach space E, let H be the associated Cameron–Martin space,
and determine Σ > 0 by Σ−1 = inf{‖h‖H : ‖h‖E = 1}. Then

lim
R→∞

R−2 logW
(
‖x‖E ≥ R

)
= − 1

2Σ2
.

In particular, EW
[
e
α2

2 ‖x‖
2
E

]
is finite if α < Σ−1 and infinite if α ≥ Σ−1.

Proof: Set f(r) = inf{‖h‖H : ‖h‖E ≥ r}. Clearly f(r) = rf(1) and f(1) =
Σ−1. Thus, by the upper bound in (8.4.2), we know that

lim
R→∞

R−2 logW
(
‖x‖E ≥ R

)
= lim
R→∞

R−2 logWR−2

(
‖x‖E ≥ 1

)
≤ −f(1)2

2
=

Σ−2

2
.

Similarly, by the lower bound in (8.4.2), for any δ ∈ (0, 1),

lim
R→∞

R−2 logW
(
‖x‖E ≥ R

)
≥ lim
R→∞

R−2 logW
(
‖x‖E > R

)
≥ − inf

{
‖h‖2H

2
: ‖h‖E > R

}
≥ −f(1 + δ)2

2
= −(1 + δ)2 1

2Σ2
.

and so we have now proved the first assertion.

Given the first assertion, it is obvious that EW
[
e
α2‖x‖2

E
2

]
is finite when α <

Σ−1 and infinite when α > Σ−1. The case when α = Σ−1 is more delicate.
To handle it, I first show that Σ = sup{‖hx∗‖H : ‖x∗‖E∗ = 1}. Indeed, if

x∗ ∈ E∗ and ‖x∗‖E∗ = 1, set g = hx∗
‖hx∗‖E

, note that ‖g‖E = 1, and check that
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1 ≥ 〈g, x∗〉 =
(
g, hx∗

)
H

= ‖g‖H‖hx∗‖H . Hence ‖hx∗‖H ≤ ‖g‖−1
H ≤ Σ. Next,

suppose that h ∈ H with ‖h‖E = 1. Then, by the Hahn–Banach Theorem, there
exists a x∗ ∈ E∗ with ‖x‖E∗ = 1 and 〈h, x∗〉 = 1. In particular, ‖h‖H‖hx∗‖H ≥(
h, hx∗

)
H

= 〈h, x∗〉 = 1, and therefore ‖h‖−1
H ≤ ‖hx∗‖H , which, together with

the preceding, completes the verification.
The next step is to show that there exists an x∗ ∈ E∗ with ‖x∗‖E∗ = 1 such

that ‖hx∗‖H = Σ. To this end, choose {x∗k : k ≥ 1} ⊆ E∗ with ‖x∗k‖E∗ = 1 so

that ‖hx∗
k
‖H −→ Σ. Because BE∗(0, 1) is compact in the weak* topology and,

by Theorem 8.2.6, x∗ ∈ E∗ 7−→ hx∗ ∈ H is continuous from the weak* topology
into the strong topology, we can assume that {x∗k : k ≥ 1} is weak* convergent to

some x∗ ∈ BE∗(0, 1) and that ‖hx∗‖H = Σ, which is possible only if ‖x∗‖E∗ = 1.
Finally, knowing that this x∗ exists, note that 〈 · , x∗〉 is a centered Gaussian
under W with variance Σ2. Hence, since ‖x‖E ≥ |〈x, x∗〉|,

EW
[
e
‖x‖2

E
2Σ2

]
≥
∫
R
e
ξ2

2Σ2 γ0,Σ2(dξ) =∞. �

§ 8.4.2. Strassen’s Law of the Iterated Logarithm. Just as in § 1.5 we were
able to prove a law of the iterated logarithm on the basis of the large deviation
estimates in § 1.3, so here the estimates in the preceding subsection will allow
us to prove a law of the iterated for centered Gaussian random variables on a
Banach space. Specifically, I will prove the following theorem, whose statement
is modeled on V. Strassen’s famous law of the iterated for Brownian motion (cf.
§ 8.6.3 below).

Recall from § 1.5 the notation Λn =
√

2n log(2)(n ∨ 3) and S̃n = Sn
Λn

, where

Sn =
∑n

1 Xm.

Theorem 8.4.4. Suppose that W is a non-degenerate, centered, Gaussian
measure on the Banach space E, and let H be its Cameron–Martin space.
If {Xn : n ≥ 1} is a sequence of independent, E-valued, W-distributed ran-
dom variables on some probability space (Ω,F ,P), then, P-almost surely, the

sequence {S̃n : n ≥ 1} is relatively compact in E and the closed unit ball

BH(0, 1) in H coincides with its set of limit points. Equivalently, P-almost surely,

limn→∞ ‖S̃n−BH(0, 1)‖E = 0 and, for each h ∈ BH(0, 1), limn→∞ ‖S̃n−h‖E =
0.

Because, by Theorem 8.2.6, BH(0, 1) is compact in E, the equivalence of the
two formulations is obvious, and so I will concentrate on the second formulation.

I begin by showing that limn→∞ ‖S̃n − BH(0, 1)‖E = 0 P-almost surely, and
the fact which underlies my proof is the estimate that, for each open subset G
of E and α < inf{‖h‖H : h /∈ G}, there is an M ∈ (0,∞) with the property that

(*) P
(
Sn
Λ

/∈ G
)
≤ exp

[
−α

2Λ2

2n

]
for all n ∈ Z+ and Λ ≥M

√
n.
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To check (*), first note that the distribution of Sn under P is the same as that

of x  n
1
2x under W and therefore that P

(
S̃n
Λ /∈ G

)
= W n

Λ2
(G{). Hence, (*)

is really just an application of the upper bound in (8.4.2). Given (*), I proceed
in very much the same way as I did at the analogous place in § 1.5. Namely, for
any β ∈ (1, 2),

lim
n→∞

‖S̃n −BH(0, 1)‖E ≤ lim
m→∞

max
βm−1≤n≤βm

‖S̃n −BH(0, 1)‖E

≤ lim
m→∞

max
βm−1≤n≤βm

‖Sn −BH(0,Λ[βm−1])‖E
Λn

≤ lim
m→∞

max
1≤n≤βm

∥∥∥∥ Sn
Λ[βm−1]

−BH(0, 1)

∥∥∥∥
E

.

At this point in § 1.5 (cf. the proof of Lemma 1.5.3), I applied Lévy’s reflection
principle to get rid of the “max”. However, Lévy’s argument works only for
R-valued random variables, and so here I will replace his estimate by one based
on the idea in Exercise 1.4.25.

Lemma 8.4.5. Let {Ym : m ≥ 1} be mutually independent, E-valued random
variables, and set Sn =

∑n
m=1 Ym for n ≥ 1. Then, for any closed F ⊆ E and

δ > 0,

P
(

max
1≤m≤n

‖Sm − F‖E ≥ 2δ

)
≤ P(‖Sn − F‖E ≥ δ)

1−max1≤m≤n P(‖Sn − Sm‖E ≥ δ)
.

Proof: Set

Am = {‖Sm − F‖E ≥ 2δ and ‖Sk − F‖E < 2δ for 1 ≤ k < m}.

Following the hint for Exercise 1.4.25, observe that

P
(

max
1≤m≤n

‖Sm − F‖E ≥ 2δ

)
min

1≤m≤n
P(‖Sn − Sm‖E < δ)

≤
n∑

m=1

P
(
Am ∩ {‖Sn − Sm‖E < δ}

)
≤

n∑
m=1

P
(
Am ∩ {‖Sn − F‖E ≥ δ}

)
,

which, because the Am’s are disjoint, is dominated by P
(
‖Sn − F‖E ≥ δ

)
. �

Applying the preceding to the situation at hand, we see that

P

(
max

1≤n≤βm

∥∥∥∥ Sn
Λ[βm−1]

−BH(0, 1)

∥∥∥∥
E

≥ 2δ

)

≤
P
(∥∥∥ S[βm]

Λ[βm−1]
−BH(0, 1)

∥∥∥
E
≥ δ
)

1−max1≤n≤βm P
(
‖Sn‖E ≥ δΛ[βm−1]

) .
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After combining this with the estimate in (*), it is an easy matter to show that,
for each δ > 0 there is a β ∈ (1, 2) such that

∞∑
m=1

P

(
max

βm−1≤n≤βm

∥∥∥∥ Sn
Λ[βm−1]

−BH(0, 1)

∥∥∥∥
E

≥ 2δ

)
<∞,

from which it should be clear why limn→∞ ‖S̃n−BH(0, 1)‖E = 0 P-almost surely.

The proof that, P-almost surely, limn→∞ ‖S̃n − h‖E = 0 for all h ∈ BH(0, 1)
differs in no substantive way from the proof of the analogous assertion in the
second part of Theorem 1.5.9. Namely, because BH(0, 1) is separable, it suffices

to work with one h ∈ BH(0, 1) at a time. Furthermore, just as I did there, I can
reduce the problem to showing that, for each k ≥ 2, ε > 0, and h with ‖h‖H < 1,

∞∑
m=1

P
(∥∥S̃km−km−1 − h

∥∥
E
< ε
)

=∞.

But, if ‖h‖H < α < 1, then (8.4.2) says that

P
(∥∥S̃km−km−1 − h

∥∥
E
< ε
)

=W km−km−1

Λ2

km−km−1

(
BE(h, ε)

)
≥ e−α

2 log(2)(k
m−km−1)

for all large enough m’s.

Exercises for § 8.4

Exercise 8.4.6. Show that the Σ in Corollary 8.4.3 is 1
2 in the case of the

classical abstract Wiener space
(
H1(RN ),Θ(RN ),W (N)

)
and therefore that

lim
R→∞

R−2 logW (N)
(
‖θ‖Θ(RN ) ≥ R

)
= −2.

Next, show that

lim
R→∞

R−2 logW (N)

(
sup
τ∈[0,t]

|θ(τ)| ≥ R

)
= − 1

2t

and that

lim
R→∞

R−2 logW (N)

(
sup
τ∈[0,t]

|θ(τ)| ≥ R
∣∣∣∣θ(t) = 0

)
= −2

t
.

Finally, show that

lim
R→∞

R−1 logW(N)

(∫ t

0

|θ(τ)|2 dτ ≥ R
)

= − π
2

8t2
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and that

lim
R→∞

R−1 logW(N)

(∫ t

0

|θ(τ)|2 dτ ≥ R
∣∣∣∣θ(t) = 0

)
= − π

2

2t2
.

Hint: In each case after the first, Brownian scaling can be used to reduce the
problem to the case when t = 1, and the challenge is to find the optimal constant
C for which ‖h‖E ≤ C‖h‖H , h ∈ H for the appropriate abstract Wiener space
(E,H,W). In the second case E = C0

(
[0, 1] : RN

)
≡
{
θ � [0, 1] : θ ∈ Θ(RN )

}
and H =

{
η � [0, 1] : η ∈ H1(RN )

}
, in the third (cf. part (ii) of Exercise 8.3.21)

E = Θ1(RN ) and H = H1
1(RN ) , in the fourth E = L2

(
[0, 1];RN ) and H = {η �

[0, 1] : η ∈ H1(RN )}, and in the fifth E = L2
(
[0, 1];RN

)
and H = H1

1(RN ).

The optimization problems when E = Θ(RN ) or C0

(
[0, 1];RN

)
are rather easy

consequences of |η(t)| ≤ t 1
2 ‖η‖H1(RN ). When E = Θ1(RN ), one should start with

the observation that if η ∈ H1
1(RN ), then 2‖η‖u ≤ ‖η̇‖L1([0,1];RN ) ≤ ‖η‖H1

1(RN ).

In the final two cases, one can either use elementary variational calculus or one
can use make use of, respectively the orthonormal bases

{
2

1
2 sin

(
n+ 1

2

)
πτ : n ≥

0
}

and {2 1
2 sinnπτ : n ≥ 1} in L2

(
[0, 1];R).

Exercise 8.4.7. Suppose that f ∈ C
(
E;R

)
, and show, as a consequence of

Theorem 8.4.4, that

lim
n→∞

f
(
S̃n
)

= min{f(h) : ‖h‖H ≤ 1} and lim
n→∞

f
(
S̃n
)

= max{f(h) : ‖h‖H ≤ 1}

WN-almost surely.

§ 8.5 Euclidean Free Fields

In this section I will give a very cursory introduction to a family of abstract
Wiener spaces which played an important role in the attempt to give a mathe-
matically rigorous construction of quantum fields. From the physical standpoint,
the fields treated here are “trivial” in the sense that they model “free” (i.e.,
non-interacting) fields. Nonetheless, they are interesting from a mathematical
standpoint, and, if nothing else, show how profoundly properties of a process
are effected by the dimension of its parameter set.

I begin with the case when the parameter set is one-dimensional and the
resulting process can be seen as a minor variant of Brownian motion. As we
will see, the intractability of the higher dimensional analogs increases with the
number of dimensions.

§ 8.5.1. The Ornstein–Uhlenbeck Process. Given x ∈ RN and θ ∈ Θ(RN ),
consider the integral equation

(8.5.1) U(t,x,θ) = x + θ(t)− 1

2

∫ t

0

U(τ,x,θ) dτ, t ≥ 0.
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A completely elementary argument (e.g., via Gronwall’s inequality) shows that,
for each x and θ, there is at most one solution. Furthermore, integration by
parts allows one to check that if

U(t,0,θ) = e−
t
2

∫ t

0

e
τ
2 dθ(τ),

where the integral is taken in the sense of Riemann-Stieltjes, then

U(t,x,θ) = e−
t
2 x + U(t,0,θ)

is one, and therefore the one and only, solution.
The stochastic process {U(t,x) : t ≥ 0} under W (N) was introduced by

L. Ornstein and G. Uhlenbeck∗ and is known as the Ornstein–Uhlenbeck
process starting from x. From our immediate point of view, its importance is
that it leads to a completely tractable example of a free field.

Intuitively, U(t,0,θ) is a Brownian motion which is subjected to a linear
restoring force. Thus, locally it should behave very much like a Brownian motion.
However, over long time intervals, it should feel the effect of the restoring force,
which is always pushing it back toward the origin. To see how these intuitive
ideas are reflected in the distribution of {U(t,0,θ) : t ≥ 0}, I begin by using

Exercise 8.2.13 to identify
(
e,U(t,0)

)
RN as e−

t
2 I(hte) for each e ∈ SN−1, where

hte(τ) = 2
(
e
t∧τ

2 − 1
)
e. Hence, the span of

{(
ξ,U(t,0)

)
RN : t ≥ 0 & ξ ∈ RN

}
is

a Gaussian family in L2(W (N);R), and

EW
(N)[

U(s,0)⊗U(t,0)
]

=
(
e−
|t−s|

2 − e−
s+t
2

)
I.

The key to understanding the process {U(t,0) : t ≥ 0} is the observation

that it has the same distribution as the process
{
e−

t
2 B
(
et − 1

)
: t ≥ 0

}
, where

{B(t) : t ≥ 0} is a Brownian motion, a fact which follows immediately from the
observation that they are Gaussian families with the same covariance structure.
In particular, by combining this with the Law of the Iterated Logarithm proved
in Exercise 4.3.15, we see that, for each e ∈ SN−1,

(8.5.2) lim
t→∞

(
e,U(t,x)

)
RN√

2 log t
= 1 = − lim

t→∞

(
e,U(t,x)

)
RN√

2 log t

W (N)-almost surely, which confirms the suspicion that the restoring force damp-
ens the Brownian excursions out toward infinity.

∗ In their article “On the theory of Brownian motion,” Phys. Reviews 36 (3), L. Ornstein &

G. Uhlenbeck introduced this process in an attempt to reconcile some of the more disturbing
properties of Wiener paths with physical reality.
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A second indication that U( · ,x) tends to spend more time than Brownian
paths do near the origin is that its distribution at time t will be γ

e−
t
2 x,(1−e−t)I

,

and so, as distinguished from Brownian motion itself, its distribution as time
t tends to a limit, namely γ0,I. This observation suggests that it might be
interesting to look at an ancient Ornstein–Uhlenbeck process, one that already
has been running for an infinite amount of time. To be more precise, since the
distribution of an ancient Ornstein–Uhlenbeck at time 0 would be γ0,I, what
we should look at is the process which we get by making the x in U( · ,x,θ)
a standard normal random variable. Thus, I will say that a stochastic process
{UA(t) : t ≥ 0} is an ancient Ornstein–Uhlenbeck process if its distribution
is that of {U(t,x,θ) : t ≥ 0} under γ0,I ×W (N).

If {UA(t) : t ≥ 0} is an ancient Ornstein–Uhlenbeck process, then it is clear
that

{(
ξ,UA(t)

)
RN : t ≥ 0 & ξ ∈ RN

}
spans a Gaussian family with covariance

EP[UA(s)⊗UA(t)
]

= e−
|t−s|

2 I.

As a consequence, we see that if {B(t) : t ≥ 0} is a Brownian motion, then{
e−

t
2 B
(
et
)

: t ≥ 0
}

is an ancient Ornstein–Uhlenbeck process. In addition, as
we suspected, the ancient Ornstein–Uhlenbeck process is a stationary process
in the sense that, for each T > 0, the distribution of {UA(t+ T ) : t ≥ 0} is the
same as that of {UA(t) : t ≥ 0}, which can checked either by using the preceding
represtation in terms of Brownian motion or by observing its covariance is a
function of t− s.

In fact, even more is true: it is time reversible in the sense that, for each T > 0,
{UA(t) : t ∈ [0, T ]} has the same distribution as {UA(T − t) : t ∈ [0, T ]}. This
observation suggests that we can give the ancient Ornstein-Uhlenbeck its past
by running it backwards. That is, define UR : [0,∞)×RN ×Θ(RN )2 −→ RN by

UR(t,x,θ+,θ−) =

{
U(t,x,θ+) if t ≥ 0

U(−t,x,θ−) if t < 0,

and consider the process {UR(t,x,θ+,θ−) : t ∈ R} under γ0,I×W (N)×W (N).
This process also spans a Gaussian family, and it is still true that

(8.5.3) Eγ0,I×W
(N)×W (N)[

UR(s)⊗UR(t)
]

= u(s, t)I, where u(s, t) ≡ e−
|t−s|

2 ,

only now for all s, t ∈ R. One advantage of having added the past is that the
statement of reversibility takes a more appealing form. Namely, {UR(t) : t ∈ R}
is reversible in the sense that its distribution is the same whether one runs
it forward or backward in time. That is, {UR(−t) : t ∈ R} has the same
distribution as {UR(t) : t ∈ R}. For this reason, I will say that {UR(t) : t ≥ 0}
is a reversible Ornstein–Uhlenbeck process if its distribution is the same
as that of {UR(t,x,θ+,θ−) : t ≥ 0} under γ0,I ×W (N) ×W (N).
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An alternative way to realize of a reversible Ornstein–Uhlenbeck process is
to start with an RN -valued Brownian motion {B(t) : t ≥ 0} and consider the

process {e− t2 B(et) : t ∈ R}. Clearly
{(
ξ, e−

t
2 B(et)

)
RN : (t, ξ) ∈ R × RN

}
is

a Gaussian family with covariance given by (8.5.3). It is amusing to observe
that, when one uses this realization, the reversibility of the Orstein–Uhlenbeck
process is equivalent to the time inversion invariance (cf. Exercise 4.3.11) of the
original Brownian motion.

§ 8.5.2. Ornstein–Uhlenbeck as an Abstract Wiener Space. So far, my
treatment of the Ornstein–Uhlenbeck process has been based on its relationship
to Brownian motion. Here we will look at it as an abstract Wiener space.

Begin with the one-sided process {U(t,0) : t ≥ 0}. Seeing as this process

has the same distribution as
{
e−

t
2 B
(
et − 1

)
: t ≥ 0}, it is reasonably clear

that the Hilbert space associated with this process should be the space HU (RN )

of functions hU (t) = e−
t
2 h
(
et − 1), h ∈ H1(RN ). Thus, define the map FU :

H1(RN ) −→ HU (RN ) accordingly, and introduce the Hilbert norm ‖ · ‖HU (RN )

on HU (RN ) which makes FU into an isometry. Equivalently,

‖hU‖2HU (RN ) =

∫
[0,∞)

[ d
ds

(
(1 + s)

1
2 hU

(
log(1 + s)

))]2
ds

= ‖ḣU‖2L2([0,∞);RN ) +
(
ḣU ,hU

)
L2([0,∞);RN )

+ 1
4‖h

U‖2L2([0,∞);RN ).

Note that(
ḣU ,hU

)
L2([0,∞);RN )

= 1
2

∫
[0,∞)

d

dt
|hU (t)|2 dt = 1

2 lim
t→∞

|hU (t)|2 = 0.

To check the final equality, observe that it is equivalent to limt→∞ t−
1
2 |h(t)| = 0

for h ∈ H(RN ). Hence, since supt>0 t
− 1

2 |h(t)| ≤ ‖h‖H1(RN ) and limt→∞ t−
1
2 |h(t)|

= 0 if ḣ has compact support, the same result is true for all h ∈ H1(RN ). In
particular,

‖hU‖HU (RN ) =
√
‖ḣU‖2

L2([0,∞);RN )
+ 1

4‖hU‖
2
L2([0,∞);RN )

.

If we were to follow the prescription in Theorem 8.3.1, we would next complete
HU (RN ) with respect to the norm supt≥0 e

− t2 |hU (t)|. However, we already know

from (8.5.2) that {U(t, 0) : t ≥ 0} lives on ΘU (RN ), the space of θ ∈ Θ(RN )
such that limt→∞(log t)−1|θ(t)| = 0 with Banach norm

‖θ‖ ≡ sup
t≥0

(
log(e+ t)

)−1|θ(t)|,

and so we will adopt ΘU (RN ) as the Banach space for HU (RN ). Clearly, the
dual space ΘU (RN )∗ of ΘU (RN ) can be identified with the space of RN -valued
Borel measures λ on [0,∞) which give 0 mass to {0} and satisfy ‖λ‖ΛU (RN ) ≡∫

[0,∞)
log(e+ t) |λ|(dt) <∞.
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Theorem 8.5.4. Let U (N)
0 ∈ M1

(
ΘU (RN )

)
be the distribution of {U(t,0) :

t ≥ 0} under W (N). Then
(
HU (RN ),ΘU (RN ),U (N)

0

)
is an abstract Wiener

space.

Proof: Since C∞c
(
(0,∞);RN

)
is contained in HU (RN ) and is dense in ΘU (RN ),

we know that HU (RN ) is dense in ΘU (RN ). In addition, because ηU (t) =

e−
t
2η(et − 1) where η ∈ H1(RN ) and ‖ηU‖HU (RN ) = ‖η‖H1(RN ), ‖ηU‖u ≤

‖ηU‖HU (RN ) follows from |η(t)| ≤ t 1
2 ‖η‖H1(RN ). Hence, HU (RN ) is continuously

embedded in ΘU (RN ).
To complete the proof, remember our earlier calculation of the covariance of

{U(t; 0) : t ≥ 0}, and use it to check that

EU
(N)
0

[
〈θ,λ〉2

]
=

∫∫
[0,∞)2

u0(s, t)λ(ds) · λ(dt) where u0(s, t) ≡ e−
|s−t|

2 − e−
s+t
2 .

Hence, what I need to show is that if λ ∈ ΘU (RN )∗ −→ hUλ ∈ HU (RN ) is the
map determined by 〈hU ,λ〉 =

(
hU ,hUλ

)
HU (RN )

, then

(8.5.5) ‖hUλ‖2HU (RN ) =

∫∫
[0,∞)2

u0(s, t)λ(ds) · λ(dt).

In order to do this, we must first know how hUλ is constructed from λ. But if
(8.5.5) is going to hold, then, by polarization,(

e,hUλ (τ)
)
RN = 〈hUλ , δτe〉 =

∫∫
[0,∞)2

u0(s, t) δτ (ds)
(
e,λ(dt)

)
RN

=

(
e,

∫
[0,∞)

u0(τ, t)λ(dt)

)
RN
.

Thus, one should guess that hUλ (τ) =
∫

[0,∞)
u0(τ, t)λ(dt) and must check that,

with this choice, hUλ ∈ HU (RN ), (8.5.5) holds, and, for all hU ∈ HU (RN ),
〈hU ,λ〉 =

(
hU ,hUλ

)
HU (RN )

.

The key to proving all these is the equality

(*)

∫
[0,∞)

ḣU (τ)∂τu0(τ, t) dτ + 1
4

∫
[0,∞)

hU (τ)u0(τ, t) dτ = hU (t),

which is an elementary application of integration by parts. Applying (*) with
N = 1 to hU = u0( · , s), we see that∫

[0,∞)

∂τu0(s, τ)∂τu0(t, τ) dτ = u0(s, t),
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from which it follows easily both that hUλ ∈ HU (RN ) and that (8.5.5) holds.
In addition, if hU ∈ HU (RN ), then 〈hU ,λ〉 =

(
hU ,hUλ

)
HU (RN )

follows from (*)

after one integrates both sides of the preceding with respect to λ(dt). �

I turn next to the reversible case. By the considerations in § 8.4.1, we know

that the distribution U (N)
R of {UR(t) : t ≥ 0} under γ0,1 ×W (N) ×W (N) is a

Borel measure on the space Banach space ΘU (R;RN ) of continuous θ : R −→ RN
such that lim|t|→∞(log t)−1|θ(t)| = 0 with norm

‖θ‖ΘU (R;RN ) ≡ sup
t∈R

(
log(e+ |t|)

)−1|θ(t)| <∞.

Furthermore, it should be clear that one can identify ΘU (R;RN )∗ with the space
of RN -valued Borel measures λ on R satisfying

‖λ‖ΛU (R;RN ) ≡
∫
R

log(e+ |t|) |λ|(dt) <∞.

Theorem 8.5.6. Take H1(R;RN ) to be the separable Hilbert space of abso-
lutely continuous h : R −→ RN satisfying

‖h‖H1(R;RN ) ≡
√
‖ḣ‖2

L2(R:RN )
+ 1

4‖h‖
2
L2(R:RN )

<∞.

Then
(
H1(R;RN ),ΘU (R;RN ),U (N)

R

)
is an abstract Wiener space.

Proof: Set u(s, t) ≡ e−
|s−t|

2 , and let λ ∈ ΛU (R;RN ). By the same reasoning
as I used in the preceding proof,

〈h,λ〉 =
(
h,hλ

)
H1(R;RN )

and

‖hλ‖2H1(R;RN ) =

∫∫
R×R

u(s, t)λ(ds) · λ(dt),

when hλ(τ) =
∫
R u(τ, t)λ(dt). Hence, since

{(
ξ,θ(t)

)
RN : t ≥ 0 & ξ ∈ RN

}
spans a Gaussian family in L2

(
U (N)
R ;R

)
and u(s, t)I = EU

(N)

R

[
θ(s) ⊗ θ(t)

]
, the

proof is complete. �

§ 8.5.3. Higher Dimensional Free Fields. Thinking a la Feynman, Theorem

8.5.6 is saying that U (N)
R wants to be the measure on H1(R;R) given by

1

(
√

2π)dim(H1(R;RN ))
exp

[
−1

2

∫
R

(
|ḣ(t)|2 + 1

4 |h(t)|2
)
dt

]
λH1(R;RN )(dh),
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where λH1(R;RN ) is the Lebesgue measure on H1(R;RN ).
I am now going to look at the analogous situation when N = 1 but the

parameter set R is replaced by Rν for some ν ≥ 2. That is, I want to look at
the measure which Feynman would have written as

1

(
√

2π)dim(H1(Rν ;R))
exp

[
−1

2

∫
Rν

(
|∇h(x))|2 + 1

4 |h(x)|2
)
dx

]
λH1(Rν ;R)(dh),

where H1(Rν ;R) is the separable Hilbert space obtained by completing the
Schwartz test function space S (Rν ;R) with respect to the Hilbert norm

‖h‖H1(Rν ;R) ≡
√
‖∇h‖2L2(Rν ;R) + 1

4‖h‖
2
L2(Rν ;R).

When ν = 1 this is exactly the Hilbert space H1(R;R) described in Theorem
8.5.6 for N = 1. When ν ≥ 2, generic elements of H1(Rν ;R) are better than
generic elements of L2(Rν ;R) but are not enough better to be continuous. In
fact, they are not even well-defined pointwise, and matters get worse as ν gets
larger. Thus, although Feynman’s representation is already questionable when
ν = 1, its interpretation when ν ≥ 2 is even more fraught with difficulties. As
we will see, these difficulties are reflected mathematically by the fact that in
order to construct an abstract Wiener space for H1(Rν ;R) when ν ≥ 2, we will
have to resort to Banach spaces whose elements are generalized functions (i.e.,
distributions in the sense of L. Schwartz).∗

The approach which I will adopt is based on the following subterfuge. The
space H1(Rν ;R) is one of a continuously graded family of spaces known as
Sobolev spaces. Sobolev space are graded according to the number of deriva-
tives “better or worse” than L2(Rν ;R) their elements are. To be more precise,
for each s ∈ R, define the Bessel operator Bs on S (Rν ;C) so that

B̂sϕ(ξ) =
(

1
4 + |ξ|2

)− s2 ϕ̂(ξ).

When s = −2m, it is clear thatBs =
(

1
4−∆

)m
, and so, in general, it is reasonable

to think of Bs as an operator which, depending on whether s ≤ 0 or s ≥ 0,
involves taking or restoring derivatives of order |s|. In particular, ‖ϕ‖H1(Rν ;R) =

‖B−1ϕ‖L2(Rν ;R) for ϕ ∈ S (Rν ;R). More generally, define the Sobolev space
Hs(Rν ;R) to be the separable Hilbert space obtained by completing S (Rν ;R)
with respect to

‖h‖Hs(Rν ;R) ≡ ‖B−sh‖L2(Rν ;R) =

√
1

(2π)ν

∫
Rν

(
1
4 + |ξ|2

)s|ĥ(ξ)|2 dξ.

∗ The need to deal with generalized functions is the primary source of the difficulties which

mathematicians have when they attempt to construct non-trivial quantum fields. Without
going into any details, suffice it to say that in order to construct interacting (i.e., non-Gaussian)

fields, one has to take non-linear functions of a Gaussian field. However, if the Gaussian field
is distribution valued, it is not at all clear how to apply a non-linear function to it.
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Obviously, H0(Rν ;R) is just L2(Rν ;R). When s > 0, Hs(Rν ;R) is a sub-
space of L2(Rν ;R), and the quality of its elements will improve as s gets larger.
However, when s < 0, some elements of Hs(Rν ;R) will be strictly worse than
elements of L2(Rν ;R), and their quality will deteriorate as s becomes more neg-
ative. Nonetheless, for every s ∈ R, Hs(Rν ;R) ⊆ S ′(Rν ;R), where S ′(Rν ;R),
whose elements are called real-valued tempered distributions, is the dual
space of S (Rν ;R). In fact, with a little effort, one can check that an alternative
description of Hs(Rν ;R) is as the subspace of u ∈ S ′(Rν ;R) with the prop-
erty that B−su ∈ L2(Rν ;R). Equivalently, Hs(Rν ;R) is the isometric image in
S (Rν ;R) of L2(Rν ;R) under the map Bs, and, more generally, Hs2(Rν ;R) is
the isometric image of Hs1(Rν ;R) under Bs2−s1 . Thus, by Theorem 8.3.1, once
we understand the abstract Wiener spaces for any one of the spaces Hs(Rν ;R),
understanding the abstract Wiener spaces for any of the others comes down to
understanding the action of the Bessel operators, a task which, depending on
what one wants to know, can be highly non-trivial.

Lemma 8.5.7. The space H
ν+1

2 (Rν ;R) is continuously embedded as a dense
subspace of the separable Banach space C0(Rν ;R) whose elements are continuous
functions which tend to 0 at infinity and whose norm is the uniform norm.
Moreover, given a totally finite, signed Borel measure λ on Rν , the function

hλ(x) ≡ Kν

∫
Rν
e−
|x−y|

2 λ(dy), with Kν ≡
π

1−ν
2

Γ
(
ν+1

2

) ,
is an element of H

ν+1
2 (Rν ;R),

‖hλ‖2
H
ν+1

2 (Rν ;R)
= Kν

∫∫
Rν×Rν

e−
|x−y|

2 λ(dx)λ(dy),

and
〈h, λ〉 =

(
h, hλ

)
H
ν+1

2 (Rν ;R)
for each h ∈ H

ν+1
2 (Rν ;R).

Proof: To prove the initial assertion, use the Fourier inversion formula to write

h(x) = (2π)−ν
∫
Rν
e−
√
−1(x,ξ)Rν ĥ(ξ) dξ

for h ∈ S (Rν ;R), and derive from this the estimate

‖h‖u ≤ (2π)−
ν
2

(∫
Rν

(
1
4 + |ξ|2

)− ν+1
2 dξ

) 1
2

‖h‖
H
ν+1

2 (Rν ;R)
.

Hence, since H
ν+1

2 (Rν ;R) is the completion of S (Rν ;R) with respect to the

norm ‖ · ‖
H
ν+1

2 (Rν ;R)
, it is clear the H

ν+1
2 (Rν ;R) continuously embedded in
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C0(Rν ;R). In addition, since S (Rν ;R) is dense in C0(Rν ;R), H
ν+1

2 (Rν ;R) is
also.

To carry out the next step, let λ be given, and observe that the Fourier

transform of Bν+1λ is
(

1
4 + |ξ|2

)− ν+1
2 λ̂(ξ) and therefore that

Bν+1λ(x) =
1

(2π)ν

∫
Rν

e−
√
−1(x,ξ)Rν λ̂(ξ)(

1
4 + |ξ|2

) ν+1
2

dξ

=
1

(2π)ν

∫
Rν

∫
Rν

e
√
−1(y−x,ξ)Rν(

1
4 + |ξ|2

) ν+1
2

dξ

 λ(dy).

Now use (3.3.19) (with N = ν and t = 1
2 ) to see that

1

(2π)ν

∫
Rν

e
√
−1(y−x,ξ)Rν(

1
4 + |ξ|2

) ν+1
2

dξ = Kνe
− |y−x|

2 ,

and thereby arrive at hλ = Bν+1λ. In particular, this shows that

‖hλ‖2
H
ν+1

2 (Rν ;R)
=

1

(2π)ν

∫
Rν

|λ̂(ξ)|2(
1
4 + |ξ|2

) ν+1
2

dξ <∞.

Now let h ∈ S (Rν ;R), and use the preceding to justify

〈h, λ〉 = 〈B−
ν+1

2 h,B−
ν+1

2 Bν+1λ〉 =
(
h, hλ

)
H
ν+1

2 (Rν ;R)
.

Since both sides are continuous with respect to convergence in H
ν+1

2 (Rν ;R), we

have now proved that 〈h, λ〉 =
(
h, hλ

)
H
ν+1

2 (Rν ;R)
for all h ∈ H

ν+1
2 (Rν ;R). In

particular,

‖hλ‖2
H
ν+1

2 (Rν ;R)
= 〈hλ, λ〉 = Kν

∫∫
Rν×Rν

e−
|y−x|

2 λ(dx)λ(dy). �

Theorem 8.5.8. Let Θ
ν+1

2 (Rν ;R) be the space of continuous θ : Rν −→ R sat-

isfying lim|x|→∞
(
log(e+|x|)

)−1|θ(x)| = 0, and turn Θ
ν+1

2 (Rν ;R) into a separable

Banach space with norm ‖θ‖
Θ
ν+1

2 (Rν ;R)
= supx∈RN

(
log(e + |x|)

)−1|θ(x)|. Then

H
ν+1

2 (Rν ;R) is continuously embedded as a dense subspace of Θ
ν+1

2 (Rν ;R), and

there is a W
H
ν+1

2 (Rν ;R)
∈M1

(
Θ
ν+1

2 (Rν ;R)
)

such that(
H

ν+1
2 (Rν ;R),Θ

ν+1
2 (Rν ;R),W

H
ν+1

2 (Rν ;R)

)
is an abstract Wiener space. Moreover, for each α ∈

(
0, 1

2

)
, W

H
ν+1

2 (Rν ;R)
-almost

every θ is Hölder continuous of order α and, for each α > 1
2 ,W

H
ν+1

2 (Rν ;R)
-almost

no θ is anywhere Hölder continuous of order α.
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Proof: The initial part of the first assertion follows from the first part of
Lemma 8.5.7 plus the essentially trivial fact that C0(Rν ;R) is continuously em-

bedded as a dense subspace of Θ
ν+1

2 (Rν ;R). Further, by the second part of
that same lemma combined with Theorem 8.3.3, we will have proved the sec-
ond part of the first assertion here once we show that, when {hm : m ≥ 0} is

an orthonormal basis in H
ν+1

2 (Rν ;R), the Wiener series
∑∞
m=0 ωmhm converges

in Θ
ν+1

2 (Rν ;R) for γN0,1-almost every ω = (ω0, . . . , ωm, . . . ) ∈ RN. Thus, set

Sn(ω) =
∑n
m=0 ωmhm for n ≥ 1. More or less mimicking the steps outlined in

Exercise 8.3.20, I will begin by showing that, for each α ∈
(
0, 1

2

)
and R ∈ [1,∞),

(*) sup
z∈Rν

Eγ
N
0,1

sup
n≥0

sup
x,y∈Q(z,R)

x6=y

|Sn(y)− Sn(x)|
|y − x|α

 <∞,
where Q(z, R) = z + [−R,R)ν . Indeed, by the argument given in that exer-
cise combined with the higher dimensional analog of Kolmogorov’s continuity
criterion in Exercise 4.3.18, (*) will follow once we show that

Eγ
N
0,1
[
|Sn(y)− Sn(x)|2

]
≤ C|y − x|, x,y ∈ Rν ,

for some C <∞. To this end, set λ = δy − δx, and apply Lemma 8.5.7 to check

Eγ
N
0,1
[
|Sn(y)− Sn(x)|2

]
=

n∑
m=0

(
hm, hλ

)2
H
ν+1

2 (Rν ;R)

≤ ‖hλ‖2
H
ν+1

2 (Rν ;R)
= 2Kν

(
1− e−

|y−x|
2

)
.

Knowing (*), it becomes an easy matter to see that there exists a measur-
able S : Rν × RN −→ R such that x  S(x,ω) is continuous of each ω and
Sn( · ,ω) −→ S( · ,ω) uniformly on compacts for γN0,1-almost every ω ∈ RN. In

fact, because of (*), it suffices to check that limn→∞ Sn(x) exists γN0,1-almost
surely for each x ∈ Rν , and this follows immediately from Theorem 1.4.2 plus

∞∑
m=0

Var
(
ωmhm(x)

)
=

∞∑
m=0

(
hm, hδx

)2
H
ν+1

2 (Rν ;R)
= ‖hδx‖2

H
ν+1

2 (Rν ;R)
= Kν .

Furthermore, again from (*), we know that, γN0,1-almost every ω, x  S(x,ω)

is α-Hölder continuous so long as α ∈
(
0, 1

2

)
.

I must still check that, γN0,1-almost surely, the convergence of Sn( · ,ω) to

S( · ,ω) is taking place in Θ
ν+1

2 (Rν ;R), and, in view of the fact that we already
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know that, γN0,1-almost surely, it is taking place uniformly on compacts, this
reduces to showing that

lim
|x|→∞

(
log(e+ |x|

)−1
sup
n≥0
|Sn(x)| −→ 0 γN0,1-almost surely.

For this purpose, observe that (*) says

sup
z∈Rν

Eγ
N
0,1

[
sup
n≥0
‖Sn‖u,Q(z,1)

]
<∞,

where ‖ · ‖u,C denotes the uniform norm over a set C ⊆ Rν . At this point, I
would like to apply Fernique’s Theorem (Theorem 8.2.1) to the Banach space
`∞
(
N;Cb(Q(z, 1);R)

)
and thereby conclude that there exists an α > 0 such that

(**) B ≡ sup
z∈Rν

Eγ
N
0,1

[
exp

(
α sup
n≥0
‖Sn‖2u,Q(z,1)

)]
<∞.

However, `∞
(
N;Cb(Q(z, 1);R)

)
is not separable. Nonetheless, there are two

ways to get around this technicality. The first is to observe that the only place
separability was used in the proof of Fernique’s Theorem was at the beginning,
where I used it to guarantee that BE is generated by the maps x  〈x, x∗〉 as
x∗ runs over E∗ and therefore that the distribution of X is determined by the
distribution of {〈X,x∗〉 : x∗ ∈ E∗}. But, even though `∞

(
N;Cb(Q(z, 1);R)

)
is not separable, one can easily check that it neverless possesses this prop-
erty. The second way to deal with the problem is to apply his theorem to
`∞
(
{0, . . . , N};Cb(Q(z, 1);R)

)
, which is separable, and to note that the result-

ing estimate can be made uniform in N ∈ N. Either way, one arrives at (**).

Now set ψ(t) = eαt
2 − 1 for t ≥ 0. Then ψ−1(s) =

√
α−1 log(1 + s), and

sup
n≥0
‖Sn‖u,Q(0,M) = max

{
sup
n≥0
‖Sn‖u,Q(m,1) : m ∈ Q(0,M) ∩ Zν

}

≤ ψ−1

 ∑
m∈Q(0,M)∩Zν

ψ

(
sup
n≥0
‖Sn‖u,Q(m,1)

) .

Thus, because ψ−1 is concave, Jensen’s inequality applies and yields

Eγ
N
0,1

[
sup
n≥0
‖Sn‖u,Q(0,M)

]
≤ ψ−1

(
(2M)νB

)
,

and therefore

Eγ
N
0,1

[
sup
|x|≥R

sup
n≥0

Sn(x)

log(e+ |x|)

]
≤

∑
m≥(logR)

1
4

Eγ
N
0,1

[
supn≥0 ‖Sn‖u,Q(0,em4 )

]
log(e+ e(m−1)4)

≤
∑

m≥(logR)
1
4

√
log(1 + 2νeν(m+1)4B)√
α log(e+ e(m−1)4)

−→ 0 as R→∞.
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To complete the proof, I must show that, for any α > 1
2 , W

H
ν+1

2 (Rν ;R)
-almost

no θ is anywhere Hölder continuous of order α, and for this purpose I will proceed
as in the proof of Theorem 4.3.4. Because the {θ(x + y) : x ∈ Rν} has the same
W
H
ν+1

2 (Rν ;R)
-distribution for all y, it suffices for me to show that, W

H
ν+1

2 (Rν ;R)
-

almost surely, there is no x ∈ Q(0, 1) at which θ is Hölder continuous of order
α > 1

2 . Now suppose that α ∈
(

1
2 , 1
)
, and observe that, for any L ∈ Z+ and

e ∈ Sν−1, the set H(α) of θ which are α-Hölder continuous at some x ∈ Q(0, 1)
is contained in

∞⋃
M=1

∞⋂
n=1

⋃
m∈Q(0,n)∩Zν

L⋂
`=1

{
θ :
∣∣θ(m+`e

n

)
− θ
(m+(`−1)e

n

)∣∣ ≤ M
nα

}
.

Hence, again using translation invariance, we see that we need only show that,
there is an L ∈ Z+ such that, for each M ∈ Z+,

nνW
H
ν+1

2 (Rν ;R)

({
θ :
∣∣θ( `en )− θ( (`−1)e

n

)∣∣ ≤ M
nα , 1 ≤ ` ≤ L

})
tends to 0 as n → ∞. To this end, set U(t, θ) = K

− 1
2

ν θ(te), and observe that
the W

H
ν+1

2 (Rν ;R)
-distribution of {U(t) : t ≥ 0} is that of an R-valued ancient

Ornstein–Uhlenbeck process. Thus, what I have to estimate is

P
(∣∣e− `

2nB
(
e
`
n

)
− e−

`−1
2n B

(
e
`−1
n

)∣∣ ≤ M
nα , 1 ≤ ` ≤ L

)
,

where
(
B(t),Ft,P

)
is an R-valued Brownian motion. But clearly this probability

is dominated by the sum of

P
(∣∣B(e `n )−B(e `−1

n

)∣∣ ≤ Me
`

2n

2nα , 1 ≤ ` ≤ L
)

and

P
(
∃1 ≤ ` ≤ L

(
1− e− 1

2n

)∣∣B(e `−1
n

)∣∣ ≥ Me
`

2n

2nα

)
.

The second of these is easily dominated by 2Le−
M2n2(1−α)

8 , which, since α < 1,
means that it causes no problems. As for the first, one can use the independence
of Brownian increments and Brownian scaling to dominate it by the Lth power of
P
(∣∣B(1)−B

(
e−

1
n

)∣∣ ≤M(2nα)−1
)
. Hence, I can take any L such that

(
α− 1

2

)
L >

ν. �

As a consequence of the preceding and Theorem 8.3.1, we have the following
corollary.
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Corollary 8.5.9. Given s ∈ R, set

Θs(Rν ;R) =
{
Bs−

ν+1
2 θ : θ ∈ Θ

ν+1
2 (Rν ;R)

}
,

‖θ‖Θs(Rν ;R) = ‖B
ν+1

2 −sθ‖
Θ
ν+1

2 (Rν ;R)
,

and

WHs(Rν ;R) = (Bs−
ν+1

2 )∗W
H
ν+1

2 (Rν ;R)
.

Then Θs(Rν ;R) is a separable Banach space in which Hs(Rν ;R) is continuously
embedded as a dense subspace, and

(
Hs(Rν ;R),Θs(Rν ;R),WHs(Rν ;R)

)
is an

abstract Wiener space.

Exercises for § 8.5

Exercise 8.5.10. In this exercise we will show how to use the Ornstein–Uhlen-
beck process to prove Poincaré’s inequality

(8.5.11) Varγ0,1(ϕ) = ‖ϕ− 〈ϕ, γ0,1〉‖2L2(γ0,1;R) ≤ ‖ϕ
′‖2L2(γ0,1;R)

for the standard Gaussian distribution on R. I will outline the proof of (8.5.11)
for ϕ ∈ S (R;R), but the estimate immediately extends to any ϕ ∈ L2(γ0,1;R)
whose (distributional) first derivative is again in L2(γ0,1;R).

(i) For ϕ ∈ S (R;R), set

uϕ(t, x) = EW
(1)[

ϕ
(
U(t, x)

)]
,

where {U(t, x) : t ≥ 0} is the one sided, R-valued Ornstein-Uhlenbeck process

starting at x. Show that u′ϕ(t, x) = e−
t
2uϕ′(t, x) and that

lim
t↘0

uϕ(t, · ) = ϕ and lim
t→∞

uϕ(t, · ) = 〈ϕ, γ0,1〉 in L2(γ0,1;R).

Show that another expression for uϕ is

uϕ(t, x) =
(
2π(1− e−t)

)− 1
2

∫
R
ϕ(y) exp

(
− (y − e− t2x)2

2(1− e−t)

)
dy.

Using this second expression, show that uϕ(t, · ) ∈ S (R;R) and that t ∈
[0,∞) 7−→ uϕ(t, · ) ∈ S (R;R) is continuous. In addition, show that u̇ϕ(t, x) =
1
2

(
u′′ϕ(t, x)− xu′ϕ(t, x)

)
.
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(ii) For ϕ1, ϕ2 ∈ C2(R;R) whose second derivative is tempered, show that(
ϕ1, ϕ

′′
2 − xϕ2

)
L2(γ0,1;R)

= −
(
ϕ′1, ϕ

′
2

)
L2(γ0,1;R)

,

and use this together with (i) to show that, for any ϕ ∈ S (R;R),

〈uϕ(t, · ), γ0,1〉 = 〈ϕ, γ0,1〉 and
d

dt
‖uϕ(t, · )‖2L2(γ0,1;R) = −e−t‖uϕ′(t, · )‖2L2(γ0,1;R).

Conclude that ‖uϕ(t, · )‖L2(γ0,1;R) ≤ ‖ϕ‖L2(γ0,1;R) and

d

dt
‖uϕ(t, · )‖2L2(γ0,1;R) ≥ −e

−t‖ϕ′‖2L2(γ0,1;R).

Finally, integrate the preceding inequality to arrive at (8.5.11).

Exercise 8.5.12. In this exercise I will outline how the ideas in Exercise 8.5.10
can be used to give another derivation of the logarithmic Sobolev inequality
(2.4.38). Again, I restrict my attention to ϕ ∈ S (R;R), since the general case
can be easily obtained from this by taking limits.

(i) Begin by showing that (2.4.38) for ϕ ∈ S (R;R) once one knows that

(*)
〈
ϕ logϕ

〉
γ0,1
≤ 1

2

〈
(ϕ′)2

ϕ

〉
γ0,1

for uniformly positive ϕ ∈ R⊕S (R;R).

(ii) Given a uniformly postitive ϕ ∈ R ⊕ S (R;R), use the results in Exercise
8.5.10 to show that

d

dt

〈
uϕ(t, · ) log uϕ(t, · )

〉
γ0,1

= −e
−t

2

〈
uϕ′(t, · )2

uϕ(t, · )

〉
γ0,1

.

(iii) Coninuing (ii), apply Schwarz’s inequality to check that

uϕ′(t, x)2

uϕ(t, x)
≤ u (ϕ′)2

ϕ

(t, x),

and combine this with (ii) to get

d

dt

〈
uϕ(t, · ) log uϕ(t, · )

〉
γ0,1
≥ −e

−t

2

〈
(ϕ′)2

ϕ

〉
γ0,1

.

Finally, integrate this to arrive at (*).
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Exercise 8.5.13. Although it should be clear that the arguments given in Ex-
ercises 8.5.10 and 8.5.12 work equally well in RN and yield (8.5.11) and (2.4.38)
with γ0,1 replaced by γ0,I and (ϕ′)2 replaced by |∇ϕ|2, it is significant that each
of these inequalities for R implies its RN analog. Indeed, show that Fubini’s
Theorem is all that one needs to pass to the higher dimensional results. The
reason why this remark is significant is that it allows one to prove infinite di-
mensional versions of both Poincaré’s inequality and the logarithmic Sobolev
inequality, and both these play a crucial role in infinite dimensional analysis. In
fact, Nelson’s interest in hypercontractive estimates sprung from his brilliant in-
sight that hypercontractive estimates would allow him to construct a non-trivial
(i.e., non-Gaussian), translation invariant quantum field for R2.

Exercise 8.5.14. It is interesting to see what happens if one changes the sign
of the second term on the right hand side of (8.5.1), thereby converting the
centripetal force into a centrifugal one.

(i) Show that, for each θ ∈ Θ(RN ), the unique solution to

V(t,θ) = θ(t) + 1
2

∫ t

0

V(τ,θ) dτ, t ≥ 0,

is

V(t,θ) = e
t
2

∫ t

0

e−
τ
2 dθ(τ),

where the integral is taken in the sense of Riemann–Stieltjes.

(ii) Show that
{(
ξ,V(t, · )

)
RN : (t, ξ) ∈ [0,∞)×RN

}
underW (N) is a Gaussian

family with covariance

v(s, t) = e
s+t
2 − e

|t−s|
2 .

(iii) Let {B(t) : t ≥ 0} be an RN -valued Brownian motion, and show that the
distribution of {

e
t
2 B
(
1− e−t

)
: t ≥ 0

}
is the W (N)-distribution of {V(t) : t ≥ 0}. Next, let ΘV (RN ) be the space of
continuous θ : [0,∞) −→ RN with the properties that

θ(0) = 0 = lim
t→∞

e−t|θ(t)|,

and set ‖θ‖ΘV (RN ) ≡ supt≥0 e
−t|θ(t)|. Show that

(
ΘV (RN ); ‖ · ‖ΘV (RN )

)
is a

separable Banach space and that there exists a unique V(N) ∈ M1

(
ΘV (RN )

)
such that the distribution of {θ(t) : t ≥ 0} under V(N) is the same as the
distribution of {V(t) : t ≥ 0} under W (N).
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(iv) Let HV (RN ) be the space of absolutely continuous h : [0,∞) −→ RN with

the properties that h(0) = 0 and ḣ− 1
2h ∈ L2

(
[0,∞);RN

)
. Show that HV (RN )

with norm

‖h‖HV (RN ) ≡
∥∥ḣ− 1

2h
∥∥
L2([0,∞);RN )

is a separable Hilbert space which is continuously embedded in ΘV (RN ) as a
dense subspace. Finally, show that

(
HV (RN ),ΘV (RN ),V(N)

)
is an abstract

Wiener space.

(v) There is a subtlety here which is worth mentioning. Namely, show that
HU (RN ) is isometrically embedded in HV (RN ). On the other hand, as dis-
tinguished from elements of HU (RN ), it is not true that ‖η̇ − 1

2η‖
2
L2(R;RN ) =

‖η̇‖2L2(R;RN ) + 1
4‖η‖

2
L2(R;RN ), the point being that whereas the elements h of

HV (RN ) with ḣ ∈ Cc

(
(0,∞);RN

)
are dense in HU (RN ), they are not dense in

HV (RN ).

Exercise 8.5.15. Given x ∈ Rν and a slowly increasing ϕ ∈ C(Rν ;R), define
τxϕ ∈ C(Rν ;R) so that τxϕ(y) = ϕ(x + y) for y ∈ Rν . Next, extend τx to
S ′(Rν ;R) so that 〈ϕ, τxu〉 = 〈τ−xϕ, u〉 for ϕ ∈ S (Rν ;R), and check that this is
a legitimate extension in the sense that it is consistent with the original definition
when applied to u’s which are slowly increasing, continuous functions. Finally,
given s ∈ R, define Ox : Hs(Rν ;R) −→ Hs(Rν ;R) by Oxh = τxh.

(i) Show that Bs ◦ τx = τx ◦Bs for all s ∈ R and x ∈ Rν .

(ii) Given s ∈ R, define Ox = τx � Hs(Rν ;R), and show that Ox is an orthogonal
transformation.

(iii) Referring to Theorem 8.3.14 and Corollary 8.5.9, show that the measure
preserving transformation TOx which Ox determines on

(
Θs(Rν ;R),WHs(Rν ;R)

)
is the restriction of τx to Θs(Rν ;R).

(iv) If x 6= 0, show that TOx is erogodic on
(
Θs(Rν ;R),WHs(Rν ;R)

)
.

§ 8.6 Brownian Motion on a Banach Space

In this concluding section I will discuss Brownian motion on a Banach space.
More precisely, given a non-degenerate, centered, Gaussian measure W on a
separable Banach space E, we will see that there exists an E-valued stochastic
process {B(t) : t ≥ 0} with the properties that B(0) = 0, t B(t) is continuous,
and, for all 0 ≤ s < t, B(t)− B(s) is independent of σ

(
{B(τ) : τ ∈ [0, s]}

)
and

has distribution (cf. the notation in § 8.4) Wt−s.

§ 8.6.1. Abstract Wiener Formulation. Let W on E be as above, use H
to denote its Cameron–Martin space, and take H1(H) to be the Hilbert space
of absolutely continuous h : [0,∞) −→ H such that h(0) = 0 and ‖h‖H1(H) =

‖ḣ‖L2([0,∞);H) <∞. Finally, let Θ(E) be the space of continuous θ : [0,∞) −→
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E satisfying limt→∞
‖θ(t)‖E

t = 0, and turn Θ(E) into a Banach space with norm

‖θ‖Θ(E) = supt≥0(1 + t)−1‖θ(t)‖E . By exactly the same line of reasoning as

I used when E = RN , one can show that Θ(E) is a separable Banach space in
which H1(E) is continuously embedded as a dense subspace. My goal is to prove
the following statement.

Theorem 8.6.1. With H1(H) and Θ(E) as above, there is a unique W(E) ∈
M1

(
Θ(E)

)
such that

(
H1(H),Θ(E),W(E)

)
is an abstract Wiener space.

Choose an orthonormal basis {h1
m : m ≥ 0} in H1(R), and, for n ≥ 0, t ≥ 0,

and x = (x0, . . . , xm, . . . ) ∈ EN, set Sn(t,x) =
∑n
m=0 h

1
m(t)xm. I will show

that, WN-almost surely, {Sn( · ,x) : n ≥ 0} converges in Θ(E), and, for the
most part, the proof follows the same basic line of reasoning as that suggested in
Exercise 8.3.20 when E = RN . However, there is a problem here which we did not
encounter there. Namely, unless E is finite dimensional, bounded subsets will
not necessarily be relatively compact in E. Hence, local uniform equicontinuity
plus local boundedness is not sufficient to guarantee that a collection of E-valued
paths is relatively compact in C

(
[0,∞);E

)
, and that is the reason why we have

to work a little harder here.

Lemma 8.6.2. For WN-almost every x ∈ EN, {Sn( · ,x) : n ≥ 0} is relatively
compact in Θ(E).

Proof: Choose E0 ⊆ E, as in Corollary 8.3.10, so that bounded subsets of E0

are relatively compact in E and
(
H,E0,W � E0

)
is again an abstract Wiener

space. Without loss in generality, I will assume that ‖ · ‖E ≤ ‖ · ‖E0
, and, by

Fernique’s Theorem, we know that C ≡ EW0
[
‖x‖4E0

]
<∞.

Since Sn(t,x)−Sn(s,x) =
∑n
m=0

(
h1
t −h1

s, h
1
m

)
H1(R)

xm, where h1
τ = · ∧τ , the

WN
0 -distribution of Sn(t)−Sn(s) isWεn , where ε2n =

∑n
0

(
h1
t−h1

s, h
1
m

)2
H1(R)

≤ t−
s. Hence, EWN[‖Sn(t)−Sn(s)‖4E0

]
≤ C(t−s)2. In addition, {‖Sn(t)−Sn(s)‖E0

:
n ≥ 1} is a submartingale, and so, by Doob’s Inequality plus Kolmogorov’s
Continuity Criterion, there exists a K <∞ such that, for each T > 0,

(*) EW
N
[
sup
n≥0

sup
0≤s<t≤T

‖Sn(t)− Sn(s)‖E0

(t− s) 1
8

]
≤ KT 3

4 .

From (*) and Sn(0) = 0, we know that, WN-almost surely, {Sn( · ,x) : n ≥ 0} is
uniformly ‖ · ‖E0 -bounded and uniformly ‖ · ‖E0-equicontinuous on each interval
[0, T ]. Since this means that, for every T > 0, {Sn(t,x) : n ≥ 0 & t ∈ [0, T ]}
is relatively compact in E and {Sn( · ,x) � [0, T ] : n ≥ 0} is uniformly ‖ · ‖E-
equicontinuous WN-almost surely, the Ascoli–Arzela Theorem guarantees that,
WN-almost surely, {Sn( · ,x) : n ≥ 0} is relatively compact in C

(
[0,∞);E

)
with

the topology of uniform convergence on compacts. Thus, in order to complete
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the proof, all that we have to show is that, WN-almost surely,

lim
T→∞

sup
n≥0

sup
t≥T

‖Sn(t,x)‖E
t

= 0.

But,

sup
t≥2k

‖Sn(t,x)‖E
t

≤
∑
`≥k

sup
2`≤t≤2`+1

‖Sn(t,x)‖E
t

≤
∑
`≥k

2−
7`
8 sup

0≤t≤2`+1

‖Sn(t,x)‖E
t

1
8

,

and therefore, by (*),

EW
N

[
sup
n≥0

sup
t≥2k

‖Sn(t,x)‖E
t

]
≤ 2

3
4K

2
1
8 − 1

2−
k
8 . �

Now that we have the requisite compactness of {Sn : n ≥ 0}, convergence
comes to checking a criterion of the sort given in the following simple lemma.

Lemma 8.6.3. Suppose that {θn : n ≥ 0} is a relatively compact sequence in
Θ(E). If limn→∞〈θn(t), x∗〉 exists for each t in a dense subset of [0,∞) and x∗

in a weak* dense subset of E∗, then {θn : n ≥ 0} converges in Θ(E).

Proof: For a relatively compact sequence to convergent, it is necessary and
sufficient that every convergent subsequence have the same limit. Thus, suppose
that θ and θ′ are limit points of {θn : n ≥ 0}. Then, by hypothesis, 〈θ(t), x∗〉 =
〈θ′(t), x∗〉 for t in a dense subset of [0,∞) and x∗ in a weak* dense subset of E∗.
But this means that the same equality holds for all (t, x∗) ∈ [0,∞) × E∗ and
therefore that θ = θ′. �

Proof of Theorem 8.6.1: In view of Lemmas 8.6.2 and 8.6.3 and the sep-
arability of E∗ in the weak* topology, we will know that {Sn( · ,x) : n ≥ 0}
converges in Θ(E) for WN-almost every x ∈ EN once we show that, for each
(t, x∗) ∈ [0,∞) × E∗, {〈Sn(t,x), x∗〉 : n ≥ 0} converges in R for WN-almost
every x ∈ EN. But if x∗ ∈ E∗, then 〈Sn(t,x), x∗〉 =

∑n
0 〈xm, x∗〉h1

m(t), the ran-
dom variables x  〈xm, x∗〉h1

m(t) are independent, centered Gaussians under
WN with variance ‖hx∗‖2Hh1

m(t)2, and
∑∞

0 h1
m(t)2 = ‖ht‖2H1(R) = t. Thus, by

Theorem 1.4.2, we have the required convergence.
Next, define B : [0,∞)× EN −→ E so that

B(t,x) =

{
limn→∞ Sn(t,x) if {Sn( · ,x) : n ≥ 0} converges in Θ(E)

0 otherwise.

Given λ ∈ Θ(E)∗, determine hλ ∈ H1(H) by
(
h, hλ

)
H1(H)

= 〈h, λ〉 for all h ∈
H1(H). I want to show that, underWN, x 〈B( · ,x), λ〉 is a centered Gaussian
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with variance ‖hλ‖2H1(H). To this end, define x∗m ∈ E∗ so that∗ 〈x, x∗m〉 =

〈h1
mx, λ〉 for x ∈ E. Then,

〈B( · ,x), λ〉 = lim
n→∞

〈Sn( · ,x), λ〉 = lim
n→∞

n∑
0

〈xm, x∗m〉 WN-almost surely.

Hence, 〈B( · ,x), λ〉 is certainly a centered Gaussian under WN, and, because we
are dealing with Gaussian random variables, almost sure convergence implies L2-
convergence. To compute its variance, choose an orthonormal basis {hk : k ≥ 0}
for H, and note that, for each m ≥ 0,

EW
N[
〈xm, x∗m〉2

]
= ‖hx∗m‖

2
H =

∞∑
k=0

〈h1
mhk, λ〉2.

Thus, since {h1
mhk : (m, k) ∈ N2} is an orthonormal basis in H1(H),

EW
N[
〈B( · ), λ〉2

]
=

∞∑
m,k=0

〈h1
mhk, λ〉2 =

∞∑
m,k=0

(
h1
mhk, hλ

)2
H1(H)

= ‖hλ‖2H1(H).

Finally, to complete the proof, all that remains is to take W(E) to be the
WN-distribution of x B( · ,x). �

§ 8.6.2. Brownian Formulation. Let (H,E,W) be an abstract Wiener space.
Given a probability space (Ω,F ,P), a non-decreasing family of sub σ-algebras
{Ft : t ≥ 0}, and a measurable map B : [0,∞) × Ω −→ E, say that the triple(
B(t),Ft,P

)
is a W-Brownian motion if

(1) B is {Ft : t ≥ 0}-progressively measurable,
(2) B(0, ω) = 0 and B( · , ω) ∈ C

(
[0,∞);E

)
for P-almost every ω,

(3) B(1) has distributionW, and, for all 0 ≤ s < t, B(t)−B(s) is independent

of Fs and has the same distribution as (t− s) 1
2B(1).

Lemma 8.6.4. Suppose that {B(t) : t ≥ 0} satisfies conditions (1) and (2).
Then

(
B(t),Ft,P

)
is a W-Brownian motion if and only if

(
〈B(t), x∗〉,Ft,P

)
is

an R-valued Brownian motion for each x∗ ∈ E∗ with ‖hx∗‖H = 1. In addition,
if
(
B(t),Ft,P

)
is a W-Brownian motion, then the span G(B) of {〈B(t), x∗〉 :

(t, x∗) ∈ [0,∞)× E∗} is a Gaussian family in L2(P;R) and

(8.6.5) EP[〈B(t1), x∗1〉〈B(t2), x∗2〉
]

= (t1 ∧ t2)
(
hx∗1 , hx∗2

)
H
.

Conversely, if G(B) is a Gaussian family in L2(P;R) and (8.6.5) holds, then(
B(t),Ft,P

)
is a W-Brownian motion when Ft = σ

(
{B(τ) : τ ∈ [0, t]}

)
.

∗Given h1 ∈ H1(R) and x ∈ E, I use h1x to denote the element θ of Θ(E) determined by

θ(t) = h1(t)x.
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Proof: If
(
B(t),Ft,P

)
is aW-Brownian motion and x∗ ∈ E∗ with ‖hx∗‖H = 1,

then 〈B(t), x∗〉 − 〈B(s), x∗〉 = 〈B(t) − B(s), x∗〉 is independent of Fs and is a
centered Gaussian with variance (t− s). Thus,

(
〈B(t), x∗〉,Ft,P

)
is an R-valued

Brownian motion.
Next assume that

(
〈B(t), x∗〉,Ft,P

)
is an R-valued Brownian motion for every

x∗ with ‖hx∗‖H = 1. Then 〈B(t) − B(s), x∗〉 is independent of Fs for every
x∗ ∈ E∗, and so, since BE is generated by {〈 · , x∗〉 : x∗ ∈ E∗}, B(t) − B(s) is
independent of Fs. In addition, 〈B(t) − B(s), x∗〉 is a centered Gaussian with
variance (t− s)‖hx∗‖2H , and therefore B(1) has distribution W and B(t)−B(s)

has the same distribution as (t− s) 1
2B(1). Thus,

(
B(t),Ft,P

)
is a W-Brownian

motion.
Again assume that

(
B(t),Ft,P

)
is a W-Brownian motion. To prove that

G(B) is a Gaussian family for which (8.6.5) holds, it suffices to show that, for
all 0 ≤ t1 ≤ t2 and x∗1, x

∗
2 ∈ E∗, 〈B(t1), x∗1〉+ 〈B(t2), x∗2〉 is a centered Gaussian

with covariance t1‖hx1∗ + hx∗2‖
2
H + (t2 − t1)‖hx∗2‖

2
H . Indeed, we would then

know not only that G(B) is a Gaussian family but also that the variance of
〈B(t1), x∗1〉±〈B(t2), x∗2〉 is t1‖hx1∗±hx∗2‖

2
H +(t2− t1)‖hx∗2‖

2
H , from which (8.6.5)

is immediate. But

〈B(t1), x∗1〉+ 〈B(t2), x∗2〉 = 〈B(t1), x∗1 + x∗2〉+ 〈B(t2)−B(t1), x∗2〉,

and the terms on the right are independent, centered Gaussians, the first with
variance t1‖hx∗1 + hx∗2‖

2
H and the second with variance (t2 − t1)‖hx∗2‖

2
H .

Finally, take Ft = σ
(
{B(τ) : τ ∈ [0, t]}

)
, and assume that G(B) is a Gaussian

family satisfying (8.6.5). Given x∗ with ‖hx∗‖H = 1 and 0 ≤ s < t, we know
that 〈B(t) − B(s), x∗〉 = 〈B(t), x∗〉 − 〈B(s), x∗〉 is orthogonal in L2(P;R) to
〈B(τ), y∗〉 for every τ ∈ [0, s] and y∗ ∈ E∗. Hence, since Fs is generated by
{〈B(τ), y∗〉 : (τ, y∗) ∈ [0, s]×E∗}, we know that 〈B(t)−B(s), x∗〉 is independent
of Fs. In addition, 〈B(t)−B(s), x∗〉 is a centered Gaussian with variance t− s,
and so we have proved that

(
〈B(t), x∗〉,Ft,P

)
is an R-valued Brownian motion.

Now apply the first part of the lemma to conclude that
(
B(t),Ft,P

)
is a W-

Brownian motion. �

Theorem 8.6.6. When Ω = Θ(E), F = BE , and Ft = σ
(
{θ(τ) : τ ∈ [0, t]}

)
,(

θ(t),Ft,W(E)
)

is a W-Brownian motion. Conversely, if
(
B(t),Ft,P

)
is any

W-Brownian motion, then B( · , ω) ∈ Θ(E) P-almost surely and W(E) is the
P-distribution of ω  B( · , ω).

Proof: To prove the first assertion, let t1, t2 ∈ [0,∞) and x∗1, x
∗
2 ∈ E∗ be given,

and define λi ∈ Θ(E)∗ so that 〈θ, λi〉 = 〈θ(ti), x∗i 〉 for i ∈ {1, 2}. Then (cf. the
notation in the proof of Theorem 8.6.1) hλi = h1

tihx∗i , and so

EW
(E)[
〈θ(t1), x∗1〉〈θ(t2), x∗2〉

]
=
(
hλ1

hλ2

)
H1(H)

= (t1 ∧ t2)
(
hx∗1 , hx∗2

)
H
.
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Starting from this, it is an easy matter to check that the span of {〈θ(t), x∗〉 :
(t, x∗) ∈ [0,∞)×E∗} is a Gaussian family in L2(W(E);R) which satisfies (8.6.5).

To prove the converse, begin by observing that, because G(B) is a Gaussian
family satisfying (8.6.5), the distribution of ω ∈ Ω 7−→ B( · , ω) ∈ C

(
[0,∞);E

)
under P is the same as that of θ ∈ Θ(E) 7−→ θ( · ) ∈ C

(
[0,∞);E

)
under W(E).

Hence

P
(

lim
t→∞

‖B(t)‖E
t

= 0

)
=W(E)

(
lim
t→∞

‖θ(t)‖E
t

= 0

)
= 1,

and so B( · , ω) ∈ Θ(E) P-almost surely and the distribution of ω  B( · , ω) on
Θ(E) is W(E). �

§ 8.6.3. Strassen’s Theorem Revisited. What I called Strassen’s Theorem
in § 8.4.2 is not the form in which Strassen himself presented it. Instead, his
formulation was in terms of rescaled R-valued Brownian motion, not partial sums
of independent random variables. The true statement of Strassen Theorem is
the following in the present setting.

Theorem 8.6.7 (Strassen). Given θ ∈ Θ(E), define θ̃n(t) = θ(nt)
Λn

for n ≥ 1

and t ∈ [0,∞), where Λn =
√

2n log(2)(n ∨ 3). Then, for W(E)-almost every

θ, the sequence {θ̃n : n ≥ 0} is relatively compact in Θ(E) and BH1(H)(0, 1)

s its set of limit points. Equivalently, for W(E)-almost every θ, limn→∞ ‖θ̃n −
BH1(H)(0, 1)‖Θ(E) = 0 and, for each h ∈ BH1(H)(0, 1), limn→∞ ‖θ̃n−h‖Θ(E) = 0.

Not surprisingly, the proof differ only slightly from that of Theorem 8.4.4. In

proving the W(E)-almost sure convergence of {θ̃n : n ≥ 1} to BH1(H)(0, 1) ,
there are two new ingredients here. The first is the use of the Brownian scaling
invariance (cf. Exercise 8.6.8), which says that the W(E) is invariant under the

scaling maps Sα : Θ(E) −→ Θ(E) given by Sαθ = α−
1
2 θ(α · ) for α > 0 and is

easily proved as a consequence of the fact these maps are isometric from H1(H)
onto itself. The second new ingredient is the observation that, for any R > 0,
r ∈ (0, 1], and θ ∈ Θ(E), ‖θ(r · )−BH1(H)(0, R)‖Θ(E) ≤ ‖θ−BH1(H)(0, R)‖Θ(E).
To see this, let h ∈ BH1(H)(0, R) be given, and check that h(r · ) is again in
BH(0, R) and that ‖θ(r · )−h(r · )‖Θ(E) ≤ ‖θ−h‖Θ(E). Taking these into account,
one can now justify

W(E)

(
max

βm−1≤n≤βm

∥∥θ̃n −BH1(H)(0, 1)
∥∥

Θ(E)
≥ δ
)

=W(E)

(
max

βm−1≤n≤βm

∥∥∥∥βm2 θ(nβ−m · )Λn
−BH1(H)(0, 1)

∥∥∥∥
Θ(E)

≥ δ

)

≤ W(E)

 max
βm−1≤n≤βm

∥∥∥∥∥θ(β−mn · )−BH1(H)

(
0,

Λ[βm−1]

β
m
2

)∥∥∥∥∥
Θ(E)

≥ δ

β
m
2 Λ[βm−1]
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≤ W(E)

∥∥∥∥∥θ −BH1(H)

(
0,

Λ[βm−1]

β
m
2

)∥∥∥∥∥
Θ(E)

≥ δ

β
m
2 Λ[βm−1]


=W(E)

(∥∥βm2 Λ−1
[βm−1]θ −BH1(H)(0, 1)

∥∥
Θ(E)

≥ δ
)

=W(E)

β
m
2 Λ−1

[βm−1]

(
‖θ −BH1(H)(0, 1)‖Θ(E) ≥ δ

)
for all β ∈ (1, 2) and m ≥ 1. Armed with this information, one can simply repeat
the argument given at the analogous place in the proof of Theorem 8.4.4.

The proof that,W(E)-almost surely, θ̃n appoaches every h ∈ C infinitely often
also requires only minor modification. To begin, one remarks that if A ⊆ Θ(E)
is relatively compact, then

lim
T→∞

sup
θ∈A

sup
t/∈[T−1,T ]

‖θ(t)‖E
1 + t

= 0.

Thus, since, by the preceding, forW(E)-almost every θ, BH1(H)(0, 1)∪{θn : n ≥
1} is relatively compact in Θ(E), it suffices to prove that

lim
n→∞

sup
t∈[k−1,k]

∥∥(θ̃n(t)− θ̃n(k−1)
)
−
(
h(t)− h(k−1)

)
‖E

1 + t
= 0W(E)-almost surely

for each h ∈ BH1(H)(0, 1) and k ≥ 2. Because, for a fixed k ≥ 2, the random

variables
(
θ̃k2m − θ̃k2m(k−1)

)
� [k−1, k], m ≥ 1, are W(E)-independent random

variables, we can use the Borel–Cantelli Lemma as in § 8.4.2 and thereby reduce
the problem to showing that, if θ̌km(t) = θ̃km(t+ k−1)− θ̃km(k−1), then

∞∑
m=1

W(E)
(
‖θ̌k2m − h‖Θ(E) ≤ δ

)
=∞

for each δ > 0, k ≥ 2, and h ∈ BH1(H)(0, 1). Finally, since W(E)
kmΛ−1

k2m
is the

W(E) distribution of θ  θ̌k2m , the rest of the argument is the same as the one
given in § 8.4.2.

Exercises for § 8.6

Exercise 8.6.8. Let
(
H1(H),Θ(E),W(E)

)
be as in Theorem 8.6.1.

(i) Given α > 0, define Sα : Θ(E) −→ Θ(E) so that Sαθ(t) = α−
1
2 θ(αt), t ∈

[0,∞), and show that (Sα)∗W(E) =W(E). Again, this property is called Brow-
nian scaling invariance.
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(ii) Define I : Θ(E) −→ C
(
[0,∞);E

)
so the Iθ(0) = 0 and Iθ(t) = tθ(t−1) for

t > 0. Show that I is an isometry from Θ(E) onto itself and that I � H1(H) is
an isometry on H onto itself. In addition, prove the Brownian time inversion
invariance property: I∗W(E) =W(E).

Exercise 8.6.9. Let HU (H) be the Hilbert space of absolutely continuous hU :
R −→ H with the property that

‖h‖HU (H) =
√
‖ḣU‖2L2(R;H) + 1

4‖hU‖
2
L2(R;H) <∞,

and take ΘU (E) to be the Banach space of continous θU : R −→ E satisfying

lim|t|→∞
‖θU (t)‖

log t = 0 with norm ‖θU‖ΘU (E) = supt∈R
‖θU (t)

log(e+|t|) . If F : Θ(E) −→
C(R;E) is given by [F (θ)](t) = e−

t
2 θ(et), show that F takes Θ(E) continuously

into ΘU (E) and that
(
HU (H),ΘU (E),U (E)

)
is an abstract Wiener space when

U (E)
R = F∗W(E). Of course, one should recognize the measure U (E)

R as the
distribtution of an E-valued, reversible, Ornstein–Uhlenbeck process.

Exercise 8.6.10. A particularly interesting case of the construction in Exercise
8.6.9 is when H = H1(RN ) and E = Θ(RN ). Working in that setting, define
B : R × [0,∞) × ΘU

(
Θ(E)

)
−→ RN by B

(
(s, t), θ

)
= [θ(s)](t), and show that,

for each s ∈ R,
(
B(s, t),F(s,t),U

Θ(RN )
R

)
is an RN -valued Brownian motion when

Fs,t = σ
(
{B(s, τ) : τ ∈ [0, t]}

)
. Next, for each t ∈ [0,∞), show that the

UΘ(E)
R -distribution of θ  B( · , t) is that of

√
t times a reverisble, RN -valued

Ornstein–Uhlenbeck process.

Exercise 8.6.11. Continuing in the same setting as in the preceding, set σ2 =

EW(E)[‖θ‖2Θ(E)

]
, and combine the result in Exercise 8.2.12 with Brownian scaling

invariance to show that

W(E)

(
sup
τ∈[0,t]

‖θ(t)‖E ≥ R

)
≤ K exp

[
− R2

72σ2t

]
,

where K is the constant in Fernique’s Theorem. Next, use this together with
Theorem 8.4.4 and the reasoning in Exercise 4.3.16 to show that

lim
t→∞

‖θ(t)‖E√
2t log(2) t

= L = lim
t↘0

‖θ(t)‖E√
2t log(2)

1
t

W(E)-almost surely,

where L = sup
{
‖h‖E : h ∈ BH(0, 1)

}
.

Exercise 8.6.12. It should be recognized that Theorem 8.4.4 is an immediate
corollary of Theorem 8.6.7. To see this, check that {θ(n) : n ≥ 1} has the same

distribution under W(E) as {Sn : n ≥ 1} has under WN and that BH(0, 1) =
{h(1) : h ∈ BH1(H)}, and use these to show that Theorem 8.4.4 follows from
Theorem 8.6.7.
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Exercise 8.6.13. For θ ∈ Θ(E) and n ∈ Z+, define θ̆n ∈ Θ(E) so that

θ̆n(t) =

√
n

log(2)(n ∨ 3)
θ

(
t

n

)
, t ∈ [0,∞),

and show that, W(E)-almost surely, {θ̆n : n ≥ 1} is relatively compact in Θ(E)

and that BH1(H)(0, 1) is the set of its limit points.

Hint: Referring to (ii) in Exercise 8.6.8, show that it suffices to prove these
properties for the sequence {(Iθ)˘n : n ≥ 1}. Next check that∥∥(Iθ)˘n − Ih

∥∥
Θ(E)

=
∥∥θ̃n − h∥∥Θ(E)

for h ∈ H1(H),

and use the Theorem 8.6.7 and fact the I is an isometry of H1(H) onto itself.


